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Abstract. When unobserved heterogeneity exists in populations where the phenomenon of interest is governed by a functional form of
change linear in its parameters, the growth mixture model (GMM) is useful for modeling change conditional on latent class. However,
when the functional form of interest is nonlinear in its parameters, the GMM is not very useful because it is based on a system of equations
linear in its parameters. The nonlinear change mixture model (NCMM) is proposed, which explicitly addresses unobserved heterogeneity
in situations where change follows a nonlinear functional form. Due to the integration of nonlinear multilevel models and finite mixture
models, neither of which generally have closed form solutions, analytic solutions do not generally exist for the NCMM. Five methods
of parameter estimation are developed and evaluated with a comprehensive Monte Carlo simulation study. The simulation showed that
the parameters of the NCMM can be accurately estimated with several of the proposed methods, and that the method of choice depends

on the precise question of interest.
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In the behavioral, education, and social sciences, idio-
graphic conceptualizations of change tend to focus on the
individual, whereas nomothetic conceptualizations tend to
focus on the group (e.g., see Allport, 1937). Muthén and
Muthén (2000) discuss that, at least in general, statistical
methods designed to help researchers answer questions
about behavior are either variable-centered or pattern-cen-
tered. Statistical methods that are variable-centered focus
more on relationships among variables (e.g., structural
equation models and its variants), whereas statistical meth-
ods that are pattern-centered focus more on the relation-
ships among the individuals (e.g., finite mixture models
and its variants). Variable-centered methods are consistent
with the “strong concept of growth,” because this view
states that “a single developmental function can adequately
describe the change of all individuals from some popula-
tion” (Burchinal & Appelbaum, 1991, p. 25), whereas pat-
tern-centered approaches are consistent with the “weak
concept of development,” because this view seeks to iden-
tify intraindividual patterns of change and interindividual
differences in those patterns (Burchinal & Appelbaum,
1991; Nesselroade & Baltes, 1979). Idiographic and nomo-
thetic conceptualizations of behavior are traditionally con-
sidered antithetical (Dunn, 1994, p.377) and as such po-
tential benefits of combining the approaches in an integrat-
ed fashion often go unrecognized. Some research
questions, however, demand an integration of variable-cen-
tered and pattern-centered statistical techniques (e.g., Bur-
chinal & Appelbaum, 1991; Dumenci & Windle, 2001;
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Magnusson & Bergmen, 1988; Muthén & Muthén, 2000;
Muthén et al., 2002; Nagin, 1999; Schulenberg, O’Malley,
Bachman, Wadsworth, & Johnston, 1996).

A fully integrated idiographic and nomothetic theory re-
quires both variable-centered and pattern-centered meth-
ods in a unified model. Such an integrated method would
allow, for example, unknown groupings of individuals to
exist in a single heterogeneous population, where variation
exists within each group around the group specific param-
eters. When latent classes of individuals exist in a hetero-
geneous population, standard methods of longitudinal data
analysis may not yield meaningful results. The reflexive
application of nomothetic techniques to mixed nomothet-
ic-idiographic situations may not accurately reflect any of
the component distributions (i.e., subpopulations) that are
mixed together, which potentially results in misspecified
models and misleading conclusions. The questions of in-
terest regarding change would best be applied within each
of the classes (i.e., conditional on class membership) and
not across all of the classes simultaneously.

As discussed by Muthén, “data are frequently analyzed
as if they were obtained from a single population, although
it is often unlikely that all individuals in our sample have
the same set of parameter values” (1989, p. 558). Attempt-
ing to solve this deficiency for models that assume homo-
geneous populations in the context of longitudinal data
analysis, the growth mixture model (GMM) was developed
(Muthén, 2002; Muthén & Shedden, 1999; Muthén, 2001a;
Muthén, 2001b; Muthén & Muthén, 2000). The idea of the
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GMM is that individuals are considered nested within a
latent (i.e., unknown) class with the latent classes poten-
tially having variability around the class specific popula-
tion coefficients of change. The GMM model is analogous
to a multiple group analysis, but group membership is un-
known and must be estimated. Although Muthén’s GMM
is capable of combining variable-centered and pattern-cen-
tered approaches to studying change (Muthén & Muthén,
2000), a major limitation is that it is built on a linear system
of equations, where fixed and unique effects cannot both
enter a change model nonlinear in its parameters.

An increased appreciation of models of change nonlin-
ear in their parameters is beginning to gain ground in the
behavioral, educational, and social sciences (e.g., see Cu-
deck & Harring, 2007, for a recent review; see also Browne
& du Toit, 1991; Burchinal & Appelbaum, 1991; Cudeck,
1996; van Geert, 1991). Models nonlinear in their param-
eters (e.g., negative exponential, logistic, Gompertz, etc.)
can better model some types of change when compared to
models linear in their parameters (e.g., straight line, qua-
dratic, cubic, etc.). Nonlinear models of change are models
where parameters enter the mathematical function defining
the trajectories in a nonlinear fashion. As has been delin-
eated elsewhere (e.g., Browne & du Toit, 1991; Cudeck,
1996; Davidian & Giltinan, 1995; Pinheiro & Bates, 2000;
Thissen & Bock, 1990), some advantages of nonlinear
change models are that they need not exhibit unlimited
growth or decay, oftentimes require fewer parameters than
do linear models for change that is asymptotic and/or sig-
moidal (“S-shaped”), and the parameters of nonlinear mod-
els oftentimes have “real-world” interpretations. Perhaps
most importantly, nonlinear models many times conform
to a researchers theory about the phenomenon as it changes
over time (e.g., learning curves, asymptotic values, points-
of-inflection, etc.).

This article attempts to fully integrate the idiographic
approach and the nomothetic approach to the analysis of
change in the context of nonlinear models of change. In so
doing, variable-centered and pattern-centered techniques
are combined in an effective and unified way, where the
focus is not on either a completely homogeneous or a com-
pletely heterogeneous population, but rather on some com-
bination of the two. More specifically, the goal of the pre-
sent article is to develop and examine the effectiveness of
the nonlinear change mixture model (NCMM), which is a
general model of heterogeneous change that subsumes
many commonly used models as special cases.

The Multilevel Model Approach to the
Analysis of Change

General MLMs allow parameters to enter the model in a
nonlinear fashion (e.g., Davidian & Giltinan, 1995; Pin-
heiro & Bates, 2000; Vonesh & Chinchilli, 1997). The non-
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linear MM used throughout is a generalization of the for-
mulation proposed by Lindstrom and Bates (1990). The
general (univariate) nonlinear MLM is given as

Yijr = f(\lfij, X + €ijr, (1)

where y;; is the response from the ith individual (i =1, .. .,
N) in the jth group (j =1, .. ., J), at the rth timepoint (r =1,
..., 1), f () is some functional form of change relating the
r parameters in the vector y,; and the predictors (or covar-
iates or independent variables) in the vector x;, and g is
the error term of the ith individual in the jth group at the
tth measurement occasion (Lindstrom & Bates, 1990; Pin-
heiro & Bates, 2000). The parameter vector is potentially
specific to the individual and such uniqueness is incorpo-
rated into the model by defining y; as

v = AB + Zijvi;, )

where B is a vector of length P (p = 1, .. ., P) of population
fixed effect parameters, v;is a vector of length P with ¢
nonzero elements representing unique effects associated
with the ith individual in the jth group, A;is an r by P
design matrix associated with the fixed effects, and Z;is an
r by P design matrix with ¢ nonzero elements associated
with the unique effects.

