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Sample Size Planning for the Standardized Mean Difference:
Accuracy in Parameter Estimation Via Narrow Confidence Intervals
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Methods for planning sample size (SS) for the standardized mean difference so that a narrow
confidence interval (CI) can be obtained via the accuracy in parameter estimation (AIPE)
approach are developed. One method plans SS so that the expected width of the CI is
sufficiently narrow. A modification adjusts the SS so that the obtained CI is no wider than
desired with some specified degree of certainty (e.g., 99% certain the 95% CI will be no wider
than w). The rationale of the AIPE approach to SS planning is given, as is a discussion of the
analytic approach to CI formation for the population standardized mean difference. Tables
with values of necessary SS are provided. The freely available Methods for the Behavioral,
Educational, and Social Sciences (K. Kelley, 2006a) R (R Development Core Team, 2006)
software package easily implements the methods discussed.
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One of the simplest measures of effect is the difference
between two independent group means. It is this differ-
ence that is evaluated with the two-group ¢ test to infer
whether the population difference between two group
means differs from some specified null value, which is
generally set to zero. However, in the behavioral, educa-
tional, and social sciences, units of measurement are
often arbitrary, different researchers might measure the
same phenomenon with different scalings of the same
instrument, or different instruments altogether might be
used. Because of the lack of standard measurement scales
and procedures for most behavioral, educational, and
social phenomena, the ability to compare measures of
effect across different situations has led many researchers
to use standardized measures of effect. Measures of ef-
fect, or effect sizes, that are standardized yield scale-free
numbers that are not wedded to a specific instrument or
scaling metric. Given the measurement issues in behav-
ioral, educational, and social research, such standardized
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effect sizes provide what is arguably the optimal way to
estimate the size of an effect, along with its correspond-
ing confidence interval, for a more communal knowledge
base to be developed and so that the results from different
studies can be compared more readily.

A commonly used and many times intuitively appealing
effect size is the standardized mean difference.! In fact, the
standardized mean difference is the most widely used sta-
tistic in the context of meta-analysis for experimental and
intervention studies (Hunter & Schmidt, 2004, p. 246). The
population standardized mean difference is defined as

N Y

. (1)
where w, is the population mean of Group 1, w, is the
population mean of Group 2, and o is the population stan-
dard deviation assumed to be equal across the two groups.
Because the unstandardized (raw) mean difference may not
be directly comparable across studies, the unstandardized
difference between group means can be divided by the
standard deviation to remove the particular measurement
scale, yielding a pure number (Cohen, 1988, p. 20). A
commonly used set of guidelines for the standardized mean

! In some cases, the unstandardized difference between means is
more intuitively appealing than is the standardized mean differ-
ence (e.g., Bond, Wiitala, & Richard, 2003). If the unstandardized
mean difference is of interest, Kelley et al. (2003) discussed the
methods analogous to those discussed in the present article.
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difference in the behavioral, educational, and social sci-
ences, although not without its critics (e.g., Lenth, 2001), is
that 8s of 0.2, 0.5, and 0.8 are regarded as small, medium,
and large effects, respectively (Cohen, 1969, 1988).2

Suppose a researcher is interested in the effect of a particular
treatment on the mean of some variable and would like to
compare an experimental group with a control group. The
researcher’s review of the literature and a pilot study lead the
researcher to believe that the effect of the treatment is of a
“medium” magnitude, corresponding to a standardized mean
difference of approximately 0.50. As is widely recommended
in the literature, the researcher conducts a power analysis to
determine the necessary sample size so that there will be a high
probability of rejecting the presumed false null hypothesis.
Basing the sample size calculations on a desired degree of
power of 0.85, the researcher conducts the study with 73
participants per group.

The observed standardized mean difference was 0.53,
giving some support to the researcher’s assertion that the
effect is of medium magnitude, and was shown to be sta-
tistically significant, 7,44, = 3.20, p(7(144, = |3.20]) = .002.
In accord with recent recommendations in the literature, the
researcher forms a 95% confidence interval for &, which
ranges from 0.199 to 0.859. Although the researcher be-
lieved the effect was medium in the population, to the
researcher’s dismay, the lower limit of the confidence in-
terval is smaller than “small” and the upper limit is larger
than “large.” The width of the researcher’s confidence in-
terval thus illustrates that even though the null hypothesis
was rejected, a great deal of uncertainty exists regarding the
value of &, which is where the researcher’s interest ulti-
mately lies. Indeed, as Rosenthal (1993) argued, the results
we are actually interested in from empirical studies are the
estimate of the magnitude of the effect and an indication of
its accuracy, “as in a confidence interval placed around the
estimate” (p. 521).

The purpose of the present work is to offer an alter-
native to the power analytic approach to sample size
planning for the standardized mean difference. This gen-
eral approach to sample size planning is termed accuracy
in parameter estimation (AIPE; Kelley, 2006b; Kelley &
Maxwell, 2003, in press; Kelley, Maxwell, & Rausch,
2003), where what is of interest is planning sample size
to achieve a sufficiently narrow confidence interval so
that the parameter estimate will have a high degree of
expected accuracy. A confidence interval consists of a set
of plausible values that will contain the parameter with
(I — a)100% confidence. Appropriately constructed con-
fidence intervals will always contain the parameter esti-
mate and will contain the parameter (1 — a)100% of the
time. The idea of the AIPE approach is that when the
width of a (I — «)100% confidence interval decreases,
the range of plausible values for the parameter decreases
with the estimate necessarily contained within this set of

plausible values. Provided that the confidence interval
procedure is exact (i.e., the nominal coverage is equal to
the empirical coverage) and holding constant the (1 —
a)100% confidence interval coverage, the expected dif-
ference between the estimate and the parameter decreases
as the confidence interval width decreases.

