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The analysis of change is important in many fields for 
assessing the effects of the passage of time on some depen-
dent variable. Time-varying and time-invariant covariates 
can be incorporated into the analysis in an effort to un-
derstand and model interindividual differences in change. 
Many times, analysis of change procedures are important 
with or without experimental manipulation. Modern con-
ceptualizations of the analysis of change regard intrain-
dividual change to be the starting point for longitudinal 
data analysis (e.g., Collins, 1996; Mehta & West, 2000; 
Raudenbush, 2001; Rogosa, Brandt, & Zimowski, 1982; 
Rogosa & Willett, 1985). Thus, before aggregating over 
individuals in a multilevel model framework, a prerequi-
site for modeling change parameters as dependent vari-
ables is that the change parameters be themselves mean-
ingful.1 The present article focuses on a single individual 
trajectory, since specifying the individual-level model is 
a necessary but not sufficient condition of a meaningful 
model for a collection of individuals for a phenomenon 
that is repeatedly measured.

Some research questions demand a reasonably large 
time span between measurement occasions and can rea-
sonably expect to obtain only a relatively small number of 
repeated observations. For example, researchers studying 
academic achievement over a school year cannot expect 
to obtain a large number of measurements based on com-
prehensive examinations. This is due in part to the logis-
tics of collecting comprehensive measurements, as well 
as the relatively slow change in achievement. Researchers 
studying topics such as marital satisfaction, depression, 
employee satisfaction, employee motivation, and so forth 
generally fall into similar situations. However, other re-
search questions can be addressed with instruments that 
measure the variable of interest continuously, or nearly so, 

or at least with a relatively large number of measurement 
occasions. For example, heart rate, electrical activity of 
the heart, blood flow to various regions of the brain, eye-
gaze position and amount of movement, body movement, 
and respiration can be measured literally or essentially 
continuously. Because behavioral and biological systems 
are inextricably linked, more and more research is cutting 
across traditional behavioral/psychological and medical/
physiological research topics, and a growing list of journal 
titles suggests that scientific progress can be and is being 
made by bridging various aspects of behavior/psychology 
and medicine/physiology. As formerly disparate fields 
continue to blend, ways of collecting data will continue 
to evolve, some of which will consist of measurements 
that are taken continuously or nearly so. As such, new op-
portunities will emerge for studying the nature of behavior 
and biological systems, as well as, and perhaps most im-
portantly, the interaction of the two.

Kelley and Maxwell (2008) discussed the average rate 
of change (ARC) generally and derived measures of dis-
crepancy between the ARC and the regression coefficient 
from the straight-line change model for a discrete number 
of time points. The ARC describes the average or typical 
rate of change over some time interval of interest for a 
particular trajectory and is thus a parsimonious measure 
that can potentially describe a complicated process, re-
gardless of the functional form of change. Although the 
concept of the ARC in a longitudinal context is appealing 
and seems to be straightforward, the technical underpin-
nings have not received much formal attention (cf. Kelley 
& Maxwell, 2008; Seigel, 1975). The regression coeffi-
cient from the straight-line change model has often been 
the way in which such a succinct description of change 
over time has been attempted. Although using a single 

The average rate of change  
for continuous time models

KEN KELLEY
University of Notre Dame, Notre Dame, Indiana

The average rate of change (ARC) is a concept that has been misunderstood in the applied longitudinal data 
analysis literature, where the slope from the straight-line change model is often thought of as though it were the 
ARC. The present article clarifies the concept of ARC and shows unequivocally the mathematical definition and 
meaning of ARC when measurement is continuous across time. It is shown that the slope from the straight-line 
change model generally is not equal to the ARC. General equations are presented for two measures of discrep-
ancy when the slope from the straight-line change model is used to estimate the ARC in the case of continuous 
time for any model linear in its parameters, and for three useful models nonlinear in their parameters.

