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Methods of sample size planning are developed from the accuracy in parameter
approach in the multiple regression context in order to obtain a sufficiently narrow
confidence interval for the population squared multiple correlation coefficient when
regressors are random. Approximate and exact methods are developed that provide
necessary sample size so that the expected width of the confidence interval will
be sufficiently narrow. Modifications of these methods are then developed so that
necessary sample size will lead to sufficiently narrow confidence intervals with no
less than some desired degree of assurance. Computer routines have been developed
and are included within the MBESS R package so that the methods discussed in the
article can be implemented. The methods and computer routines are demonstrated
using an empirical example linking innovation in the health services industry with
previous innovation, personality factors, and group climate characteristics.

In the behavioral, educational, managerial, and social (BEMS) sciences, one
of the most commonly used statistical methods is multiple regression. When
designing studies that will use multiple regression, sample size planning is often
considered by researchers before the start of a study in order to ensure there
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is adequate statistical power to reject the null hypothesis that the population
squared multiple correlation coefficient (denoted with an uppercase rho squared,
P?) equals zero. Planning sample size from this perspective is well known in
the sample size planning literature (e.g., Cohen, 1988; Dunlap, Xin, & Myers,
2004; Gatsonis & Sampson, 1989; Green, 1991; Mendoza & Stafford, 2001).
However, with the exception of Algina and Olejnik (2000), sample size planning
when interest concerns obtaining accurate estimates of P? has largely been
ignored. With the emphasis that is now being placed on confidence intervals
for effect sizes in the literature, and with the desire to avoid “embarrassingly
large” confidence intervals (Cohen, 1994, p. 1002), planning sample sizes so that
one can achieve narrow confidence intervals continues to increase in importance.
Planning sample size when one is interested in P?> can thus proceed in (at least)
two fundamentally different ways: (a) one that plans an appropriate sample size
based on some desired degree of statistical power for rejecting the null hypothesis
that P> = 0 (or some other specified value) and (b) one that plans an appropriate
sample size in order for the confidence interval for P? to be sufficiently narrow.

The purpose of this article is to provide an alternative to the power analytic
approach to sample size planning for the squared multiple correlation coefficient
in the accuracy in parameter estimation (AIPE) context (Kelley, 2007c; Kelley
& Maxwell, 2003, 2008; Kelley, Maxwell, & Rausch, 2003; Kelley & Rausch,
2006; Maxwell, Kelley, & Rausch, 2008). The general idea of the AIPE approach
to sample size planning is to obtain a confidence interval that is sufficiently
narrow at some specified level of coverage and thus avoid wide confidence
intervals, which illustrate the uncertainty with which the parameter has been
estimated. The theoretical differences between the AIPE and power analytic
approaches to sample size planning and the implications for the cumulative
knowledge of an area are delineated in Maxwell et al. (2008).!

As recommended by Wilkinson and the American Psychological Association
(APA) Task Force on Statistical Inference (1999), researchers should “always
present effect sizes for primary outcomes” (p. 599). Similarly, the American
Educational Research Association recently adopted reporting standards that state,
“An index of the quantitative relation between variables” (i.e., an effect size)
and “an indication of the uncertainty of that index of effect” (i.e., a confidence
interval) should be included when reporting statistical results (2006, p. 10).
Although not true for effect sizes in general, BEMS researchers have tended to
report the estimated squared multiple correlation coefficient. However, Wilkinson
and the APA Task Force go on to recommended that “interval estimates should

IThe use of the term “accuracy” in this context is the same as that used by Neyman (1937)
in his seminal work on the theory of confidence interval construction: “The accuracy of estimation
corresponding to a fixed value of 1 —a may be measured by the length of the confidence interval”
(p. 358; notation changed to reflect current usage).
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be given for any effect sizes involving principal outcomes” (1999, p. 599),
something that has not historically been done. This is not a problem unique to
BEMS research: it seems confidence intervals for P> have not historically been
reported in any domain of research. Nevertheless, with increased emphasis on
confidence intervals for effect sizes, there is almost certainly going to be an
increase in the use of confidence intervals for P2. Indeed, confidence intervals
for effect sizes may well be the future of quantitative research in the BEMS
sciences (Thompson, 2002).

One problem waiting to manifest itself when researchers routinely begin to
report confidence intervals for P? is that, even with sufficient statistical power,
the widths of the confidence interval for P> might be large, illustrating the
uncertainty with which information is known about P2. This article fills a void
in the multiple regression and sample size planning literatures by developing
methods so that sample size can be planned when there is an interest in achieving
a narrow confidence interval for P2. The first method developed yields necessary
sample size so that the expected width of the obtained confidence interval for
P? is sufficiently narrow. For example, a researcher may plan sample size so
that the expected width of the confidence interval for P? is .10. Because the
confidence interval width is itself a random variable based in part on R2, the
usual (although biased) estimate of P?, the observed width is not guaranteed
to be sufficiently narrow even though its expected width is sufficiently narrow.
A modified approach yields the necessary sample size so that the confidence
interval for P? will be sufficiently narrow with some desired degree of assurance,
where the assurance is a probabilistic statement. For example, a researcher may
plan sample size so that the confidence interval for P? is no wider than .10 with
99% assurance.

Multiple regression is used with fixed and/or random regressors. Distribu-
tional characteristics of regression coefficients are different for fixed and random
regressors due to the increased randomness in the model when regressors are
random because of the sample-to-sample variability (e.g., Gatsonis & Sampson,
1989; Rencher, 2000; Sampson, 1974).2 The sample size procedures developed
here are for the case where regressors are random, which is how multiple
regression is generally used in the BEMS sciences. Confidence intervals for
P? have not often been considered in applied work (but see Algina & Olejnik,
2000; Ding, 1996; Kelley & Maxwell, 2008; Lee, 1971; Mendoza & Stafford,
2001; Smithson, 2001; and Steiger & Fouladi, 1992, for discussions and pro-
cedures of confidence interval formation for P?). However, with the strong

2The term “regressors” is used as a generic term to denote the K X variables. In other contexts
the regressors are termed independent, explanatory, predictor, or concomitant variables. The term
“criterion” is used as a generic term for the variable that is modeled as a function of the K regressors.
In other contexts, the criterion variable is termed dependent, outcome, or predicted variable.
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encouragement from methodologists and important professional associations, as
well as the development and recognition of software to implement confidence
intervals for P2, there is likely to be an increase in reporting confidence intervals
for P2,

The article begins with a discussion of confidence interval formation for P?
and idiosyncratic estimation issues that become important when the sample size
procedures are developed. Development of sample size planning for AIPE in
the context of P? is then given. Results of a Monte Carlo simulation study
are summarized that illustrate the effectiveness of the proposed procedures. The
procedures used and methods developed in this article can be easily implemented
in the program R (R Development Core Team, 2008) with the MBESS package
(Kelley, 2007a, 2007b, 2008; Kelley, Lai, & Wu, 2008). A demonstration of the
methods developed is given using an empirical example, where the methods are
implemented with MBESS in the context of innovation in the health services
industry linking innovation with previous innovation, personality factors, and
group climate characteristics (Bunce & West, 1995). Because the value of P? is of
interest in many applications of multiple regression, not literally the dichotomous
reject or fail to reject decision of a null hypothesis significance test, it is hoped
that researchers will consider the AIPE approach instead of or in addition to the
power analytic approach when planning a study where multiple regression will
be used to analyze data.

ESTIMATION AND CONFIDENCE INTERVAL
FORMATION FOR P2

The common estimate of P2, R2, is positively biased and thus tends to overes-
timate the degree of linear relationship between the K regressor variables and
the criterion variable in the population, especially when sample size, N, is very
small. The expected value of R? given P>, N, and K is given as

N—-K—
N —

E[R*| (P, N.p)|=1- (1—P2)H[1,1,¥ PZ} (1)
for multivariate normal data, where H is the hypergeometric function (Johnson,
Kotz, & Balakrishnan, 1995, p. 621; Stuart, Ord, & Arnold, 1999, section 28.32).
For notational ease, E [R2| (Pz, N, p)] will be written as E[R?].