In the context of parameter estimation, accuracy is de-
fined as the square root of the mean square error, which is
a function of both precision and bias. Precision is inversely
related to the variance of the estimator, and bias is the
systematic discrepancy between an estimate and the param-
eter it estimates. More formally, accuracy is quantified by
the (square) root of the mean square error (RMSE) as

RMSE = E[(d — 0)’]

= \EI(® — E[0])’] + (E[0 — 0])?
= \oi + Bi, )

where E[‘] represents expectation, 6 is the parameter of
interest, § is an estimate of 0, 0'§ is the population variance
of the estimator, and B, is the bias of the estimator. As the
confidence interval width decreases, holding constant the
confidence interval coverage, the estimate is contained
within a narrower set of plausible parameter values and the
expected accuracy of the estimate improves (i.e., the RMSE
is reduced). Thus, provided that the confidence interval
procedure is exact, when the width of the (1 — a)100%
confidence interval decreases, the expected accuracy of the
estimate necessarily increases.

The effect of increasing sample size has two effects on
accuracy. First, the larger the sample size, generally the
more precise the estimate.> Second, estimates that are
biased will generally become less biased as sample size
increases, which must be the case for consistent estima-
tors (regardless of whether the estimator is biased or
unbiased; Stuart & Ord, 1994). Notice that when an
estimate is unbiased (i.e., E[é—6]=0), precision and ac-
curacy are equivalent. However, a precise estimator need
not be an accurate estimator. Thus, precision is a neces-

20f course, as with most rules of thumb, Cohen’s (1988)
guidelines have their limitations and should not be applied without
first consulting the literature of the particular area. Overreliance on
Cohen’s guidelines can lead an investigator astray when planning
sample size for a particular research question when the size of 8 is
misidentified, which is easy to do if the only possibilities consid-
ered are 0.2, 0.5, and 0.8.

3 A counterexample is the Cauchy distribution, in which the
precision of the location estimate is the same regardless of the
sample size used to estimate it (Stuart & Ord, 1994, pp. 2-3).
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sary but not a sufficient condition for accuracy.* Beyond
the effect of improving precision, decreasing bias im-
proves accuracy.’ This usage of the term accuracy is the
same as that used by Neyman (1937) in his seminal work
on the theory of confidence intervals: “The accuracy of
estimation corresponding to a fixed value of 1 — o may
be measured by the length of the confidence interval” (p.
358; we changed Neyman’s original notation of « repre-
senting the confidence interval coverage to 1 — « to
reflect current usage).

One of the main reasons why researchers plan, conduct,
and then analyze the data of empirical studies is to learn
about some parameter of interest. One way in which re-
searchers have attempted to learn about the parameter of
interest historically has been by conducting null hypothesis
significance tests. Null hypothesis significance testing al-
lows researchers to reject the idea that the true value of the
parameter of interest is some precisely specified value (usu-
ally zero for the standardized mean difference). By conduct-
ing a significance test that achieves statistical significance,
researchers learn probabilistically what the parameter is not
(e.g., d is not likely zero) and possibly the direction of the
effect. Another way in which researchers have attempted to
learn about the parameter of interest is by forming confi-
dence intervals for the population parameter of interest. By
forming a confidence interval, not only does a researcher
learn probabilistically what the parameter is not (i.e., those
values outside the bounds of the interval) but also a re-
searcher learns probabilistically a range of plausible values
for the parameter of interest.®

As has been echoed numerous times in the methodolog-
ical literature of the behavioral, educational, and social
sciences (e.g., Nickerson, 2000, which along with the ref-
erences contained therein provides a comprehensive histor-
ical review; see also Cohen, 1994; Meehl, 1997; Schmidt,
1996; among many others), there are serious limitations to
null hypothesis significance tests. As Hunter and Schmidt
(2004) and Cohen (1994) pointed out, the null hypothesis
may almost never be exactly true in nature.” Regardless of
whether the null hypothesis is true or false, what is often
most informative is the value or size of the population
effect. As recommended by Wilkinson and the American
Psychological Association (APA) Task Force on Statistical
Inference (1999), researchers should “always present effect
sizes for primary outcomes” (p. 599), and they stressed that
“interpreting effect sizes in the context of previously re-
ported effects is essential to good research” (p. 599).
Wilkinson and the APA Task Force on Statistical Inference
also recommended that “interval estimates should be given
for any effect sizes involving principal outcomes” (p. 599).
It seems that there is general consensus in the methodolog-
ical community of the behavioral, educational, and social
sciences with regard to trying to understand various phe-
nomena of interest, and that consensus is to report confi-

dence intervals for effect sizes whenever possible; indeed,
this strategy may be the future of quantitative methods in
applied research (Thompson, 2002).