Lety; = [y, - - - Yirl s Xj = Xy, - - ., Xl’, and &;= [g1,
... &l”. Equation 1 can then be written as

i = f(W;, X)) + €. 3)

Combining Equations 2 and 3, the full MLM can be written
as

yij = f(AUﬁ + Z[jvija le) + Gij' (4)

Application of the MLM generally places no restriction on
X;, Ay, or Z;. Thus, unique measurement occasions (i.e.,
unbalanced data) pose no special problems, nor does data
missing at random or completely at random (e.g., Little &
Rubin, 1987; Schafer & Graham, 2002; Twisk & de Vente,
2002). Although not strictly necessary, applications of the
MLM often assume that g are independent and normally
distributed with a mean of zero and common variance 2.
Furthermore, it is generally assumed that conditional on the
fixed effects and the predictors, the unique effects are mul-
tivariate normally distributed with mean zero and finite co-
variance matrix.

The aforementioned nonlinear multilevel change model
is useful in part because of its generality. However, because
it is so general it can be difficult to translate into a specific
change model. To illustrate an application of Equation 4,
the logistic change curve is used, which is defined as

% + €
its
1 +exp (_ (aitv_ﬁi)) 5

Yir =

i

where o;is the asymptote for the ith individual as a;; — oo,
B; defines the point-of-inflection on the abscissa for the ith
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individual, y; defines the ith individual’s curvature param-
eter, and ¢; is the error for the ith individual at the tth time-
point (see Appendix C.7 of Pinheiro & Bates, 2000). A key
point to recognize is that the parameters of Equation 5 have
i subscripts, which implies that they are (potentially) spe-
cific to the individual. Furthermore, the parameters of
Equation 5 can themselves be modeled as a function of
other variables in exactly the same manner as is typical in
the standard multilevel modeling context (e.g., Rauden-
bush & Bryk, 2002; Singer & Willett, 2003).

The Nonlinear Change Mixture Model

Because of the deficiency of statistical methods currently
available for modeling longitudinal data when interest lies
in latent classes that each have their own potentially unique
set of parameters for a change model nonlinear in its pa-
rameters, the nonlinear change mixture model NCMM) is
proposed and developed. This article helps to alleviate a
shortcoming in the analysis of change literature by combin-
ing existing models into a unified approach for modeling
nonlinear change in mixed populations. The NCMM is
predicated on a heterogeneous population (like the GMM)
explicitly acknowledging the fact that different classes of
individuals potentially have their own unique set of param-
eter values, with or without cross class constraints, and al-
lows within class variability around the class specific fixed
effects for change models nonlinear in their parameters
(unlike the GMM). The NCMM integrates the idiographic
and nomothetic conceptualizations of behavior into a single
unified model, where the model is designed for realistic
functional forms thought to govern many behavioral, edu-
cational, and social phenomenon.

The NCMM assumes that individuals within a class have
trajectories of change that are relatively homogeneous,
whereas trajectories of change across class are relatively
heterogeneous. Of course, because the NCMM assumes
that interindividual differences in change are a function of
both class membership and individual uniqueness, the de-
gree of within group homogeneity is relative to the degree
of across group heterogeneity. Following the formal defi-
nition of the NCMM, five estimation methods are pro-
posed. The accuracy of the estimation methods are then
explored via a comprehensive Monte Carlo simulation
study.

Defining the Nonlinear Change Mixture
Model

Let y; be the outcome variable of the ith individual (i =
1,..., N) at the tth measurement occasion (t = 1,..., T}), a;
be the value of some nonstochastic time dependent basis at
the tth measurement occasion for the ith individual, and x;,
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be the mth time invariant predictor variable (m = 1,..., M)
for the ith individual. Further let y; = [yy, ..., yir]" be a
vector of length T; of the observed scores for the ith indi-
vidual, a;= [a,, ..., a;]” be the vector of length T; of the
time dependent basis for the ith individual, x; = [x;, ...,
xa)” be the vector of length M of time invariant predictor
variables for the ith individual, and X =[x, . . ., Xx]” be the
N by M matrix of predictor variables for all individuals.
The functional form governing the trajectory of change for
all individuals is denoted f (a), where a is a generic repre-
sentation of the time dependent basis with the function f{-)
having P change parameters. Given f(a), let 8,= [0, .. .,
8,,]” be a P length vector of true change coefficients defin-
ing the trajectory for the ith individual and @ = [0, . . ., 05]’
be the N by P matrix of individual change coefficients. The
vector of length N that identifies which of the G classes
from a mutually exclusive set the ith individual is a member
is denoted ¥ = [yy, . .., Vol

Given f(a), ®, and v, let f(a,) be a special case of f(a)

G

for the gth class with 2 T, = 1 |being the proportion of

g=1
the population who are members of the gth class and
G

n, (N= Z n,) being the number of individuals in the sam-
g=1
ple who are members of the gth class. The functional form
of f{a,) is thus equal to or a special case of f(a), however
some if not all of the P parameters of change in f(a,) are
specific to the gth class. Conditional on 0, v, and p,, where
B = [, - - -, 1pe] is the gth class specific population mean
vector for the P fixed effect parameters of change, E[v;] =
0 with variance X, and has a P dimensional multivariate
normal distribution, where v; = [v;, ..., v;p]” are the indi-
vidual specific unique effects defined as v, = [0;, — (lg,lYv:).
The NCMM implies that the coefficients of change for
the individuals conform to the following probability densi-
ty function:

G
d(0;,x;; &) = Z Tt dp(9;, X;; w,, ¥, ©
g=1

where 0; and x; are considered simultaneously, ¢» repre-
sents a P dimensional multivariate normal probability den-
sity function, and ¥ = [¥/’, ... ¥/']", where ¥, = [m,, 1.,
vech(X,)’]” that may or may not be saturated with vech(-)
being an operator that stacks the columns of a symmetric
matrix by leaving out elements above the main diagonal.
Equation 6, which defines the density of the heterogeneous
population of change coefficients, is analogous to the gen-
eral density of a mixture distribution (e.g., McLachlan &
Basford, 1988; McLachlan & Peel, 2001).

What is of interest in the NCMM framework is not lit-
erally the probability density function of 0; given x, rather
interest is in the parameters from a nonlinear MLM with
multiple classes of individuals. However, class member-
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ship is unknown and must itself be estimated. A multiple
group nonlinear MLM leads to a MLM of the form

yig = f(Aigﬁg + Zigvigs Xig) + €;g, @)

where rather than having a known grouping structure, g is
latent and must be estimated. The class identification vector,
v, can be estimated with the optimal rule of classification with
a FMM whose probability density is defined by Equation 6.
The optimal rule for classification states that an individual
entity should be classified into the class that the entity is most
likely to belong (McLachlan & Basford, 1988, pp. 11, 45-46;
sometimes this is called the Bayes rule, Anderson, 1984,
chapter 6). Note the one-to-one relationship between 0;, the
ith individual’s change coefficients, in Equation 6 and v;,, the
unique effects associated with the ith individual whom is in
the gth class, in Equation 7.