As discussed by Steiger (2004), “confidence intervals for the squared multiple
correlation are very informative yet are not discussed in standard texts, because
a single simple formula for the direct calculation of such an interval cannot be
obtained in a manner that is analogous to the way one obtains a confidence
interval for the population mean” (p. 167). The difficulties when forming a
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confidence interval for P? arise for several reasons. First, there is no closed
form solution for confidence intervals for P2, The lack of closed form solutions
requires iterative algorithms for forming the confidence intervals. Second, there
is a nontrivial difference in the distribution of R?> when regressors are fixed
compared with when they are random when P> > 0. Fixed regressors are
specified a priori as part of the design of the study. These values are “fixed”
in the sense that over theoretical replications of the study, the values of the
regressors would not change. This is contrasted to the situation of random
regressors, where the regressors are a function of the particular sample. These
values are “random” in the sense that over theoretical replications of the study,
each sample would yield a different set of regressors. This article focuses only
on the case of random regressors, as applications of multiple regression in the
BEMS sciences tend to be random. Although confidence intervals for fixed
regressor variables are fairly straightforward given the appropriate noncentral
F -distribution routines, confidence interval formation is much more difficult
when regressors are random.

Sampson (1974) and Gatsonis and Sampson (1989) provide a discussion of
the differences between the fixed and the random regressor models for multi-
ple regression. Lee (1971) and Ding (1996) provide algorithms for computing
various aspects of the distribution of R? for random regressors, which can be
used in order to compute confidence intervals. Although the programming of
the algorithms underlying the computer programs is not trivial, nearly exact
confidence intervals for P> under the case of random regressors variables can
be found with the use of freely available software (e.g., MBESS; Kelley, 2008;
MultipleR2; Mendoza & Stafford, 2001; R2; Steiger & Fouladi, 1992) and in
other programs indirectly with proper programming (e.g., in SAS; Algina &
Olejnik, 2000).

Unlike many effect sizes, there is not a monotonic relation between the width
of the confidence interval for P? and the value of R?. An illustration between
the relation of R? and the confidence interval width is shown in Figure 1. The
values on the abscissa are hypothetical observed values of R? with the 95%
confidence interval width on the ordinate for a sample size of 100 and five
regressor variables. The confidence interval width, w, is simply the value of the
upper limit minus the lower limit,

w =P} —P;, (2)

where P?, is the upper limit of the confidence interval for P?, and P7 is the lower
limit of the confidence interval for P? (note that both P? and P?, are random
quantities that depend on R?). Although the exact value of R? for the maximum
confidence interval width depends on sample size and the number of regressors,
it approaches .333 as sample size increases; although no proof of this is given,
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FIGURE 1 Relationship between the confidence interval width for P? given N = 100 and
K = 5 for all possible values of R2.

the reason is alluded to in Algina and Olejnik (2000), where it can be shown
that the approximate variance of R? is maximized at R? = .333 (p. 125).

Thus, Figure 1 clearly illustrates that there is a nonmonotonic relationship
between confidence interval width and R?. Usually confidence interval width is
independent of the size of the effect or the confidence interval width increases
(decreases) as the absolute value of the of the effect increases (decreases). Notice
in Figure 1 that confidence intervals for P? increase to a peak and then decrease.
For very small or very large values of R? the confidence intervals are narrow.
For values of K other than five and for sample sizes that are not exceedingly
small, combinations of confidence interval width and the size of standard errors
tend to be similar to the relationship displayed in Figure 1. The nonmonotonic
relationship between R?> and w displayed in Figure 1 becomes important in a
future section when determining necessary sample size for obtaining a confi-
dence interval no wider than desired with some desired degree of assurance.
Given the figure and the fact that the approximate variance of R? is maximized
close to .333, it is no surprise that values of P? close to .333 will mandate a
larger sample size than other values of P? for some desired confidence interval
width, holding everything else constant.
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SAMPLE SIZE FOR NARROW CONFIDENCE
INTERVALS FOR THE POPULATION SQUARED
MULTIPLE CORRELATION COEFFICIENT

The idea of obtaining a narrow confidence interval for the lower bound of the
population multiple correlation, P, was discussed by Darlington (1990), where
a small table of necessary sample size for selected conditions was provided in
order for the lower confidence limit to be at least some specified value. Algina
and Olejnik (2000) discussed a procedure for sample size planning so that the
R? would be within some defined range of P?> with a specified probability.
The present work develops methods of sample size planning from the AIPE
perspective so that the width of confidence intervals for P> will be sufficiently
narrow. Although similar, the AIPE and Algina & Olejnik methods are actually
fundamentally different ways of planning sample size. The sample size planning
methods developed by Algina & Olejnik have as their goal obtaining an estimate
of P? that is within some defined range of P2, whereas the goal of the AIPE
approach is to obtain a sufficiently narrow confidence interval.?

The width of the confidence interval for P? is a function of R, N, K, and
1 — a.. By holding constant P2, K, and 1 — a, the expected confidence interval
width can be determined for different values of N. The expected confidence
interval width for P? is defined as the width of the confidence interval for
E[R?] given a particular N, K, and 1 —a,

E[Pf, [E[R?]] — E[P7 [E[R’]] = E[(P}, — P])[E[R’]] = E[w[E[R*]]. ~ (3)

where E[(P7, —P?)|E[R?]] is found by calculating the width of a confidence inter-
val using E[R?] in place of R? from the standard confidence interval procedure.*
For notational ease, E[w|E[R?]] is written as E[w], realizing that the expected
width will necessarily depend on 1 — o and E[R?], which itself depends on N

3Tables of sample size comparisons between the AIPE and Algina and Olejnik (2000) methods
have developed and are available from Ken Kelley.

“In the work of Kelley and Rausch (2006), where the AIPE approach was developed for the
standardized mean difference, the population value of the standardized mean difference was used
throughout the sample size procedures rather than the expected value of the sample standardized
mean difference even though the commonly used estimate is biased. This contrasted to the approach
here where the E [Rz] is used in place of P2. As noted in Kelley & Rausch (2006, footnote 13),
for even relatively small sample sizes the bias in the ordinary estimate of the standardized mean
difference is minimal and essentially leads to no differences in planned sample size except in
unrealistic situations (see also Hedges & Olkin, 1985, chap. 5). However, the bias between R? and
P2 can be large, relatively speaking, which would lead to differences in necessary sample sizes if
the procedure was based on P? directly, as confidence intervals are based on the positively biased
value of R2.
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and K. Because in any particular study N, K, and 1 —a are fixed design factors,
the only random variable when forming confidence intervals for P? is R>.

For unbiased estimators, calculation of the expected confidence interval width
is simple given the population value because the expected value of the estimator
and the population parameter it estimates are equivalent. Due to the positive bias
of R? as an estimator of P2, basing the sample size procedure on P? directly
would lead to inappropriate estimates of sample size because the obtained
confidence interval is ultimately based on RZ?. Therefore, the expected value
of R? is used in the calculation of necessary sample size in order to achieve a
confidence interval calculated from the obtained R? that is sufficiently narrow.
The algorithms used to obtain appropriate sample size are iterative with regard
to sample size. Thus, it is necessary for the expected value of R? to be updated
for each iteration of the sample size procedure.

Sample Size so That the Expected Confidence Interval
Width is Sufficiently Narrow

Recall that the sample size methods are developed specifically in the case of
random regressor variables. The method begins by determining a lower bound
(starting) value for sample size, say N(y, where the quantity subscripted in
parentheses represents the iteration of the procedure, so that the minimum sample
size where E[w] is no larger than » can be found, where w is the desired
confidence interval width. Thus, the procedure seeks the minimum necessary
sample size so that E[w] < w. For convenience, Ny = 2K + 1.

Given N(g), E[w(g)] is calculated, where E[w(q)] is the expected confidence
interval width based on N(). If E[w(g)] > w, sample size is incremented by one
and E[w()] determined. This iterative procedure continues until Elw ] < w,
where the corresponding value of Nj;) is set to the necessary sample size with
i representing the particular iteration of the procedure. Thus, the N(;, where
E[w)] < w is set to the necessary sample size. The rationale of this approach
is based on the fact that w is a function of R?, so finding the necessary sample
size based on E[R?] that leads to E[w()] < w leads to the necessary sample
size.

A sample size planning procedure was developed in this section so that
the expected confidence interval width for P? is sufficiently narrow. No formal
mathematical proof is known to exist and the procedure may not always give
exactly the correct sample size. However, a follow-up procedure developed later
exists that updates the (approximate) sample size to the exact value based on an
a priori Monte Carlo simulation study. Given the sample size that leads to an
expected confidence interval width being sufficiently narrow in the procedure
described earlier, provided P> has been properly specified, the sample size
obtained will ensure that the expected confidence interval width is sufficiently
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narrow. A modified sample size method, discussed in the next section, can be
used so that the observed confidence interval will be no wider than specified
with some desired degree of assurance.

