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The standardized group mean difference, Cohen’s d, is among the most commonly used
and intuitively appealing effect sizes for group comparisons. However, reporting this
point estimate alone does not reflect the extent to which sampling error may have led to an
obtained value. A confidence interval expresses the uncertainty that exists between d and
the population value, δ, it represents. A set of Monte Carlo simulations was conducted to
examine the integrity of a noncentral approach analogous to that given by Steiger and
Fouladi, as well as two bootstrap approaches in situations in which the normality
assumption is violated. Because d is positively biased, a procedure given by Hedges and
Olkin is outlined, such that an unbiased estimate of δ can be obtained. The bias-corrected
and accelerated bootstrap confidence interval using the unbiased estimate of δ is pro-
posed and recommended for general use, especially in cases in which the assumption of
normality may be violated.
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Methodological recommendations within the behavioral sciences have
increasingly emphasized the importance and utility of confidence intervals
(Cumming & Finch, 2001; Smithson, 2001), effect sizes (Olejnik & Algina,
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2000; Roberts & Henson, 2002), and confidence intervals around effect sizes
(Steiger & Fouladi, 1997; Thompson, 2002). Along these lines, the Ameri-
can Psychological Association’s Task Force on Statistical Inference
(Wilkinson & Task Force on Statistical Inference, 1999, p. 599) recom-
mended presenting effect sizes for primary outcomes, as well as forming
confidence intervals for effect sizes involving such primary outcomes. Thus,
the future of quantitative behavioral science research may indeed be based in
large part on confidence intervals around effect sizes, while being less reliant
on null hypothesis significance testing (Thompson, 2002).

In the context of group comparisons, the most commonly used and per-
haps the most intuitively appealing effect size is the standardized difference
between two group means, typically termed Cohen’s d (Cohen, 1988, chap.
3) or sometimes Hedges’s g (Hedges, 1981). The population-standardized
difference between groups means is defined by

δ µ µ
σ

= −1 2 , (1)

whereµj is the population mean for the jth group (j = 1, 2); andσ is the popula-
tion standard deviation, assumed equal for the two groups. The most com-
monly used estimate of δ is given by

d
X X

s
= −1 2 ,

(2)

where Xj is the sample mean from the jth group; and s is the square root of the
usual estimate of the mean square within, that is, the square root of the unbi-
ased estimate of the pooled variance. Even though d is typically used as an
estimate of δ, d is known to be positively biased (Hedges & Olkin, 1985,
chap. 5), a complication that will be dealt with momentarily (note that Glass’s
g′ is a variation on δ, where the group mean difference is divided by the con-
trol group standard deviation rather than the pooled within-group standard
deviation; Glass, 1976).

The use of equation 2 provides a measure of the effect group membership
has on the mean difference, assuming a common standard deviation, that is
scale free (standardized). As with any point estimate, reporting d in the
absence of a confidence interval arguably does a disservice to those other-
wise interested in the phenomenon under study. A point estimate alone fails
to convey the uncertainty associated with an estimate as it relates to the corre-
sponding population parameter. It is the population value that is of interest,
not the observed point estimate. Thus, whenever there is an interest in d, there
should also be an interest in the limits of the confidence interval that prob-
abilistically bound the value of δ.

It is well known that data are often not normally distributed in behavioral
research (Micceri, 1989). It is also well known that most inferential statistical
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methods assume that data are independently sampled from some normally
distributed population. Thus, analyzing nonnormal data by way of proce-
dures that assume normality can have serious implications for the conclu-
sions reached from (mis)using such inferential techniques.

The purpose of the present article is to explore the appropriateness of three
contending methods for forming confidence intervals around the population
standardized mean difference when the assumption of normality is violated.
Specifically, the article examines an exact parametric method based on a
noncentral t distribution, the bootstrap percentile method, and the bootstrap
bias-corrected and accelerated method. These three methods are evaluated in
terms of the accuracy of the confidence interval coverage, the precision of the
estimate, and statistical power.

Methods of Formulating
Confidence Intervals Around δ

Two classes of confidence intervals are explored in the present article. The
first method is a parametric procedure based on the standard general linear
model assumptions that (a) data are randomly sampled from a normally dis-
tributed parent population conditional on group membership, (b) homogene-
ity of variance exists for all groups of interest (only two groups are consid-
ered in the present article, yet the ideas extend to j groups), and (c) the units of
analysis are independent of one another. This method of confidence interval
formulation is analogous to that described in Steiger and Fouladi (1997) and
is based on a noncentral t distribution (also see Cumming & Finch, 2001, for
another procedure). The second method of confidence interval formulation is
based on two different nonparametric bootstrap resampling procedures. In
the following two subsections, an overview of the framework and details of
the application is given for each of the two bootstrap methods.

