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Applications of multidimensional scaling often make the assumption of symmetry for the population matrix
of proximity measures. Although the likelihood of such an assumption holding true varies from one area of
research to another, formal assessment of such an assumption has received little attention. The present article
develops a nonparametric procedure that can be used in a confirmatory fashion or in an exploratory fashion in
order to probabilistically assess the assumption of population symmetry for proximity measures in a multidi-
mensional scaling context. The proposed procedure makes use of the bootstrap technique and alleviates t}}e
assumptions of parametric statistical procedures. Computer code for R and S-Plus is included in an appendix
in order to carry out the proposed procedures.
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Multidimensional scaling (MDS) is a muiti-
variate statistical technique developed to assess
the relationship among a set of objects, such that
the relationships among the objects can be rep-
resented in some K dimensional space. Specifi-
cally, various attributes of objects are compared
in some manmer such that a measure of proxim-
ity can be obtained. A proximity measure is an
index over all pairs of objects that quantifies the
degree to which two objects are similar or dis-
similar (Davison, 1983). The proximity of ob-
jects can thus be conceptualized as either being
a measure of similarity or as a measure of dis-
similarity, depending on whether higher values
of the index represent objects that are most alike
or least alike, respectively.

In applications of MDS where interest lies
not in how similar or how dissimilar two objects
are, but rather in whether two objects are equiva-
lent, the appropriate proximity measure is a mea-
sure of equivalence. Ameasure of equivalence is
one where a binary (yes/no; true/false; present/
absent) response replaces the quantitative degree
of similarity or dissimilarity between pairs of ob-
jects. A measure of equivalence is appropriate
when, for example, interests lies in the compari-
son of objects to determine if they are identical.
An example of such a scenario is given by
Rothkopf (1957). Rothkopf had participants re-
spond either “same” or “different” when two In-
ternational Morse Code signals were presented
one after the other.! The rationale for such a study
was to determine which, if any, signals were com-
monly confused with one another, Rothkopf went
on to determine the “similarity” of pairs of sym-
bols by determining the relative frequency of re-
sponses from across the individual measures of
equivalence.

For purposes of the present article let X be an
N by p by p data array of proximities, where each
of N individuals has a potentially unique p by p
matrix of proximities.? Each of the N individual p
by p matrices will be denoted X (i=1,...,N). Let
8, (8,, > 0) be a dissimilarity measure for the ith
individual between the rth object and the sth ob-
ject(r,s=1,...,p), while letting 0,,0<0, <1)
be a similarity or equivalence measuzre for the ith
individual on the rth and sth objects.

The goal of MDS is to represent the rela-
tionship among the proximity measures, ideally
accurately and in a low dimensional space, such
that the modeled distances over all individuals,
d ., between the objects in the K dimensional
space are as similar to the proximity measures as
possible (see, for example, Cox and Cox, 2001
or Davison, 1983, for a comprehensive introduc-
tion to MDS; for notational ease the i subscript
will be dropped from the proximity measures).
That is, MDS attempts to find a low dimensional
space such that modeled relationships (i.e., the
d ) accurately represents the observed relation-
ships (ie., the § s or 0, s).

In the context of MDS, there are four axi-
oms commonly employed for dissimilarity mea-

sures in order to carryout a MDS analysis
(Davison, 1983, p. 2):

820 (la)
§,.=8,=0 (1b)
5 =6 (Lc)
8 +8,>6, (1d)

For similarity measures, the analog of the first
three axioms for dissimilarities are also assumed
and given as follows:

0<o,<1 (2a)
o“rr = O-:s'.s = 1 (2b)
Gr: = o;r' (ZC)

Measures of equivalence rely on the same axi-
oms as measures of similarity, however, the ana-
log of Equation 1a is not Equation 2a, but rather

c,=00rao,=1, (3)

as the rth and sth objects are rated either “same”
or “different.”