Ensuring the Confidence Interval is Sufficiently Narrow
With a Desired Degree of Assurance

Recall that planning sample size so that the expected confidence interval width
is sufficiently narrow does not imply that it will be sufficiently narrow in any
particular study. The confidence interval width is a random variable because it
is a function of the random statistic R2, which is a function of the random data
and the fixed design factors. A modified sample size procedure is developed that
can be used in order to guarantee with some desired degree of assurance that
the observed confidence interval for P> will be no wider than desired. In order
to carry out this modified method, the desired degree of assurance, denoted
v, must be specified, where y represents the desired probability of achieving
a confidence interval no wider than desired. This procedure yields a modified
sample size so that the obtained confidence interval will be no wider than
with no less than y100% assurance: p(w < w) > y. For example, suppose one
would like to have 99% assurance that the obtained 95% confidence interval will
be no wider than .10. In such a case vy is set to .99 and w is set to .10, implying
that an observed confidence interval for P> will be wider than desired no more
than 1% of the time. The way in which the modified sample size procedure
works is quite involved and necessitates several steps. As before, no formal
mathematical proof is known to exist, but an a priori Monte Carlo simulation
study is developed later so that the exact sample size can be obtained.
Depending on the particular situation, obtaining an R? either larger or smaller
than E[R?], which is the value the standard sample size was based, will lead
to a wider than desired confidence interval. For example, suppose sample size
is based on E[R?] = .60, where N = 100, K = 5, and 1 —a = .95. From
Figure 1 it can be seen that any value of R? larger than .60 in this situation
will lead to a w < o (desirable). However, values of R? between .1676 and
.6 will lead to a w > w (not desirable), whereas values of R? less than .1676
will lead to a w < w (desirable). This situation can be contrasted to one where
sample size is based on E[R?] = .20, where N = 100, K = 5, and 1 —a = .95.
From Figure 1, it can be seen that any value of R? smaller than .20 in this
situation will lead to a w < o (desirable). However, values of R? between .2
and .5527 will lead to a w > w (not desirable), whereas values of R? greater
than .5527 will lead to a w < o (desirable). Thus, depending on E[R?] for the
particular situation, obtaining an R? value either larger or smaller than P? can
lead to a wider than desired confidence interval. One thing not obvious from
the figure is the probability that R? will be beyond the values that lead to larger
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or smaller than desired w values (i.e., the sampling distribution of R? is not
addressed in the figure). These issues, and another issue discussed momentarily,
need to be addressed in order for the necessary sample size to be planned so
that the p(w < w) > y.

The starting point for the modified sample size, denoted Ny, planning proce-
dure is the original sample size based on the expected width being sufficiently
narrow. Given the necessary sample size from the standard procedure, an upper
and a lower y100% one-sided confidence interval is formed using E[R?] in place
of R? (as was done in the standard confidence interval formation procedure
section). The reason two y100% one-sided confidence intervals are specified is
to determine the R? value that will be exceeded (1 —y)100% of the time and
the R? value that will exceed only (1 —7)100% of the distribution of R? values.
These lower and upper confidence limits for R, denoted P}. and P, are then
used in the standard procedure as if they were the population values. There will
then be two different sample sizes, one based on treating Pi* as if it were P?
and one based on treating P%* as if it were P2. The larger of these two sample
sizes is then taken as the preliminary value of the necessary sample size.

Ignoring a complication addressed momentarily, a discussion of the rationale
for the approach thus far is given. Using E[R?] in the two y100% confidence
intervals in place of R?, the sampling distribution of R* will be less than P?.
(1 —y)100% of the time and greater than P, (1 —vy)100% of the time. The
rationale for using P{. and Pg. in place of P in the standard procedure is to
find the value from the distribution of R? values that will divide the sampling
distribution of w values from those that are desirable (i.e., w < w) from those
that are undesirable (i.e., w > w), while maintaining the probability of a w < ®
at the specified level. The reason for using two one-sided y100% confidence
intervals is that depending on the situation, values larger than the confidence
limit or values smaller than the limit will lead to confidence intervals wider
than desired. Thus, values beyond one of the limits will lead to R? values that
produce confidence intervals wider than desired (1 — y)100% of the time, but
in any particular situation it is not known which limit. Thus, if the value of R?
that leads to a w larger than desired can be found (which is either P}, or P{.
[momentarily ignoring the complication yet to be discussed]), then the standard
sample size procedure can be based on P, or Pf, in place of P2. Doing so
will lead to a sample size where no more than (1 — y)100% of the w values
are wider than w. Recall that this sample size is regarded as preliminary, as
there is a potential complication that will arise in certain situations that is now
addressed.

Because the relationship between R? and the confidence interval width is
not monotonic (recall Figure 1), difficulties with the approach just presented
can arise in a limited set of circumstances. Although one difficulty was in part
addressed by using both the lower and the upper y100% one-sided confidence
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limits in order to find the larger of the two sample sizes, in some situations
values between the confidence limits will lead to wider than desired confidence
intervals. When there are R? values contained within the two one-sided y100%
confidence interval limits that lead to a w > w, it is necessary to incorporate
an additional step in the procedure. This additional step is so that no more than
(1 —y)100% of the sampling distribution of R? is contained within the limits
sample size is based.

Let Rﬁmx(w) be the R? value that leads to the maximum confidence interval

width for a particular set of design factors. If Rﬁmx(w) is outside of (i.e.,
beyond) the confidence interval limits defined by the two one-sided y100%
confidence intervals (i.e., R’%mx w) ¢ [Pf* , Pfj*]), then no complication arises and
the procedure stops by choosing the largest of the previously calculated sample

sizes. However, if Rﬁmx(w) is contained within the interval defined by the limits of
the two one-sided y100% confidence intervals (i.e., R2 € [P? Pfj*]), then

an additional step is necessary. Although no known de’?ia\)fce(lg)on exiLsts for finding
Rﬁmx(w) between two limits, it is easy to find Rﬁmx(w) with an optimization search
routine. When R’%mx w) € [Pf* P%*] basing the sample size planning procedure
on Rﬁmx(w) would lead to 100% of the confidence intervals being sufficiently
narrow, as it would not be possible to obtain a confidence interval wider than ®
when sample size is based on Rﬁmx(w). Because y would not generally be set
to 1, although doing so imposes no special difficulties in the present context,
an additional step must be taken in order to obtain the modified sample size
so that no less than y100% of the confidence intervals are sufficiently narrow.
The rationale for this additional step is to base the sample size procedure on
the values of R? that bound the widest (1 —y)100% of the distribution of w.
Doing so will lead to no more than (1 — y)100% of the confidence intervals
being wider than w.

Although it may seem desirable at first to plan sample size so that 100% of
the intervals are no wider than desired, doing so would tend to lead to a larger
sample size than necessary whenever y < 1. An additional step of forming a
two-sided (1 —y)100% confidence interval using R’%mx () S the point estimate
is necessary for (1 —y)100% of the sampling distribution of the ws to be larger
than desired (and thus y100% of the sampling distribution of the ws smaller than
desired). The limits of the (1 —y)100% two-sided confidence interval based on

Rﬁmx(w) are then used in the standard procedure so that y100% of the confidence

intervals will be sufficiently narrow when Rﬁmx(w) € [Pf* P%*] Formation of
the (1 —y)100% two-sided confidence interval is to exclude the (1 —7v)100% of
the sampling distribution of R? values that would yield w values smaller than
desired (so that no less than y100% of the w values will be less than w). The
larger of the four sample sizes based on the four confidence limits substituted

into the standard procedure, two from this additional step (when necessary) and
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two from the two one-sided confidence limits in the first step of the modified
sample size procedure, is the necessary sample size. Necessary sample size
cannot be based solely on the limits at this step because these limits can lead to
a smaller sample size than necessary when based on one or both of the limits
from the two one-sided y100% confidence limits. That is, the lower or upper
limit from the (1 —y)100% two-sided confidence interval based on Rﬁm () AN

be beyond the upper or lower limits of the confidence intervals based on Pi* or
P}, respectively.
A step-by-step summary of the procedure is provided.