Even though the merits of significance testing have
come under fire in the methodological literature, null
hypothesis significance tests have played a major role in
the behavioral, educational, and social sciences. Al-
though reporting measures of effect is useful, reporting
point estimates without confidence intervals to illustrate
the uncertainty of the estimate can be misleading and
cannot be condoned. Reporting and interpreting point
estimates can be especially misleading when the corre-

4 As an extreme example, suppose a researcher always ig-
nores the data and estimates the parameter as a value that
corresponds to a particular theory. Such an estimate would have
a high degree of precision but potentially could be quite biased.
The estimate would only have a high degree of accuracy if the
theory was close to perfect.

 Some parameters have exact confidence interval procedures
that are based on a biased point estimate of the parameter yet
where an unbiased point estimate of the parameter also exists.
A strategy in such cases is to report the unbiased estimate for
the point estimate of the parameter in addition to the (1 —
a)100% confidence interval for the parameter (calculated on the
basis of the biased estimate). Examples of parameters that have
exact confidence interval procedures that are calculated on the
basis of a biased estimate are the standardized mean difference
(e.g., Hedges & Olkin, 1985), the squared multiple correlation
coefficient (e.g., Algina & Olejnik, 2000), the standard devia-
tion (see, e.g., Hays, 1994, for the confidence interval method
and Holtzman, 1950, for the unbiased estimate), and the coef-
ficient of variation (see, e.g., Johnson & Welch, 1940, for the
confidence interval method and Sokal & Braumann, 1980, for
its nearly unbiased estimate).

¢ Assuming that the assumptions of the model are met, the
correct model is fit, and observations are randomly sampled,
1 — a is the probability that any given confidence interval from
a collection of confidence intervals calculated under the same
circumstances will contain the population parameter of interest.
However, it is not true that a specific confidence interval is
correct with 1 — o probability, as a computed confidence
interval either does or does not contain the value of the param-
eter. The procedure refers to the infinite number of confidence
intervals that could theoretically be constructed and the (1 —
a)100% of those confidence intervals that correctly bracket the
population parameter of interest (see Hahn & Meeker, 1991, for
a technical review of confidence interval formation). Although
the meaning of confidence intervals given is from a frequentist
perspective, the methods discussed in the article are also appli-
cable in a Bayesian context.

7 This argument seems especially salient in the context of obser-
vational studies in which preexisting group differences likely exist.
However, in unconfounded experimental studies with randomization,
it seems plausible that a treatment might literally have no effect,
which would of course imply that the null hypothesis is true.
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sponding confidence interval is wide and thus little is
known about the likely size of the population parameter
of interest. Because confidence intervals provide a range
of reasonable values that bracket the parameter of interest
with some desired degree of confidence, confidence in-
tervals provide a great deal of information above and
beyond the estimated value of the effect size and the
corresponding statistical significance test. Thus, effect
sizes accompanied by their corresponding confidence in-
tervals are perhaps the best way to illustrate how much
information was learned about the parameter of interest
from the study.

Suppose a very wide confidence interval is formed, and
yet zero is excluded from the confidence interval. Such a
confidence interval provides some but not much insight
into the phenomenon of interest. What is learned in such
a scenario is that the parameter is not likely zero and
possibly the direction of the effect. Even in situations in
which it is well established that the effect is not zero,
providing statistical evidence that the effect is not zero is
almost always a goal. The reason power analysis is so
beneficial is because it helps to ensure that an adequate
sample size is used to show that the effect is not zero in
the population. However, the result of a significance test
in and of itself does not provide information about the
size of the effect.

The accuracy of parameter estimates is also important
in another context when one wishes to show support for
the null hypothesis (e.g., Greenwald, 1975) or in the
context of equivalence testing (e.g., Steiger, 2004; Tryon,
2001). The “good enough” principle can be used and a
corresponding “good enough belt” can be formed around
the null value, where the limits of the belt would define
what constituted a nontrivial effect (Serlin & Lapsley,
1985, 1993). Suppose that not only is the null value
contained within the good enough belt but also the limits
of the confidence interval are within the good enough
belt. This would be a situation in which all of the plau-
sible values would be smaller in magnitude than what has
been defined as a trivial effect (i.e., they are contained
within the good enough belt). In such a situation, the
limits of the (1 — «)100% confidence interval would
exclude all effects of meaningful size. If the parameter is
less in magnitude than what is regarded to be minimally
important, then learning this can be very valuable. This
information may or may not support the theory of inter-
est, but what is important is that valuable information
about the size of the effect and thus the phenomenon of
interest has been gained.

Perhaps the ideal scenario in many research contexts is
when the confidence interval for the parameter of interest
is narrow (and thus a good deal is learned about the
plausible value of the parameter) and does not contain
zero (and thus the null hypothesis can be rejected). Ac-

complishing the latter, namely, rejecting the null hypoth-
esis, has long been a central part of research design in the
form of power analysis. However, accomplishing the
former, namely, obtaining a narrow confidence interval,
has not received much attention in the methodological
literature of the behavioral, educational, and social sci-
ences (cf. Algina & Olejnik, 2000; Bonett & Wright,
2000; Kelley & Maxwell, 2003; Kelley et al., 2003;
Smithson, 2003).

Confidence intervals can be calculated for the standard-
ized mean difference in two main ways. One method uses
the bootstrap technique (e.g., Efron & Tibshirani, 1993) and
does not require the assumption of homogeneity of variance
or normality to obtain valid confidence intervals (Kelley,
2005), potentially using a robust estimator of standardized
population separation in place of d (e.g., Algina, Keselman,
& Penfield, 2005). The other method, which is optimal
when the assumptions of normality, homogeneity of vari-
ance, and independence of observations are satisfied, is the
analytic approach. The analytic approach requires special-
ized computer routines, specifically noncentral ¢ distribu-
tions, to obtain the confidence limits for & (e.g., Cumming &
Finch, 2001; Kelley, 2005; Smithson, 2001; Steiger, 2004;
Steiger & Fouladi, 1997). Throughout the remainder of the
article, the focus is on the analytic approach to confidence
interval formation.

