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An approach to sample size planning for multiple regression is presented that
emphasizes accuracy in parameter estimation (AIPE). The AIPE approach yields
precise estimates of population parameters by providing necessary sample sizes in
order for the likely widths of confidence intervals to be sufficiently narrow. One
AIPE method yields a sample size such that the expected width of the confidence
interval around the standardized population regression coefficient is equal to the
width specified. An enhanced formulation ensures, with some stipulated probabil-
ity, that the width of the confidence interval will be no larger than the width
specified. Issues involving standardized regression coefficients and random pre-
dictors are discussed, as are the philosophical differences between AIPE and the
power analytic approaches to sample size planning.

Sample size estimation from a power analytic per-
spective is often performed by mindful researchers in
order to have a reasonable probability of obtaining
parameter estimates that are statistically significant.
In general, the social sciences have slowly become
more aware of the problems associated with under-
powered studies and their corresponding Type II er-
rors, which can yield misleading results in a given
domain of research (Cohen, 1994; Muller & Benig-
nus, 1992; Rossi, 1990; Sedlmeier & Gigerenzer,
1989). The awareness of underpowered studies in the
literature has led vigilant researchers attempting to
curtail this problem in their investigations to perform
a power analysis (PA) prior to data collection. Re-
searchers who have used various power analytic pro-
cedures have undoubtedly strengthened their own re-
search findings and added meaningful results to their
respective research areas. However, even with PA be-
coming more common, it is known that null hypoth-
eses of point estimates are rarely exactly true in

nature (Cohen, 1994). Therefore, performing sample
size planning solely for the purpose of obtaining sta-
tistically significant parameter estimates may often be
improved by planning sample sizes that lead to accu-
rate parameter estimates, not merely statistically sig-
nificant ones.

The zeitgeist of null hypothesis significance testing
seems to be losing ground in the behavioral sciences
as the generally more informative confidence interval
begins to gain widespread usage. Instead of simply
testing whether a given parameter estimate is some
exact and specified value, typically zero, forming a
100(1 − �) percent confidence interval around the
parameter of interest frequently provides more mean-
ingful information. Although null hypothesis signifi-
cance tests and confidence intervals can be thought of
as complementary techniques, confidence intervals
can provide researchers with a high degree of assur-
ance that the true parameter value is within some
confidence limits. Understanding the likely range of
the parameter value typically provides researchers
with a better understanding of the phenomenon in
question than does simply inferring that the parameter
is or is not statistically significant. With regard to
accuracy in parameter estimation (AIPE), all other
things being equal, the narrower the confidence inter-
val, the more certain one can be that the observed
parameter estimate closely approximates the corre-
sponding population parameter. Accuracy in this
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sense is a measure of the discrepancy between an
estimated value and the parameter it represents.1

One position that can be taken is that AIPE leads to
a better understanding of the effect in question and is
more important for a productive science than a di-
chotomous decision from a null hypothesis signifi-
cance test. Many times obtaining a statistically sig-
nificant parameter estimate provides a research
community with little new knowledge of the behavior
of a given system. However, obtaining confidence
intervals that are sufficiently narrow can help lead to
a knowledge base that is more valuable than a collec-
tion of null hypotheses that have been rejected or that
failed to reach significance, given that the desire is to
understand a particular phenomenon, process, or sys-
tem.

If we assume that the correct model is fit, observa-
tions are randomly sampled, and the appropriate as-
sumptions are met, (1 − �) is the probability that any
given confidence interval from a collection of confi-
dence intervals calculated under the same circum-
stances will contain the population parameter of in-
terest. However, it is not true that a specific
confidence interval is correct with (1 − �) probability,
as a computed confidence interval either does or does
not contain the parameter value. The meaning of a
100(1 − �) percent confidence interval for some un-
known parameter was summarized by Hahn and
Meeker (1991) as follows: “If one repeatedly calcu-
lates such [confidence] intervals from many [techni-
cally an infinite number of] independent random
samples, 100(1 − �)% of the intervals would, in the
long run, correctly bracket the true value of [the pa-
rameter of interest]” (p. 31). It is important to realize
that the probability level refers to the procedures for
constructing a confidence interval, not to a specific
confidence interval (Hahn & Meeker, 1991).2

Many of the arguments in the present article re-
garding the use and utility of confidence intervals
echo a similar sentiment that has been long recom-
mended, as well as the more recent discussions in
Wilkinson and the American Psychological Associa-
tion Task Force on Statistical Inference (1999), essen-
tially an entire issue of Educational and Psychologi-
cal Measurement (Thompson, 2001) devoted to
confidence intervals and measures of effect size, Al-
gina and Olejnik (2000), and Steiger and Fouladi
(1997), as well as the still salient views offered by
Cohen (1990, 1994). In fact, Cohen (1994) argued
that the reason confidence intervals have previously
seldom been reported in behavioral research is be-

cause the widths of the intervals are often “embar-
rassingly large” (p. 1002). The AIPE approach pre-
sented here attempts to curtail the problem of
embarrassingly large confidence intervals and pro-
vides sample size estimates that lead to confidence
intervals that are sufficiently precise and thereby pro-
duce results that are presumably more meaningful
than simply being statistically significant.

In the context of multiple regression, sample size
can be approached from at least four different per-
spectives: (a) power for the overall fit of the model,
(b) power for a specific predictor, (c) precision of the
estimate for the overall fit of the model, and (d) pre-
cision of the estimate for a specific predictor. The
goal of the first perspective is to estimate the neces-
sary sample size such that the null hypothesis of the
population multiple correlation coefficient equaling
zero can be correctly rejected with some specified
probability (e.g., Cohen, 1988, chapter 13; Gatsonis &
Sampson, 1989; S. B. Green, 1991; Mendoza &

1 The formal definition of accuracy is given by the square
root of the mean square error and can be expressed by the
following formulation:

RMSE � √E[�̂ − �)2] � √E[(�̂ − E[�̂])2] + (E[�̂ − �])2,

where E is the expectation operator and �̂ is an estimate of
�, the value of the parameter of interest (Hellmann &
Fowler, 1999; Rozeboom, 1966, p. 500). The first compo-
nent under the second radical sign represents precision,
whereas the second component represents bias. Thus, when
the expected value of a parameter is equal to the parameter
value it represents (i.e., when it is unbiased), accuracy and
precision are equivalent concepts and the terms can be used
interchangeably.

2 It should be noted that the interpretation of confidence
intervals given in the present article follows a frequentist
interpretation. The Bayesian interpretation of a confidence
interval was well summarized by Carlin and Louis (1996),
who stated that “the probability that [the parameter of in-
terest] lies in [the computed interval] given the observed
data y is at least (1 − �)” (p. 42). Thus, the Bayesian frame-
work allows for a probabilistic statement to be made about
a specific interval. However, when a Bayesian confidence
interval is computed with a noninformative prior distribu-
tion (which uses only information obtained from the ob-
served data), the computed confidence interval will exactly
match that of a frequentist confidence interval; the interpre-
tation is what differs. Regardless of whether one approaches
confidence intervals from a frequentist or a Bayesian per-
spective, the suggestions provided in this article are equally
informative and useful.
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Stafford, 2001). With the second perspective, sample
size is computed on the basis of the desired power for
the test of a specific predictor rather than the desired
power for the test of the overall fit of the model (Co-
hen, 1988, chapter 13; Maxwell, 2000).