Parametric Confidence Interval

When the assumptions are met and the null hypothesis is true, the differ-
ence between two group means is normally distributed about zero. When this
difference is divided by its standard error, it follows a central t distribution
with ν = n1 + n2 – 2 degrees of freedom, where nj is the sample size for the jth

group. However, when the null hypothesis is false, the difference between the
means divided by its standard error does not follow a central t distribution;
rather, it follows a nonsymmetric distribution that is known as a noncentral t
distribution with ν degrees of freedom and noncentrality parameter λ. The
noncentrality parameter is a function of δ and the within-group sample sizes:
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λ δ=
+

n n

n n
1 2

1 2

. (3)

The observed t value, tobs., is used to estimate the noncentrality parameterλ.
By the confidence interval transformation principle (Steiger & Fouladi,

1997, p. 234), finding the confidence limits for λ leads to the confidence lim-
its for δ. (Although a one-sided confidence interval around δmay be of inter-
est in certain circumstances, the discussion in the present article is restricted
to two-sided confidence intervals. However, the calculation of a one-sided
confidence interval for δ is straightforward given the ensuing discussion.)
The lower confidence limit for λ is obtained by finding the noncentral param-
eter whose 1 –α / 2 quantile is tobs.. Likewise, the upper confidence limit for λ
is obtained by finding the noncentral parameter whose α / 2 quantile is tobs..
These upper and lower limits bracket λ with 100(1 – α)% confidence. The
noncentral confidence limits for λ can be obtained in a straightforward
fashion with the following SAS syntax:

LowNC_CV = TNONCT(tobs., ν, 1 – α / 2),

and

UpNC_CV = TNONCT(tobs., ν, α / 2),

where LowNC_CV and UpNC_CV are the lower ′t v( / , , )α λ2 and upper
′ −t v( / , , )1 2α λ critical values from the particular noncentral t distribution. The

critical values can also be obtained using R or S-Plus. (The critical values
themselves are not directly available in the computer programs R and S-Plus,
but special scripts were developed to obtain the critical values in these pro-
grams and are available on request.)

Once the confidence limits for λ have been obtained, they can be trans-
formed into confidence limits for δ. This transformation holds because δ is a
function of λ and the within-group sample size. The confidence interval
around δ is computed in the following manner:

Prob. /2, ,′
+ ≤ ≤ ′

+
−t

n n

n n
t

n n

n nv v( ) ( / , , )α λ α λδ1 2

1 2
1 2

1 2

1 2









 = −1 α. (4)

Thus, given that the statistical assumptions are met, equation 4 provides the
100(1 – α)% confidence limits around δ. However, it is important to realize
that to the extent that the assumptions are not met, equation 4 can potentially
yield misleading confidence interval limits such that the empirical coverage
is greater or less than the nominal coverage specified. Momentarily, the sta-
tistical validity of this procedure will be examined when the assumption of
normality is violated via a set of Monte Carlo simulations.
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Bootstrap Confidence Intervals

The general bootstrap technique is a resampling procedure whereby ran-
dom samples are repeatedly drawn from the set of observed data a large num-
ber of times (say 10,000) to study the distribution of the statistic(s) of interest
given the obtained data. In the present context, interest lies in examining the
distribution of the B bootstrapped d values, where d* represents the vector of
length B of the bootstrap results such that nonparametric confidence limits
can be formed. The bootstrap procedure makes no assumption about the par-
ent population from which the data were drawn other than that the data are
randomly sampled and thus representative of the parent population.

Within the bootstrap framework, two methods of confidence interval for-
mulation are delineated. The first type is the percentile method, whereby the
values representing theα / 2 and 1 –α / 2 quantiles of the empirical bootstrap
distribution are taken as the confidence limits. That is, the confidence limits
from the percentile method are obtained simply by finding the values from
the bootstrap distribution, d*, that correspond to the α / 2 and 1 – α / 2
cumulative probabilities.