The problem the present work addresses is that of
obtaining an accurate estimate of the population stan-
dardized mean difference by planning sample size so that
the observed (1 — «)100% confidence interval will be
sufficiently narrow with some specified probability. The
following section provides an overview of confidence
interval formation for the population standardized mean
difference. Methods for planning sample size so that the
expected width of the confidence interval is sufficiently
narrow are then developed. The first procedure deter-
mines the sample size necessary for the expected width of
the obtained confidence interval for the population stan-
dardized mean difference to be sufficiently narrow. Ob-
taining a large enough sample size so that the expected
width will be sufficiently narrow does not guarantee that
a computed interval will, in fact, be as narrow as speci-
fied. This method is extended into a follow-up procedure
in which there will be some desired degree of certainty
that the computed interval will be sufficiently narrow
(e.g., 99% certain that the 95% confidence interval will
be no wider than the specified width). Sample size tables
are provided for a variety of situations on the basis of the
premise that they will assist applied researchers in choos-
ing an appropriate sample size given a particular goal
within the AIPE framework for the standardized mean
difference. Because a main goal of research is to learn
about the parameter of interest, obtaining a narrow con-
fidence interval may be the best way to fulfill this goal. It
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is this premise, coupled with the usefulness of the stan-
dardized mean difference, that has motivated this article
and the development of computer routines that can be
used to carry out the methods discussed.®

Estimation and Confidence Interval Formation for
the Standardized Mean Difference

Although 9 is the ultimate quantity of interest, 8 is un-
known and must be estimated from sample data. The most
common way in which 9 is estimated is defined as

= )

where X; is the mean for the jth group (j = 1, 2) and s is
the square root of the pooled variance (i.e., s is the square
root of the unbiased estimate of the within-group vari-
ance).

As pointed out by Cumming and Finch (2001), there is
inconsistency in the terminology and notation used when
discussing the standardized and unstandardized effect sizes
for mean differences (see also Grissom & Kim, 2005). Our
proposal is to use A as p; — w, with D = X, — X, as its
sample estimate, & (Equation 1) as the population standard-
ized mean difference and d (Equation 3) as its sample
estimate, and 3. as the population standardized mean dif-
ference using the control group standard deviation as the
divisor and d as its sample estimate. Not discussed in this
article but important nonetheless are the unbiased estimators
of & and &, (d and d. are not unbiased), for which we
suggest dy and d¢  as their notation (see Hedges, 1981, for
its theoretical developments and Kelley, 2005, for some
comparisons to the commonly used biased version). Dis-
cussed momentarily is the noncentral ¢ distribution that has
a noncentral parameter. There is also inconsistency in no-
tation for this noncentral parameter, and we suggest \ as
opposed to & or A (both commonly used symbols) because
of their use as population effect size measures.’

Part of this inconsistency in notation is a function of
trying to attribute one or more versions of the standardized
effect size to particular authors coupled with those same
authors using different notation in different works. The
estimated standardized mean difference, d, is often referred
to as Cohen’s d (even though Cohen used d as the popula-
tion parameter and d, as its sample analog; Cohen, 1988)
because of Cohen’s work on the general topic of effect size
and power analysis (Cohen, 1969, p. 18) and sometimes as
Hedges’s g’ (or g) because of Hedges’s work on how the
standardized effect size could be used in a meta-analysis
context and its theoretical developments (Hedges, 1981, p.
110). The analogous standardized effect size based on the

control group standard deviation is often called 8 or Glass’s
g (Glass, 1976; Glass, McGaw, & Smith, 1981, p. 29;
Hedges, 1981, p. 109). Furthermore, the Mahalanobis dis-
tance, which is the multivariate version of d (and for one
variable is equal to d), was developed well before d was
used as a standardized effect size in the behavioral, educa-
tional, and social sciences (Mahalanobis, 1936). Given all of
the possible labelings of what is defined in Equation 3, we
call this quantity the standardized mean difference without
attempting to attribute this often used quantity to any one
individual (recognizing that many have worked on its the-
oretical developments and others have encouraged its use)
and use the notation d to represent the sample value (which
is currently the most widely used notation).
Recall that the two-group 7 test is defined as

p= 2 )

where n; and n, are the sample sizes for Group 1 and Group
2, respectively. In the two-group situation, assuming homo-
geneity of variance, s is defined as

. /S%(”l — 1) + s3(n, — 1)
s V ny+n,—2 ’

where 57 and s3 are the within-group variances for Group 1
and Group 2, respectively, and has n; + n, — 2 degrees of
freedom. However, in an analysis of variance (ANOVA)
context where more than two groups exist and the assump-
tions of ANOVA are satisfied, the estimate of s (as well as
d) can be improved by pooling information across all J
groups, even if what is of interest is the difference between

&)

8 Throughout the article, specialized software is used. Ken
Kelley has developed an R package that contains, among other
things, the necessary functions to form confidence intervals for
the population standardized mean difference and to estimate
sample size from the AIPE perspective for the standardized
mean difference. The R package is titled Methods for the
Behavioral, Educational, and Social Sciences (MBESS) and is
an Open Source, and thus freely available, package available
via the Comprehensive R Archival Network (CRAN; http://
www.r-project.org/). The direct link to the MBESS page on
CRAN, where the most up-to-date version of MBESS is avail-
able, is http://cran.r-project.org/src/contrib/Descriptions/
MBESS.html (note that this Internet address is case sensitive).