Each of the classes in the general NCMM of Equation 7
potentially has a unique set of fixed effects, B,, a unique
covariance matrix of errors, ng, and has a unique covari-

ance matrix for the unique effects, X, . There are potentially

a large number of parameters that can be implied by the
model. Momentarily supposing each of the individuals is
measured at the same 7" measurement occasions, there are
potentially GP fixed effect parameters, G(T (T + 1))27" er-
ror covariance parameters, and G(P(P + 1))2™" unique co-
variance parameters. Thus, with no parameter constraints,
there are a total of G[p + (T (T + 1) + p(p + 1))27'] param-
eters defining the NCMM. Of course, in order for the model
not to be underidentified, parameter constraints must be
imposed. Thus, not all possible parameters can be free to
vary, as doing so yields an inestimable model where there
are more equations than unknowns. Often a reasonable
constraint for reducing a large number of parameters ma-
terializes if o¢,I is the error structure for each of the classes,
and even more constrained when 6% =0%=...=0%,
where I is the identity matrix of the appropriate dimension.
The potential flexibility of the model necessarily implies
more parameters than either a standard MLM or LGC, but
not necessarily more than the GMM. Given the difficulties
that often exist for estimation of complicated FMMs and
especially for nonlinear MLMs, it is no surprise that esti-
mation of the NCMM can be difficult. The next section
discusses how likelihood estimation theoretically applies
to the parameters of the NCMM.

Parameters of the NCMM

Because the NCMM combines ideas from the FMM with
ideas from the general nonlinear MLM, the likelihood
function for the NCMM can be written as

N
LX) = | [y, x: ) ®)

=1

where L represents the likelihood function and € is the R
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length vector of parameter values defining the particular
NCMM. The parameter vector £ can be written in a gen-
eral form:

Q=[n,..., -1, B, B, vech(Z,, ), ...,

vech(X,)’, vech(X,,), ..., vech(E,,) ], (9)

where B, is the vector of fixed effects for the gth class,
ng is the covariance matrix of errors for the gth class, and

2, is the covariance matrix for the unique effects for the

gth class.

An obvious question that arises is how the likelihood
function of Equation 8 relates to the probability density
function defined in Equation 6. The vector of group specif-
ic population means contained in p, from Equation 6 is
analogous to the fixed effect change parameters contained
in B,” from Equation 9. Furthermore, the class specific pop-
ulation covariances contained in X, from Equation 6 are
analogous to the class specific covariances contained in
%,, from Equation 9. Knowing this, Equation 6 can be re-
written so that it is consistent with the notation used for the
likelihood function of the NCMM defined in Equation 8:

G
d(0;,x;; ¥) = Z T bp(0:, X33 Bg, ) (10)

g=1

Methods of Parameter Estimation for
the NCMM

In large samples when all assumptions are met and the
model is correctly specified, parameter estimation by full
information maximum likelihood provides many benefits
and is generally the optimal method from a statistical point
of view. However, for many complicated models, especial-
ly nonlinear MLMs, the likelihood function may be diffi-
cult or impossible to write analytically given the current
state of knowledge and the limitations of statistical theory
(Pinheiro & Bates, 2000, section 7.2.1). If the likelihood
function cannot be analytically derived, an approximate
likelihood function can sometimes be maximized. As Da-
vidian and Giltinan describe in the context of nonlinear
MLMs, “the analytical intractability of likelihood infer-
ence has motivated many approaches based on approxima-
tions” for nonlinear MLMs (2003, p. 403). Thus, given the
current limitations of likelihood estimation and inference,
carrying out nonlinear MLMs is almost always based on
approximate procedures. As a result, parameter estimates
based on approximate likelihood functions are themselves
necessarily approximate. That being said, they often still
yield very accurate estimates and may be the only way to
obtain estimates.

Given the approximate nature of parameter estimates
from nonlinear MLMs, the estimation of the parameters of
the NCMM is necessarily constrained. Because this article
does not attempt to improve or propose estimation proce-
dures for the nonlinear MLM, but rather relies on currently
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implemented estimation procedures, a known shortcoming
of the NCMM (like nonlinear MLMs in general) is that
estimation of the parameters is based on estimation meth-
ods that do not necessarily have the optimal properties of
full information maximum likelihood. Five estimation
methods are presented that are conceptually reasonable and
theoretically statistically sound in the following five sub-
sections. Each of the five methods are based on multistage
procedures with conceptual or theoretical advantages over
the other methods. Each stage uses currently implemented
statistical methods but combines the methods in a novel
fashion in order to operationalize the NCMM.

Estimation Method 1

Method 1 is a three-stage method, where the first-stage of
the model is the estimation of the P parameters of f{a) for
each of the N individuals. Estimation of each individual’s
0 can be done by any acceptable estimation procedure, but
because nonlinear least squares using the Gauss-Newton
procedure is the most widely recommended estimation
method for individual specific nonlinear models (Bates &
Watts, 1988; Ratkowsky, }\983), itis th% suggested method
for Stage 1. Given the N 8;s and thus ® from Stage 1, es-
timation of y occurs at Stage 2. Stage 2 involves fitting a
FMM with a fixed number of classes, where individuals are
classified into a crisp set of G classes based on the highest
posterior probability of class membership (i.e., the optimal
rule). A crisp set in this context is where individuals are
assigned to one and only one class and thus no partial mem-
bership exists. Stage 3 involves fitting G separate MLMs,
where each class has a unique set of parameter estimates.
These G MLMs have parameter estimates that are based
only on the individuals who were estimated to be most like-
ly members of the particular class.

Part of the success of this method is linked to the dis-
tance between the G P dimensional multivariate distribu-
tions — the larger the distance the better the rate of success-
ful classification, holding everything else constant. In par-
ticular, if the G distributions representing each of the
classes are, relevantly speaking, far apart from one another,
few misclassifications will occur and this method will re-
cover the class specific parameters. If the individuals can
be correctly classified into the appropriate class, then each
of the MLMs will be based on the appropriate set of indi-
viduals and thus no contaminated distributions will distort
the parameter estimates. As is true with the application of
any mixture model, as the overlap between distributions
becomes more pronounced, the accuracy of classification
is reduced. Conversely, as the misclassification rate ap-
proaches zero, Method 1 approaches the point where the
NCMM yields estimates with the same accuracy as the
multiple group nonlinear MLM.