The percentile method is first-order accurate. The order of accuracy in the
sense of confidence intervals is the rate at which the errors of over- or
undercoverage of the 100(1 – α)% confidence interval limits approach zero.
First-order accuracy means that the error of the percentage of confidence
interval coverage approaches zero at a rate related to1 1 2/ min( , )n n (Efron
& Tibshirani, 1993, p. 187). The second type of bootstrap confidence interval
of interest, and the one to be generally recommended, is the bias-corrected
and accelerated confidence interval (BCa). The BCa is second-order accu-
rate, meaning that the over- or undercoverage of the 100(1 – α)% confi-
dence interval approaches zero at a rate related to 1 / min(n1, n2) (Efron &
Tibshirani, 1993, p. 187).

The computation of the BCa proceeds in three steps. First, a bootstrap
sample of size B is collected, as was the case with the percentile method.
Rather than just stopping there, however, a bias correction value is obtained,
as is an acceleration value. The bias correction value, �z0, is obtained by cal-
culating the proportion of the d* values that are less than the sample d and
then finding the quantile from the normal distribution with that cumulative
probability:

� #( * )
,z

d

B0
1= <





−Φ d (5)

where Φ is the standard normal cumulative distribution function and Φ–1 its
inverse (e.g., Φ[1.645] = 0.95 and Φ–1[0.975] = 1.96), and # is read as “the
number of.” The acceleration value, �a, is obtained by first performing a jack-
knife procedure, whereby d is calculated N times, once after the ith case (i =
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1, . . . , N) has been deleted. Let d(–i) be the value of d when the ith data point has
been deleted and

~
d be the mean of the N jackknifed d(–i) values. The accelera-

tion parameter is then computed as follows:

�

(
~

)

(
~

)

( )

( )

/
a

d d

d d

i
i

N

i
i

N
=

−

−


















−
=

−
=

∑

∑

3

1

2

1

3 2

6








. (6)

Details of the rationale for the use of the BCa are given in Efron and
Tibshirani (1993, chap. 14).

Once �z0 and �a have been calculated, the limits of the confidence interval
are calculated by finding the values from the bootstrap sample that corre-
spond to the CILow and CIUp quantiles of the observed bootstrap distribution.
The CILow and CIUp values are found from the following formulations:

CILow = + +
− +







Φ �

�
�( �

( / )

( / )
z

z z

a z z
0

0
2

0
21

α

α , (7)

and

CIUp = + +
− +








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−Φ �
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,
( / )

( / )
z

z z

a z z
0

0
1 2

0
1 21

α

α (8)

such that CILow and CIUp represent the quantiles from the distribution of d*.
That is, the confidence limits from the bias-corrected and accelerated
approach are obtained by finding the values from the bootstrap distribution,
d*, that correspond to the CILow and CIUp cumulative probabilities. It should
be pointed out that when �a and �z0 equal zero, CILow =α / 2 and CIUp = 1 –α / 2,
which corresponds to the values obtained from the percentile method.
Appendix A provides syntax to calculate confidence intervals on the basis of
the percentile method and the generally recommended bias-corrected and
accelerated method in R or S-Plus. (It should be noted that much of the dis-
cussion regarding the noncentral approach and the bootstrap techniques is
also applicable to g′. The noncentral approach can be modified for a confi-
dence interval around the population g′, as was done for δ, by adjusting the
degrees of freedom to nc – 1, where nc is the control group sample size
(Hedges & Olkin, 1985, chap. 5). Furthermore, minor modifications can be
made to the bootstrap procedures so that they can be applied to a confidence
interval for the population g′.)
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Estimating δ in an Unbiased Fashion

The commonly used estimate of δ is given by equation 2. However, E[d] =
δ / G(ν), where

( )
G( )

( / )

/ ( ) /
v

v

v v
=

−
Γ
Γ

2

2 1 2
, (9)

and Γ(k) is the γ function evaluated at k (Hedges & Olkin, 1985, p. 104). An
unbiased estimate of δ, du, can thus be obtained in the following manner:

du = dG(ν). (10)

The bias in d is particularly problematic for a small ν. Hedges and Olkin
(1985) provided a table (Table 2, p. 80) from which the values of G(ν) can be
obtained for ν from 2 to 50. Appendix B provides a program with a function
for calculating d and du using R or S-Plus. (Note that Hedges & Olkin, 1985,
p. 79, gave an approximation to du that does not require the use of the Γ func-
tion. The approximation of du is given as d{1 – 3 / [4ν – 1]}. However,
because du is an unbiased estimate, it is to be preferred.)