Of interest in the present article is the third
axiom for dissimilarities (Equations 1c), and the
third axiom for similarities (Equation 2c) and
equivalencies (Equation 3), namely the assump-
tion of symmetry. While in some applications of
MDS such an assumption may be plausible, in
many areas of behavioral research such an as-



sumption is likely untenable. Specifically refer-
ring to measures of similarity, although the same
can be said for dissimilarities and equivalencies,
Tversky states that “the assumption of symmetry
underlies essentially all theoretical treatments of
similarity” and then goes on to state that asym-
metric similarities should not be treated as sym-
metric relations (1977, p. 328).

Collins (1987) discusses asymmetric rela-
tionships in the context of a social interaction
framework. In a classroom where each student
ranks their liking of other students, there is no
reason to believe student » will like student s the
same that student s likes student r. In such a situ-
ation o # 0, and thus the assumption of sym-
metry would be violated. Another example is
taken from Seiyama, Naoi, Sato, Tsuzuki, and
Kojima (1990), where interest was in
intergeneration occupational mobility of sons as
compared to their fathers in eight occupational
categories. The proximity measure used was the
number of sons whose occupations are in cat-
egory r and whose fathers are (or were) in occu-
pational category s. The (r, s)th element thus rep-
resented the number of sons in category » whose
father’s occupation was in category s. (See Okada
and Imaizumi, 1997, for an example of how this
asymmetric set of proximity measures can be
analyzed.). It is not necessary, and indeed un-
likely because of the economy and evolving job
needs, for such a proximity matrix to be sym-
metric. A final example is given by Davison
(1983). Davision’s example concerns a proxim-
ity matrix where one dimension (say row) repre-
sents students’ freshman major and the other di-
mension (say column) represents their graduation
major (p. 51). There is no reason to assume such
a matrix will be symmetric, and indeed it will
not likely be symmetric, because the conditional
probability of corresponding upper and lower
diagonal elements need not be equivalent. For
example, many students who initially plan to
study engineering will switch majors, yet few stu-
dents from other majors will change to engineer-
ing. Thus, an asymmetric relationship would ex-
ist. Many other examples could be given, but the
point is that many asymmetric proximity mea-
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sures exist. Although there are some MDS mod-
els capable of dealing with such asymmetric re-
lationships, there has not been much work on in-
ferring when asymmetric relations exist in the
population and not just in the obtained sample.

The most common approach to estimate
symmetric relations is to average §_with &, or
o, with ¢_and proceed in the usual way (Kruskal
1964 Holman 1979). The methods given in the
present article can be used to help determine if
special MDS models, such as ASYMSCAL
(Young and Lewyckyj, 1979), or methods, such
as representing each object twice and thus treat-
ing o _and ¢, or § and §, as distinct values
(Cox and Cox 2001 p. 116—119) need to be
considered. Other MDS models and methods
exist for modeling known asymmetric relation-
ships between proximity measures (e.g., Young,
1987: Collins, 1987; Okada and Imajzumi, 1997;
Harshman, Green, Wind, and Lundy, 1982), but
determining when asymmetric MDS models and
methods are appropriate has not often been con-
sidered.

The purpose of the present article is to test
probabilistically, via an application of the boot-
strap technique (Efron and Tibshirani, 1993), the
likelihood that the asymmetric axiom of Equa-
tions 1c, 2c, or 3 is violated in the particular popu-
lation, given the presumed randomly sampled
observations. Specifically for measures of prox-
imity (i.e., dissimilarity, similarity, and equiva-
lence), a bootstrap algorithm is developed that
uses individual data matrices to infer
probabilistically for specific comparison values
in a confirmatory fashion, or to use across the
entire set of proximities in an exploratory fash-
ion. Such information can provide a researcher
with probabilistic evidence as to whether he or
she should or should not proceed in the “usual”
way by averaging §_with §_or g with o

The Bootstrap Algorithm
and its Rationale

The theory of the bootstrap technique is
based on resampling, which allows for inferences
to be made without regard to the standard (such
as normally distributed errors and homogeneity
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of variance) assumptions of parametric statisti-
cal tests. To make proper use of inferential tests,
such as the rtest or analysis of variance for ex-
ample, the assumption of normality of the popu-
lation difference between 8 and §_or 0, and 0,
must be assumed and the differences must have
the same variance if multiple asymmetries are to
be tested simultaniously, as well as assuming the
observations among individuals are independent.
Making use of the bootstrap technique allows re-
searchers to relax the parametric assumptions, yet
still make informed inferences about relationships
among the population proximity measures.® Al-
though bootstrap techniques have been recom-
mended widely by methodologists and have been
used for a wide variety of statistical tests, includ-
ing certain aspects of MDS (Bell and Cox, 1998),
to the author’s knowledge the bootstrap technique
has not been applied to assess the assumption of
symmetry for proximity measures in the context
of MDS.