Previous models in different contexts have been pro-
posed for modeling heterogeneous populations in the con-
text of longitudinal data analysis, where each of the meth-
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ods was based on crisp sets (e.g., Dumenci & Windle, 2001;
McCall, Appelbaum, & Hogarty, 1973; and Pauler & Laird,
2000). Such models restrict the contribution of each indi-
vidual to only the fixed effects of the class that the individ-
ual is most likely to belong. Thus, the crisp set classifica-
tion procedure of Method 1 is consistent with (at least)
three previously proposed models of heterogeneous
change. Further justification for Method 1 being a reason-
able procedure is based on the theory of multi-stage esti-
mation. Multistage estimation procedures are at times car-
ried out when the likelihood function of the particular mod-
el is not analytically tractable and thus when full
information maximum likelihood is not implementable
(e.g., Chatterjee, 2004; Stukel & Demidenko, 1997). Mul-
tistage estimation procedures are also advantageous when
there is a concern that the model may be misspecified (e.g.,
Bollen, 2001) or when a desire exists to evaluate the model
at different levels individually (even when a likelihood
function is known) rather than evaluating the full model
simultaneously (e.g., Yuan & Bentler, 2007). Further,
White (1982) reminded researchers that full information
maximum likelihood assumes that the model is correctly
specified. When models are misspecified, “specification
error in one part of the system can spread bias to other parts
of the model” (Bollen, 1996, p. 109). Even though in the
ideal situation full information maximum likelihood esti-
mation is known to be optimal, when the likelihood func-
tion cannot be derived or when the model is in some way
misspecified, multi-stage estimation procedures, although
themselves not fully efficient, can outperform maximum
likelihood methods.

Estimation Method 2

Method 2 is similar to Method 1, however, rather than sep-
arating the individuals into G classes and performing a dif-
ferent MLM for each class in isolation at Stage 3, Method
2 is carried out by way of a multiple group MLM. In par-
ticular, given "y\, obtained with a crisp set in the same way
as was done in Method 1, an N by G — 1 matrix of class
identifiers (i.e., a matrix of dummy variables with a refer-
ence group specified) would be constructed and used as an
identifier of class membership. Each class would then be
treated simultaneously in a multiple group MLM.

Method 2 is a three-stage procedure like Method 1, and
thus the advantages of multi-stage estimation procedures
also apply to Method 2. Rather than estimating class spe-
cific parameters without regard to individuals estimated to
be from other classes, Method 2 combines limited informa-
tion from all classes when estimating parameters from each
class. Method 2 also allows parameter invariance (such as
cross-class constraints) to be imposed for any parameters
of interest. Parameter invariance across class is straightfor-
ward with Method 2, but difficult with some of the other
methods. Method 2 also allows the possibility of testing an
interaction between the estimated class membership and
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predictor variables (e.g., Is the asymptotic value for Class
1 larger than the asymptotic value in Class 2?), which adds
a potentially interesting dimension to the description of
change.

Notice that in Method 2 each class is fit in the context
of a multiple group design which requires that the function-
al form of change and covariance structures for the unique
effects and errors to generally be kept constant across all
of the classes. Information from Stage 1 and Stage 2 is only
used to classify the individuals into the G crisp sets. After
the individuals have been classified, Method 2 treats the
data as though it came from a multiple group design where
the grouping factors are known. Because all classes are fit
in a multiple group MLM, the standard errors are based on
N individuals (rather than n, for each of the classes as in
Method 1). The estimated standard errors are analogous to
the pooled error term in a general linear model context
when homogeneity of variance is assumed. Basing the error
term on all individuals in the analysis generally yields more
statistical precision and power when compared to methods
that divide the sample into multiple groups.

Estimation Method 3

Estimation of ® and ¥y is required prior to estimation of the
parameters of the MLM in Method 1 and Method 2. Be-
cause ® and 'y are not likely to be independent of one an-
other, 1nformat10n contained in ® can provide information
about y, and vice versa. A full information maximum likeli-
hood approach uses information from all levels of an analysis
in the estimation of all parameters (which is why bias in one
part of the model tends to affect the parameter estimates at all
other parts of the model). Thus, all available information is
used in the estimation of all parameter estimates in a full
information maximum likelihood estimation procedure.
Method 3 attempts to capitalize on the ideas of full infor-
mation maximum likelihood in a multistage procedure.
Method 3 is implemented by using @ in the estimation of
9, and vice versa, in an iterative fashion. Method 3 begins
by estimating the individual change coefficients given in
®. The N by P matrix of initial estimates, obtained in the
same way as Method 1 or Method 2, is denoted ('D(o), where
the subscript in parentheses implies the number of itera-
tions necessary to obtain that set of estimates, with a zero
subscript representing the initial conditions. Given ®,, a
FMM is carried out in order to obtain ¥y, A MLM in accord
with Method 1 or Method 2 is then carried out. After the
MLM estimates are obtained, new estimates of individual
change coefficients that are known as empirical Bayes or
James-Stein estimates are available and @, is updated to
©®; based on these new estimates. The empirical Bayes
estimates in ®;) are based in part on the individuals’ scores
and in part on the fixed effects of the particular class the
individual is most likely to belong as a function of the re-
liability of the individuals’ scores. These updated individ-
ual change coefficients are now used as input for the FMM
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1n order to obtain y(l) The MLM is then carried out given
'y( 1y in order to obtain ®(2>, and so forth. This iterative pro-
cess continues until some criterion converges (e.g., the es-
timates minimizing the likelihood function, mean square
error, or Akaike Information Criteria is minimized, etc.).
To summarize the difference between Method 3 and Meth-
ods 1 and 2, after the MLM has been fit at Stage 3, the
updated individual change coefficients (i.e., the empirical
Bayes estimates) are used as input in an updated FMM. The
new classifications (if any) are used to reestimate the fixed
effects and the empirical Bayes estimates so that they can
again be used as input into the FMM. This iterative process
continues until the convergence criterion is realized.

This method has the potential to improve the estimation
of parameters obtained in both Method 1 and in Method 2
by reducing the number of individuals that are misclassi-
fied. Although both the FMM and the MLM are iterative
in nature themselves, Methods 1 and 2 do not combine the
iterative process of the FMM and the MLM. The improve-
ment of Method 3 is that the FMM and MLM are used in
tandem. Because Method 3 can be based on the estimation
procedures of Method 1 or Method 2, Method 3 will be
denoted Method 3.1 or Method 3.2, depending on whether
estimation using the rationale of Method 1 or Method 2 is
used, respectively.

Estimation Method 4

In order to estimate the class specific change parameters, a
standard application of the FMM can be applied to the set
of estimated change coefficients, ®, which were estimated
at the first stage of the analysis (e.g., using the Gauss-New-
ton procedure). The first stage of Method 4 is thus the same
as the first stage in the three previous methods. The differ-
ence between Method 4 and the previous methods is that
the FMM itself is used to estimate the NCMM parameters,
rather than using a nonlinear MLM after individuals have
been classified into the mutually exclusive crisp sets based
on their posterior probabilities of class membership. The
theoretical rationale for this approach is apparent when it
is realized that the FMM provides estimates of the class
specific means and covariances for the P change coeffi-
cients assumed to be a mixture of G multivariate normal
distributions. Because what is of interest is the estimation
of the means and covariances of the individuals’ change
coefficients, a FMM on @ will provide estimates of the
parameters of interest for the NCMM: mean vectors for the
latent classes corresponding to fixed effects and covariance
matrices for the latent classes corresponding to the covari-
ance structure of the unique effects.