Methods of the Monte Carlo Simulations

The nonnormal data were generated using Fleishman’s (1978) power
method. This method yields a random variate distributed with mean zero and
variance one, for which the skew and kurtosis are specified for the particular
nonnormal distribution. The nonnormal data are generated by first generat-
ing random variates from a standard normal distribution and then transform-
ing the variates by a polynomial equation of order three with coefficients spe-
cific to a particular case of nonnormality. The necessary coefficients are
given in Table 1 of Fleishman (pp. 524-525).

Skew and kurtosis are defined respectively as

γ µ
µ

κ
κ1

3

2
3 2

3

2
3 2

= =
/ /

, (11)

and

γ µ
µ

κ
κ2

4

2
2

4

2
2

3= − = , (12)

where µr is the rth central moment, and κr is the rth cumulant of the particular
distribution (Stuart & Ord, 1994, chap. 3). It should be noted that γ1 and γ2 are
zero for the normal distribution.
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Four different distributional forms were examined. To gauge the effec-
tiveness of the three confidence interval procedures, the normal distribution
was examined along with three nonnormal distributions. The nonnormal dis-
tributions were chosen because they were thought to be realistic representa-
tions of distributions encountered in the behavioral sciences. The skew and
kurtosis of each condition are given, along with their graphical depiction
accompanied by a normal density line, in Figure 1.

Results

The results for each of the 72 scenarios (Table 1: three sample sizes by
three methods for d and two methods for du; Table 2: three sample sizes by
three distributions by two methods for d and one method for du; Table 3: five
effect sizes by three distributions by two methods for d) are based on 10,000
replications in the program R. For the bootstrap conditions, there were B =
10,000 bootstrap samples drawn within each of the 10,000 replications of the
Monte Carlo procedure. Table 1 provides a comparison of the noncentral
method, the bootstrap percentile method, and the bootstrap bias-corrected
and accelerated method using both d and du as estimates of δ. Table 1 shows
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Figure 1. Illustration of the three nonnormal distributions, with a normal density line
included for comparative purposes.



the results in the special case in which the null hypothesis was true and all of
the statistical assumptions were met. The sample sizes examined were cho-
sen to represent very small (5), small (15), and medium (50) per-group sam-
ple sizes that may arise in applied research settings. Perhaps the single most
important value given in Table 1 is the percentage of confidence intervals
whose bounds correctly bracketed the population value (% of coverage),

KELLEY 59

Table 1
Results for the Noncentral (NC), Bootstrap (BS) Percentile, and BS Bias-Corrected and
Accelerated (BCa) Confidence Intervals When All Parametric Assumptions Were Met

d Estimate du Estimate

Statistic NC BS Percentile BS BCa BS Percentile BS BCa

Skew = 0, kurtosis = 0
(normal distribution),
n1 = n2 = 5, δ = 0

% of coverage 95.0100 87.9900 95.5100 87.6200 95.2200
M width 2.5731 3.5093 3.2819 3.5154 3.2822
Median width 2.5165 3.2458 3.1387 3.2459 3.1417
Mean low bound –1.2802 –1.7406 –1.6378 –1.7673 –1.6475
Median low bound –1.2346 –1.5600 –1.6071 –1.5812 –1.6129
SD low bound 0.7192 1.4194 0.8504 1.4614 0.8481
M up bound 1.2929 1.7687 1.6442 1.7481 1.6347
Median up bound 1.2446 1.5806 1.6085 1.5533 1.6005
SD up bound 0.7206 1.3926 0.8214 1.4185 0.8516

Skew = 0, kurtosis = 0
(normal distribution),
n1 = n2 = 15, δ = 0

% of coverage 94.8400 92.9900 95.9600 93.2800 96.3600
M width 1.4447 1.5232 1.5157 1.5247 1.5168
Median width 1.4370 1.5111 1.5086 1.5120 1.5091
M low bound –0.7224 –0.7606 –0.7566 –0.7618 –0.7578
Median low bound –0.7175 –0.7526 –0.7537 –0.7534 –0.7554
SD low bound 0.3741 0.4284 0.8504 0.4274 0.3653
M up bound 0.7223 0.7627 1.6442 0.7629 0.7590
Median up bound 0.7138 0.7499 1.6085 0.7501 0.7590
SD up bound 0.3745 0.4272 0.8214 0.4271 0.3654