The bootstrap technique applied to assess the
assumption of symmetry begins at the data cod-
ing stage. Rather than aggregating across indi-
viduals, as is generally done to form an overall
proximity matrix, the bootstrap approach requires
each of the N individual matrices to be entered
separately. In this sense either an N by p by p
array must exist or N p by p matrices must exist.

The most common approach to handling
asymmetric matrices (dating back to at least
Kruskal, 1964) is to use the mean of the corre-
sponding elements (i.e., §_and 6,_or o, and 0, )
in the upper and lower diagonals. The mean of
the corresponding elements is obtained by the fol-
lowing:

4)

where X is the ith individual’s p by p matrix of
proximities, X | its transpose, with (X, being the
newly formed symmetric matrix that averages
corresponding elements from the upper and lower
diagonals.

The theory of the conventional bootstrap is
to sample, with replacement, N individual data

matrices a large number of times. Because the
bootstrap procedure samples with replacement,
on a given sampling of N data matrices (which is
done a large number of times), the ith matrix may
be selected multiple times, only once, or not se-
lected on any particular bootstrap replication. It
is important to realize that each of the individual
data matrices have an equal (i.e., 1/N) probabil-
ity of being selected on any given sampling. Af-
ter the N individual data matrices have been ran-
domly selected, statistic(s) of interest can then
be calculated. In the present context, the “‘statis-
tic of interest” is the difference between the mean
of the proximity measures and the correspond-
ing elements that the averaged value is supposed
to represent. The N difference matrices are ob-
tained by subtraction:

o = X = X (5

where X is the difference matrix for the ith in-
dividual. The N X, matrices are then combined
by summing each of the individual matrices to-
gether:

(6)

In the bootstrap procedure, N individual data
matrices will be selected and the X computed B
times in order to discern the likely value, range,
and variability of the statistic of interest. That is,
the bootstrap theory mandates that a given pro-
cedure be performed B times (e.g., B = 5,000 or
10,000), such that an empirical distribution of the
statistics of interest can be obtained. In the present
context interest lies in determining the distribu-
tion, specifically the confidence limits, of the dif-
ference between the corresponding proximity
measures above and below the principal diago-
nal of the overall proximity matrix. If the confi-
dence interval contains zero for the difference
between the corresponding elements above and
below the principal diagonal, no evidence would
exist showing that the relationship is not sym-
metric. However, if the confidence interval does
not contain zero, then it can be inferred
probabilistically, at approximately the designated
level, that the relationship is not symmetric.



To rephrase the proceeding discussion, the
following is how one could make use of the sug-
gested bootstrap rationale for testing the assump-
tion of similarity:

1. setup datainanNby pbyp array orin N p
by p matrices;

2. sample, with replacement, N individual X,
matrices;

3. compute X, for each of the N individual X,
matrices;

4. calculate ;X by subtracting X, from X for
each of the N individual matrices;

5. sum each of the N individual X matrices,
such that an overall matrix | X exists;

6. repeat steps 2 through 5 B times;

7. determine percentiles (i.e., the confidence lim-
its) of interest for the overall distribution of
individual elements from the B pX matrices.

There are p? — p confidence intervals that can be
formed, one for each of the upper and lower di-
agonal elements. However, as will be shown
momentarily, the confidence intervals for corre-
sponding elements (such as the (s, r) element and
the (r, s) element) will be symmetric, thus only
(p* — p)/2 confidence intervals provide indepen-
dent information. The following section provides
examples of how the 7 steps listed above apply
to bootstrapping in the test of symmetry for prox-
imity measures.