A major difference between Method 4 and the previous
methods is that Method 4 does not classify individuals into
mutually exclusive classes. Rather, all individuals poten-
tially contribute to the class specific parameter estimates
from all classes, in what can be considered a “fuzzy set,”
that is, class membership is not 0 or 1 but rather it is prob-
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abilistic and estimates are weighted accordingly. In Method
4, if an individual has a high probability of belonging to
the gth class, then the individual’s 0;is heavily weighted in
the estimation of the parameters from the gth class. How-
ever, in Method 4 if an individual’s posterior probability of
belonging to a particular class is small, the individual’s
scores receive little weight in the estimation of the param-
eter estimates from that particular class. This is the case
because the mean vector and the covariance matrices are
weighted by a function of the probability that the individual
belongs to the particular class in accord with the theory of
FMMs. The theoretical rationale of Method 4 is thus con-
sistent with the GMM in that all individuals potentially in-
fluence all parameter estimates. Method 4 is thought to be
especially useful when the overlap among the classes leads
to probabilities of class membership that are not close to
unity or zero (i.e., when classification is not so clear). Fur-
thermore, the FMM allows for covariance structures to be
class specific or constrained across the classes.

Summary of Estimation Methods

Because some of the details of the estimation methods dif-
fer only in subtle ways, a summary of each of the estimation
methods is provided. The summary provided is not meant
to supplant the full description provided for each of the
methods of estimation, but rather it is meant to supplement
the description provided.

Summary of Method 1

— Stage 1: Estimate the P parameters of f(a) for each of
the N individuals using the Gauss-Newton estimation
procedure (or other appropriate estimation procedure),
obtain @. N

— Stage 2: Fit a FMM with G classes using ® as input and
then classify the N individuals into G crisp sets based on
the highest posterior probability, obtain §.

— Stage 3: Using the original data and 4 to identify class
membership, fit G separate MLMs, one for each of the
estimated classes of individuals, in isolation.

Summary of Method 2

— Stage 1: Same as Stage 1 from Method 1.

— Stage 2: Same as Stage 2 from Method 1.

— Stage 3: Using the original data and '? to identify class
membership, fit a G-group MLM, where each of the in-
dividuals is classified into one and only one class.

Summary of Method 3

— Stage 1: Same as Stage 1 from Methods 1 and 2.
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— Stage 2: Same as Stage 2 from Methods 1 and 2.

— Stage 3: Same as Stage 3 from Method 1.

— Stage 4, Method 3.1: Using the empirical Bayes esti-
mates obtained after G MLMs ha/ye been fit in isolation,
refit the FMM (Stage 2) using ®(;) in an effort to im-
prove the classification success. Iterate between Stage 2,
Stage 3, and Stage 4 until the specified convergence cri-
terion is met.

— Stage 4, Method 3.2: Using the empirical Bayes esti-
mates obtained after a G-group MLM has been fit, refit
the FMM (Stage 2) using %(1) in an effort to improve the
classification success. Iterate between Stage 2, Stage 3,
and Stage 4 until the specified convergence criterion is
met.

Summary of Method 4

— Stage 1: Same as Stage 1 from Methods 1, 2, and 3.

— Stage 2: Fit the FMM as is done in Stage 2 from Methods
1, 2, 3.1, and 3.2; use the parameter estimates obtained
in the FMM to estimate the parameters of the NCMM.

Evaluation of the Estimation
Procedures

The logistic change curve as discussed in Equation 5 is
used as the exemplar nonlinear change model in a Monte
Carlo simulation study to evaluate the effectiveness of the
estimation methods. The reason for choosing a three pa-
rameter logistic change curve to represent general nonlin-
ear change models is because: (a) it is a popular change
curve in the medical and biological literature, (b) it is rep-
resentative of sigmoidal forms which are theoretically use-
ful in behavioral, educational, and social research, (c) given
certain parameter combinations it can take on characteris-
tics that in some ways are similar to the asymptotic regres-
sion change curve (negative exponential), and (d) because
the logistic change curve is representative of models in the
Richards family of change curves (Richards, 1959), which
are quite general and especially useful for modeling limited
capacity data (e.g., Browne & du Toit, 1991; van Geert,
1991). It is thought that there is nothing unique about the
logistic change curve to imply that the proposed methods
would be more or less effective than if another similarly
complicated nonlinear change curve were used. Although
the logistic change curve is used here, the methods are gen-
eral and not in any way specific to the logistic change mod-
el. Of course, future work on extensions and improvements
to the estimation procedures of the NCCM will be neces-
sary to investigate other functional forms.

Although a thorough delineation of the results of the Mon-
te Carlo simulation study conducted to evaluate the estima-
tion procedures of the NCMM is beyond the scope of this
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Figure 1. Random samples from a condition within each of the series of fixed effects studied in the Monte Carlo simulation
study. Note: The value of A denoted in the figures is the Mahalanobis distance between the fixed effects given the within
group variance with an error variance of 4. The values of the within group parameters are included, with the subscript

representing the latent class.

article, a summary of the simulation study and the results
obtained is provided. A technical supplemental packet is
available from the author that delineates the design and im-
plementation of the Monte Carlo simulation study.

The simulation study consisted of a two (sample size;
N =200 and 500) by three (proportion of individuals be-
longing to each class; m; = .5, .75, and .875) by two (the
number of measurement occasions; 7'= 15 and 25) by two
(the magnitude of the error variance; 62 = 4 and 8) by
three (distance between the GP dimensional multivariate
normal distributions; square root of the Mahalanobis dis-
tance of 2.613, 1.976, and 3.635) fully factorial design,

Methodology 2008; Vol. 4(3):97-112

using a modest correlational structure among the unique
effects (pap =.5, pay= -4, ppy= .3, where g is the correla-
tion of the subscripted quantities). This design was car-
ried out for each of the five estimation methods yielding
a total of 360 conditions. There were two latent classes
in actuality as well as fitted. Missing data, conditional
models (i.e., those with time invariant concomitant vari-
ables), models with time varying covariates, and model
misspecifications are not addressed in the simulation
study. The goal of the simulation study is to evaluate the
effectiveness of the proposed procedures in the estima-
tion of the NCMM parameters under ideal conditions.
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A series of 120 situations were tested within each of the
three Mahalanobis distances specifications (thus a total of
360 conditions). Figure 1 illustrates 10 random trajectories
from both latent classes for each of the three values of the
Mahalanobis distance (using the smaller of the two error
variances). As can be seen, differences do exist between
the latent classes, but the differences are not large. In situ-
ations where differences between the latent classes is more
pronounced — likely a motivating factor for applying the
NCMM - the methods are guaranteed to work better, be-
cause if everything else is held constant classification will
improve. Each of the situations described in Figure 1 in-
clude the Mahalanobis distance (A) as well as the class spe-
cific logistic change parameters, where the latent class is
denoted with a subscript.

Simulations to evaluate the proposed methods were con-
ducted using the R computer program (R Development
Core Team, 2005). In addition to the standard functions
contained in R, the NLME package (Pinheiro, Bates, Deb-
Roy, & Sarkar, 2004) and the MCLUST package (Fraley
& Raftery, 2004) were used. There were 1,000 replications
for each of the 360 specific conditions examined. Instances
where the particular data set failed to be estimable with any
of the methods were not considered in the results. An ad-
ditional data set was generated for each of the data sets that
failed to yield results. Although widespread failures of the
methods would cause concern, there were relatively few
failures in the simulation study. Across all generated data
sets, there were a total of 128 failures (out of a total of
72,128 total, failed and successful, attempts; 0.18% of the
total number of attempts). The majority of the failures oc-
curred in situations with smaller sample size, larger error
variance, and fewer occasions of measurement.