Skew = 0, kurtosis = 0
(normal distribution),
n1 = n2 = 50, δ = 0

% of coverage 94.9500 94.3900 95.3900 94.0400 94.9500
M width 0.7860 0.7964 0.7964 0.7964 0.7963
Median width 0.7849 0.7955 0.7957 0.7956 0.7956
M low bound –0.3936 –0.3964 –0.3966 –0.3972 –0.3972
Median low bound –0.3932 –0.3966 –0.3972 –0.3955 –0.3949
SD low bound 0.2022 0.2100 0.2007 0.2111 0.2018
M up bound 0.3925 0.4000 0.3998 0.3992 0.3991
Median up bound 0.3907 0.3979 0.3978 0.3982 0.3992
SD up bound 0.2023 0.2100 0.2008 0.2111 0.2018



which was specified to be 95% for all scenarios. The means, medians, and
standard deviations of the confidence bounds are also included. These
descriptive values illustrate the relative precision of each of the methods.
Notice that in all cases, the noncentral method outperformed the bootstrap
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Table 2
Results for the Noncentral (NC), Bootstrap (BS) Percentile, and BS Bias-Corrected and
Accelerated (BCa) Confidence Intervals When the Null Hypothesis Was True and Both
Sample Distributions Followed the Same Nonnormal Distribution

Statistic NC BS BCa (d) BS BCa (du)

Condition 1 (skew = 1.75, kurtosis = 3.75), δ = 0
n1 = n2 = 5

% of coverage 96.1400 96.0700 96.5200
M width 2.5683 3.2278 3.2326
Median width 2.5195 3.0792 3.0869

n1 = n2 = 15
% of coverage 95.5600 95.2100 95.2500
M width 1.4445 1.4803 1.4819
Median width 1.4376 1.4864 1.4877

n1 = n2 = 50
% of coverage 95.2000 95.8500 95.3700
M width 0.7860 0.7872 0.7868
Median width 0.7849 0.7898 0.7893

Condition 2 (skew = 1, kurtosis = 1.5), δ = 0
n1 = n2 = 5

% of coverage 95.4000 96.1900 95.9200
M width 2.5709 3.2649 3.2679
Median width 2.5171 3.1250 3.1288

n1 = n2 = 15
% of coverage 95.2600 95.9800 95.8800
M width 1.4443 1.5043 1.5056
Median width 1.4371 1.5044 1.5014

n1 = n2 = 50
% of coverage 95.4600 95.3400 95.3400
M width 0.7860 0.7929 0.7929
Median width 0.7850 0.7933 0.7933

Condition 3 (skew = 1, kurtosis = 1.5), δ = 0
n1 = n2 = 5

% of coverage 94.9600 95.9100 95.7900
M width 2.5731 3.3243 3.3320
Median width 2.5142 3.1639 3.1617

n1 = n2 = 15
% of coverage 94.9300 96.5000 96.3300
M width 1.4449 1.5282 1.5290
Median width 1.4371 1.5161 1.5163

n1 = n2 = 50
% of coverage 95.5600 95.3600 94.8500
M width 0.7860 0.7990 0.7990
Median width 0.7849 0.7978 0.7977
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percentile method and the bootstrap bias-corrected and accelerated method
in terms of the precision of the confidence intervals and the variability of the
widths of the confidence intervals. This is no surprise, because statistical
tests with the strongest assumptions are generally the most powerful tests
when their assumptions are satisfied (Seigel, 1956, chap. 3)

The results of the simulations given in Table 1 showed that there was an
undercoverage problem with the bootstrap percentile method for the particu-
lar conditions examined. As the sample size grew larger, the empirical per-
centage of coverage began to approach the nominal value specified. How-
ever, this method was uniformly outperformed by the bootstrap bias-
corrected and accelerated procedure. For this reason, the percentile method is
not further considered as a viable option, and it is not recommended as a
method for forming confidence intervals around δ. Although each of the
noncentral results provided confidence interval coverage near the nominal
value, this was in large part because the statistical assumptions were met. The
simulations in this condition were conducted to obtain summary statistics
(e.g., mean and median width and the standard deviation of the upper and
lower bounds) for the purpose of comparison with the bootstrap procedures
in the ideal case in which the assumptions are satisfied. Although it will be
shown that there is a real benefit when using the bias-corrected and acceler-
ated method when normality does not hold, it is shown in Table 1 that it is
effective when the assumptions are met, because the results closely approxi-
mate those of the parametric method.