Examples and Applications
of the Bootstrap Technique
to Test for Symmetry
of Proximity Measures

The proximity measure of equivalence is one
commonly used in the context of MDS. In fact,
this is the measure of proximity used in the
Rothkopf (1957) Morse Code example, the
Okada and Imaizumi (1997) intergenerational
occupation movement study, and the Davison
(1983) college major example. Using a scaled
measure of equivalence, two hypothetical data
sets were created, one where symmetry existed
in the population and one where symmetry did
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not exist in the population, such that the proce-
dure given in the previous section could be illus-
trated.

Suppose the following matrix represents the
conditional probabilities across Nindividuals for
some measure of equivalence:

0.85 007 0.02 0.02 0.04
0.07 0.80 0.07 0.05 0.01
NT={| 002 007 075 0.04 0.12 |,
0.02 0.05 004 075 0.14
0.04 0.01 012 0.14 0.69
L -

where NT represents the mairix where the null
hypothesis of symmetry is true. The hypothesis
can be verified because NT = NT'. Note that the
sum of each row across the columns is one, while
the sum of each column across the rows is also
one, thus leading to an appropriate set of prob-
abilities for a symmetric matrix when the null hy-
pothesis of symmetry is true. An example where
the null hypothesis of symmetry is false is given
by the following matrix of conditional probabili-
ties across the N individuals:

0.85 002 004 007 002
0.07 0.80 0.01 0.05 0.07
NF=|002 007 075 012 0.04
0.02 0.05 004 075 0.14
0.04 001 012 0.14 0.69

Matrix NT and matrix NF will be used to
illustrate the results of the bootstrap procedure
when the null hypothesis is true and when it is
false, respectively. Appendix A gives syntax for
the computer programs S-Plus and R, such that
the bootstrap procedure presented here can be
applied to some data set in order to test the as-
sumption of symmetry.

When forming confidence intervals, it is
important to realize the population value(s) that
are being bounded. For measures of equivalency,
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which is the focal point of the example, the val-
ues of the symmetrized matrix are defined as

M
M5=100[M—M; ], (7
where M is the matrix of conditional probabili-
ties for equivalency measures. The matrix M is
then a symmetric matrix of the percentage of
cases contained in each element of the matrix M.
When M is symmetric M it is a null matrix (i.e.,
a p by p matrix of zeros). The absolute value of
the off diagonals (note that the principal diago-
nal of M will always be zero) of M become larger
as the assumption of symmetry is less plausible.
The following two subsections give the results
(in terms of confidence limits for the conditional
percentages) of the bootstrap procedure for test-
ing the assumption of symmetry for the matrices
NT and NF.

Results when the Null Hypothesis was True

A Monte Carlo simulation was conducted to
test the integrity of the suggestions provided
throughout the article. The Monte Carlo simula-
tion consisted of 7,500 replications of the boot-
strap procedure. The number of bootstrap repli-
cations (within each one of the 7,500 replications)
was 5,000. The sample size used throughout the
simulation was 100.

The results for the lower bound of the 95 percent
confidence interval for the matrix NT are given
in matrix form as follows:

0.00 -0.076 -0.053 -0.035 -0.039
-0066 000 -0.093 -0.050 -0.019
Lower Limit NT =]-0,023  -0.047 0.00 -0.067 -0.103
-0.112  -0,070 -0.040 0.00 -0.111
-0.070  -0.037 -0.077 -0.084 0.00

The results for the upper bound of the 95
percent confidence interval for the matrix NT are
given in matrix form as follows:

0.00 066 0.023 0.042 0.070
0.076 0.00  0.047 0.070 0.037
Upper Limit NT = | 0.053 0.093 0.00 0.040 0.077
0.035 0.050 0.067 0.00 0.084
0.039 0.019 103 .111 0.00

Because it is known that the null hypothesis is
true, zero should be contained within each of the
95 percent confidence limits, if indeed the confi-
dence intervals correctly bracket the population
value. Inspection of matrix Lower Limit NT and
Upper Limit NT reveal that zero is indeed brack-
eted by the confidence limits for each of the 20
elements (10 above the principal diagonal and
10 below; note the pattern of negative relation-
ship between the confidence bounds for the trans-
posed elements in the two matrices because of
(X, in step 3 of the procedure) from the NT ma-
trix. Although the bootstrap procedure was shown
to work well when the null hypothesis is true, it
is also important to assess the suggested proce-
dures when the null hypothesis is false. The next
subsection illustrates such a case.