The precision of the overall fit of the model leads to
another reason for planning sample size. One alterna-
tive within this perspective provides the necessary
sample size such that the width of the one-sided
(lower bound) confidence interval of the population
multiple correlation coefficient is sufficiently precise
(Darlington, 1990, section 15.3.4). Another alterna-
tive within this perspective provides the sample size
such that the total width of the confidence interval
around the population multiple correlation squared is
specified by the researcher (Algina & Olejnik, 2000).

The final perspective for sample size estimation
within the multiple regression framework provides the
main purpose of the present article. Necessary sample
size from this perspective is obtained such that the
confidence interval around a regression coefficient is
sufficiently narrow. Oftentimes confidence intervals
are computed at the conclusion of a study, and only
then is it realized the sample size used was not large
enough to yield precise estimates. The AIPE approach
to sample size planning allows researchers to plan
necessary sample size, a priori, such that the com-
puted confidence interval is likely to be as narrow as
specified.

Figure 1 illustrates the relation between confidence

intervals and null hypothesis significance testing as
they relate to the issue of sample size for AIPE and
PA. Specifically, the figure shows the limits of a con-
fidence interval for a standardized regression coeffi-
cient in each of four hypothetical studies with a dif-
ferent predictor variable in each instance. In all four
studies the null hypothesis that the regression coeffi-
cient equals zero is false.

From a purely power analytic perspective, Study 1
is considered a “success.” The confidence interval in
this study shows that the parameter is not likely to be
zero and is thus judged to be statistically significant.
However, the confidence interval is wide, and thus the
parameter is not accurately estimated. In this study
little information about the population parameter is
learned other than it is likely to be some positive
value, a “failure” according to the goals of AIPE. This
study had an adequate sample size from the perspec-
tive of power, but a larger sample is needed in order
to obtain a more precise estimate.

Study 2, on the other hand, not only indicates that
the null hypothesis should be rejected but also pro-
vides precise information about the size of the popu-
lation parameter. Here the confidence interval is nar-
row, and thus the population parameter is precisely
estimated. Study 2 is a success according to both the
PA and AIPE frameworks.

Study 3 shows a nonsignificant effect that is ac-
companied by a wide confidence interval, illustrating
a failure by both methods. Had a larger sample size

Figure 1. Illustration of possible scenarios in which planned sample size was considered a
“success” or “failure” according to the accuracy in parameter estimation and the power
analysis frameworks. Parentheses are used to indicate the width of the confidence interval.
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been used and had the effect been of approximately
the same magnitude, the width of the confidence in-
terval would have likely been smaller, leading to a
potential rejection of the null hypothesis. Thus, the
sample size of Study 3 was inadequate from both
perspectives.

Study 4 illustrates a case in which the confidence
interval contains zero, yet the parameter is estimated
precisely. Study 4 exemplifies a failed PA but a suc-
cessful application of AIPE, as the population param-
eter is bounded by a narrow confidence interval. Of
course, one could argue that this study is not literally
a failure from a PA perspective, because as a condi-
tional probability, power depends on the population
effect size. In this study the population effect size may
be smaller than the minimal effect size of theoretical
or practical importance.

The goals for PA and AIPE are fundamentally dif-
ferent. The goal of PA is to obtain a confidence in-
terval that correctly excludes the null value, thus mak-
ing the direction of the effect unambiguous. The
necessary sample size from this perspective clearly
depends on the value of the effect itself. On the other
hand, the goal of AIPE is to obtain an accurate esti-
mate of the parameter, regardless of whether the in-
terval happens to contain the null value. Thus, sample
size from the AIPE perspective does not depend on
the value of the effect itself. However, these two
methods of sample size planning are not rivals; rather
they can be viewed as complementary. In general, the
most desirable study design is one in which there is
enough power to detect some minimally important
effect while also being able to accurately estimate the
size of the effect. In this sense, designing a study can
entail selecting a sample size based on whichever per-
spective implies the need for the largest sample size
for the desired power and precision. We revisit this
possibility in the Power Analysis Versus Accuracy in
Parameter Estimation section, in which AIPE and PA
are formally compared in a multiple regression frame-
work.

For the moment let us suppose that a researcher has
decided to adopt the AIPE perspective. Provided the
input population parameters are correct, the tech-
niques that are presented in this article allow research-
ers to plan sample size in a multiple regression frame-
work such that the confidence interval around the
regression coefficient of interest is sufficiently nar-
row.3 One approach provides the necessary sample
size such that the expected width of the confidence
interval will be the value specified. However, achiev-

ing an interval no larger than the specified width will
be realized only (approximately) 50% of the time. A
reformulation provides the necessary sample size such
that there is a specified degree of assurance that the
computed confidence interval will be no larger than
the specified width. The precision of the confidence
interval and the degree of assurance of this precision
depend on the goals of the researcher. Not surpris-
ingly, all other things being equal, greater precision
and greater assurance of the precision necessitate a
larger sample size. It is believed that if AIPE were
widely applied, it would facilitate the accumulation of
a more meaningful knowledge base than does a col-
lection of studies reporting only parameters that are
statistically significant but which do not precisely
bound the value of the parameter of interest.

Sample Size Estimation for
Regression Coefficients

In order to develop a general set of procedures for
determining the sample size needed to obtain a de-
sired degree of precision for confidence intervals in
multiple regression analysis, we use standardized re-
gression coefficients.4 Standardized regression coef-
ficients are used for two reasons in developing pro-
cedures for determining sample size using an AIPE
approach. First, due to the arbitrary nature of the
many measurement scales used in the behavioral sci-
ences, standardized coefficients are more directly in-
terpretable. Second, standardized coefficients provide
a more general framework in that variances and co-
variances need not be estimated when planning an
appropriate sample size.5

3 Although the present article illustrates AIPE in a mul-
tiple regression framework, the extension to other applica-
tions of the general linear model is not difficult, many of
which can be thought of as special cases of multiple regres-
sion.

4 The use of standardized regression coefficients may
give rise to technical issues that are addressed in a later
section of this article. Standardizing regression coefficients
in the presence of random predictors has many appealing
characteristics with regard to interpretability, but under cer-
tain circumstances problems can develop when using this
popular technique.

5 If the desire is to form confidence intervals around un-
standardized regression coefficients, the techniques pre-
sented here are equally useful. The desired width of the
computed confidence interval is measured in terms of the
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The formula for a 100(1 − �) percent symmetric
confidence interval for a single population standard-
ized regression coefficient, �j, can be written as fol-
lows:

�̂j � t�1−��2;N−p−1�� 1 − R2

�1 − RXXj

2 ��N − p − 1�
,

(1)

where �̂j is the observed standardized regression co-
efficient, j represents a specific predictor ( j � 1, . . . ,
p), p is the number of predictors (independent or con-
comitant variables, covariates, or regressors), R2 is
the observed multiple correlation coefficient of
the model, R2

XXj
represents the observed multiple cor-

relation coefficient predicting the jth predictor (Xj)
from the remaining p − 1 predictors, and N is the
sample size (Cohen & Cohen, 1983; Harris, 1985).6

The value that is added to and subtracted from �̂j to
define the upper and lower bounds of a symmetric
confidence interval is defined as w, which is the half-
width of the entire confidence interval. Thus, the total
width of a confidence interval is 2w. The value of w
is of great importance for accuracy in estimation, be-
cause the width of the interval determines the preci-
sion of the estimated parameter.