9 Much of the work contained in the present article can be
applied to 8. and d by modifying the degrees of freedom of the
denominator to have degrees of freedom equal to that of s., the
standard deviation of the control group.
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the means of only two specific groups. Thus, more gener-
ally, s can be defined as

(6)

where N is the total sample size (N = ,_élnj) and J is the
number of groups (j = 1, ..., J). In situations where J >
2 and the ANOVA assumptions are satisfied, basing s on all
groups leads to more degrees of freedom (N — J degrees of
freedom instead of n; + n, — 2). Holding everything else
constant, the larger the degrees of freedom, the more pow-
erful the significance test for the mean difference and the
more accurate the estimate of the standardized (and un-
standardized) mean difference. Thus, when information on
J = 3 groups is available, making use of that information
should be considered even if what is of interest is estimating
o for two specific groups. Of course, as J increases, the
potential for the assumption of homogeneity of variance to
be violated also increases, but if the assumption holds, more
power and accuracy will be gained by using a pooled
variance based on J = 3 groups.

Notice that the difference between d from Equation 3 and
the two-group ¢ statistic from Equation 4 is the quantity

1

o + o contained in the denominator of the ¢ statistic,
1 2

which is multiplied by s to estimate the standard error.
n, + n,

1 1 /
Because + — can be rewritten as , multiply-
ng  n nn,

ing the inverse of this quantity by d leads to an equivalent
representation of the ¢ statistic:

a1 7
r= n,+n, D

Given Equation 7, it can be seen that Equation 3 can be

written as
n, + n,
d=1t . ®)
nin,

The usefulness of Equations 7 and 8 will be realized mo-
mentarily when discussing the formation of confidence in-
tervals for o.

The noncentral parameter in the two-group context
indexes the magnitude of the difference between the null
hypothesis of w,; = p, and an alternative hypothesis of
W, # W,. The larger the difference between the null and
alternative hypotheses, the larger the noncentral param-
eter. In the population, the degree to which w, # w, for

N — 2 degrees of freedom is known as a noncentral
parameter:

Ry = P2 nin,
A= =39 . )
\/1 1 \/”2+ n
g4 —+ —
ny  np

The noncentral parameter A\ is of the same form as a ¢
statistic (for a technical discussion of the noncentral ¢
distribution, see, e.g., Hogben, Pinkham, & Wilk, 1961;
Johnson, Kotz, & Balakrishnan, 1995; Johnson & Welch,
1940). In fact, N can be obtained by replacing the sample
values in Equation 4 with their population values for the
sample sizes of interest. Given the relationship between a
t value and the corresponding noncentral parameter, A\
can be estimated by the observed ¢ statistic: X\ = .
Construction of confidence intervals for & is indirect and
proceeds by first finding a confidence interval for N\ and
then transforming those bounds via Equation 8 to the
scale of & using a combination of the confidence interval
transformation principle and the inversion confidence
interval principle (Cumming & Finch, 2001; Kelley,
2005; Steiger & Fouladi, 1997; Steiger, 2004).

Let 1, be the critical value from the gth quantile
from a noncentral ¢ distribution with v degrees of free-
dom and noncentral parameter \. The degrees of freedom
parameter is based on the sample size used to calculate s.
To find the confidence bounds for &, first find the confi-
dence bounds for N. Because of the confidence interval
transformation principle, the one-to-one monotonic rela-
tion between A and 8 given n, and n, (Equations 7 and 8)
implies that the (1 — «)100% confidence bounds for A\
provides, after transformation via Equation 8§, the (1 —
«)100% confidence bounds for 8.

The confidence bounds for \ are determined by finding
the noncentral parameter whose 1 — a/2 quantile is ¢ (for
the lower bound of the confidence interval) and by find-
ing the noncentral parameter whose a/2 quantile is ¢ (for
the upper bound of the confidence interval). Thus, the
lower confidence bound for A, \,, is the noncentral
parameter that leads to #{,_q2., t and the upper
confidence bound for A, A, is the noncentral parameter
that leads to #(y2,.,) .'% For the lower and upper
confidence bounds for A\, given «, v, and ¢, the only
unknown values are N, and A. It is A, and A, that are of

't is assumed here that the confidence interval will use the same
rejection region in both tails. Although convenient, this is not neces-
sary. Rejection regions could be defined so that « = o, + o, for the
lower and upper rejection regions, respectively. It is assumed in this
article that o/2 = a; = o, (i.e., equal probability in each rejection
region). The MBESS package does not make this assumption, and
thus varying values of o, and o, are possible when determining
the confidence interval for the standardized mean difference.
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interest when forming confidence intervals for \ and that
have, until recently, been difficult to obtain. However, \,
and Ny from #{;_o,2, and f(y2,.,), reSpectively, are now
easily obtainable with several software titles, making the
formation of confidence limits for A and ultimately for &
easy to find:

pPINL=N=N]=1—q, (10)

where p represents the probability of N, and A, bracketing
A at the | — a level.