Results when the Null Hypothesis was False

The previous subsection illustrated that the
proposed procedures worked well when the null
hypothesis was true. The present section makes
use of the asymmetric matrix NF to assess the
effectiveness of the procedure when the assump-
tion of symmetry is violated. The same proce-
dures given in the previous subsection were also
used for the following results.

The results for the lower bound of the 95
percent confidence interval for the matrix NF are
given in matrix form as follows:

0.00 -2.535  0.950 2,455 -1.060
2.423  0.00 -3.060 -0.086 2.945
Lower Limit NF =(-1.044 2953 0.00 3.929 -4.052
-2.568  -0.032 -4.078 0.00 -0.104
0.965 -3.051 3.904 -0.087 0.00

The results for the upper bound of the 95 percent
confidence interval for the matrix NT are given
in matrix form as follows:



0.00 -2.423  1.044 2568 -0.965
2,535 0.00 -2.953 0.032 3.051
Upper Limit NF ={-0.950  3.060 0.00 4.078 -3.904
-2.455  0.086 -3.92% 0.00 0.087
1.060 -2.945 4.052 0.104 0.00

Because it is known that the null hypothesis is
false, at least some intervals should exclude zero.
Inspection of the confidence limits given by
Lower Limit NF and Upper Limit NF reveal
that zero is excluded from all but 4 of the ele-
ments. Specifically elements (4,2) and (2,4), as
well as (4,5) and (5,4). After inspecting matrix
NF, it is realized that indeed the null hypothesis
of symmetry is true for elements (4,2) and (2,4),
as well as (4,5) and (5,4). Thus, these two pairs
of elements are correctly bracketed by zero. The
other 16 confidence limits correctly excluded
zero, and correctly included the population value
obtained from Equation 7.

Further Issues of the Procedure

One obvious concern with making use of
the suggested procedures is that if one were to
form multiple confidence intervals (for example
the (p? - p)/2 independent confidence intervals)
100(1 — o) percent confidence intervals, there
would be inflation of the familywise Type I er-
ror rate. Because such an inflated Type I error
rate is undesirable, the researcher should decide
a priori whether they want to do a confirmatory
analysis or an exploratory analysis.

In a confirmatory analysis the researcher
prespecifies corresponding elements of interest
and then performs the procedure only for the
specified elements. One option is to use a
Bonferroni correction, where if C confidence in-
tervals are to be formed, the per-confidence in-
terval Type I error rate is given as o, = 0 /C,
where o, is the familywise alpha. In this sense
o, controls the Type I error rate, such that the
confidence intervals done within the family have
an overall (i.e., across the family) Type I error
rate of the FW specified, while the PC error rate
is smaller. Thus, if C =4, because there were four
confidence intervals of interest, and o, was set
at .05, o, = .05/4 = .0125. Thus, the Type I error
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rate for each individual confidence interval would
be .0125; however, if the null hypothesis of sym-
metry was true, across the family of tests a Type
Lerror rate would be expected 1000, percent of
the time.

Rather than confirmatory analyses, some re~
searchers will likely be interested in more explor-
atory analyses. In this sense there are no a priort
hypotheses and the suggested procedures can be
used as an exploratory technique to discern if
there are likely any, and where, corresponding
elements that are asymmetric. Because of the
numerous confidence intervals formed, and be-
cause in the exploratory setting the Type I error
rate need not be controlled across the set of ele-
ments, if the null hypothesis of symmetry is true
there may still be significance claimed (i.e., a
Type 1 error committed). Across the study (i.e.,
the familywise Type [ error rate) will be approxi-
mately 1 — (1 — o)) (Hays, 1994, p. 341). This
Type 1 error rate will be much greater than the
per-confidence interval o if C is much greater
than one, However, because the goal is to try and
reject the hypothesis of symmetry (either across
the set of elements or for prespecified elements),
itis a better strategy to be cautious when attempt-
ing to adjust for familywise alpha inflation, so as
to not make it exceedingly difficult to reject a
false null hypothesis of symmetry.