Operationalizing the Results

The quantification of the effectiveness of the estimation
procedures will be in terms of the discrepancy between the
known population values and the estimated valus:\s obtained
from the NCMM. In particular, the bias (B = ® — ®) and
relative bias (P = [(/:\) — o]/®) from each condition will be
(/j\etermined empirically from the simulation study, where
o is the estimate of ®, the known population value. Thus,
a value of zero would represent a scenario where the esti-
mated value is equal to the population value (i.e., the esti-
mate would be unbiased). Whereas the bias quantifies the
raw discrepancy between estimated and population values,
the relative bias scales the bias so that the degree of dis-
crepancy is relative to the value of the parameter. Because
of the unknown nature of the distribution of the parameter
estimates, their skew and (excess) kurtosis will also be cal-
culated.

Accuracy can be conceptualized as the square root of the
mean square error (RMS). The RMS measures the effec-
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tiveness of an estimator at recovering the population value.
The statistical definition of accuracy is given as

VEIO - 021 = \EIO - BIOD21 + (B[] - 02 = Rms, (1D

AN
where 0 is a parameter of interest and 0 is an estimate of

the parameter (Rozeboom, 1966, p. 500). Notice that the
first component under the second radical sign is the preci-
sion, whereas the second component under the second rad-
ical sign is the squared bias. Thus, Equation 11 implies that
accuracy is a function of bias and precision. As a measure
becomes more accurate the value of the RMS decreases
(and vice-versa) (perfect accuracy implies RMS = 0).

Although evaluating other aspects of the methods’ ef-
fectiveness is possible, the fixed effects are studied in the
simulation study. Without accurate fixed effects, accurate
standard errors and/or correlation structures are moot. If the
fixed effects are themselves accurately estimated, even
generally incorrect standard errors can be corrected with
alternative methods that are known to have desirable prop-
erties (e.g., the bootstrap or jackknife procedures). Al-
though the covariance structure of the change coefficients
is important, it has not yet been extensively studied.

Results

Table 1 shows results of the bias and relative bias for each
of the fixed effects for all of the methods in the first con-
dition studied (recall there were 72 situations total), as well
as the skew and kurtosis for the parameter estimates.The
similarity between the mean and the median discrepancy
measures is due to the distributions of estimated change
parameters being so small. In fact, the mean of the skew-
ness for the 30 fixed effects (6 parameters by 5 methods)
within Table 1 was only —036 (with standard deviation
.515), with the largest absolute skewness in Table 1 being
—1.184 for v, in Method 4.

The worst case in terms of the relative bias for any of
the methods within Table 1, which was for v, from Meth-
od 3.2, illustrates the effectiveness of all of the methods
at recovering the population values of the fixed effects in
the first condition. The worst case within Table 1 had an
estimated parameter that was only .103 units smaller than
the population value (10.610 when the true value was
10.713). Such a trivial difference between the true and
empirically obtained values illustrates that all of the
methods were effective at recovering the population val-
ues of the fixed effects in this particular situation. Al-
though each of the recovered parameters was shown to
be accurate for the first situation, 71 other situations ex-
ist. Inspection of the results from the remaining 71 situ-
ations (5 x 71 = 355 other conditions) reveal similar find-
ings as those presented in Table 1. Further evidence that
the methods are effective at recovering the population
fixed effect values across all 360 conditions is that, with
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Table 1. Summary of the discrepancies between the estimated population values and the true population values for each
of the model parameters for in the the first situation for each of the five estimation methods

Method 1

D Stat. o o B1 B2 Y1 Y2

B ﬁ 0.242 -0.156 0.226 -0.116 0.136 -0.083
M 0.256 -0.155 0.255 -0.127 0.15 -0.109
& 0.409 0.388 0.305 0.266 0.222 0.202
2.5% -1.010 -1.409 —-0.866 -1.026 -0.801 -0.884
97.5% 1.443 1.146 1.306 0.936 0.946 0.857

P |/,\l 0.002 -0.002 0.006 -0.004 0.009 —-0.008
M 0.003 -0.002 0.007 -0.004 0.010 -0.109
& <.001 <.001 <.001 <.001 0.001 0.002
2.5% -0.010 -0.015 -0.025 -0.035 —-0.053 —-0.083
97.5% 0.014 0.012 0.037 0.032 0.063 0.080

Skew —0.084 0.407 0.031 0.127 -1.173 0.468

Kurtosis 3.134 2.263 2415 3.263 7.523 6.561

Method 2

D Stat. o [0 By B2 Y1 Y2

B ﬁ 0.247 -0.157 0.229 -0.116 0.137 -0.084
M 0.257 -0.155 0.259 -0.127 0.151 -0.110
& 0.416 0.386 0.308 0.265 0.224 0.201
2.5% -1.004 -1.404 —-0.868 -1.026 -0.804 —-0.880
97.5% 1.456 1.138 1.321 0.939 0.951 0.856

P ﬁ 0.002 -0.002 0.007 -0.004 0.009 —-0.008
M 0.003 -0.002 0.007 -0.004 0.010 -0.010
&> <.001 <.001 <.001 <.001 0.001 0.002
2.5% -0.01 -0.015 —-0.025 —-0.035 -0.054 —-0.082
97.5% 0.015 0.012 0.038 0.032 0.063 0.080

Skew -0.061 0.414 0.042 0.130 -1.156 0.470

Kurtosis 3.125 2.266 2434 3.258 7.416 6.566

Method 3.1

D Stat. o o By B2 Yi Y2

B ﬁ 0.225 -0.200 0.195 -0.130 0.121 —-0.101
M 0.245 -0.185 0.235 -0.142 0.136 -0.125
& 0.352 0.328 0.277 0.225 0.180 0.168
2.5% —-0.968 -1.395 -0.844 —-0.989 —-0.769 -0.893
97.5% 1.333 0.965 1.234 0.832 0.898 0.753

P |/,\l 0.002 -0.002 0.006 -0.004 0.008 —-0.009
M 0.002 -0.002 0.007 -0.005 0.009 -0.125
&> <.001 <.001 <.001 <.001 0.001 0.001
2.5% -0.010 -0.015 -0.024 -0.034 -0.051 —-0.083
97.5% 0.013 0.010 0.035 0.028 0.060 0.070

Skew -0.014 0.218 -0.285 0.424 —-0.560 0.479

Kurtosis 1.864 2.132 1.523 1.599 2453 1.844
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Method 3.2

D Stat. o s B B2 Y1 Y2

B ﬁ 0.235 -0.197 0.202 -0.132 0.129 -0.103
M 0.251 -0.181 0.233 -0.145 0.144 -0.126
82 0.377 0.337 0.288 0.240 0.189 0.178
2.5% -0.988 -1.404 -0.868 -1.026 -0.770 -0.880
97.5% 1.380 1.007 1.232 0.847 0.931 0.755