In the procedure for planning sample size, the criti-
cal value for t(1−�/2;N−p−1) is replaced by the critical
z(1−�/2) value. Justification for this can be made be-
cause precise estimates generally require a relatively
large sample size, and replacing the critical t(1−�/

2;N−p−1) value with the critical z(1−�/2) value has vir-
tually no impact on the outcome for the sample size in
most cases.7 The formula used to determine the
planned sample size, such that confidence intervals
around a particular population regression coefficient,
�j, will have an expected value of the width specified,
is obtained by solving for N in Equation 1 and by
making use of the presumed knowledge of the popu-
lation multiple correlation coefficients:

N = �z�1−��2�

w �2� 1 − R2

1 − RXXj

2 � + p + 1, (2)

where R2 represents the population multiple correla-
tion coefficient predicting the criterion (dependent)
variable Y from the p predictor variables and R2

XXj

represents the population multiple correlation coeffi-
cient predicting the jth predictor from the remaining p
− 1 predictors. The calculated N should be rounded to
the next larger integer for sample size. The w in the
above equation is the desired half-width of the confi-
dence interval. It should be kept in mind that this
procedure yields a planned sample size that leads to a
confidence interval width for a specific predictor. In
practice, both R2 and R2

XXj
must be estimated prior to

data collection, a complication we address momen-
tarily. Although not frequently acknowledged in the
behavioral literature on regression analysis, Equation
1 is derived assuming predictors are fixed and un-
standardized. Equation 2 is a reformulation of Equa-
tion 1 and thus is based on the same assumptions.
Results from a Monte Carlo study are provided later
in the article indicating that sample size estimates
based on Equation 2 are reasonably accurate when
predictors are random and have been standardized.

Equation 2 is intended to determine N such that the
expected half-width of an interval is under the re-
searcher’s control. However, there is approximately
only a 50% chance that the interval will be no larger
than specified. The reason for this can be seen from
Equation 1. Notice that the width of an interval will
depend in part on R2 and R2

XXj
, both of which will vary

from sample to sample. Thus, for a fixed sample size,
the interval width will also vary over replications.
However, it is possible to modify Equation 2 in order
to increase the likelihood that the obtained interval
will be no wider than desired.

ratio of the standard deviation of Y to the standard deviation
of Xj. Thus, following the methods presented for standard-
ized regression coefficients, application to unstandardized
coefficients is straightforward.

6 We introduce the notational system used throughout the
article. A boldface italicized R denotes the population mul-
tiple correlation coefficient, while a standard-print italicized
R is used for its corresponding sample value. A population
correlation matrix is denoted by a nonitalicized, boldface,
nonserif-font R. A population zero-order correlation coef-
ficient is denoted as a lowercase rho (�), whereas a vector of
population zero-order correlation coefficients is denoted as
a boldface lowercase rho (�).

7 The z approximation is poor if the correlations between
the predictors and the criterion are large and the correlations
among the predictors are small. In this case, the standard
error of �̂j is small, producing a relatively small estimated
sample size. Under these conditions, the degrees of freedom
of the critical t value are small, and thus the critical t value
will not closely match the critical z value. We do not believe
that this occurs frequently in behavioral research. The al-

SAMPLE SIZE AND ACCURACY IN PARAMETER ESTIMATION 309



If � is the desired degree of uncertainty of the com-
puted confidence interval being the specified width,
Equation 2 can be modified with a multiplicative fac-
tor that will provide a modified N such that a re-
searcher can have approximately 100(1 − �) percent
assurance that a computed confidence interval will be
of the specified width or less. For example, if there
were a desire to be 80% confident that the obtained w
would be no larger than the desired half-width, �
would be defined as 0.20 and there would be only a
20% chance that the half-width of the confidence in-
terval around �j would be larger than the specified w.

Hahn and Meeker (1991, section 8.3) showed how
to plan sample size for confidence intervals when a
specified width around the mean of a normal distri-
bution is desired, as well as modifying that formula to
obtain 100(1 − �) percent confidence that the interval
will be of the desired width or less. Taking similar
logic and applying it to multiple regression leads to
the creation of a formula for a modified N, NM. This
modified formulation provides the necessary sample
size in order for researchers to be 100(1 − �) percent
confident that the �j of interest will have a corre-
sponding confidence interval width that is no larger
than specified. The formula for NM is given as fol-
lows:

NM = �z�1−��2�

w �2� 1 − R2

1 − RXXj

2 ����1−�;N−1�
2

N − p −1� + p + 1,

(3)

where N is the value obtained in Equation 2 and
�2

(1−�;N−1) is the critical value from a chi-square dis-
tribution at the 1 − � quantile having N − 1 degrees of
freedom. Like N, NM should also be rounded to the
next larger integer.

Rather than using the parameter value of the vari-
ance for �̂j as was done in the calculation of N, to
compute NM, Equation 3 uses the upper bound of the
100(1 − �) percent confidence interval for the vari-
ance of �̂j. Recall that in any given sample the ob-
tained variance of �̂j will be either larger or smaller
than the parameter value specified in Equation 2.
Equation 3 uses the maximum value expected for the
variance of �̂j at the 100(1 − �) percent confidence
level. This value is substituted into Equation 2 for the

variance of �̂j and thus leads to Equation 3. Because
the only random variable in Equation 2 is the variance
of �̂j, use of Equation 3 provides probabilistic assur-
ance that the obtained confidence interval of interest
around �j will have a half-width no larger than the
specified w with 100(1 − �) percent confidence.

With regard to choosing a 100(1 − �) percent con-
fidence interval for estimation, when compared with a
100(1 − �) percent confidence interval for hypothesis
testing, important distinctions arise. The most obvious
difference in the present context is that � represents
the probability of obtaining a confidence interval with
an observed w that is larger than the specified w,
whereas alpha is the probability of rejecting a null
hypothesis that is true. When making use of Equation
3, a researcher is expected to obtain a w that is larger
than the value specified only 100� percent of the time,
regardless of whether or not the null hypothesis is
true. Whereas alpha is typically thought of as one of
two essentially constant values, .05 or .01, � is chosen
by the researcher in order to achieve some desired
degree of assurance that the precision of the estimated
parameter will be realized. Thus, confidence intervals
formed in the realm of hypothesis testing represent an
attempt to accomplish a different goal than those
formed when a researcher’s interest is in obtaining a
precise estimate of the parameter of interest.

Specifying Population Parameters as
Input Values

As illustrated in the last section, determining
sample size through an AIPE approach requires one to
know, or anticipate, R2 and R2

XXj
. This is by no means

an easy task, but with some careful planning and
sound theoretical judgment, it is possible to develop
appropriate estimates of the two parameters. In the
remainder of this section we suggest different meth-
ods for anticipating the values of R2 and R2

XXj
, such

that sample size planning can be accomplished.
Given that estimates are available for the p(p + 1)/2

zero-order population correlation coefficients, the
squared multiple correlation coefficient predicting Y
from the p predictors can be calculated using the fol-
lowing equation:

R2 � ��YXR−1
XX�YX, (4)

where �YX is the population p × 1 column vector of
correlations of each Xj regressor with Y (and ��YX, its
transpose), and RXX is the p × p population intercor-

ternative method is to solve for the appropriate sample size
iteratively, which generally adds unnecessary complica-
tions.
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relation matrix of all of the predictor variables with
one another.8

Finding the squared multiple correlation coefficient
of variable j from the other p − 1 predictors can be
readily computed from RXX in two steps. The first
step is to calculate rjj, which for the jth predictor
variable is defined as the jth principal diagonal ele-
ment of R−1

XX (Harris, 1985). In the second step, R2
XXj

for the jth predictor variable is found from the fol-
lowing expression:

RXXj

2 = 1 −
1

rjj

. (5)

The inverse of rjj is known as the tolerance of variable
j with the other p − 1 predictors. The tolerance (1 −
R2

XXj
) is the proportion of variance of a predictor that

cannot be explained by the remaining p − 1 predictor
variables included in the model. As the tolerance of Xj

approaches zero, Xj becomes highly correlated with
the remaining predictor variables and R2

XXj
becomes

larger, which means there is more predictability, or
collinearity, of predictor Xj from the other p − 1 pre-
dictors (Darlington, 1990, p. 128).