Discussion

It is often the case that symmetry is assumed
in the context of MDS, not based on evidence,
but rather on convenience. The extent to which
this symmetry assumption holds true has not of-
ten been tested, possibly in part because proce-
dures to test such an assumption have not received
much attention. Although MDS models do exist
for asymmetric data {(e.g., Okada and Imaizumi,
1997, Collins, 1987, Young and Lewyckyj, 1979),
determining the appropriateness of such models
is not often considered. The present article ar-
gues that the assumption of symmetry should be
tested in applications of MDS and presents pro-
cedures that allow such an assumption to be tested
by making use of the theory of the bootstrap tech-
nique.



Specifically, the suggested procedure is to
make use of the theory of the bootstrap technique,
such that nonparametric confidence limits can be
obtained and then assessed to infer whether or
not the confidence limits, either in a confirma-
tory or exploratory sense, likely contain zero. If
zero is contained in the confidence interval, then
the null hypothesis of symmetry cannot be re-
jected. If, however, zero is not contained within
the confidence limits, it is inferred that the as-
sumption of symmetry does not hold (at least for
the element(s) of interest) in the population. When
symnetry does not hold, treating the matrix of
proximities as though it were symmetric can po-
tentially lead researchers astray in attempting to
understanding the retationships that exist among
a set of objects.

An issue not addressed in the present article
concerns global fit indices. That is, a fit index
designed to assess the likelihood of there being
any asymmetries in a simultaneous fashion. The
techniques proposed here are for confidence in-
tervals for bounding the population difference
between corresponding elements, not some over-
all measure of symmetry. Such a global measure
would allow one to test an omnibus effect. Such
a test would be analogous to an omnibus F test in
an analysis of variance context, whereas the tests
of specific confidence intervals, as discussed in
the present article, would be analogous to
pairwise comparisons. While the omnibus test
would be useful, the specific elements contribut-
ing to the lack of symmetry would not be known.
Follow-up tests of specific corresponding ele-
ments could then be carried out, but at that point
the analysis essentially circles back to the proce-
dures offered here. Statistical power and preci-
sion of some global fit index as well as for spe-
cific corresponding elements is another issue not
addressed in the present article. A potentially in-
teresting and useful topic for future work in this
area is the effect of sample size on the power to
detect asymmetric relations and the precision in
bounding the population parameter.

In concluding, assuming symmetry in the
context of MDS potentially leads to biased re-
sults and incorrect decisions when asymmetric

relationships exist. Identifying those asymmet-
ric relationships can potentially be very informa-
tive, as such identification can lead to knowledge
that had not been previously realized. Presum-
ably such knowledge can then lead to a better
understanding of the relation among a set of ob-
jects of interest, which will potentially have im-
plications for furthering the knowledge base in
the given area of research.
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Footnotes

U Rothkopf (1957) used all letters of the alpha-
bet and whole numbers from zero to nine. Thus,
there were 36 different signals yielding 630 pairs
of signals. The participants were required to be
naive to International Morse Code signals before
the study began and were only trained and tested
on a subset of the 630 possible pairs of objects.

2 Obtaining proximity values, and thus the array
X, in part depends on the type of information
being collected. Davison (1983, chapter 3) and
Cox and Cox (2001, section 1.3) detail methods
of obtaining proximity values. Some measures
of proximity are obtained directly by participants
in the study. Other proximity measures require
calculation (such as the Euclidean distance across
a set of variables) before the X array can be ob-
tained. As Cox and Cox state, “choice of prox-
imity measure depends upon the problem at hand,
and is often not an easy task” (2001, p. 10). The
present article makes the assumption that the de-
sired proximity measure(s) have been obtained
and that the values has been appropriately en-
tered in the array X.