Step 1: Based on the necessary sample size from the standard procedure, two
one-sided y 100 confidence intervals are calculated.

Step 2: The limits from Step 1 are used in the standard procedure as if they
were P2. The larger of the two sample sizes is regarded as the preliminary
value of necessary sample size.

Step 3: The value of Rﬁm (w) that leads to the maximum confidence interval
width is found.

Step 4: If Ri ax(w) is not contained within the limits of the two one-sided
v100% confidence intervals, no additional steps are necessary and sample
size is set to the preliminary sample size value in Step 2.

Step 5 [if necessary]: If R? is contained within the limits of the two

max(w)
one-sided (1 — y)100% confidence intervals, then the limits of the two-
sided (1 — y)100% confidence interval based on Ri ax(w) A€ used in the

standard procedure as if they were P2,
Step 6 [if necessary]: The largest sample size from the contending sample
sizes (from Step 2 and from Step 5) is taken as the necessary value.

The steps above are used to find the value of E[R?] that when substituted for
P? in the standard procedure will lead to no less than y100% of the confidence
intervals being sufficiently narrow. As discussed momentarily, a Monte Carlo
simulation study revealed that procedures perform very well but not perfectly.
The next section discusses a computationally intense a priori Monte Carlo
simulation that can be used to obtain the exact sample size in any situation
of interest.

Obtaining the Exact Sample Size

This section discusses a computationally intense approach that leads to the exact
value of sample size in any condition, provided certain assumptions are met.
As noted, the methods previously discussed are approximate, although as shown
later they tend to yield very close approximations. Because a mathematical proof
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that would always lead to the exact sample size in the context of AIPE for P?
has not been established, a general principle of sample size planning is applied:
the exact value of necessary sample size can be planned in any situation under
any goal with the appropriate use of computationally intense procedures. The
benefit of a computationally intense approach, known as an a priori Monte Carlo
simulation, is that by designing the appropriate a priori Monte Carlo simulation,
exact sample size can be planned in any situation of interest. The idea is to
generate data that conforms to the population of interest, which requires the
assumption that what is true in the population is represented in the simulation
procedure (this is also implicit for analytic approaches to sample size planning),
and determine the minimum sample size so that the particular goal is satisfied.
One goal might be rejecting the null hypothesis that a particular effect equals
zero with no less than .85 probability. Another goal might be obtaining a 95%
confidence interval for some population effect size less than { units with .99
probability, where { is the desired width in some situation. Yet another goal
might be a combination where the null hypothesis is rejected with no less than
.85 probability and the 95% confidence interval is sufficiently narrow with no
less than .99 probability. The benefit of the computationally intense approach
is that it can be used for any procedure, and existing analytic work on sample
size planning need not exist—or if it does it need not be exact. In order for
the sample size to literally be exact, (a) all necessary assumptions of the model
must be correct, (b) all necessary parameters must be correctly specified, and
(c) the number of replications needs to tend toward infinity.

Muthén and Muthén (2002) discuss a similar a priori Monte Carlo simulation
study in the context of factor analysis and structural equation modeling (see also
Satorra & Saris, 1985). M’Lan, Joseph, and Wolfson (2006) apply an a priori
Monte Carlo study for sufficiently narrow confidence interval estimates for case-
control studies in a Bayesian framework (see also Joseph, Berger, & Bélisle,
1995; Wang & Gelfand, 2002). In general, Monte Carlo simulation studies are
used to evaluate properties of some aspect of the distribution of some effect,
often to assess various properties of a procedure or to evaluate robustness when
the model assumptions are violated. In an a priori Monte Carlo study, however,
what is of interest is the properties of statistics, and functions of them, so that
the information can be used to plan a study in order to accomplish some desired
goal.

In the context of sample size planning for a desired power for the test of
P? = 0, O’Brien & Muller (1993) base sample size planning on models with
fixed regressors with the intended use being models with random regressors.
They state that “because the population parameters are conjectures or estimates,
strict numerical accuracy of the power computations is usually not critical” (p.
23). Although sample size will likely never be perfect because the population
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parameter(s) are almost certainly not known exactly, it is also desirable for
procedures to always yield the exact answer if the parameters were known
perfectly. The a priori Monte Carlo simulation generates data conforming to
the K and P? situation specified for multivariate normal data and calculates the
confidence interval for P2. The process is replicated a large number of times (e.g.,
10,000). If yg < vy, sample size is increased by one and the simulation again
generates a large number of replications from the specified situation, where yg is
the empirical value of y from the specified condition.”> Conversely, if yg > vy, the
procedure recommended sample size is reduced by 1 and the simulation again
generates a large number of replications from the specified situation. Successive
sample sizes are found where N(;) leads to yg < y and N(;41) lead to yg > vy
(or vice versa). The value of N(; 41 is then set to necessary sample size (or vice
versa) because it is the minimum value of sample size where the specifications
are satisfied. Provided the number of replications is large enough, the procedure
will return the exact value of sample size. Although this Monte Carlo sample
size verification feature was discussed in the context of sample size planning
when vy is specified, it is equally applicable for planning the expected confidence
interval width or the median confidence interval width instead of the expected
width (i.e., the mean) is sufficiently narrow.

EFFECTIVENESS OF THE PROCEDURES

A large scale Monte Carlo simulation study was conducted where K (2, 5,
& 10), P2 (.10 to .90 by .1), o (.05 & .10 to .40 by .10), and y (expected
width, .85, & .99) were manipulated, leading to a 3 x 9 x 5 x 3 factorial design
(405 conditions) in the case of random regressors. The conditions examined are
thought to be realistic for most applications of AIPE for P? within the BEMS
sciences. For each of the conditions evaluated, multivariate normal data were
generated that conformed to the specific conditions (N, K, & P?) in order to
obtain a sample R? value and form a confidence interval for P? in accord with
the method of confidence interval formation for random regressors (using the
ci.R2() MBESS function, as discussed later). All of the assumptions were
satisfied and each set of results is based on 10,000 replications. The specific
results are reported for K = 2, 5, and 10 in subtable A (the upper table) of
Tables 1, 2, and 3, respectively. Subtable A within Tables 1, 2, and 3 reports

5Actually, it is desirable to first use a much smaller number of replications (e.g., 1,000) to
home in on necessary sample size. After an approximate sample size is determined in the manner
discussed, then a large number of replications (e.g., 10,000) is used to find the exact value.
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TABLE 1

Results of the Monte Carlo Simulation Study Based on the Standard Procedure (A)
and the Modified Procedure Where y = .85 (B) for K= 2

K=2
PZ
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Elw]l=o

.05 Mean 0.0498 0.0499 0.0500 0.0500 0.0500 0.0500 0.0499 0.0499 0.0499
Median 0.0499 0.0500 0.0500 0.0500 0.0500 0.0500 0.0499 0.0499 0.0497
Nprocedure 1995 3146 3613 3540 3075 2364 1555 795 232
Nevacr 1983 3139 3608 3537 3073 2362 1553 794 231

.10 Mean 0.0987 0.0996 0.0997 0.0998 0.0998 0.0998 0.0997 0.0996 0.0994
Median 0.0994 0.0999 0.1000 0.1000 0.0999 0.0999 0.0996 0.0992 0.0973
Nprocedure 502 785 902 885 770 594 393 205 65
Nevacr 489 779 898 882 767 592 392 203 65

.20 Mean 0.1902 0.1968 0.1977 0.1984 0.1983 0.1985 0.1974 0.1975 0.1937
Median 0.1957 0.1996 0.1992 0.1997 0.1992 0.1993 0.1972 0.1955 0.1831
Nprocedure 128 195 225 221 194 151 103 57 23
Nevacr 116 189 220 218 191 149 101 56 22

.30 Mean 0.2732 0.2885 0.2927 0.2946 0.2948 0.2945 0.2930 0.2913 0.2704
Median 0.2866 0.2980 0.2976 0.2983 0.2984 0.2970 0.2936 0.2856 0.251
Nprocedure 58 86 99 98 87 69 49 29 15
Nevact 48 79 94 95 84 67 47 28 14

.40 Mean 0.3686 0.3705 0.3825 0.3870 0.3849 0.3881 0.3817 0.3816 0.3617
Median 0.378 0.3929 0.3934 0.3941 0.3935 0.3943 0.3841 0.3751 0.3399
Nprocedure 31 48 55 55 50 40 30 19 11
Nevacr 27 40 50 52 47 38 28 18 10