When the assumptions of a statistical procedure are not met, the meaning
of the parametric results can be misleading. Simulations were conducted to
investigate how nonnormal parent populations would affect the performance
of the noncentral confidence interval procedure, as well as to examine the
effectiveness of the bias-corrected and accelerated procedure. Using the
three nonnormal distributions illustrated in Figure 1, the results of the non-
central method were compared with the results of the bias-corrected and
accelerated method for both d and du. In this set of simulations, the null
hypothesis was again true, and both of the groups had the same nonnormal
parent population.

As with the results in Table 1, the sample sizes per group were 5, 15, and
50. The results in Table 2 illustrate that when both distributions follow the
same nonnormal distributional form and when the null hypothesis is true, the
empirical and nominal confidence interval coverage are very close to each
other for both the noncentral method and the bias-corrected and accelerated
method. Notice that Table 2 is not as detailed as Table 1, but the results given
in Table 2 are of more interest for comparative purposes given space require-
ments. Because the null hypothesis is true (λ = 0), it is no surprise that the
noncentral method works well, because it is well known that the t test is
robust to violations of normality when the other assumptions are met and the
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null hypothesis is true (Boneau, 1960; Sawilowsky & Blair, 1992). It should
be pointed out that the bias-corrected and accelerated procedure also worked
well in terms of the appropriate confidence interval coverage, yet the confi-
dence intervals still tended to be wider than those of the noncentral method
for smaller sample sizes. As Wilcox (1998) has pointed out, when differences
do exist among groups, “standard methods are not robust” (p. 300). Thus,
even though the noncentral method worked well when the null hypothesis
was true, this means little under conditions in which the researcher is typi-
cally interested, that is, when the null hypothesis is false. However, it is note-
worthy that the overall performance of the bias-corrected and accelerated
method was similar to that of the noncentral method. The next subsection
examines the results when the null hypothesis is false.

Results When the Null Hypothesis Is False

Most researchers are interested in cases in which it is believed that the null
hypothesis is false. Thus, it is especially important to evaluate the integrity of
statistical procedures when the assumptions they are based on are violated
and when the null hypothesis is false. Because the bootstrap confidence inter-
vals formed when using d and du are essentially equivalent, except for the
center of the interval, for clarity, only the results for the noncentral method
and the bias-corrected and accelerated method for d are presented. Table 3
provides a comparison of the noncentral method and the bias-corrected and
accelerated method for five different effect sizes (δ = 0.20, 0.50, 0.80, 1.00,
and 1.60), for which sample size was chosen such that statistical power
(based on normality) was 0.80 in each condition. The first row in each of the
three conditions identifies the effect size and the within-group sample size.
The effect sizes chosen corresponded to Cohen’s (1988, sect. 2.2.4) defini-
tion of “small” (δ = 0.20), “medium” (δ = 0.50), and “large” (δ = 0.80), and
the remaining two effect sizes (δ = 1.00 and 1.60) were chosen because they
represent effects that are generally considered substantially large. In situa-
tions in which an effect size is hypothesized to be very large, the correspond-
ing sample size for adequate power to detect a nonzero effect can be small.
Thus, the within-group sample sizes used in Table 3 range from small to
large.

Table 3 gives the results for which data from one sample were sampled
from a standard normal distribution, while the second sample was sampled
from a distribution in which the mean was equal to the effect size, because the
variance is one, and whose skew and kurtosis were specified in the three con-
ditions illustrated in Figure 1. As can be seen from Table 3, in the first two
conditions, when the sample size decreased, so too did the coverage of the
noncentral confidence interval procedure. The results from the third condi-
tion remained quite valid throughout the range of effect sizes and sample
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sizes that were studied. This is likely the case because Condition 3 corre-
sponded to a distribution that did not markedly diverge from normality.

With the exception of the effect size of δ = 1.60, for which the small sam-
ple size was only eight per group, the bias-corrected and accelerated proce-
dure accomplished its goal of 95% coverage very well in each of the other 12
scenarios. However, when sample size was very small (nj = 8), the procedure
was not satisfactory, although it worked about as well as the noncentral
method for the first two conditions. When making decisions within the
resampling framework, the data should not only be representative, but there
should also be an adequate number of independent pieces of information
available. When sample size is not small, the bootstrap methodology works
very well, especially in situations in which the statistical assumptions are
violated. (Note that “not small” does not imply large sample theory. There
simply has to be a large enough sample size so that the bootstrap samples are
largely unique, because there are few ways the bootstrap replications can dif-
fer when sample size is small.) Apparently, when n = 8 and data are non-
normal, there are not enough independent pieces of information to ade-
quately represent the distributional form the data follow, and thus confidence
interval coverage is itself not adequate.