The second method of finding R2 is a variation of
the first method and depends on the notion of ex-
changeability. An exchangeable structure (Maxwell,
2000) is one in which the intercorrelations of the pre-
dictors are all the same and the correlations of the
predictors with the criterion variable are all the same
(but �XX and �YX need not be equal to one another,
where � represents a population zero-order correlation
coefficient). Thus, instead of estimating the p(p + 1)/2
zero-order correlations, it is necessary to estimate
only two correlations, one for the correlation of each
of the predictors with one another and another corre-
lation for each of the predictors with the criterion
variable. The two zero-order correlations used in ex-
changeable structures should be of the general mag-
nitude as the set of correlations they represent. Since
B. F. Green (1977) showed that “many linear com-
posites [that is, predicted scores] are barely different
from using equal weights” (p. 274), the exchangeable
structure offers a potentially useful tool when plan-
ning necessary sample size (see Maxwell, 2000, for a
thorough treatment and rationale of the exchangeable
structure, as well as a similar correlational structure
that is somewhat relaxed). Many times an exchange-
able structure may be a sensible place to start when
planning sample size for a multiple regression analy-
sis, unless there are obvious theoretical reasons not to

do so (B. F. Green, 1977; Raju, Bilgic, Edwards, &
Fleer, 1999; Wainer, 1976).

If a researcher does not have a good idea of the
relationship of the zero-order correlations, conven-
tions such as Cohen’s (1988, section 3.2) small (� �
.10), medium (� � .30), and large (� � .50) effect
sizes for correlations can be used. These correlations
can be used directly in Equation 4 or used in an ex-
changeable structure. For example, if exchangeability
seems reasonable and the predictor variables are mod-
erately or highly correlated with one another, a re-
searcher could fill the off-diagonal elements of the
RXX intercorrelation matrix with values of .30, .40, or
.50. Further, suppose that it is reasonable to expect
that the correlations of the predictors with the crite-
rion are, in general, small or medium. In this case the
vector �YX can be filled with correlations of .10, .20,
or .30. Once acceptable estimates for the two types of
correlations have been determined, the multiple cor-
relations can be obtained from Equations 4 and 5.

The third way to determine values for R2 and R2
XXj

is to consult previous literature in order to determine
likely values for these two parameters or for likely
values of the zero-order correlation coefficients
(whether the data follow an exchangeable structure or
not). Meta-analytic studies may be of help when es-
timating the required population parameters; how-
ever, in many domains of research, meta-analytic
studies have not yet been conducted or the construct
of interest may differ from those previously examined.

The final method is presented here more as a warn-
ing than a recommendation. This method is based on
the commonly recommended approach of sample size
planning based on parameter estimates obtained from
pilot studies. Pilot studies are sometimes undertaken
when literature reviews provide little or no informa-
tion about the population parameter(s) necessary for
sample size planning. However, a potential problem
with pilot studies is that these small-scale investiga-
tions may yield parameter estimates that do not
closely correspond with the parameter values they
represent. Thus, basing Equations 2 and 3 on param-

8 A caution is warranted when estimating the p(p + 1)/2
zero-order correlation coefficients, as it is feasible to esti-
mate an impossible set of correlations. If an impossible set
is estimated, the multiple correlation coefficient can be
greater than one. If this were to occur, adjustments to RXX

and/or �YX must be made, such that a realistic set of pa-
rameter values can be used for estimating N and NM.
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eter estimates obtained from pilot studies may yield
inappropriate estimates of the required sample size if
the obtained estimates do not closely approximate
their corresponding parameter values.

When planning an appropriate sample size, regard-
less of whether it is for an application of PA or AIPE,
it is typically unrealistic to proceed as if the values of
the necessary population parameters are known ex-
actly. Given that, a researcher who uses methods of
sample size planning should conduct a sensitivity
analysis. A sensitivity analysis involves calculating
appropriate sample sizes using a range of realistic
values of the necessary population parameters. In the
context of the present article, a researcher would
specify likely values of R2 and R2

XXj
in order to de-

termine their effects on N and NM. For the values of N
and NM computed with the various parameter values
in the sensitivity analysis, the most appropriate esti-
mate of sample size is chosen given what is deemed to
be the most appropriate input parameter values. It is
also advantageous to triangulate planned sample sizes
from multiple methods, rather than focusing only on a
single technique. The suggestion of a sensitivity
analysis and multiple methods of obtaining estimates
of sample size are provided in order for the researcher
to have a firm grasp on the nonlinear relationship
between the required sample size and the unknown
parameter values.

Although the particular value of w is arbitrary and
depends only on the desired width for the confidence
interval, researchers should keep in mind the likely
range of �j when choosing w, even though the value
of �j itself need not be known. Although there have
been conventions established regarding the magnitude
of particular effect sizes (e.g., Cohen’s, 1988, conven-
tions for the standardized mean difference and the
zero-order correlation coefficient), no such conven-
tions have been established for standardized regres-
sion coefficients. For example, a medium standard-
ized regression coefficient might be viewed as
resulting from medium zero-order correlations. In re-
ality, however, the population �j will depend greatly
on the number of predictors, even when all zero-order
correlations are medium. In such multiparameter situ-
ations, it becomes very difficult to develop a mean-
ingful scale for small, medium, and large effect sizes.9

Even though effect size conventions do not exist for
the relative size of the standardized regression coef-
ficient, the likely value of �j is in the interval [−1, 1].
In the special case in which there is only one predic-
tor, �j is literally the population correlation coeffi-

cient between the predictor and the criterion variable.
However, if there is more than one predictor variable,
the �js are not confined to the interval [−1, 1], as they
do not represent correlations. Thus, the choice of w is
not necessarily obvious, in large part because of the
interpretation of the standardized regression coeffi-
cient and its interrelatedness with the other predictors
in the model. Not surprisingly, all other things being
equal, the smaller the specified w, the larger the re-
quired sample size.

Example and Application of the Procedures

Suppose that a researcher is interested in perform-
ing an analysis using multiple regression. Further sup-
pose that the researcher is interested in obtaining a
precise estimate of a particular population standard-
ized regression coefficient. In particular, rather than
having an embarrassingly large confidence interval
around the estimated �j of interest, the researcher de-
cides that a confidence interval with an expected
width of 0.20 will provide a sufficiently precise esti-
mate of �j; thus, w is defined as 0.10. The researcher
is also interested in calculating NM, such that there
will be an 80% chance that the �j of interest will have
a corresponding confidence interval that has a half-
width no larger than the specified w of 0.10.

Suppose that after consulting past research and in
line with theory, the researcher determines that an
exchangeable correlational structure seems reason-
able, and the five predictor variables that are to be
used in the analysis are hypothesized to correlate with
one another at .40. Further, suppose there is reason to
believe that there is likely to be a medium effect, a
correlation of .30, between each of the predictor vari-
ables and the criterion.