Behavior Research Methods
2009, 41 (2), 268-278
doi:10.3758/BRM.41.2.268

K. Kelley, kkelley@nd.edu



RATE OF CHANGE FOR CONTINUOUS TIME MODELS    269

that the mean of derivatives, which is literally the ARC, 
can be written as
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As can be seen in Equation 4C, the mathematical defini-
tion of the ARC is the change in Yt divided by the change 
in time during some specified interval. Equation 4C is 
well-known in analytic calculus (e.g., Finney et al., 2001, 
pp. 86–88; Stewart, 1998, pp. 146–147 and 208), where, 
regardless of the function, the mean of all of the derivatives 
evaluated over a specified continuous interval must equal 

Y/ a. In the context of longitudinal data analysis, the 
mathematics underlying the ARC are not generally well 
known (cf. Kelley & Maxwell, 2008; Seigel, 1975), which 
has led to some confusion in the applied longitudinal data 
analysis literature. As a single measure describing overall 
change, the ARC holds promise. The problem, however, 
is that in an attempt to convey an estimate of the ARC, 
researchers have used the slope from the straight-line 
change model. As Kelley and Maxwell showed in the case 
of discrete time, the slope from the straight-line change 
model generally is not equal to the ARC. As monitoring 
instruments increasingly allow for more measurement oc-
casions to be obtained in the same time interval—so much 
so that some are essentially continuous and others are ap-
proaching continuous—a discussion of the ARC in the 
context of continuous time is appropriate and is provided 
here.

Discrepancy Between the Regression Coefficient 
From the Straight-Line Change Model  

and the ARC
The discrepancy between the regression coefficient and 

the ARC will be quantified by two parameters: the bias and 
the discrepancy factor. For fixed values of time, the bias 
is operationally defined by Equation 5 (see below), where 

SLCM is the general representation of the slope from the 
straight-line change model (i.e., an individual’s ordinary 
least squares regression slope), Yt is conditional on the true 
functional form of change, and E[ ] represents the expected 
value of the random variable in brackets. For fixed values of 
time, the second parameter that describes the discrepancy is 
the discrepancy factor and is operationally defined as

 
E

E
SLCM S|

|

f a

Y Y f T

a a
T

T

1

1

LLCM

ARC
, (6)

value as a descriptor of a potentially complicated pro-
cess of change has an intuitive appeal, the present work 
will demonstrate that the regression coefficient from the 
straight-line change model is generally not equal to the 
ARC for a given trajectory. Aggregating across individu-
als in a multilevel modeling context when the focus of 
interest is the overall ARC is thus generally problematic 
and will tend to lead to biased estimates. The purpose of 
the present article is to extend the work of Kelley and 
Maxwell to the case of continuous time. In so doing, the 
limiting case of continuous time models can be devel-
oped and examined, so that the discrepancy between the 
slope from the straight-line change model and the ARC 
can be better understood.

Mathematical Form of the ARC
Kelley and Maxwell (2008) detailed the mathematical 

underpinnings of the ARC, which we summarize here. 
The rate of change of a nonvertical straight line that passes 
through two points, (a1, Y1) and (aT, YT ), is the slope of the 
line, where at represents some basis of time (e.g., a mono-
tonic rescaling) and Yt is a continuous function of time, 
Yt  f(at), at the t th measurement occasion (t  1, T ). The 
slope of the line connecting two points is the change in Yt 
divided by the change in time:
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where f(at) is the dependent variable Yt, Y is the change 
in the dependent variable, and a is the change in time.

In the limit as a approaches zero, Equation 1 yields the 
instantaneous rate of change when evaluated at a specific 
time value:
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where dYt /da is the derivative of Yt with respect to a, which 
will be represented as f (a).

The mean value for a continuous function that is dif-
ferentiable over the interval a1 to aT is given as

 f
a a

f a dac
T a

aT1

1 1

( ) ,  (3)

where fc represents the mean value of the function of inter-
est, which is f (a) for the ARC (Finney, Weir, & Giordano, 
2001, p. 352; Stewart, 1998, p. 470). Since Equation 3 
yields the mean of a continuous differentiable function, 
and Equation 2 is a special case of a continuous func-
tion, combining the two equations will yield the mean of 
the derivatives (i.e., instantaneous rates of change) of the 
function from a1 to aT.