Notice in Table 3 that the noncentral method yielded statistical power of
approximately 0.80 in each of the 15 scenarios. This was the case even
though the confidence interval coverage decreased further and further from
the nominal value as sample size decreased. Had the confidence interval cov-
erage been the nominal value, power would have likely been smaller. Thus,
even though the empirical power nearly equaled the nominal power, the con-
fidence interval coverage tended to be wider than desired. Further notice that
the statistical power of the bias-corrected and accelerated method was
smaller than that of the noncentral method, albeit not much when sample size
was large.

Discussion

Parametric procedures that rely on the often untenable assumption of
normality are the dominant procedures used by researchers in the behavioral
sciences as well as other disciplines that make use of inferential statistics.
However, behavioral phenomena often do not follow a normal distribution
(Micceri, 1989), in addition to the homogeneity assumption often being un-
tenable. When the assumptions of parametric tests are violated, the integrity
of the results based on parametric statistical techniques is suspect. If conclu-
sions are drawn on the basis of parametric procedures for which the assump-
tions have likely been violated, they should be interpreted with caution.

Although there are reasons to use parametric methods in certain circum-
stances, as well as the corresponding nonparametric bootstrap method in
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other circumstances, it should be realized that each method has its own
advantages and disadvantages. Rather than recommending only one method
at the expense of another, the recommendation offered here is a moderate
approach whereby results are presented from both methodologies.

It is unreasonable to assume that researchers are likely to abandon their
elegant parametric procedures for the corresponding nonparametric proce-
dures anytime soon. It is also unreasonable to ignore the advancements and
advantages offered by nonparametric statistics, particularly bootstrap meth-
ods. The suggestion of performing and reporting the results of both proce-
dures allows the available evidence to be weighed with two very different
methodologies. The bootstrap theory says that if the parametric assumptions
hold, the results of the BCa method will yield results consistent with the para-
metric results. The theory of the bootstrap methodology also says that when
the assumptions of parametric statistical assumptions are false, the BCa
method will provide a more realistic assessment of the phenomenon under
study, provided the data represent a random and representative sample from
the population of interest. When the results of the parametric test and the cor-
responding bootstrap procedure agree, the results can be taken to be very
accurate and meaningful. If, however, the procedures yield different results,
researchers should ask themselves if the statistical assumptions have likely
been violated. If they have, it is more likely that the results obtained from the
bias-corrected and accelerated bootstrap procedure are more valid (unless
the sample size is too small for the bootstrap replications to produce many
unique sets of observations).

The present Monte Carlo study examined the results of the noncentral
confidence interval procedure for δ using three nonnormal distributions.
Although the assumptions of parametric tests can be met under only one sce-
nario (normality, homogeneity of variance, independent observations), they
can be violated in an infinite number of ways. The distributions chosen to
illustrate the problems when normality is violated may not represent the dis-
tributional forms from some areas of research, and they may not differ from
the normal distribution enough to unambiguously show the benefits of the
bootstrap procedures. Although this is a limitation of the current study, a
study evaluating the effects of violating the assumption of normality (and
combinations of violations) can potentially examine an arbitrarily large num-
ber of distributions for which several measures are simultaneously evaluated.
Another limitation is that sample sizes were always equal across groups. It is
known that the t test is more robust when sample sizes are nearly equal. Thus,
it is likely that the bootstrap method would offer more advantages when para-
metric assumptions are violated and sample sizes across groups are not equal.
Although the present article examines a limited number of situations in
which the normality assumption was violated, the simulations were meant to
support, not supplant, the theory and rationale of the bootstrap methodology.
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The bootstrap approach, although presented for a specific procedure, albeit
an important one, is very general and applicable to most parameters and sta-
tistical procedures (but see LePage & Billard, 1992, for instances in which
the bootstrap method may fail). The assumptions behind the bootstrap ap-
proaches are minimal. The bootstrap approaches assume only that the data
are a random and representative sample from some larger population.

Although Cohen’s d is the most common estimate of δ, its absolute value
is known to be a positively biased value, particularly when sample sizes are
small. Therefore, it is recommended that du from equation 10 be used as the
point estimate for δ (of course, d → du →δ as ν becomes large). It is further
recommended that du be used in conjunction with the bias-corrected and
accelerated procedure when forming a 100(1 – α)% confidence interval
around δ. This bootstrap confidence interval can be used alone or in addition
to the noncentral method. Using the methodology developed within the boot-
strap framework can assist researchers who are interested in forming confi-
dence bounds for some statistic, an effect size for example, but who are not
comfortable or willing to base their conclusions on assumptions that they
realize may be untenable.