Following Equation 4, the R2 can be shown to equal
.17, and from Equation 5, the R2

XXj
predicting the jth

regressor from the remaining p − 1 predictors equals
.29. The researcher then solves for the estimated N by
use of Equation 2, which yields a value of 453.98.
When rounded to the next largest integer, the esti-
mated N from Equation 2 provides the researcher with
an estimated sample size of 454. Accordingly, if the

9 Cohen (1988) even acknowledged the difficulties and
inconsistencies in conventions for effect size measures in
the context of multiple regression. These inconsistencies are
due to the interrelatedness of p, the multiple correlation
coefficients, and the zero-order correlation coefficients (Co-
hen, 1988, p. 413; see also Maxwell, 2000, p. 438).
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input parameter values were correct, using a sample
size of 454 will yield a confidence interval around �j

that has an expected half-width of 0.10.
To compute NM, such that there is an 80% chance

of obtaining a confidence interval for �j with a half-
width no larger than 0.10, the researcher uses Equa-
tion 3. Implicit in Equation 3 for this example is the
fact that the sample variance of �̂j is expected to be
less than the parameter value 80% of the time. Be-
cause the obtained w will be less than the w specified
if the variance of �̂j is smaller in the sample than the
parameter value used to estimate sample size, the ob-
tained w will be no greater than the specified w with
a probability of .80.

The .80 quantile of the chi-square distribution with
N − 1 degrees of freedom is 478.12. This critical
chi-square value is then divided by N − p − 1, yielding
a variance correction factor of 1.07. Following Equa-
tion 3, NM is estimated at 484.10 and after being
rounded up to the next largest integer yields a value of
485. If the parameter values estimated by the re-
searcher were correct, using an NM of 485 will pro-
vide the researcher with approximately an 80%
chance of obtaining a w of 0.10 or less for the confi-
dence interval around the beta weight of interest. No-
tice that sample size increases by only 31 (or 6.83%)
when specifying 80% confidence that the obtained w
would be less than the specified width. Typically NM

is not considerably greater than N and should be con-
sidered for the added assurance it provides for a pre-
cise estimate with what generally amounts to a rela-
tively small cost.

When the assumption of exchangeability does not
hold, generally a different sample size will be esti-
mated for each of the p predictors. In the following
example, suppose a researcher hypothesizes the fol-
lowing population parameters for the RXX intercorre-
lation matrix and the �YX vector, respectively:

RXX =� 1

.40 1

.60 .05 1
� �YX =�.50

.30

.10
�.

Further suppose the desired half-width and alpha were
set to 0.15 and .05, respectively. In this scenario, the
planned sample sizes would be estimated as 237, 154,
and 201 for Predictors 1, 2, and 3, respectively. Fur-
thermore, if the researcher wanted to have 90% con-
fidence that the obtained w would be less than or
equal to 0.15, NM would be 268, 180, and 229 for
Predictors 1, 2, and 3, respectively. Thus, when ex-
changeability does not hold, planning sample size for

a specific predictor may provide expected ws nar-
rower or wider than the specified value for the re-
maining p − 1 predictors, depending on the tolerance
of the predictor for which sample size was calculated.

When interest lies in the w for a specific predictor,
no problems arise regardless of whether the correla-
tional structure is or is not exchangeable. Sample size
is calculated for the specific predictor regardless of
whether the tolerance for the predictor of interest is
smaller or larger than any of the remaining p − 1
predictors. Under this strategy, researchers are con-
cerned foremost with the width of the confidence in-
terval for the beta of interest and less so for the re-
maining p − 1 predictors. For example, in the scenario
in the previous paragraph, a researcher whose ques-
tion pertains specifically to estimating the relationship
between X3 and Y controlling for X1 and X2 should
choose an N of 201 or an NM of 229.

Another strategy in situations in which exchange-
ability does not hold leads to the expected value of all
of the confidence intervals being as narrow as or nar-
rower than the specified w. In this approach the
sample size used for the study is the largest of the p
different sample sizes. Thus, the expected half-width
for the predictor with the lowest tolerance is w,
whereas the expected half-widths for the remaining p
− 1 confidence intervals will be less than w; to what
degree depends on the tolerance of the other predic-
tors. For example, given NM values of 268, 180, and
229 for the three predictors, respectively, a researcher
interested in a narrow confidence interval for each and
every predictor should choose an NM of 268.

Power Analysis Versus Accuracy in
Parameter Estimation

Estimating sample size from a PA perspective is
conceptually different than estimating sample size to
achieve AIPE. This conceptual difference can poten-
tially translate into very different practical implica-
tions. This section considers the relative sample sizes
required by the two approaches. Maxwell (2000)
showed that sample size could be estimated for a
given predictor to obtain a specified power using the
following formula:

N = � �

�j
2�� 1 − R2

1 − RXXj

2 � + p − 1, (6)

where � is a noncentrality parameter from an F dis-
tribution with 1 numerator and N − p − 1 denominator
degrees of freedom. The � value in Equation 6 is a
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tabled critical value that determines the power of a
given statistical test for a predictor of interest. The
required value of � for a specified degree of power
can be obtained from Cohen’s (1988, pp. 448–455)
tables or from the appropriate noncentral F distribu-
tion.

The relative sample size required for AIPE versus
PA can be compared by the following two multipli-
cative ratios found in Equations 2 and 6, respectively:

�z�1−��2�

w �2

versus

� �

�j
2�.

Unless p is very large, the ratio of required sample
size for AIPE compared with PA is approximately
(z(1−�/2)�j)

2/(�w2) to 1. Note that the population stan-
dardized regression coefficient is the only one of the
four values beyond the researcher’s control. Whereas
�, �, and w are chosen to coincide with the goals of
the research project, the PA approach requires that the

parameter value or the minimally important value of
the standardized regression coefficient be specified.
Note that a value for the standardized regression co-
efficient is not necessary when planning sample size
for precision. For this reason, planning sample size
from the AIPE perspective is actually easier than ap-
proaching sample size planning from the PA perspec-
tive.

Unless p is very large, sample size for PA is ap-
proximately

N = MPA� 1 − R2

1 − RXXj

2 �, (7)

where MPA � �/�2
j , which is the multiplier used for

the PA approach. Similarly, sample size for AIPE is
approximately

N = MAIPE� 1 − R2

1 − RXXj

2 �, (8)

where MAIPE � (z(1−�/2)/w)2, which is the multiplier
used in the AIPE approach. Figure 2 depicts the re-

Figure 2. Relationship of the relative planned sample size for the accuracy in parameter
estimation (AIPE) and the power analytic (PA) approaches to sample size planning as a
function of the population beta weight (approximate sample size in the special case when R2

� R2
XXj

).
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lationship of the multipliers for PA and AIPE for
population betas for various values of power and pre-
cision (� � .05). As Equations 7 and 8 show, multi-
plying the corresponding value on the ordinate for
either power or precision in Figure 2 by the ratio
(1 − R2)/(1 − R2

XXj
) yields an approximate sample

size. More generally, the relative elevation of a curve
or line represents the relative sample size required to
achieve a desired level of power or precision.

Several practical implications emerge from Figure
2. First, as the curves and lines show, as the popula-
tion �j becomes larger, sample size for power can be
much smaller than it is for precision. Conversely,
when the �j is small, sample size for power can be
much larger than is required for precision. For ex-
ample, when the �j equals 0.30, the sample size re-
quired to obtain a confidence interval with an ex-
pected half-width of 0.10 is just over 4 times as large
as the sample size needed to obtain a power of .80.
However, when �j is 0.08, the sample size needed for
a power of .80 is more than 3 times larger than that
needed to obtain a confidence interval with an ex-
pected half-width of 0.10. Note that these relation-
ships hold true regardless of the values of R2 and
R2

XXj
, as both of these values play the same role in

Equations 7 and 8. Second, for constant values of R2

and R2
XXj

, sample size for precision is independent of
the value of �j, whereas smaller samples can provide
adequate power for larger values of �j. Third, implicit
in Equation 8 and as depicted in Figure 2, halving the
width of a confidence interval for �j requires approxi-
mately a fourfold increase in sample size. Fourth, in
the special case in which R2 is equal to R2

XXj
—that is,

(1 − R2)/(1 − R2
XXj

) � 1.00—the values on the ordi-
nate based on the curve for power and the line for
precision are approximately the required sample sizes.