When the limiting equation for a derivative is combined 
with the mean of a continuous function, it can be shown 
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nents cancel in the numerator of Equation 9 can be seen 
by rewriting the last two components as
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is the first moment about the mean, this quantity must 
always equal zero (Stuart & Ord, 1994, chap. 3). In the 
following subsections describing situations where time is 
continuous, the reduced form of Equation 9,

SLCMC

Y a da Y da

a da

t t a
a

a

t
a

a

t

T T

1 1

2 2 a t a T
a

a

a

a

a da a a
TT

2
1

11

, (10)

will be applied to linear and then to nonlinear models.

When Yt Can Be Written As a  
Linear Function of Time

Any functional form can be represented by a power se-
ries, such that the sum of squared deviations between the 
values of the true function and the values approximated by 
the power series can be made to be infinitesimally small 
by adding enough polynomial powers and coefficients 
(Finney et al., 2001, chap. 8; Stewart, 1998, section 8.6). 
A power series in the longitudinal context is a limiting 
sum of coefficients multiplied by positive integer powers 
of time. Such a power series is given as

 f a at M m t
m

m
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where m is the coefficient ( m  ) for the mth 
power (m  0, . . . , M ).

Although a power series is infinite by definition, known 
functional forms can be represented by finite sums. In 
general, the following finite sum can be used to impose 
or approximate some known or unknown functional form 
of change and is more general than the power series, since 
the powers of time are not limited to nonnegative integers 
(as is the definition of a polynomial change model), but 
can take on any real values:
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where, again, Yt is conditional on the true functional form 
of change.

In situations where B  0 (implying   1), interpret-
ing SLCM as if it were the ARC yields no inconsistency 
in research conclusions or interpretation. However, when 
B 0 (and by implication   1), conceptualizing SLCM 
as the ARC may be problematic and can potentially lead 
to misinformed conclusions regarding intraindividual 
change, interindividual change, and group differences in 
change. Although at times interpretation of B may be more 
straightforward than interpretation of , it is also poten-
tially arbitrary due to the potential rescaling of time and/or 
the dependent variable. We include both so that, depending 
on the particular situation, either or both may be used.

Examining the Bias in the ARC  
When Time Is Continuous

In the case of continuously measured time values, the 
ordinary slope from the straight-line change model gen-
eralizes, with the use of integration rather than summa-
tion, to
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where SLCMC is the regression coefficient for the straight-
line change model when time is continuous. Equation 7 
can be rewritten as the integral of a sum after expanding 
the numerator and the denominator:
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Because the integral of a sum is the sum of the integrals, 
Equation 8 can be rewritten as Equation 9, shown below.

Realizing that a  (aT  a1)/2 and that
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in the situation of continuous time, the last two compo-
nents in the numerator of Equation 9 are equal and of op-
posite sign, leading to a simplification of the numerator 
because the two components cancel. Alternatively, a sec-
ond perspective for understanding why the two compo-
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cient from the straight-line change model when Yt can be 
written in the form of Equation 12 and when time is con-
tinuous is given by Equation 15, shown below. It is useful 
to note that Equation 15 does not constrain the values of 
a1 or aT, the number of components defining Yt (i.e., K ), 
or the values of k and k.

The ARC when Yt is defined as a sum of K coeffi-
cients multiplied by powers of time can be written as the 
following:

 ARC
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Because the slope (Equation 15) and the ARC (Equa-
tion 16) have been defined when Yt is expressed as a spe-
cial case of Equation 12, general expressions emerge for B 
and . The general bias for the present situation is found 
by substituting Equations 15 and 16 into Equation 5 (see 
Equation 17, below).

The general discrepancy factor is then found by sub-
stituting Equations 15 and 16 into Equation 6 (see Equa-
tion 18, below).