(continued)
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TABLE 1

(Continued)
K=2
P2
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
B y=.85
w=.05 Jow < ® 0.8508 0.8539 0.8589 0.8636 0.8562 0.8598 0.864 0.8612 0.8788
Nprocedure 2182 3241 3631 3576 3155 2468 1663 887 289
NExact 2184 3244 3631 3576 3152 2464 1658 882 284
w=.10 Jow < ® 0.8493 0.8466 0.9263 0.8711 0.8645 0.8658 0.8694 0.8806 0.8969
Nprocedure 587 829 909 901 809 645 447 251 94
NExact 590 830 909 900 807 643 443 246 89
w=.20 Jow < ® 0.765 0.8431 1 1 0.889 0.8842 0.8835 0.8977 0.9521
Nprocedure 164 214 227 227 212 176 129 80 37
NExact 165 215 227 226 210 174 126 76 33
w = .30 Jow < ® 0.7313 0.8511 1 0.7373 0.8903 0.8927 0.9062 09114 0.965
Nprocedure 79 97 100 99 97 85 66 44 24
NExact 80 97 100 100 97 83 63 41 20
w = .40 Jow < ® 0.7488 0.7997 1 1 1 0.9065 0.9191 0.9541 0.973
Nprocedure 47 55 56 56 56 51 42 30 18
NExact 48 60 56 56 55 49 39 27 15

Note. P? is the population squared multiple correlation coefficient, o is the desired confidence interval width, w is the observed confidence interval
width, Npyocedure 1S the procedure implied sample size, Neyq is the sample size from the a priori Monte Carlo simulation, and vy is the assurance parameter.
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TABLE 2

Results of the Monte Carlo Simulation Study Based on the Standard Procedure (A)
and the Modified Procedure Where y = .85 (B) for K= 5

K=5
P2
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Elw] =o
= .05 Mean 0.0499 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0499 0.0498
Median 0.0499 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0499 0.0495
Nprocedure 2010 3153 3618 3544 3078 2366 1557 797 233
NExact 2001 3147 3613 3541 3075 2365 1555 796 233
=.10 Mean 0.0988 0.0996 0.0997 0.0998 0.0998 0.0998 0.0998 0.0995 0.0995
Median 0.0995 0.0999 0.1000 0.1000 0.0999 0.0999 0.0997 0.0992 0.0972
Nprocedure 516 793 907 889 773 596 395 207 67
NExact 504 786 903 886 770 595 395 206 67
=.20 Mean 0.1905 0.1967 0.1978 0.1984 0.1984 0.1986 0.1978 0.1970 0.1937
Median 0.1968 0.1994 0.1992 0.1998 0.1993 0.1993 0.1975 0.1943 0.1832
Nprocedure 140 203 230 225 197 154 105 59 25
NExact 127 196 225 222 195 152 103 59 25
=.30 Mean 0.2761 0.2890 0.2930 0.2946 0.2951 0.2936 0.2942 0.2877 0.2811
Median 0.2873 0.2984 0.2972 0.2984 0.2986 0.2958 0.2937 0.2812 0.2605
Nprocedure 65 93 104 102 90 72 51 32 17
NExact 56 87 100 99 88 70 50 31 16
= .40 Mean 0.3778 0.35 0.3840 0.3876 0.3879 0.3883 0.3883 0.3784 0.3519
Median 0.3875 0.3681 0.3938 0.3952 0.3963 0.3936 0.3911 0.3716 0.3214
Nprocedure 35 55 60 59 53 43 32 22 14
NExact 32 46 55 56 51 41 31 21 13

(continued)



IS

TABLE 2

(Continued)
K=2
P2
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
B y=.85
w=.05 ow < W 0.8265 0.8335 0.851 0.8627 0.8668 0.8656 0.8685 0.8712 0.895
Nprocedure 2178 3243 3635 3581 3160 2474 1669 894 295
NExact 2201 3249 3636 3579 3155 2467 1660 884 285
w=.10 Dow < W 0.8066 0.8194 1 0.8823 0.8828 0.8897 0.8902 0.8989 0.921
Nprocedure 585 832 914 906 815 652 454 258 100
NExact 601 836 913 905 810 646 446 248 91
w=.20 Dow < W 0.765 0.7918 1 1 0.9037 0.9076 0.9108 0.9299 0.9521
Nprocedure 164 217 231 231 217 182 135 86 43
Nexaer 174 221 231 231 214 176 128 79 35
w=.30 Dow < W 0.7313 0.7566 1 0.6813 0.9508 0.9229 0.928 0.946 0.965
Nprocedure 80 100 105 103 103 90 71 50 29
NExact 88 103 105 105 100 86 65 43 23
w = .40 Dow < W 0.7488 0.7997 1 1 1 0.9388 0.948 0.9541 0.973
Nprocedure 50 59 61 61 61 56 47 35 23
NExact 55 60 60 60 59 53 43 29 18

Note. P? is the population squared multiple correlation coefficient, w is the desired confidence interval width, w is the observed confidence interval
width, Npsocedure 1 the procedure implied sample size, NExqs 1S the sample size from the a priori Monte Carlo simulation, and y is the assurance parameter.
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TABLE 3

Results of the Monte Carlo Simulation Study Based on the Standard Procedure (A)
and the Modified Procedure Where y = .85 (B) for K = 10

K =10
P2
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
A Elw] =
®w=.05  Mean 0.0499 0.0499 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0499
Median 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0499 0.0497
Nprocedure 2034 3166 3626 3550 3083 2371 1560 800 236
NExact 2026 3159 3622 3547 3081 2371 1560 799 237
w=.10 Mean 0.0988 0.0995 0.0997 0.0998 0.0998 0.0997 0.0997 0.0995 0.0999
Median 0.0994 0.0999 0.0999 0.1000 0.1000 0.0998 0.0996 0.0990 0.0980
Nprocedure 538 805 916 895 778 601 399 210 70
NExact 528 799 911 892 776 599 398 209 70
®w=.20  Mean 0.1896 0.1970 0.1979 0.1986 0.1986 0.1985 0.1979 0.1969 0.1945
Median 0.1974 0.1997 0.1992 0.1999 0.1996 0.1992 0.1973 0.1945 0.1848
Nprocedure 158 214 238 231 202 158 109 63 29
NExact 127 208 234 228 200 157 107 62 25
®w=.30  Mean 0.2811 0.2892 0.2938 0.2940 0.2945 0.2935 0.2957 0.2902 0.2535
Median 0.292 0.2986 0.2973 0.2980 0.2979 0.2950 0.2951 0.2846 0.2367
Nprocedure 74 104 112 109 96 77 55 36 23
NExact 56 97 108 106 94 75 54 35 16
®w=.40  Mean 0.3795 0.3651 0.3840 0.3871 0.3867 0.3894 0.3863 0.3733 0.2542
Median 0.3891 0.395 0.3939 0.3953 0.3938 0.3937 0.3851 0.3656 0.2384
Nprocedure 42 65 68 66 59 48 37 27 23
NExact 32 46 63 63 56 46 36 21 13

(continued)
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TABLE 3

(Continued)
K=
PZ
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
B Yy =.85
w = .05 Pow < ® 0.7812 0.8094 0.8269 0.8777 0.8873 0.8779 0.8893 0.8978 0.9168
Nprocedure 2172 3246 3642 3589 3170 2485 1681 905 306
NExact 2218 3261 3644 3586 3161 2471 1664 889 288
w=".10 Pow < ® 0.7124 0.7638 0.9128 0.9064 0.9008 0.902 0.9153 0.9217 0.9554
Nprocedure 581 836 921 914 824 662 464 268 110
NExact 619 849 921 911 816 650 450 252 94
w = .20 Pow < ® — 0.6713 1 1 0.9413 0.946 0.9464 0.9596 0.9757
Nprocedure 163 222 239 239 226 192 145 95 51
NExact 174 231 239 238 219 182 132 81 35
o= .30 Pow < ® — 0.6081 1 0.6629 09714 0.9708 0.9744 0.9803 0.9908
Nprocedure — 106 112 110 111 100 81 59 37
NExact 88 111 112 112 106 91 70 47 23
w = .40 Dow < ® — — 1 1 1 0.9797 0.982 0.9884 0.992
Nprocedure — — 68 68 68 65 56 44 30
NExact 55 60 68 68 66 58 47 29 18

Note. P? is the population squared multiple correlation coefficient, w is the desired confidence interval width, w is the observed confidence interval
width, Npsocedure 1 the procedure implied sample size, Ngyqer is the sample size from the a priori Monte Carlo simulation, and vy is the assurance parameter.
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the mean and median confidence interval widths, the procedure implied sample
size (Nprocedaure) and the exact approach to sample size planning as determined
by the a priori Monte Carlo procedure (denoted Ngqc:, Which itself is based
on 10,000 replications).