Thus, it is clear that the two methods are different
from the outset and can yield very different estimates
of sample size in the same study. Each is designed to
answer a different question, and as can be seen, they
do just that. The two approaches differ on a philo-
sophical level, one designed to achieve a narrow in-
terval and one designed to obtain an interval that does
not contain the specified null value. The point is that
depending on what the researcher’s question is and
the desired outcome, a different approach to sample
size estimation will be needed. Neither approach is
necessarily “right” or “wrong” for a given problem;
these approaches are merely different in the questions
that they attempt to answer. It is recommended that
the two approaches be used in conjunction with one

another in order to achieve reasonable statistical
power while obtaining confidence intervals that are
sufficiently narrow.

Random Versus Fixed Predictors and the Issue
of Standardization

In the present article it was assumed that the pre-
dictor variables were random and that all variables
were standardized. The reason that standardized val-
ues were discussed exclusively is because correlations
tend to be easier to hypothesize and work with than
variances and covariances, which would be necessary
to carry out AIPE in the unstandardized case. Another
reason why standardized regression coefficients are
beneficial is because of the arbitrariness of most
scales of measurement used in the behavioral sci-
ences. Furthermore, a widely used convention of the
magnitude of effect is available for correlations in
psychology (Cohen, 1988, section 3.2). It should be
clear, however, that if the hypothesized values are
correct when finding N and NM for standardized val-
ues, they will provide the same relative degree of
precision around the unstandardized regression coef-
ficients. The relative degree of precision regarding w
is scaled in terms of the ratio of the standard deviation
of the criterion to the standard deviation of the jth
predictor (sY/sXj

).
With regard to random and fixed predictor values in

the unstandardized case, Sampson (1974) showed that
regardless of the predictors being fixed or random,
“we obtain the same estimates for the regression co-
efficients and the variance of the error” (p. 684 from
Theorem 1). There is, however, a difference between
the two cases. Note that if R2 � 0, then the distribu-
tion of R2 is identical in both cases and follows a
central F distribution. However, the distribution of R2

is different for the two cases when R2 � 0 (Stuart,
Ord, & Arnold, 1999, section 28.29). In fact, the dis-
tribution of R2 is a noncentral F distribution in the
case of fixed predictors, whereas it is not in the case
of random predictors (Rencher, 2000, pp. 240–241).
Accordingly, the distribution of the test statistic under
the null hypothesis is the same for the fixed as well as
the random X case, but the power functions for the test
statistic are different for the two cases (Rencher,
2000, chapter 10). Gatsonis and Sampson (1989)
showed that Cohen’s (1988) power tables for deter-
mining sample size are approximations, because Co-
hen treated random predictors as though they were
fixed. However, Gatsonis and Sampson concluded
that “Cohen’s approximation works quite well in
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many situations” (p. 519). Thus, practically speaking,
random versus fixed X values have little effect on
applied research because the consequences, in most
cases, are trivial. The issue of standardization, how-
ever, is quite different, especially when standardiza-
tion is performed on random predictor variables.

Even though multiple regression using standardized
random predictors is common practice in behavioral
research, as well as in many other fields, there are
nuances associated with this strategy that are not
widely known and are potentially problematic. As
previously stated, the formula (see Equation 1) for the
standard error of a regression coefficient that is ran-
dom and standardized is approximate. The formula, as
given explicitly in sources such as Cohen and Cohen
(1983) and Harris (1985) and implicitly in many oth-
ers, treats the standard deviation of each predictor as
a constant value. This is obviously not the case when
the predictors are random, as the standard deviation of
the predictor is itself a random variable. This is con-
trasted with the situation in which the values of the
predictor variables are preset in advance and thus the
standard deviation of those predictors would not vary
across replications of the study.

In order to transform an unstandardized regression
coefficient to a standardized regression coefficient,
one can multiply the raw score regression coefficient
by sXj

/sY, so as to remove the (generally arbitrary)
scaling of Y and Xj. Likewise, this same procedure is
commonly done in order to obtain the standard error
of the standardized regression coefficient.10 However,
“standard errors of standardized parameters, in gen-
eral, are not a simple rescaling of the standard errors
of the original parameter estimates” (Jamshidian &
Bentler, 2000, p. 74). The problem with scaling the
standard error of a standardized regression coefficient
in the random predictor case can be seen by a well-
known property of variances. If C is a constant and V
is a random variable, Var(CV) � C2Var(V), where
Var(	) represents the variance of the quantity in pa-
rentheses. However, if C̃ is itself a random variable,
then Var(C̃V) � C̃ 2Var(V). Common formulas for the
standard error of standardized regression coefficients
(e.g., Equation 1) assume that the standard deviation
of the predictor is fixed. In the case of random pre-
dictor variables, such an assumption implies that
Var(C̃V) � C̃ 2Var(V). Because this assumption is
false, the variability of Xj is not taken into consider-
ation when calculating the standard error of standard-
ized regression coefficients from the random X
case, which generally leads to incorrect standard errors.

In structural equation modeling (SEM), which can
be viewed as a generalization of multiple regression,
several authors have illustrated the potential problems
of analyzing a correlation matrix as if it were a co-
variance matrix (e.g., Babakus, Ferguson, & Jöreskog,
1987; Browne, 1982; Cudeck, 1989; Jamshidian &
Bentler, 2000). Steiger (2001) concluded that SEM
parameter estimates based on a correlation matrix
(analogous to standardized coefficients in multiple re-
gression) may be correct, whereas their standard er-
rors are incorrect (see also Lawley & Maxwell, 1971,
chapter 7, for technical details). MacCallum and Aus-
tin (2000) stated that when a correlation matrix is
analyzed as if it were a covariance matrix in SEM, “in
all cases, standard errors of parameter estimates as
well as confidence intervals and test statistics for pa-
rameter estimates will be incorrect,” and they further
emphasized that the “correct standard errors will gen-
erally be smaller than the incorrect values which re-
sults in narrower confidence intervals and larger test
statistics” (p. 217). For the reasons outlined in this
section regarding the approximate nature of Equation
1, a simulation study was conducted to verify the
integrity of the procedures suggested throughout the
article.

Results of Monte Carlo Simulations

If Equation 1 was exact, the assumptions were met,
and the multiple correlation coefficients were cor-
rectly specified, the sample size estimation proce-
dures presented here yield correct estimates of re-
quired sample size. However, whenever the values of
the predictors are random and standardized, rather
than being fixed, Equation 1 is an approximation. In
applications of multiple regression to observational
studies in the behavioral sciences, predictors are typi-
cally random, not fixed. Further, standardization often
occurs in the behavioral sciences because of the in-

10 The reason that multiplying the standard error of the
unstandardized regression coefficient by sXj

/sY removes
the scaling of the jth predictor can be seen by the formula
for the standard error of the unstandardized regression co-
efficient: (sY/sXj

) √(1 − R2)/[(1 − R2
XXj

)(N − p − 1)]. Multi-
plying this formula by sXj

/sY removes the scaling of Y and Xj

from the standard error and is commonly, yet inappropri-
ately, assumed to be the correct standard error for the jth
standardized regression coefficient when the predictor is
random.
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terpretational problems associated with arbitrary
scales of measurement. Under these circumstances, it
was unclear whether basing planned sample size on
Equation 2 would produce an interval with the desired
width. In addition to ensuring that Equation 2 consis-
tently yields accurate estimates of sample size, a
Monte Carlo study was necessary because Equation 3
implicitly assumes Equation 2 is correct.