It can be shown that when f(at) is defined as a linear 
or a quadratic change curve, SLCMC  ARC and B from 
Equation 17 is zero (and thus   1). Thus, in the case 
of continuous time, if the function governing change is a 
straight-line change model or a quadratic change model, 
no problems arise when SLCMC is interpreted as the ARC. 
However, for the general case of any linear model other 
than a straight-line or quadratic model, B  0 (and thus 

  1). Thus, interpreting SLCMC as if it were the ARC 
potentially leads to misleading conclusions. Although a 

where k ( k  ) represents the k th (k  1, . . . , 
K; 1 K  ) power. The intercept of a particular change 
curve is the sum of the ks whose k is zero. In the special 
case where a [0, aT ], the intercept is k0 k, which, 
strictly speaking, is an indeterminate form when k  0. 
However, due to l’Hôpital’s rule, which uses derivatives 
to evaluate the converging limit of a function that would 
otherwise be indeterminate under standard algebraic 
rules, the quantity 00 1 by standard conventions (Finney 
et al., 2001, section 7.6; Stewart, 1998, section 4.5). When 
evaluating the equations given in this section by computer, 
care should be taken to ensure that the particular program 
defines 00 as 1 (rather than, e.g., returning an error mes-
sage). General results emerge for B and  by realizing 
that functional forms of change can generally be repre-
sented by Equation 12. The following section makes use 
of this fact when examining B and  for any model linear 
in its parameters.

Yt will be replaced by Equation 12 so that the results 
will be in the most general form of models linear in their 
parameters. Replacing Yt in Equation 10 with the finite 
sum of Equation 12 yields
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Carrying out the integration and replacing a with its 
definition [ a  (aT  a1)/2] yields Equation 14, shown 
below. After simplifying both the numerator and the de-
nominator, the general equation for the regression coeffi-
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with the case where f(at) equals each of the nonlinear 
models previously discussed.

When Yt Conforms to Certain  
Nonlinear Functions of Time

Fitting a statistical model linear in its parameters to 
longitudinal data is generally straightforward. As the 
phenomenon under study grows increasingly more com-
plex, the order of the polynomial change model can be in-
creased accordingly, until the predicted scores reasonably 
correspond with the observed scores. Nonlinear models of 
the same complex phenomenon can often be more inter-
pretable and parsimonious, and are generally more valid 
beyond the observed range of data, when compared with 
linear models (Pinheiro & Bates, 2000). Furthermore, it is 
often the case that the parameters in nonlinear models can 
be easily interpreted, whereas once a polynomial model is 
beyond quadratic, the meaning of the higher order param-
eters typically offers little meaningful interpretation. An 
example of such a difference between nonlinear and linear 
models relates to asymptotes.

In polynomial change models, asymptotic values can-
not generally be modeled for the asymptote to hold be-
yond the range of the observed data. Thus, researchers 
who make use of polynomial trends must accept that their 
model will necessarily fail at some point beyond the range 
of the data actually collected. Such scenarios can poten-
tially lead to inadequate models where impossible values 
are predicted.

To demonstrate problems that arise when data truly fol-
low nonlinear functional forms yet are modeled by straight-
line change models, three nonlinear change models will be 
presented so that later the bias and discrepancy factor can be 
developed for each. The selected nonlinear models are the 
asymptotic regression change curve, the Gompertz change 
curve, and the logistic change curve. Although a wide vari-
ety of nonlinear models exist, these models of change were 
chosen because they are especially helpful for applied re-
search. A brief introduction to each is given here based on 
the descriptions found in Kelley and Maxwell (2008).