For the conditions where the expected widths were examined using the
originally proposed procedure, the mean of the discrepancy between the mean
confidence interval width and the desired value was —.0075, —.0075, and —.0099
for K = 2, 5, and 10, respectively, with corresponding standard deviations
of .0101, .0113, and .023, respectively. Examining the discrepancy between
procedure implied sample size and the exact sample size as determined from
the a priori Monte Carlo simulation procedure reveals that the mean sample size
discrepancy is 3.71, 3.36, and 4.71 for K = 2, 5, and 10, respectively, with
corresponding standard deviations of 3.15, 3.16, and 5.79, respectively.

Conditions where the ws were systematically too small tended to be in
conditions where the desired width was very large. In the case of the largest
discrepancy between the specified and observed w, the mean and median w
was 0.2542 and 0.2384, respectively, for the case where w = .40, Pz = .90,
and K = 10. In this worst case, the procedure implied sample size was 23,
whereas the exact sample size is 13. Sample size values are small when w is
large, implying a large sampling variability of R?. What tends to happen for
relatively large values of w coupled with very small or very large values of P? is
that the procedure implied sample size is small and the confidence bound of 0 or
1 is reached with a nontrivial probability, and the confidence interval is smaller
than it otherwise would have been if P> were not bounded at 0 and 1, due to
the necessary truncation at the lower or upper (as is the case in this condition)
confidence bound of the confidence interval procedure. The procedure does not
consider truncated confidence intervals but the a priori Monte Carlo simulation
study does, which is why it returns the better estimate of sample size in cases
of a nontrivial amount of truncation. Otherwise, the closeness of the mean and
median w to ®w was excellent and the procedure implied sample size did not
generally differ considerably from the exact sample size procedure. Examination
of Tables 1, 2, and 3 show that the method performed less than optimally
generally when confidence intervals widths were large. Such cases tended to
lead to relatively small sample sizes and large variability of R?, which yielded a
nontrivial amount of confidence interval truncation at either 0 or 1. Many such
situations are not likely to be of interest in the majority of applied research.

The pattern of results for y = .85 is very similar to the case where y =
.99, and only the results for y = .85 are reported and discussed for space
considerations. The specific results are reported for K = 2, 5, and 10 in subtable
B (the lower table) of Tables 1, 2, and 3. Four conditions when K = 10 were
not implementable (specifically P2 = .10 for w = .20, .30, & .40 as well as
P2 = .20 for » = .40) because the desired confidence interval width was too
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large given the size of P? and number of regressors. In attempting to implement
the modified sample size procedure as discussed, an intermediate confidence
interval ranged from O to 1 and thus subsumed the entire range of allowable
values for P2, which did not render subsequent steps possible. Such a failure of
the procedure will occur only rarely, as it will not be likely researchers will plan
sample sizes for very wide confidence intervals for very small (or very large)
values of P2, coupled with a large number of predictors.

Examining the discrepancy between the procedure implied sample size and
the exact sample size, as determined from the a priori Monte Carlo simulation
study, reveals that the mean sample size discrepancy is 1.38, 1.76, and 3.86 for
K = 2,5, and 10, respectively, with corresponding standard deviations of 2.44,
6.79, and 13.51, respectively. The worst case in terms of the raw discrepancy
between yg and y was for K = 10, P2 = 20, and ® = .30, where only
60.81% of the confidence intervals were sufficiently narrow, whereas 85% of
the confidence intervals should have been given y was set to .85. The sample
sized used, as suggested by the procedure, was 106. A follow-up Monte Carlo
simulation study using a sample size of 107, 108, 109, 110, and 111 showed
that 64.16%, 68.85%, 73.90%, 80.10%, and 86.13% of the confidence intervals
were sufficiently narrow at those sample sizes, respectively. The exact sample
size in this condition is thus 111 because 111 is the minimum value of sample
size where yg > vy. Thus, in the worse raw discrepancy between yg and vy
(a 85— 60.81 = 24.19 discrepancy in percentages), the procedure yielded a
necessary sample size that was too small by less than 5%.

Rather than observing a smaller than desired yg (i.e., less than 85% of the
confidence intervals being sufficiently narrow), in some situations there was
a larger than desired yg (i.e., more than 85% of the confidence intervals being
sufficiently narrow). For example, examination of the condition where P? = .20,
ow = .20, and K = 10 shows that 100% of the confidence intervals were
sufficiently narrow for N = 239 (the procedure implied sample size). However,
a Monte Carlo simulation study shows that by reducing the sample size by 1 (to
N = 238) leads to only 78.56% of the confidence intervals being sufficiently
narrow. Thus, the sample size of 239 is correct because it is the minimal value
of sample size that leads to no less than y100% of the confidence intervals being
sufficiently narrow. This is in no way a deficiency of the proposed methods, but
rather it is a property of confidence intervals for P> because of the effect a small
change in N can have on the confidence interval properties.® Of course, not all

6Similar issues also arise and have been reported in the context of AIPE for the standardized
mean difference, where small increase in N can have a large impact on yg (elaboration on this
issue is given in Kelley & Rausch, 2006). Although not often discussed, similar issues as discussed
here occur in power analysis, where increasing sample size by whole numbers almost always leads
to an empirical power greater than the desired power.
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of the conditions where yg > vy yield the proper sample size, which can be seen
by looking at the tables on a case-by-case basis. Nevertheless, from the summary
statistics provided the proposed procedure is quite successful at recovering the
proper sample size. However, given that the a priori Monte Carlo simulation
study can be implemented, there are no practical problems for planning the
exact sample size in any condition.

By its very nature, the a priori Monte Carlo method discussed yields the exact
results, provided the number of replications is sufficiently large, the value of P?
has been correctly specified, and all model assumptions hold. This approach
literally uses a Monte Carlo simulation study to determine at what sample size
the specified goals are achieved. The minimum value of sample size where
the specified goal is realized is set to the necessary sample size. The way in
which the a priori Monte Carlo approach could be evaluated is with a Monte
Carlo simulation study. Because the method itself is a Monte Carlo simulation,
the results are literally the same. The difference between the a priori Monte
Carlo simulation study and the (standard) Monte Carlo simulation study is that
the a priori Monte Carlo study is used to plan a research study, whereas the
standard Monte Carlo simulation study is used to evaluate the effectiveness of
a method under a specified set of conditions. Evaluating the set of conditions
with a Monte Carlo study using sample size as obtained from the a priori Monte
Carlo simulation study thus leads to the conclusion that is already known: the a
priori Monte Carlo procedure selects the sample size that yields the exact value
of sample size.

TABLES OF NECESSARY SAMPLE SIZE

Although determining sample size so that sufficiently narrow confidence inter-
vals can be obtained in the context of the multiple correlation coefficient with
ease using MBESS (as discussed in the next section), the necessary sample
sizes for a variety of conditions are provided. These tables are not meant to
supplant the use of the methods developed or the computer routines provided, but
rather they are designed so that researchers can better understand the nonlinear
relationship that exists between the planned sample size conditional on P, the w,
K, and y as well as to use the tables for sample size planning when appropriate.
Table 4 provides the necessary sample size in order for the expected width to be
sufficiently narrow for 2, 5, and 10 regressors. Table 5 provides the necessary
sample size in order for there to be a degree of assurance of .99 that the obtained
confidence interval will be sufficiently narrow for the same conditions given in
Table 4.
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Necessary Sample Size per Group for 95% Confidence Intervals for the Population Squared Multiple Correlation Coefficient

for Selected Situations When the Number of Regressors Equals 2, 5, and 10 for the Expected Width to Equal the Desired Width