As an example, suppose two groups of 10 participants
each have a standardized mean difference of 1.25 with the
corresponding ¢ value of 2.7951. The noncentral ¢ distribu-
tion with noncentral parameter of 0.6038 has at its .975
quantile 2.7951, whereas the noncentral ¢ distribution with
noncentral parameter of 4.9226 has at its .025 quantile
2.7951, both with 18 degrees of freedom. Thus,

Clys = [0.6038 = \ = 4.9226], an

where CI o5 represents a 95% confidence interval. The re-
lation between the two noncentral distributions and the
observed ¢ value is illustrated in Figure 1, where the shaded
regions represent the areas of the distributions that are
beyond the confidence limits. As can be seen in Figure 1,
the noncentral ¢ distribution on the left has a noncentral
parameter of 0.6038, and at its .975 quantile is the observed
t value, which is denoted with the bold vertical line near the
center of the abscissa. As can also be seen, the noncentral ¢
distribution on the right has a noncentral parameter of
4.9226, and at its .025 quantile is the observed ¢ value,
which is denoted with the same bold vertical line.

The shaded lines to the left and right of the A, and A,
respectively, illustrate the area of these distributions outside
of the confidence bounds for \. Furthermore, because of the
one-to-one relation between N and o, the upper abscissa
shows values of 3. Notice also that the shapes of the
distributions are different, with the one on the right more
variable and more positively skewed than the one on the left
(because of the larger noncentral parameter and all other
things being equal). Of special importance are the two outer
vertical lines that represent the noncentral parameters of the
two distributions. As can be seen, the noncentral parameters
are not only the confidence limits for A, but after the
noncentral parameters have been rescaled with Equation 8,
they yield the confidence limits for 8,

Clos = | 0.6038 o 10 =5 = 49226, 0101 (13
Tos =1 06038 y 16510 =0 = 4922015510 |0 (12

which equals

Clos = [0.2700 = 5 = 2.2015]. (13)

Notice that although 2.5% of the distribution of d is beyond
the lower and upper limits, the distance between d and the
limits is not the same. As Stuart and Ord (1994) discussed,
“in general, the confidence limits are equidistant from the
sample statistic only if its [i.e., the statistic’s] sampling
distribution is symmetrical” (p. 121). Furthermore, the bold
vertical line in the center identifies the estimated noncentral
parameter (on the lower abscissa) and the estimated stan-
dardized mean difference (on the upper abscissa).

As Vaske, Gliner, and Morgan (2002) stated, “large con-
fidence intervals make conclusions more tentative and
weaken the practical significance of the findings” (p. 294).
In an effort to obtain narrower confidence intervals for
significant effects, Vaske et al. (2002) suggested researchers
report two confidence intervals, one based on the o value
used to conduct the significance test and one that has a much
larger a value and thus a much narrower confidence interval
width, such as a = .30 or o = .20 (p. 299). Although some
researchers may be willing to pay the price for such a
trade-off (narrow confidence interval but low level of con-
fidence interval coverage), readers may not be so willing to
accept it (Grissom & Kim, 2005, pp. 61-62). Although such
an approach is not advocated here, the desire to obtain
narrow confidence intervals because of the benefits they
provide is understandable.'" Using the methods developed
here will help researchers avoid obtaining confidence inter-
vals whose widths are ‘“embarrassingly large” (Cohen,
1994, p. 1002).

In some situations, the required sample size might be too
large for a researcher to reasonably collect the method-
implied sample size. As a reviewer pointed out, this could
imply trading “embarrassingly large” confidence intervals
for “distressingly large” sample sizes. The methods used
here are still beneficial because it will be known a priori that
the confidence interval will likely be wider than desired,
alleviating any unrealistic expectations about the width of
the confidence interval a priori. Furthermore, authors who
are only able to obtain smaller sample sizes could use the
methods to show that it would be difficult or impossible to
obtain the required sample size for the confidence interval
for & to be as narrow as desired, even if the sample size
provides sufficient statistical power (e.g., for a large effect
size). In situations in which a single study cannot produce
(e.g., because of insufficient resources) a sufficiently narrow
confidence interval, the use of meta-analysis might be es-
pecially useful (Hedges & Olkin, 1985; Hunter & Schmidt,
2004).

Kelley et al. (2003) discussed methods for planning sam-

"' We agree with those that state there is nothing magical about
a = .05. However, regardless of what the a priori a value is, the
methods discussed in the next section are applicable because the o
value is specified by the researcher when planning sample size.
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Values of &

Density of the Noncentral t-Distributions

Figure 1.

Values of t

Density of the noncentral ¢ distribution with 18 degrees of freedom and noncentral parameter

0.6038 (distribution on the left) and for the noncentral ¢ distribution with 18 degrees of freedom and
noncentral parameter 4.9226 (distribution on the right). Note that ' o5 15.0.6038) = ! (.025.184.9226) = I =
2.7951. Thus, the 95% confidence interval for N (shown on the lower abscissa) given the observed ¢ value
(2.7951) has lower and upper confidence bounds of 0.6038 and 4.9226, respectively. Transforming the
confidence limits to the scale of & (shown on the upper abscissa) leads to lower and upper 95%
confidence bounds for 8s of 0.2700 and 2.2015, respectively.

ple size so that the expected width of the confidence interval
for the population unstandardized mean difference would be
equal to some specified value. A modified method was also
developed so that a desired degree of certainty (i.e., a
probability) could be incorporated into the sample size
procedure such that the obtained interval would be no wider
than desired. However, planning sample size so that the
obtained confidence interval is sufficiently narrow has not
been discussed in the context of the standardized mean
difference. The next section addresses this issue formally
for the standardized mean difference and provides solutions
so that the necessary sample size can be determined for the
expected width to be sufficiently narrow, optionally with a
desired degree of certainty that the obtained interval will be
no wider than desired.