The Asymptotic Regression Change Curve
The general asymptotic regression change curve—

often referred to as the negative exponential change 
model—describes a family of potential regression mod-
els where the dependent variable approaches some limit-
ing value as time increases. A general asymptotic regres-
sion equation for a single trajectory was given by Stevens 
(1951) as

 Yt
a

t
t ,  (23)

where is the asymptotic value approached as a , 
is the change in Yt from a  0 to a (i.e., repre-

sents total change in Yt), and (0  1) is a scalar that 
defines the factor by which the deviation between Yt and 

is reduced for each unit change of time, thus reflecting 
the rate at which Yt . Equation 23 can be equivalently 
written as
 Y at t texp ,  (24)

formal proof has not been provided for the most general 
case, analytic and empirical evaluation of the equations for 
a wide variety of models linear in their parameters when 
time is continuous yields B  0 for nontrivial parameter 
combinations. However, what is clear is that, in general, 

SLCMC  ARC unless the functional form is linear, qua-
dratic, or some combination of linear and quadratic. Thus, 
interpreting the slope from the straight-line change model 
as though it is the ARC generally leads to biased estimates 
of the ARC.

Often in applied longitudinal research the initial value 
of time is represented as zero (a1  0). This is especially 
true in experimental studies when Y1 represents a base-
line measure of some attribute (pretest) before treatment 
begins. Another reason why a1 many times equals zero is 
because time is often scaled such that the intercept repre-
sents the initial (starting) value. In the special case where 
a1 is replaced by zero, Equations 17 and 18 can be simpli-
fied. The simplified slope when the initial value of time 
(or scaled time) is zero can be written as
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The ARC for such a series defined by Equation 12 can be 
written as
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where 0 is the intercept of the particular change curve. 
Recall that the intercept is simply the sum of the coef-
ficients whose k equals zero. If no k equals zero when 
a  0, then 0 itself equals zero and the change curve goes 
through the origin.

The general expression for B when a [0, aT ] is ob-
tained by subtracting the right-hand side (RHS) of Equa-
tion 20 from the RHS of Equation 19:
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The general expression for  in this situation is obtained 
by dividing Equation 19 by Equation 20:
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Of course, since Equations 21 and 22 are special cases of 
Equations 17 and 18, it holds true that when the functional 
form of change is a linear or quadratic change curve, the 
regression coefficient for the straight-line change model 
and the ARC are equivalent. Again, however, as the equa-
tions in this section show, it is generally the case that 

SLCMC  ARC. The exact values of B and/or P can be 
found with the appropriate equation(s) from the present 
section when time is continuous. The next section deals 
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line change model applied to change that follows an asymp-
totic regression (also termed a negative exponential) model 
in the case of continuous time is given in Equation 27, 
shown at the bottom of this page, where subscripts will be 
used—AR in this case for asymptotic regression—to iden-
tify the particular nonlinear change model. The ARC for 
the asymptotic regression model, obtained by substituting 
Equation 24 into Equation 4C, is given as the following:

ARCAR

exp exp
.

a a

a a
T

T

1

1

(28)

The value of B for the asymptotic regression model is thus 
obtained by subtracting the RHS of Equation 28 from the 
RHS of Equation 27, and  is obtained by dividing the 
RHS of Equation 27 by the RHS of Equation 28.

The discrepancy in the Gompertz change model. 
The regression coefficient for the straight-line change 
model applied to change that follows a Gompertz change 
model in the case of continuous time is obtained by first 
expressing G as in Equation 29 (see below), where Ei is the 
exponential integral. The exponential integral is defined as

 Ei( , ) exp( ) ,q x
xg

g
dg

q
g 1

 (30)

with q being a nonnegative integer and x some algebraic 
expression (Abramowitz & Stegun, 1965). Given G, the 
slope for the Gompertz change model is equal to the 
following:
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where the subscript GC denotes the Gompertz change 
model. The ARC for the Gompertz change model is given 
in Equation 32 (below). The value of B for the Gompertz 
change model is thus obtained by subtracting the RHS 
of Equation 32 from the RHS of Equation 31, and  is 
obtained by dividing the RHS of Equation 31 by the RHS 
of Equation 32.

The discrepancy in the logistic change model. The 
regression coefficient for the straight-line change model 
applied to change that follows a logistic change model in 
the case of continuous time is obtained by defining L1, 
L2, L3, and L4 (see Equations 33–36, next page). In L3 
the dilogarithm function is required. The function dilog 
(Lewin, 1981) is defined as Equation 37:

where log( ) (0  ) and can be thought of as 
a scaling parameter (Stevens, 1951).