Appendix A
Obtaining Confidence Limits for the Percentile and the
Bias-Corrected and Accelerated Methods in R or S-Plus

The syntax given below provides a method to obtain confidence limits for the per-
centile and the bias-corrected and accelerated bootstrap methods. (Note that the bias-
corrected and accelerated method is recommended for use over the percentile
method; the percentile method is provided for completeness and is not necessarily
recommended for applied applications.) The point estimate of δ that the syntax uses is
the unbiased estimate, du, which is given in equation 10. Note that this syntax relies on
the Cohens.d and Unbiased.d functions, which are given in Appendix B.

B <- 1000 # Number of bootstrap samples/replications.
alpha <- .05 # Type I error rate (or 1-alpha as confidence interval

coverage)

Group.1 <- DATA VECTOR OF GROUP 1’S SCORES
Group.2 <- DATA VECTOR OF GROUP 2’S SCORES

n.1 <- length(Group.1)
n.2 <- length(Group.2)

Bootstrap.Results <- matrix(NA, B, 1)
for(b in 1:B)
{
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Bootstrap.Results[b,1] <- Unbiased.d(sample(Group.1, size=n.1,
replace=T),sample(Group.2,size=n.2, replace=T))

}

Jackknife.Results <- matrix(NA,n.1+n.2,1)
Marker.1 <- seq(1, n.1, 1)
for(sample.1 in 1:n.1)
{
Jackknife.Results[sample.1, 1] <- Unbiased.d(Group.1[Marker.1

[-sample.1]],Group.2)
}

Marker.2 <- seq(1, n.2, 1)
for(sample.2 in 1:n.2)
{
Jackknife.Results[n.1+sample.2, 1] <- Unbiased.d(Group.1,

Group.2[Marker.2[-sample.2]])
}
Mean.Jackknife <- mean(Jackknife.Results)
a <- (sum((Mean.Jackknife-Jackknife.Results)^3))/

(6*sum((Mean.Jackknife-Jackknife.Results)^2)^(3/2))
z0 <- qnorm(sum(Bootstrap.Results Unbiased.d(Group.1, Group.2))/B)

CI.Low.BCa <- pnorm(z0 + (z0+qnorm(alpha/2))/(1-a*(z0+qnorm(alpha/
2))))

CI.Up.BCa <- pnorm(z0 + (z0+qnorm(1-alpha/2))/(1-a*(z0+qnorm(1-
alpha/2))))

LINE SPACE
Percentile.Confidence.Limits <- c(quantile(Bootstrap.Results,

alpha/2), quantile(Bootstrap.Results, 1-alpha/2))
BCa.Confidence.Limits <- c(quantile(Bootstrap.Results, CI.Low.BCa),

quantile(Bootstrap.Results, CI.Up.BCa))
LINE SPACE
# Below are the confidence limits for the bootstrap Percentile

method and the BCa method for the unbiased estimate of d.
Percentile.Confidence.Limits
BCa.Confidence.Limits
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Appendix B
Obtaining an Unbiased Estimate of δ in R or S-Plus

The syntax given below provides functions to estimate δ with Cohen’s d (from
equation 2) and with the unbiased estimate, du (from equation 10). These functions are
necessary to carry out the bootstrap procedures for obtaining confidence intervals
given in Appendix A.

Cohens.d <- function(Group.1, Group.2)
{
n.1 <- length(Group.1)
n.2 <- length(Group.2)
SS1 <- var(Group.1)*(n.1-1)
SS2 <- var(Group.2)*(n.2-1)
pooled.sd <- sqrt((SS1 + SS2)/(n.1+n.2-2))
Result <- (mean(Group.1)-mean(Group.2))/pooled.sd
Result
}

Unbiased.d <- function(Group.1, Group.2)
{
nu <- length(Group.1)+length(Group.2)-2
G.nu <- gamma(nu/2)/(sqrt(nu/2)*gamma((nu-1)/2))
d <- Cohens.d(Group.1, Group.2)
Result <- ifelse(nu > 171, d, d*G.nu)
# Because of limitations of the S language, the gamma function

cannot be applied to degrees of
# freedom greater than 171. When such a case arises, Cohen’s d is

used rather than the unbiased d.
# This does not pose a practical problem because the differences

at such large degrees of freedom are trivial.
Result
}
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