Sample Size Planning From an AIPE Perspective for
the Standardized Mean Difference

There are presumably two reasons why sample size plan-
ning for the standardized mean difference from an AIPE
perspective has not been formerly considered. First, sample
size planning has been almost exclusively associated with
power analysis, and thus planning sample size in order to
obtain parameter estimates with a high degree of expected
accuracy (i.e., a narrow confidence interval) has only re-
cently been considered in much of the behavioral, educa-
tional, and social sciences. Second, working with noncentral
t distributions has proven quite difficult because of the
additional complexity of the probability function of the ¢
distribution when the noncentral parameter is not zero.
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Specialized computer algorithms are necessary to determine
quantiles at desired probability values and probability val-
ues at desired quantiles. With the focus of sample size
planning for power at the neglect of accuracy and the
inability to readily work with noncentral 7 distributions, it is
no wonder that sample size planning from an accuracy
perspective has not yet been developed for the standardized
mean difference.

Nevertheless, the solution to this problem is of interest to
substantive researchers who want to estimate the sample
size necessary to obtain narrow confidence intervals and for
methodologists who study the properties of point estimates
and their corresponding confidence intervals. There are also
potential uses in the context of meta-analytic work.'?

When attempting to plan sample size, for the expected
width of the obtained confidence interval to be sufficiently
narrow for the population standardized mean difference, it is
necessary to use an iterative process. Because the confi-
dence interval width for & is not symmetric, the desired
width can pertain to the full confidence interval width,
the lower width, or the upper width. Let 8, be defined as the
upper limit and §, be defined as the lower limit of the
observed confidence interval for 8. The full width of the ob-
tained confidence interval is thus given as

w =3y — 9, (14)

the lower width of the obtained confidence interval is given
as

w,=d — 3§, (15)

and the upper width of the obtained confidence interval is
given as

WU = 6U - d. (16)

The goals of the research study will dictate the confidence
interval width for which sample size should be planned. In
general, w is the width of interest. Although the methods
discussed are directly applicable to determining sample size
for the lower or the upper limit, we focus exclusively on the
full confidence interval width. Let o be defined as the
desired confidence interval width, which is specified a priori
by the researcher, much like the desired degree of statistical
power is chosen a priori when determining necessary sam-
ple size in a power analytic context (e.g., Cohen, 1988;
Kraemer & Thiemann, 1987; Lipsey, 1990; Murphy &
Myors, 1998).

The idea of determining sample size so that E[w] = w is
analogous to other methods of planning sample size when a
narrow confidence interval is desired (e.g., Guenther, 1981;
Hahn & Meeker, 1991; Kelley & Maxwell, 2003; Kupper &
Hafner, 1989). The goal is to determine the sample size so
that E[w] = . However, because the theoretical sample

size where E[w] = w is almost always a fractional value,
E[w] is almost always just less than o for the necessary
sample size to be some whole number. The population
values are used in the confidence interval as if the popula-
tion values were sample values, and then the necessary
sample size is solved for so that E[w] = w. In general,
sample size can be solved analytically or computationally.
Solving sample size computationally, which is especially
convenient when the confidence interval does not have a
convenient closed-form expression, begins by finding a
minimal sample size so that E[w] > w. The minimal sample
size can then be incremented by 1 until E[w] = w.

Because the noncentral ¢ distribution is used for confi-
dence intervals for 8, sample size is solved for computa-
tionally. The initial value of the sample size used in the
algorithm is based on the standard normal distribution,
which guarantees that the initial sample size will not be too
large. If o is known and is common for the two groups, a
confidence interval for the standardized mean difference is
given as

f1_)7(2_ L+L<P«1_M2<}1_}2
p 1] Za-a2) n, n, 1] T o

1 1
+ Z(l*(x/z) ; + :| = 1 - L. (17)

I

1

Because z(_q/2) ;+ ; is subtracted and added to the
1 2

observed standardized difference in means, the width of the

confidence interval is given as

1 1
7+7

2Z0- .
(1-a/2) n o on,

n, the confidence interval width can be

2
2Z(1—a/2) ;

Solving analytically for the necessary sample size so thatthe
expected width of the confidence interval is equal to w is

given as
2
.. Z(1-a/2)
ngy = ceiling| 8 o I

'2 1t should be noted that whenever planning sample size, re-
gardless of the perspective one is planning from, if the assumptions
the procedure is based on are not satisfied, then the sample size
estimate may not be appropriate. The degree of the inappropriate-
ness of the estimated sample size will depend strongly on the
specifics of the situation.

When n, = n, =
simplified to
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where n, is the initial value of sample size that will be used
in the algorithm for determining the necessary sample size
and ceiling[+] rounds the value in brackets to the next largest
integer.