One scenario studied in the Monte Carlo simulation
was the aforementioned exchangeable structure with
five predictors and where �XX � .40 and �YX � .30.
The simulation revealed that Equations 2 and 3 pro-
duced very accurate results in this situation. Recall
that when w is specified as 0.10 for this scenario,
Equation 2 dictates a necessary sample size of 454.
The mean w for the five betas, each based on 10,000
replications, using a sample size of 454, was 0.101,
with a standard deviation of 0.003; the median w was
also 0.101. Recall that having an 80% chance of ob-
taining a w no larger than the specified value of 0.10
requires a necessary sample size of 485 based on
Equation 3. The mean and the median confidence in-
terval half-width using a sample size of 485 was
0.098, with a standard deviation of 0.003. Most im-
portant, 81.64% of the obtained ws were no larger
than the specified value of 0.10. Further, the 80th
percentile for the empirical distribution of the ob-
tained ws was 0.10. In summarizing the results for this
scenario, the suggested procedures yielded an original
sample size such that the mean of the ws was 0.101
and a modified sample size that led to just over 80%
of the confidence intervals being no larger than speci-
fied.

This example was selected because we thought it
was reasonably typical of a behavioral research sce-
nario. However, this single scenario cannot address
the extent to which the approximation is accurate for
other situations. To investigate the general accuracy
of the procedures, we undertook a large Monte Carlo
simulation study to address the appropriateness of
Equation 2. In the simulation study 166 different con-
ditions were examined. In the different conditions a
variety of correlational structures were used. The ws
were specified to be 0.025, 0.05, 0.10, 0.15, 0.20,
0.15, and 0.35, using ps of 2, 5, and 10. Presumably
the simulations encompass the likely ranges of w and
p that is commonly of interest to behavioral research-
ers, combined with a variety of correlation structures
to show generality. Each condition in the simulation
study was based on 10,000 replications. The results
showed that the suggested procedures generally per-

formed very well. Because of the large number of
conditions that were studied, the tabled results could
not be presented; however, detailed descriptions of
the results follow.11

The mean, median, and standard deviation of the
percentage of error were determined for each of the
166 conditions that were examined. The percentage of
error was determined by subtracting the specified w
from the mean of the obtained ws, dividing this dif-
ference by the specified w, and then multiplying by
100. For example, if the mean of the obtained ws was
0.204 when the specified w was 0.20, the percentage
of error would be computed as follows: 100(0.204 −
0.20)/0.20 � 2.00. Thus, in this condition the mean of
the obtained ws was 2.00% larger than the specified w.

In the simulation conditions in which p was 2, all
combinations of small, medium, and large correla-
tions among the predictors as well as the criterion (27
total) were completely crossed with ws of 0.05, 0.10,
and 0.20. Thus, a total of 81 different conditions were
examined for p � 2. The mean and median of the
percentage of error were 0.33 and 0.17, respectively,
with a standard deviation of 0.34. The minimum per-
centage of error was 0.01 for a case in which w was
0.05, and the maximum percentage of error was 1.85
for a case in which w was 0.20. Thus, in the worst
case out of the 81 different conditions for p � 2, the
mean of the obtained w was less than 0.01 units larger
than expected.

In the case in which p was 5, the results are re-
ported separately for two different types of correla-
tional structures. In the first type of correlational
structure, 25 different exchangeable structures were
examined. In any single one of the 25 combinations,
all predictors correlated equally among themselves
and each correlated equally with the criterion vari-
able. Correlations among predictors consisted of �XX

values of .10, .20, .30, .40, and .50. Correlations of the
predictors with the criterion consisted of �YX values
of .10, .20, .30, .40, and .50. Thus, �XX and �YX each
varied from small to large by .10 and yielded a 5 × 5
factorial design.

Two combinations of correlations are excluded

11 The complete set of simulation results is available in
tabular format from Ken Kelley or Scott E. Maxwell. The
code, which was written in R/S-PLUS, is also available on
request. Note that the anonymous reviewers were provided
with the simulation results as part of their assessment of our
procedures.
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from the following descriptive statistics because their
multiple correlations between the predictors and cri-
terion are greater than .80 and not representative of
most psychological research.12 The mean and median
percentage of error for the remaining 23 ws were 1.87
and 1.03, respectively, with a standard deviation of
2.22. The minimum percentage of error was 0.22, and
the maximum was 10.00. This worst case occurred
when the correlations among the predictors were .10
and the correlations between the predictors and crite-
rion were .40. This correlational structure is unlikely
in most behavioral research because R � .76. How-
ever, even this condition had a mean w that was only
0.01 units larger than expected.

The other simulations that were conducted for p �
5 were based on two published correlational struc-
tures. The first was a subset of a correlation matrix
obtained from the developmental literature (Smari,
Petursdottir, & Porsteinsdottir, 2001), and the other
was obtained from an example given in an SEM text
(Table 7.1 in Loehlin, 1998). The mean and median of
the absolute percentage of error for the 30 conditions
(15 from each example) were 0.55 and 0.23, respec-
tively, with a standard deviation of 0.76. The mini-
mum of the absolute percentage of error was 0.01 in
a condition in which w was 0.025, and the maximum
was 2.75 in a condition in which w was 0.35. Thus,
the worst condition in this situation produced a mean
w of 0.36 when the specified w was 0.35.

For p � 10, the correlation matrix used was a
subset of one obtained from the clinical–counseling
literature that had previously been cited in an SEM
text (Worland, Weeks, Janes, & Strock, 1984, as cited
in Kline, 1998, p. 254). The mean and median of the
percentage of error for the 30 conditions that were
examined were 0.18 and 0.09, respectively, with a
standard deviation of 0.19. The smallest absolute per-
centage of error was less than 0.01 for a case in which
w was 0.05, and the largest percentage of error was
0.67 for a condition in which w was 0.20. Thus, the
condition with the largest discrepancy had a percent-
age of error less than 1%.

Recall the cited SEM literature in which it has been
shown that the standard errors of parameter estimates
are generally inflated when a correlation matrix is
treated as a covariance matrix. Because ordinary least
squares (OLS) multiple regression is a special case of
SEM, it follows that the standard errors of OLS mul-
tiple regression are often inflated when predictor vari-
ables are random and standardized. In 130 of the 166
conditions investigated (78.31%), the confidence in-

terval coverage was greater than 95% (the nominal
alpha was set to .05). The mean and median percent-
age of coverage were 95.53 and 95.24, respectively,
with a standard deviation of 0.78. Whereas the small-
est percentage of coverage was 94.34, the largest per-
centage of coverage was 97.89. Thus, the results of
the simulations have shown empirically the approxi-
mate nature of Equation 1 and the fact that OLS mul-
tiple regression tends to have inflated standard errors
when predictor variables are random and have been
standardized.13

The fact that Equation 1 is approximate and gen-
erally provides confidence intervals wider than nec-
essary raises some questions regarding its use as well
as the use of Equations 2 and 3 in the context of
sample size planning for precise estimates of stan-
dardized regression coefficients. For example, in the
case in which the largest confidence discrepancy oc-
curred, 97.89% of the computed confidence intervals
bracketed the population parameter. Applying Equa-
tion 1 to this condition (w � 0.10, �YX1

� .50, �YX2

� .10, �X1X2
� .10, p � 2), we found that the popu-

lation correlations would suggest that the standard
error was 0.051. A simulation based on 1,000,000
replications showed that, consistent with the SEM lit-
erature, the standard deviation of the regression coef-

12 The two excluded cases consisted of unlikely scenarios
for much behavioral research. The first excluded scenario
consisted of correlations among the predictors of .10 and
correlations between the predictor and the criterion of .50.
Such a combination of correlations leads to an R of .95 and
where the requirement of a positive definite correlation ma-
trix is nearly violated. In this case the mean w was 0.151
when it was specified to be 0.10. Poor performance of the
technique in this particular scenario is not surprising, given
that many statistical procedures fail when parameters ap-
proach their theoretical bounds. The second excluded case is
similar to the first and consisted of correlations among the
predictors of .20 and correlations between the predictor and
the criterion of .50. This combination of correlations leads
to an R of .83. In this second excluded scenario, the mean
w was 0.112 when it was specified to be 0.10.