P ﬁ 0.002 -0.002 0.006 -0.004 0.009 -0.010
M 0.003 -0.002 0.007 —-0.005 0.01 -0.012
& <.001 <.001 <.001 <.001 0.001 0.002
2.5% -0.01 -0.015 -0.025 -0.035 -0.051 -0.082
97.5% 0.014 0.011 0.035 0.029 0.062 0.070

Skew -0.153 0.157 -0.278 0.032 -0.524 0.002

Kurtosis 2.641 1.616 1.554 3.477 2.567 5.088

Method 4

D Stat. o o B B2 Y1 Y2

B }/J\. 0.072 0.118 0.059 0.088 0.024 0.085
M 0.104 0.098 0.088 0.076 0.042 0.058
(/}2 0.339 0.337 0.254 0.230 0.186 0.176
2.5% -1.097 -1.003 -0.985 -0.764 -0.865 -0.633
97.5% 1.105 1.380 0.993 1.088 0.779 1.001

P ﬁ 0.001 0.001 0.002 0.003 0.002 0.008
M 0.001 0.001 0.003 0.003 0.003 0.005
5 <.001 <.001 <.001 <.001 0.001 0.002
2.5% -0.011 -0.011 -0.028 -0.026 —0.058 -0.059
97.5% 0.011 0.015 0.028 0.0370 0.052 0.093

Skew -0.475 0.588 -0.370 0.453 —1.184 0.794

Kurtosis 2.587 1.930 1.279 1.537 6.077 4.472

Note: The column heading “D” represents the discrepancy (i.e., a measure of the difference between the estimate and population value) and the
column heading “Stat.” represents the statistic used to summarize the discrepancies. B represents the bias, whereas P represents the relative

bias. Summaries of B and P are given by U,

, 6% 2.5%, and 97.5%, which represent the mean, median, variance, 2.5th and the 97.5th percentile,

respectively. Skew and kurtosis for each of the observed parameter estimates is equal to the skew and kurtosis of B and P, respectively, and thus
only a single value is given for each of the parameters. The fixed effects correspond to the upper left plot in Figure 1 and is based on the first

of the 72 situations studied in the Monte Carlo simulation.

the exception of only two fixed effects, the 2.5% and
97.5% quantiles from the distribution of the discrepan-
cies bracket zero. This implies that each of the methods
is close to providing what is functionally an unbiased es-
timate of the fixed effects, in the sense that zero does not
tend to be excluded from the bounds bracketing the dis-
crepancy between the estimated change coefficients and
their corresponding population value. The full set of re-
sults is available in the aforementioned supplemental
packet.

Figure 2 provides an omnibus summary that aggregates
accuracy across all situations within the first combination of
change coefficients (i.e., all situations within the A = 2.613
specification). The height of the bars in the figure represents
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accuracy, with the dark gray part of the bars representing the
proportion of bias contributing to the overall measure of ac-
curacy and the light gray part of the bars representing the
proportion of precision that contributes to the overall measure
of accuracy. As can be seen in Figure 2, Method 4 is more
accurate than the other methods for each of the change coef-
ficients in Class 1. However, all of the methods yielded ap-
proximately the same accuracy for the parameters of Class 2.
As can be seen, Method 4 was more biased than the other
methods for the fixed effects of Class 2, but more precise,
with the end result being essentially the same amount of ac-
curacy across methods for Class 2. Thus, in situations where
sample size is small, Method 4 is more biased but more pre-
cise than the other methods. The precision of Method 4 usu-

Methodology 2008; Vol. 4(3):97-112



108

«Q _|

o

3 ©

S Q4

oO

(0] —

p

3 <

o O

< _

N

o

o | N
© M1 M2
wn

l\._

o

o

S 9T

>~O

[$)

[

p

3

o

< N -

o

s | I
o -

o M1 M2
© _

o

o

o

~ % ]

> O

3

c 0 _

5 o

3

[aV}

< S5

-

(@]
g__—

M1 M2

K. Kelley: Nonlinear Change in Heterogeneous Populations

M3.1 M3.2
e be—
M3.1 M3.2

M4

M4

o
n
-
N -
8 o
> O -
o 4
S el
a -
O
< B -
o
o
[ e
o M1 M2 M3.1 M3.2 M4
v _
o 9 4
Q
>
[&]
©
5
S
< S
o- — _-
° M1 M2 M3.1 M3.2 M4
9 _
o
o
-
o
S (@]
g 3
< ©
wn
N
o
8 B8
o M1 M2 M3.1 M3.2 M4

Figure 2. Mean accuracy as a function of bias (dark gray) and precision (light gray) across the first scenario studied for

each of the fixed effects.

ally outweighs the bias and thus leads to estimates that are
overall still approximately as accurate as the other methods.

An analogous pattern emerges for Series 2 when plotted.

Series 3 provides interesting results. This is because
there are cross-class constraints leading to fixed effects be-
ing based on weighted means for some methods (specifi-
cally Methods 1, 3.1, and 4). While at this time it is unclear
if such weighted means for constrained parameter esti-
mates is optimal, the results of Series 3 show that Method
4 leads to more accurate estimates for all but one of the
fixed effects. In particular, it is shown that 3, is more accu-

Methodology 2008; Vol. 4(3):97-112

rately estimated with Method 3.2 than it was with Method
4. However, for each of the other three fixed effects Method
4 is more accurate.

Using the Estimation Methods for
Implementing the Model

The effectiveness of each method should not be overlooked
because of the overall accuracy and success of Method 4.
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What should be emphasized is the advantage that each of
the methods offers in different situations. The way in which
each of the methods attempts to recover the parameters of
the NCMM offers interesting possibilities in terms of
which method might be the most appropriate for a specific
question of interest as it relates to the theoretical framework
of interest.

Recall that Method 1 and Method 3.1 treat the G classes
in isolation. Although this is not optimal in the sense of
obtaining the best estimate of the root mean square error
and thus estimation of the standard errors and confidence
intervals when the model is identical across class and ho-
mogeneity of variance is realized, treating the latent classes
in isolation potentially has advantages. In particular, once
classification has been carried out, the functional forms of
change for the classes need not be constant.

Recall that the NCMM specified f(a,) for the change
model, meaning that the function is the same across the
classes. This is different than allowing f,(a), where the
functional form of change would itself be specific to the
group. The NCMM model can be extended so that more
fundamental differences between the functional form of
change can be realized. Suppose that in a two class situation
one latent class could be based on an asymptotic regression
change curve whereas the other can be based on a Gom-
pertz change curve. The unresolved issue is that the finite
mixture model was based on the change coefficients from
a single model. Although nested models do not seem to
pose problems when specifying constraints across class dif-
ferences, problems may arise when fundamental difference
exist between the functional forms of change. Although the
flexibility of treating the latent classes in isolation could be
beneficial, more work is needed to determine if and when
fundamental differences in change models across class is
tenable for future applications of the NCMM model.

Relatedly, there is no reason that the latent classes are man-
dated to have the same error structure. For example, one la-
tent class can have a hypothesized auto-regressive error struc-
ture whereas the other class can have a hypothesized standard
error structure of the form 62I. The point is that if some dif-
ference in the model occurs across the classes, those differ-
ences can be evaluated using Method 1 or Method 3.1.