The Gompertz Change Curve
The Gompertz change model is a nonlinear model that 

is often used in the biological sciences. The asymmet-
ric sigmoidal form of the Gompertz change curve offers 
an option for those who seek to model certain types of 
nonlinear trends. The general three-parameter Gompertz 
change model for a single trajectory can be written as

 Y at t texp exp ,  (25)

where is the asymptote as a . The parameters and 
define the point of inflection on the abscissa at a . The 
point of inflection on the ordinate is at Y / exp(1), which 
is approximately 37% of the asymptotic change (Ratkowsky, 
1983, chap. 4 and pp. 163–167; Winsor, 1932).

The Logistic Change Curve
The logistic change model is another nonlinear sig-

moidal model that provides another option for modeling 
change over time in the behavioral sciences. The general 
three-parameter logistic change model for a single trajec-
tory can be written as

 Y
at

t
t1 exp
,  (26)

where is the asymptote as a . The parameters 
and define the point of inflection on the abscissa at a  

/ . The point of inflection on the ordinate is at Y  /2, 
50% of the asymptotic change (chap. 4 and pp. 167–169 
of Ratkowsky, 1983; Winsor, 1932).

Nonlinear Models for the Analysis of Change
In this section, SLCMC and ARC are derived for the 

asymptotic change curve (Equation 24), the Gompertz 
change curve (Equation 25), and the logistic change curve 
(Equation 26). General equations are presented for SLCMC 
and ARC for these nonlinear models, thus allowing one to 
compute B by subtraction and/or  by division, as needed. 
The derivations proceed in a manner analogous to (albeit 
not as detailed as, for space considerations) the way they 
did for the derivations presented in the previous section 
for models linear in their parameters.

The discrepancy in the asymptotic regression 
change model. The regression coefficient for the straight-
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From the plots it can be seen that B is sometimes positive 
(i.e., when SLCM  ARC, implying that   1) but in 
other situations it is negative (i.e., when SLCM  ARC, 
implying that   1).

It is important to note that B and  for the 45 differ-
ent scenarios examined are specific to the selected param-
eters and the chosen time interval. The exact values of 
B and  are arbitrary to a large extent, since modification 
of the parameters will change the B and  values. How-
ever, the particular examples of change curves provided 
in Figures 1, 2, and 3 are thought to consist of a variety of 
realistic change curves. The straight line within each plot 
represents the predicted Y scores given time (i.e., the re-
gression line) for the straight-line change model, whereas 
the nonlinear trend represents the true change for the par-
ticular situation.

Although it is difficult to say what a large discrepancy 
would be, a discrepancy factor as small as 0.376 (bottom 
left of Figure 2) and one as large as 1.43 (bottom right of 
Figure 2) seem to be very problematic. Certainly, com-
monly used statistics would be regarded as problematic 
if their expected values were 0.376 times smaller or 1.43 
times larger than their corresponding population values. 
Furthermore, the smallest and largest discrepancy factors 
shown in the figures (i.e., the 0.376 and the 1.43 noted 
above) would have been surpassed had different parameter 
values been used. Thus, the figures are meant to supple-
ment the mathematical derivations with examples show-
ing a variety of change curves and the corresponding bias 
and discrepancy factor of each.

Discussion
Confusion exists in the literature regarding the defini-

tion and interpretation of the ARC. Because many moni-
toring systems are now capable of recording information 
continuously or near continuously over time, it is impor-
tant to consider the effects of estimating and interpreting 
the slope from a straight-line change model as the ARC. 
As is shown in the present article, there is generally a bias 
when using the slope from the straight-line change model 
as if it were the ARC.