PZ
® 0.05 0.10 0.15 0.20 0.25 0.30 035 0.40 045 0.50 055 0.60 0.65 0.70 0.75 080 08 09 095
K=2
0.05 1106 1983 2657 3139 3450 3608 3631 3537 3345 3073 2740 2362 1961 1553 1159 794 478 231 69
0.10 273 489 658 779 857 898 904 882 835 767 685 592 493 392 294 203 126 65 24
0.15 120 214 288 342 377 396 399 390 370 341 305 264 21 177 134 94 60 33 15
0.20 70 115 158 189 210 220 223 218 207 191 171 149 126 101 77 56 37 2 12
025 47 71 98 118 131 139 141 138 132 122 110 9% 81 66 sl 38 26 17 10
0.30 35 48 65 79 89 94 96 95 91 84 76 67 58 47 37 28 20 14 9
035 27 35 45 56 63 68 69 69 66 62 56 50 43 35 29 2 17 12 8
0.40 21 2 33 40 46 50 52 52 50 47 43 38 33 28 23 18 14 10 8
045 17 21 25 30 35 38 40 40 39 37 34 30 27 23 19 15 12 9 7
0.50 15 17 19 23 2 29 31 31 31 29 27 25 2 19 16 13 11 9 7
K=5
0.05 1137 2001 2667 3147 3457 3613 3635 3541 3349 3075 2742 2365 1962 1555 1161 79 480 233 71
0.10 295 504 668 786 864 903 909 886 838 770 688 595 494 395 296 206 128 67 2
0.15 136 227 208 350 384 401 404 304 373 344 308 267 23 178 136 97 62 35 18
0.20 82 128 168 196 216 225 227 m 211 195 175 152 128 103 81 59 39 25 15
025 56 81 108 125 137 144 145 142 135 125 13 99 84 69 54 41 29 19 13
0.30 43 55 73 87 95 100 101 99 94 88 79 70 60 50 40 31 23 16 12
035 33 41 52 63 69 73 74 73 70 65 59 53 46 38 31 25 19 14 11
0.40 27 32 39 46 52 55 57 56 54 51 46 41 36 31 26 21 17 13 11
045 2 25 30 35 40 43 44 44 43 40 37 34 30 2 2 18 15 12 10
0.50 19 21 24 27 31 34 35 36 35 33 31 28 25 2 19 16 14 12 10
K =10
0.05 1178 2026 2683 3159 3467 3622 3643 3547 3354 308l 2746 2371 1968 1560 1164 799 484 237 75
0.10 329 528 685 799 874 911 916 892 844 776 693 599 498 398 300 209 131 70 30
0.15 157 248 313 362 393 409 411 400 379 349 312 271 27 183 140 100 66 40 2
0.20 97 144 183 208 225 234 234 228 216 200 179 157 132 107 84 62 43 29 19
025 69 93 120 137 148 152 153 149 141 131 118 104 88 73 58 44 33 24 17
0.30 53 66 83 97 105 108 108 106 100 94 84 75 64 54 44 35 27 21 17
035 4 49 61 71 78 81 82 80 76 71 65 58 50 43 36 30 24 19 16
0.40 34 39 46 54 60 63 64 63 60 56 52 46 41 36 30 2 2 18 15
045 29 32 36 4 47 50 51 51 49 46 43 39 35 31 27 23 20 17 15
0.50 25 27 30 33 37 40 4 4 41 39 37 34 30 27 24 21 19 17 15

Note. P2 is the population squared multiple correlation coefficient, w is the desired confidence interval width, and K is the number of regressor variables.
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TABLE 5

Necessary Sample Size per Group for 95% Confidence Intervals for the Population Squared Multiple Correlation Coefficient

for Selected Situations When the Number of Regressors Equals 2, 5, and 10 With a Desired Degree

of Assurance of .99 That the Observed Width Will Be Less Than the Desired Width

p2
[4) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
K=2
0.05 1609 2394 2963 3343 3566 3641 3641 3608 3472 3241 2938 2583 2192 1786 1374 988 642 350 133
0.10 505 677 799 872 906 910 910 909 891 844 782 699 604 505 401 299 205 124 56
0.15 261 333 374 398 404 404 404 404 402 388 365 331 293 249 202 157 113 71 36
0.20 166 199 218 226 227 227 227 227 227 224 214 198 176 155 128 102 74 51 27
0.25 116 134 143 145 145 145 145 145 145 144 141 133 121 106 90 74 56 38 23
0.30 88 96 100 100 100 100 100 100 100 100 99 96 89 80 69 57 44 32 20
0.35 69 72 73 73 73 73 73 73 73 73 73 72 68 62 53 47 37 27 18
0.40 55 56 56 56 56 56 56 56 56 56 56 56 54 50 45 39 31 24 16
0.45 44 44 4 44 44 44 44 44 44 44 44 44 43 41 38 33 27 21 14
0.50 36 36 35 35 35 35 35 35 35 35 35 35 35 34 32 28 24 19 13
K=5
0.05 1635 2404 2971 3353 3575 3645 3646 3613 3475 3244 2938 2588 2192 1790 1374 994 645 353 137
0.10 520 690 805 876 911 914 914 914 895 849 785 702 608 505 402 300 209 128 60
0.15 276 340 380 403 408 408 408 408 406 392 368 335 297 252 206 160 117 76 41
0.20 177 207 224 231 231 231 231 231 231 228 217 201 180 156 131 103 80 56 33
0.25 126 140 148 149 149 149 149 149 149 149 145 135 123 109 93 76 61 44 28
0.30 97 103 105 105 105 105 105 105 105 105 104 99 91 82 72 59 51 37 25
0.35 75 78 78 78 78 78 78 78 78 78 78 76 71 65 57 48 43 33 23
0.40 60 61 61 61 61 61 61 61 61 61 61 60 57 53 47 41 38 30 22
0.45 49 49 49 49 49 49 49 49 49 49 49 48 47 45 41 36 34 28 21
0.50 43 40 40 40 40 40 40 40 40 40 40 40 40 38 35 31 31 26 20
K=10
0.05 1651 2425 2981 3362 3579 3653 3653 3620 3480 3251 2947 2592 2199 1789 1378 994 643 351 135
0.10 542 705 817 887 919 922 922 921 900 855 789 707 613 509 405 304 206 125 58
0.15 296 354 391 411 416 416 416 416 413 399 373 339 301 255 211 163 113 74 38
0.20 192 219 233 239 239 239 239 239 239 234 222 206 183 161 134 107 77 52 29
0.25 139 151 156 157 157 157 157 157 157 156 151 142 130 113 98 80 58 41 25
0.30 107 111 112 112 112 112 112 112 112 112 110 105 96 87 75 63 46 34 22
0.35 85 86 86 86 86 86 86 86 86 86 85 82 71 70 62 53 39 29 19
0.40 68 68 68 68 68 68 68 68 68 68 68 67 63 58 52 46 34 26 18
0.45 56 56 56 56 56 56 56 56 56 56 56 56 54 50 46 40 30 23 16
0.50 48 48 48 48 48 48 48 48 48 48 48 48 47 44 41 36 27 22 16
Note.

P2 is the population squared multiple correlation coefficient, w is the desired confidence interval width, and K is the number of regressor variables.
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EXAMPLE OF PLANNING SAMPLE SIZE FOR P2 FROM
THE AIPE APPROACH USING MBESS

As a way of solidifying the methods discussed, an illustrative example based
on the work of Bunce and West (1995) is provided, which was previously used
as an example in the context of power analysis by Murphy and Myors (2004,
pp- 93-97). One question of interest to Bunce and West was linking innova-
tion among health service workers to previous innovation, personality factors
(intrinsic job motivation, propensity to innovate, and rule independence), and
group climate factors (participation in decision making, shared vision, support
for innovation, & task orientation). Bunce and West found that in their analysis
of 77 participants, nearly 40% of the variance in innovation among health
service workers could be accounted for by the eight regressors of interest (R*> =
.39; F(8,68) = 5.38, p < .001). A confidence interval for P> based on the
summary values provided by Bunce & West reveals that, although they obtained
statistically significant results, P> was not estimated with much precision, as
the 95% confidence interval for P? ranges from .140 to .503 (a width of .363).
Confidence intervals for P> when regressors are random can be obtained with
the ci.R2() function from the MBESS (Kelley, 2007a, 2007b, 2008; Kelley et
al., 2008) R package (R Development Core Team, 2008).” Both R and MBESS
are Open Source and freely available. A call to the ci.R2() function for the
example would be of the form

ci.R2(R2 =R% N =N,K =K, conf.level =1 — q).