13 Many behavioral scientists would see no problem with
an empirical alpha smaller than the nominal alpha level and
thus with being more conservative. However, a toxicologist
or bioscientist working with chemical agents or medicine
would likely argue that a Type II error may be more costly
than a Type I error, as concluding that there is “no effect”
of a noxious substance could be a harmful mistake. Further,
power and precision will be sacrificed if the actual Type I
error rate is smaller than the nominal alpha level.
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ficients was 0.044, a value smaller than implied by
Equation 1. This result suggests that the sample size
calculated from Equation 2, which assumes the stan-
dard error from Equation 1 is correct, is approximate
and in this particular case somewhat negatively bi-
ased. Unfortunately, no exact formula for the standard
error is known to exist when predictors are random
and standardized. Thus, given the current state of
knowledge, researchers need to continue to use Equa-
tion 1 for forming confidence intervals around regres-
sion coefficients for predictors that are random and
standardized. Equations 2 and 3 can then be used in
the research design phase in order to determine ap-
proximate sample sizes for precise estimates of the
regression coefficients of interest.

Limitations of the Procedure

Although the distribution of R2 is asymptotically
normal throughout most of its domain (Stuart et al.,
1999, section 28.33), this is not the case as R2 ap-
proaches its limits. When R2 begins to approach zero,
the distribution of the observed R2 values becomes
positively skewed because of the lower bound at zero.
The converse is true as R2 begins to approach one, and
thus the distribution of the observed R2 values will be
negatively skewed.

The fact that the distribution of R2 becomes nega-
tively or positively skewed affects sample size esti-
mation in two ways. Recall from Equations 2 and 3
that there are two multiple correlations in the equa-
tions for determining sample size, the model R2 in the
numerator and R2

XXj
in the denominator. As R2 ap-

proaches zero in the population, the estimated sample
size for a planned study based on Equation 2 or Equa-
tion 3 will, with everything else held constant, tend to
be larger than necessary. One way to understand why
overestimation occurs is to inspect Equation 1. On the
basis of this equation, a confidence interval becomes
narrower as 1 − R2 becomes smaller. As R2 ap-
proaches zero and thus the distribution of R2 becomes
more positively skewed, the mean R2 tends to be
greater than R2, implying that the mean 1 − R2 tends
to be less than 1 − R2. Accordingly, the observed
confidence intervals will tend to be narrower than
expected based on the value of R2. The estimated
sample size from Equation 2 or Equation 3 is a func-
tion of R2; thus, confidence intervals based on sample
size estimates from these equations will tend to be
narrower than specified when the model R2 ap-
proaches zero. In other words, for a desired degree of

precision, sample size estimates become inflated as R2

approaches zero. The opposite pattern of results oc-
curs when R2 begins to approach one. In this case the
proportion of variance unaccounted for is, on average,
larger in the sample than is implied by R2. Conse-
quently, the use of Equation 2 or Equation 3 will tend
to underestimate sample size.

The same phenomenon happens in the denominator
with R2

XXj
as it does in the numerator with R2; the only

difference is that the relationship is the exact opposite.
Because R2

XXj
is in the denominator of Equation 2, the

sample size is over- or underestimated in a reverse
fashion as was illustrated for R2.

For simplicity, the discussion has been limited to
regression models that include only main effects and
no interaction or other higher order (polynomial)
terms, as there are certain nuances associated with
multiplicative terms that have been scaled in multiple
regression models (see chapter 3 of Aiken & West,
1991, for details regarding multiplicative effects in
multiple regression). Furthermore, the procedures
given here assume that all predictors are included in
the regression model and that no selection of predic-
tors occurs (as would be the case in, e.g., a stepwise
regression analysis).

Discussion

Approaching sample size estimation from a per-
spective of AIPE rather than one exclusively empha-
sizing power is beneficial for a productive science.
Although planning sample size through PA studies is
important and undeniably improves research findings,
the accuracy in those parameter estimates should be at
least as much of a concern as their probability value,
perhaps even more so. An optimal experimental de-
sign consists of an adequate sample size from an
AIPE perspective as well as an adequate sample size
from the PA perspective. Ensuring that sample size is
adequate from both perspectives leads to parameter
estimates that will likely be accurate as well as sta-
tistically significant.

A special case in which precision is especially im-
portant occurs when the goal is to provide evidence in
support of the null hypothesis. If a confidence interval
is sufficiently narrow and power is of sufficient
strength (say, power > .90), at times it may be appro-
priate to show support for the null hypothesis, in the
sense that the value of the parameter is not meaning-
fully different from the null value. Note that this is not
“accepting the null hypothesis” but is merely showing
support for it (Greenwald, 1975).
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The simulation study showed that the procedures
presented here were effective in accomplishing their
respective goals. The mean and median of the ob-
served ws were very close to their specified values
when the estimated N (Equation 2) was used to select
sample size. When using N, researchers are reminded
that this provides the necessary sample size such that
the expected half-width of the confidence interval is,
on average, the specified width. However, this does
not ensure that the particular observed w will be the
specified width in any given sample. The modified
sample size (Equation 3) takes into consideration the
variability of the standard error of �̂ and adjusts the
sample size accordingly, such that one can be ap-
proximately 100(1 − �) percent confident that the
width around a particular �j will have a corresponding
w that is no larger than the specified w.

A caution is given because of the problems that can
arise when using standardized variables from random
X values in the context of multiple regression. Al-
though there are numerous reasons to use standard-
ized values as input into multiple regression models,
and thus make use of their corresponding estimates
for interpretational reasons, the standard errors of
such estimates are generally not exact. Even though
the simulations show that the common method of
standardizing random predictors produces confidence
intervals for standardized regression coefficients that
are generally wider than they should be, the sample
size procedures we present typically produce the de-
sired degree of precision.

In conclusion, the AIPE procedures presented here
are applicable to researchers working within the
framework of OLS multiple regression who want to
determine sample size a priori in order to obtain ac-
curate parameter estimates. Given reasonably accu-
rate input parameters, use of these procedures pro-
vides researchers with confidence intervals around
regression coefficients whose expected widths are the
values specified or, alternatively, with some degree of
probabilistic assurance. As with all sample size plan-
ning, the AIPE procedures will be less accurate to the
extent that the input parameters deviate from their true
values. However, the problem with the choice of input
parameters should not be used as a reason to avoid
sample size planning. In addition, we have shown that
planning sample size for precise estimates of stan-
dardized regression coefficients requires less a priori
knowledge (i.e., fewer input parameters) than the cor-
responding planning necessary to obtain sufficient
statistical power. We believe that obtaining accurate

parameter estimates, not merely statistically signifi-
cant ones, leads to a more productive science and
yields research findings that are more beneficial to a
given area of inquiry.
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