Three straightforward, sufficient conditions can be de-
scribed such that there is no discrepancy when using the 
straight-line change model to estimate the ARC when time 
is continuous:

 dilog( )
log( )

.x
g
g

dg
g

x

11

 (37)

The four logistic components are then combined with the 
other necessary parameters in the following manner:

 
SLCMCLC

6
21 2 3 4

1
3

L L L L

a aT

/
,  (38)

where LC denotes logistic change. The ARC for the logis-
tic change model is given in Equation 39 (see below). The 
value of B for the logistic change model is thus obtained 
by subtracting the RHS of Equation 39 from the RHS of 
Equation 38, and  is obtained by dividing the RHS of 
Equation 38 by the RHS of Equation 39.

Although it would be advantageous to show gener-
ally whether it is possible for SLCMCAR

 ARCAR  0, 
SLCMCGC

 ARCGC  0, and/or SLCMCLC
 ARCLC  0, 

at the present time no mathematically tractable solution 
was obtainable due to the complications that arise with 
the nonlinear functional forms used. Analytic and empiri-
cal investigations have shown that for nontrivial cases, the 
regression coefficient from the straight-line change model 
and the ARC are not generally equal. For any specific sit-
uation, given the equations provided, the exact value of 
B and  can be determined.

Examples of the Discrepancies

Although general equations are presented for the bias 
and discrepancy factors, it can be difficult to discern 
whether the bias and discrepancy factors amount to any 
meaningful deviations between the ARC and the slope 
from the straight-line change model. Figures 1, 2, and 3 
show plots of asymptotic regression, Gompertz, and lo-
gistic change models, respectively, for 15 different com-
binations in the case of continuous time for and values 
when T [0, 1] and is fixed at 5. The purpose of the fig-
ures is to show the reader a variety of nonlinear functional 
forms with a variety of parameter values, to illustrate how 
the change models discussed in the present work general-
ize to a variety of trajectories that might be useful in ap-
plied research. In addition to illustrating the trajectories 
themselves, the particular parameter values governing the 
curves have been included atop the particular plot. Within 
each of the plots is the value of SLCM, ARC, B, and . 

L a a aT1 1 11log exp log exp llog exp log expa a aT T1 2 TT  (33)

L a a aT T2 1 1log exp log exp llog exp log expa a a1 11 2 11  (34)

 L a a3 1 1dilog diloexp exp exp gg exp exp expa aT  (35)

 L a aT4 1log exp log exp  (36)

 ARCLC

exp exp

exp

a a

a
T

T

1

1 1 1 1exp a a aT

 (39)
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NOTE

1. Multilevel models are also equivalent or closely related to random 
effects models, hierarchical (non)linear models, latent change curves, and 
mixed effects models. Thus, regardless of the verbiage given to such mod-
els, the issues discussed in the present article are equally applicable.
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1. The true functional form of change consists of only 
a linear component.

2. The true functional form of change consists of only a 
quadratic component.

3. The true functional form of change consists of only 
some combination of linear and quadratic components.

Of course, Conditions 1 and 2 are special cases of Con-
dition 3 when the quadratic and linear components are 
zero. Thus, as this article has shown, the slope from the 
straight-line change model and the ARC are not generally 
equal to one another for an individual trajectory when time 
is measured continuously. This is not to say that no other 
functions can have an ARC that equals the slope from the 
straight-line change model, but generally it is the case. 
Certainly, special cases of other functions can be made so 
that the slope from the straight-line change model and the 
ARC are equal. However, such is generally not the case, 
and in most circumstances there will be some degree of 
bias. This article has shown that the bias between the ARC 
and the slope from the straight-line change model can be 
positive or negative and small or large, potentially yield-
ing misleading conclusions regarding change over time. It 
can be shown (e.g., Kelley & Maxwell, 2008) that when 
the bias is nonzero and all other things are equal, the larger 
the number of time points, the larger the discrepancy be-
tween the slope from the straight-line change model and 
the ARC when the bias is nonzero. Thus, it is especially 
important to understand the relationship between the 
slope from the straight-line change model and the ARC 
in the case of continuous or nearly continuous time, since 
in such situations the discrepancy between the slope from 
the straight-line change models reaches its maximum for 
any given scenario.
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