The ci.R2() would be implemented as follows for the Bunce and West (1995)
example:

ci.R2(R2 = .39,N = 77,K = 8, conf.level = .95),

which yields .140 and .503 for the lower and upper 95% confidence limits,
respectively.

Suppose that a researcher would like to build on the Bunce and West (1995)
work with a goal of achieving a narrow 95% confidence interval for P2. Using
the findings from Bunce & West and a triangulation of other sources, suppose
that the researchers find support for P> approximating .40. In an effort to obtain
a narrow confidence interval for P? in their study, say a confidence interval

7R and MBESS are both available from the Comprehensive R Archival Network
(CRAN) at www.cran.r-project.com and http://cran.r-project.org/src/contrib/
Descriptions/MBESS.html, respectively. On Macintosh and Windows systems, MBESS can be
installed from within R directly using the Package Installation feature, which connects to the CRAN
where the software is housed. Source code for Macintosh, Windows, Linux/Unix is available on
CRAN.
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that has a width of .10, the researchers follow the approach discussed in this
article and plan sample size from the AIPE perspective. At present, the easiest
way to implement the methods discussed and developed in this article is to use
the MBESS R package. The function used to plan sample size from the AIPE
perspective for P? is ss.aipe.R2(). A basic call to the ss.aipe.R2() function
would be of the form

ss.aipe.R2(Population.R2 =P2, width =w,.K =K, conf.level =1 — a).

The present example would thus be operationalized using the ss.aipe.R2() a
function s follows:

ss.aipe.R2(Population.R2 = .40,width = .10,K = 8, conf.level = .95),

which yields a necessary sample size of 893. However, as discussed, the sample
size obtained in this fashion should be regarded as approximate. To determine
the exact value of sample size, an a priori Monte Carlo simulation study should
be used, which can be implemented with specification of the verify.ss=TRUE
argument in the ss.aipe.R2() function:

ss.aipe.R2(Population.R2=.40, width=.10, K=8, conf.level=.95,
verify.ss=TRUE),

which reveals that the exact sample size, such that the expected width of the
confidence interval for P? is .10 units wide, is 889. Although the approximate
method yields essentially the correct value, it reveals a sample size that is larger
than necessary by 4. Thus, using a sample size of 889 in the situation described
will lead to a confidence interval for P> whose expected width is .10 (provided
all necessary parameters are properly specified and assumptions met).

Although designing a study so that the expected width is sufficiently narrow
is desirable, the researchers investigate the implications on sample size when
an assurance parameter (i.e., ) of .99 is also included, as doing so will ensure
that the obtained confidence interval is no wider than .10 with no less than .99
probability. The way in which sample size can be planned in this case is by
specifying assurance=.99 in the ss.aipe.R2() R function. The approximate
method can be implemented as

ss.aipe.R2(Population.R2=.40, width=.10, K=8,
conf.level=.95, assurance=.99),

which yields a necessary sample size of 919. As before, incorporating the
verify.ss=TRUE argument implements the a priori Monte Carlo simulation
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study so that the exact sample size can be found. The ss.aipe.R2() R function
would be used as follows:

ss.aipe.R2(Population.R2=.40, width=.10, K=8,
conf.level=.95, assurance=.99, verify.ss=TRUE),

which returns a necessary sample size of 918. The exact approach shows that
the approximate method overestimates the necessary sample size by 1. Thus,
using a sample size of 918 in the situation described ensures with no less than
.99 assurance that the observed confidence interval will not be larger than .10
(provided all necessary parameters are properly specified and assumptions met).
It is interesting to note that had a desired confidence interval width of .20 been
specified instead of .10 in this situation, necessary sample size would have
been 226 and 236, respectively, for the expected confidence interval width and
incorporating an assurance of .99 for the exact approach. Thus, by doubling the
width of the confidence interval the necessary sample sizes are approximately
quartered, a common relationship in sample size planning for narrow confidence
intervals.

Sample size planning procedures almost always require one or more pop-
ulation parameters to be specified. However, the population parameter(s) are
generally unknown, and at least with the AIPE approach to sample size planning,
their value(s) are what is of interest. Thus, in all likelihood one will not know P?
exactly, which will necessarily make the whole sample size planning endeavor
approximate.®

DISCUSSION

Multiple regression is one of the most commonly used statistical procedures
in the BEMS sciences. The value of P? is often of considerable interest to
researchers using multiple regression, as knowing the proportion of the variance
in Y that is accounted for by the K regressor variables provides information
on the adequacy of model fit. Although this relationship is often evaluated with
a null hypothesis significance test in order to determine if the null hypothesis
that P> = 0 (or some other specified value) can be rejected, the benefits that
confidence intervals can provide above and beyond null hypothesis significance
tests have been clearly delineated in the methodological literature. As such, the

8A sensitivity analysis is often beneficial, where a variety of values for parameters are used to
assess the effect of misspecifying the parameters on the desired outcome (in this case the confidence
interval width). The function ss.aipe.R2.sensitivity() from the MBESS R package can be
used to assess the effects of misspecified parameter values in a variety of situations.
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use of null hypothesis significance testing as a be-all and end-all way to draw
inferential conclusions is beginning to wane to a degree in favor of confidence
intervals. Wide confidence intervals are not generally desirable, which is where
the AIPE approach can provide beneficial methods of planning sample size.

This article developed methods of sample size planning for the squared
multiple correlation coefficient from the AIPE perspective. The first method
developed allows sample size to be planned so that the expected confidence
interval width for P? will be sufficiently narrow. Choosing sample size in order
for the expected value of the confidence interval for P? to be sufficiently narrow
does not imply that any particular confidence interval will be sufficiently narrow.
Therefore, a modified sample size procedure was developed with the goal of
obtaining a sufficiently narrow confidence interval with some desired degree
of assurance. A procedure for fine-tuning the sample size from the originally
proposed procedure to obtain the exact value with an a priori Monte Carlo
simulation was also discussed. The a priori Monte Carlo simulation study is
used to evaluate the effect of a particular sample size on various aspects of the
confidence interval width. The simulation can be performed using a systematic
search of sample sizes until the minimum value of sample size is found that
satisfies the stated research goals.

Sample size planning for the squared multiple correlation coefficient has
largely been from a power analytic perspective. However, because researchers
are often interested in the value of P? itself, calculation of sample size given the
goals of AIPE is at times more appropriate than the power analytic approach.
The AIPE approach to sample size planning and the power analytic approach
each have their place. However, it should be clear that the goals of AIPE and
the power analytic approach are fundamentally different, which has the effect of
necessary sample sizes potentially being very different under different scenarios.
Depending on the question of interest and the goals of the study, one approach
may be more appropriate. Of course, when there is a desire to have narrow
confidence intervals and an estimate that leads to statistical significance, both
AIPE and the power analytic approach can be used. In such a situation it is
recommended that the larger of the two sample sizes be used so that issues of
both power and accuracy can be addressed.

Recall that the procedures for confidence interval formation for P? assumes
multivariate normality. Because the sample size planning procedures are based
on the confidence interval formation methods, they also assume multivariate
normality. What is not clear at present is the effectiveness of the sample size
planning procedures when data are sampled from a population where multivari-
ate normality does not hold. Among other things, Kromrey and Hess (2001)
evaluated the confidence interval formation procedure for P> under a variety
of conditions, one of which was when multivariate normality did not hold.
Under nonnormality, the results of a Monte Carlo simulation study conducted by
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Kromrey and Hess were mixed. In general, if the confidence interval procedure
itself does not work well in cases of nonnormality, it is unlikely that the proposed
sample size planning procedures discussed here will work well in cases of
nonnormality. Evaluation of the robustness of the sample size planning procedure
when data are not multivariate normal is a worthwhile future research topic, as
distributions in the BEMS sciences often deviate from normality (e.g., Micceri,
1989).

Whenever an estimate is of interest, so too should the corresponding con-
fidence interval for the population quantity. Holding everything else constant,
the wider a confidence interval the greater the uncertainty of the value of the
population parameter of interest. However, holding everything else constant, the
narrower a confidence interval the smaller the range of plausible values for the
parameter of interest. Determining the parameter value is often one of the major
goals of a research study. Therefore, it is hoped that during the design phase
of research that will use multiple regression, the AIPE approach to sample size
planning be seriously considered in an effort to obtain a confidence interval for
P? that is sufficiently narrow.
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