Method 2 and Method 3.2 are based on a single G-group
MLM. Having a single model that is conditional on latent
class, yet that also takes into account information from all
classes is beneficial when the model is the same across
class. When the functional form of change and the covari-
ance structure of the errors is the same for all of the G
classes, Method 2 and Method 3.2 are theoretically more
powerful and precise than Method 1 and Method 3.1. The
power and precision of Method 2 and Method 3.2 is a func-
tion of all individuals being used in the estimation of the
root mean square error and thus the standard errors of the
fixed effects. Perhaps the biggest benefit of using Method
2 or Method 3.2 is that hypothesis tests and confidence
intervals can be carried out directly on differences in fixed
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effect parameters in a multiple group MLM approach.
Along these same lines, Method 2 and Method 3.2 can con-
strain parameters a priori to be set equal to one another.
One set of fixed effects examined cross class equality of
the asymptotic value (o) and the curvature parameter (y) in
the simulation study. Method 2 and method 3.2 allowed
estimated parameters to be based on the data from all indi-
viduals. However, Method 1, Method 3.1, and Method 4
required cross-class constraints for those parameters in a
post hoc fashion. The ability to test hypotheses about dif-
ferences in parameters directly and to formerly constrain
them makes Method 2 and Method 3.2 very flexible.

The main difference between Method 4 and the other
methods is that Method 4 is not based on crisp classifica-
tion, but rather all individuals contribute to the parameters
of all classes. Specifically, the individual contributes to
each class specific set of parameter estimates by a function
of the likelihood that the individual belongs to that class.
Rather than assigning an individual entity to one and only
one class, Method 4 allows what is functionally partial in-
clusion for parameter estimates. This translates into the
class specific parameter estimates being based to some de-
gree on data from all of the individuals, based on the prob-
ability of that individual belonging to that class. The ben-
efits of using weighted probability for estimation purposes
is most prevalent when there is not a large difference in the
multivariate distributions of individual change coefficients.
When the difference in the distributions are large, the prob-
abilities of class membership approach zero or one, which
means that Method 4 functionally becomes more like the
other (crisp classification) methods. The real advantage of
the estimation procedure of Method 4 is when there is more
class ambiguity in the classification of individuals into the
most likely class. The clear advantage of Method 4 is in
terms of the accuracy with which the fixed effect parameter
estimates can be recovered.

Even though the Monte Carlo simulation study showed
Method 4 was the overall most accurate method, a blanket
statement recommending Method 4 cannot be given be-
cause some of the other methods have advantages in certain
situations. Due to the positive effect of iterating back and
forth between Stage 2 and 3, Method 3.1 and Method 3.2
are universally recommended over Method 1 and Method
2, respectively, as they tended to be more accurate in the
simulation study. Although accuracy is important, use of
the best method to answer the particular question of interest
is also necessary. Because of the success each method
showed in the simulation study and the fact that they each
have their own advantages, the method of choice depends
first and foremost on the research question of interest.

Discussion

This article introduced the nonlinear change mixture model
(NCMM) and evaluated five estimation procedures so that
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some of the limitations of existing change models could be
overcome when unknown heterogeneity exists in popula-
tions where change follows a functional form nonlinear in
its parameters. The flexibility of the NCMM becomes ap-
parent when it is realized that special cases of the NCMM
can be made to equal many of the commonly used models
of change. Although the estimation methods are different,
when the functional form of change is linear in its param-
eters, the NCMM conceptually reduces to the GMM. When
heterogeneity exists and the within class variability is re-
stricted to zero, the NCMM conceptually reduces to the
latent class growth model when the functional form speci-
fied is linear (e.g., Nagin, 1999). When class membership
is known, the NCMM is equivalent to a multiple group
nonlinear MLM. When the population is homogeneous, the
NCMM is equivalent to a standard nonlinear MLM (or
LGC when the functional form of change is linear in its
parameters). The NCMM thus fits nicely into the existing
analysis of change literature, yet it provides a needed ex-
tension.

Five estimation procedures were proposed and evaluat-
ed via a comprehensive Monte Carlo simulation study. The
results showed that each of the methods were effective at
recovering the parameters of the NCMM even when latent
class separation was not noticeably large. The fact that each
of the methods were generally accurate at recovering the
parameters of the model is beneficial, because some of the
methods can address fundamentally different types of ques-
tions researchers might have. In a standard application of
the NCMM where no cross-class constraints are imposed
and the functional form of change is constant across the G
classes, Method 4 was shown to be the most accurate meth-
od with regard to fixed effects and is recommended in such
situations. When there is an interest in using different func-
tional forms of change for different latent classes, or if there
is an interest in specifying different error structures or a
different covariance structure for unique effects, Method
3.1 is recommended. When an interest exists in imposing
cross-class constraints or testing the difference between pa-
rameters of change for different classes and the error struc-
ture is constant across class, Method 3.2 is recommended.
The suggested method is thus tied to the researcher’s ques-
tion of interest.

Across the 16 fixed effects for the 72 situations, Method
4 was inferior for only one fixed effect. The closest com-
petitor to Method 4 was Method 3.2. Method 3.2 was
shown to be more accurate for most of the situations within
Series 3, but when aggregating across Series 3 Method 4
was most accurate for three out of the four parameters.
Whereas Method 4 was shown to be the most accurate of
the methods examined, perhaps more important is the fact
that each of the methods recovered the fixed effect param-
eters well. While there has been much attention devoted to
separating the methods by determining which of the meth-
ods is most accurate, the effectiveness of Methods 3.1, 3.2,
and 4 at recovering the parameters is actually similar in
most cases. Because the fit of the models is similar for these

Methodology 2008; Vol. 4(3):97-112

methods, what should be emphasized and considered when
using the NCMM is that depending on the question of in-
terest, one estimation method may be most appropriate.
Thus, defining a question of interest will tend to dictate
which of the three estimation methods should be used.

When heterogeneity exists in an analysis of change con-
text, ignoring the heterogeneity introduces bias into the ob-
tained results. In such a situation the parameter estimates
that are supposed to represent a single homogeneous pop-
ulation instead represent a mixture of homogeneous sub-
populations. This potentially translates into a model of
change that is meant to represent everyone with a single
(fixed effect) trajectory but in actuality may fit no one.
When theory or data suggest the existence of latent classes
in an analysis of change context, combining a MLM or
LGC framework with the FMM ensures that parameter es-
timates are conditional on the latent classes. In cases where
the functional form governing change is linear in its param-
eters, the GMM provides a powerful and elegant model to
help understand change. However, in cases where the func-
tional form of change is governed by a nonlinear functional
form, which is probably more often than not theoretically
true in the behavioral, educational, and social sciences, use
of the NCMM is appropriate. The NCMM and its estima-
tion methods can address a diverse set of questions arising
from data having a wide range of complicated structures.
The hope is that by explicitly modeling unknown hetero-
geneity in populations where the functional form of change
is governed by a nonlinear functional form, the NCMM
will help better address the questions asked by researchers
who are interested in understanding how a phenomenon
changes over time.
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