* An argument can be made that for measures of
dissimilarity or similarity, the ¢-test is robust to
violations of the assumption of normality and
homogeneity of variance. This “robustness,” how-
ever, depends in part on the sample size and the
degree of nonnormality. Further, when measures
of equivalence are of interest, one could argue
that because the overall matrix of equivalences



is based on sums, the Central Limit Theorem says
that the distribution of the means, in the limit,
will be normal. Another option for measures of
equivalences is to use the binomial distribution.
However, rather than relying on asymptotic prop-
erties or supposed robust techniques, the method
deemed here to be optimal is to avoid parametric
assumptions altogether by making use of the sug-
gested bootstrap techniques.
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Appendix A

The following syntax is for the computer programs R and S-Plus. The ‘x” represents the specific
values or the observed data that must be supplied by the researcher. The text that follows pound
signs (i.e., #) are comments and need not by typed by the researcher, as they are included only to
help to understand the syntax.

S-Plus and R Code

# Requires a p by p by N array labeled ‘Full.Data’.

alpha <- .05
# Type I exrror rate; l-confidence interval coverage.

P <- X

# Number of measures

N <- x
# Number of individuals (or the number of replications for a single individual)

B <~ x

# Number of bootstrap replications

Full.Data <- x

# ‘rFull.Data‘ must be input either as an N by p by p array or
# as a concatenated set of individual matrices in the array
# function with defined dimensions, that is,

# ‘Full.Data <- array(c(al, a2, a3,..., aN), dim=c(N, p, p)’
# where each ‘ai’ is an individual’s matrix.

‘Full.bata’ must be input either as an N by p by p array or
as a concatenated set of individual matriceg, that is,
‘Full.Data <- c{al, a2, a3,..., aN),’' where each ‘ai’ is an
individual ‘s matrix

# = Ik

Discrepancy.Matrices <- array(Na, dim=c(p, p, B))
Marker <- seqg(l, N, 1)
# Defines the ‘storage’ array for the bootstrap results.

for(b in 1:B)

{

Sampled.Matrix <- array (0, dim=c(p,p))

# Storage matrix for the randomly sampled bootstrap samples

Matrix.Identifiler <- sample(Marker, N, replace=T)
for(i in 1:N)

{
Sampled.Matrix <~ Sampled.Matrix + Full.Data[, Matrix.Identifier[i]]

(Appendix A continued on following page.)
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# Randomly samples N matrices (with replacement) 1 at a time from the
# collection of N individual matrices

}

Sampled.Matrix <- 100* (Sampled.Matrix/N)
# Turns the overall matrix into a matrix of proportions by dividing by N.

Symetrized.Sampled.Matrix <- (Sampled.Matrix + t(Sampled,Matrix))/2

# Takes the full randomly sampled matrix (i.e., sum of matrices) and gets
# the mean of the corresponding upper and lower diagonal elements

# to have a symmetric matrix.

Discrepancy.Matrices(,,b] <- Sampled.Matrix -~ Symetrized.Sampled.Matrix
# Records the discrepancy for each element of the matrix, This can be

# used For comparing discrepancies of individual elements or for

# an overall distribution of discrepancies,

}

Obs.Matrix <- array(0, dim=c(p,p)}

for(i in 1:N)

{

Obs.Matrix <- Obs.Matrix + Full.Datal,,i]

}

Obs.Matrix <- 100*(0Obs.Matrix/N)

Obs.Symetrized.Matrix <- (Obs.Matrix + t(Obs.Matrix))/2
Obs.Symetrized.Matrix

# The above syntax creates the overall observed matrix.
# This is useful if the N individual matrices were

# input individually and interest is in the overall matrix.

After the program has finished, descriptive statistics can then be formed,
such as various percentiles of interest to yield confidence limits

for the particular element from the ‘'Discrepancy matrix.’

An example of calculating a 100(l-alpha)$% confidence interval (here a 95}

= o o# H 3

quantile (Discrepancy.Matrices[1,2,1], probs=c{alpha/2, 1-alpha/2}))
mean (Discrepancy.Matrices[1,2,1)
sqgrt (var (Discrepancy.Matrices{1,2,1))

# The elements defined in the brackets are changed to reflect the elements
# of interest. The program does not need to be run each time, only once and

percent confidence interval for the first row second element is given as follows:

# then the values in the brackets adjusted to reflect the element(s) of interest.