Of course, in practice, the use of the confidence interval
given in Equation 17 is not appropriate because o is almost
never known and its estimate is a random variable necessi-
tating a noncentral confidence interval, as discussed in the
previous section. However, to obtain an initial value of
sample size that is guaranteed to be no larger than the
necessary sample size, the standard normal distribution is
used in place of the noncentral ¢ distribution. The use of the
critical value from the standard normal distribution ensures
that the starting value for the sample size used in the
remainder of the algorithm is not initially overestimated, as
replacing the critical value with a noncentral ¢ value at the
same « level is guaranteed to increase the width of the
confidence interval.

Given ny,, the expected confidence interval can be cal-
culated using the noncentral method previously discussed
by replacing d in the confidence interval procedure with 9.
The value of & is used in the sample size procedure because
8 is (essentially) the expected value of d, and thus the
procedure is based on the value that is expected to be
obtained in the study.'? Next, increment sample size by one,
yielding n,, and then determine the expected width of the
confidence interval, which is now based on ng, (ng, =
ngy, + 1). If the expected width using n;, is equal to or
narrower than the desired width, the procedures can be
stopped and the necessary sample size can be set to n;). If
the expected confidence interval width is wider than the
desired width, sample size can be incremented by one and
the expected width determined again. This process contin-
ues until the expected width is equal to or just narrower than
the desired width. At the iteration where this happens, set
ng to the necessary sample size. The idea of the algorithm
is fairly straightforward: (a) Use & as if it were d, (b)
increase necessary sample size until the expected width of
the confidence interval is sufficiently narrow, and (c) set
the value of sample size to the necessary value so that
Elw] = w.

Although in some situations ensuring that the expected
width of a confidence interval for 8 is sufficiently narrow is
satisfactory, in most situations the desire is for w to be no
larger than . The procedure just discussed in no way
implies that the observed confidence interval width in any
particular study will be no larger than w, as w is a random
variable that will fluctuate from study to study or from
replication to replication of the same study.'* Thus, it is
important to remember that the algorithm just presented
provides the sample size such that E[w] = w. A modified
sample size procedure can be performed so that there is a
desired degree of certainty that w will not be larger than w.

Ensuring a Confidence Interval No Wider Than
Desired With a Specified Degree of Certainty

As a function of the properties of the noncentral ¢ distri-
bution, as the magnitude of & gets larger, holding the con-
fidence interval coverage and sample size constant, the
expected width of the confidence interval becomes wider.'
However, the width of the observed confidence interval is a
function of d and the per-group sample sizes. When deter-
mining the necessary sample size given 9, the variability of
d is also important, because if the sample collected yields a
d smaller in magnitude than the & specified when determin-
ing the sample size, then w will be narrower than w. How-
ever, when the sample collected yields a d larger in mag-
nitude than &, w will be wider than w. Although the former
situation might be desirable, the latter situation might be
disappointing because the confidence interval width was
larger than desired.'®

To avoid obtaining a d larger in magnitude than the value
the sample size procedure is based on with some specified
degree of certainty and thus a w wider than w, a modified
sample size procedure can be used. Let vy be this desired
probability, such that y represents the probability that d will
not be larger in magnitude than 8., where 3, is the point that
d will exceed in magnitude only (I — y)100% of the time.
Thus,

pdl = 1[5,]) =, (18)

implying that d will be contained within the limits —&. and
8, Y100% of the time. Notice that |d| > [3.|, when holding
everything else constant, will yield a confidence interval
wider than w because confidence intervals for & become
wider as the magnitude (absolute value) of d increases.
Because 9 can be transformed to A (using the population

13 Actually, d is a biased estimate of 8. However, for even
moderate sample sizes (e.g., 30), the discrepancy between E[d] and
d is trivial (Hedges & Olkin, 1985, chapter 5). Although the
expected value of d given & and n could be substituted for & in the
method, doing so leads to no difference in sample size estimates
for almost all realistic situations and will potentially lead to dif-
ferences only in situations where the procedures yield a very small
necessary sample size.

!4 Although the expected value of w is w, this does not imply
that 50% of the distribution of w will be narrower than specified.
In fact, the distribution of w can be quite skewed and it is generally
the case that more than 50% of the distribution is less than w.

'> This is not necessarily true with all effect sizes. For example, the
confidence interval width for the squared multiple correlation coeffi-
cient is generally at its maximum for values of the sample squared
multiple correlation coefficient that are around .30—40 (Algina &
Olejnik, 2000; Kelley, 2006b), depending on the particular condition.

'6 Alternatively, one could use the largest value of & that would
seem plausible in the particular situation for the obtained confi-
dence interval not to be larger than some specified value.
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analog of Equation 7) and vice versa (using the population
analog of Equation 8), if the A, can be found that satisfies

pld =N =1, (19

then A, can be transformed into 67. The value of A, is thus
the value that satisfies the expression

Ay

Jf(t(k;v))dt =%, (20)
Ay

where fl7.,,) is the probability density function of the non-
central ¢ distribution, ¢ is the random ¢ variate, and v is the
degrees of freedom (n; + n, — 2 in the present context). Thus,
A, is the noncentral value along with its opposite (ie., its
negative value) that excludes (1 — +v)100% of the sampling
distribution of ¢ values. Excluding (1 — v)100% of the sam-
pling distribution of ¢ values that have the widest confidence
limits and then using A, in place of \ in the procedure will
ensure that no more than (I — vy)100% of the confidence
intervals will be wider than desired, as confidence intervals
will be wider than desired if and only if, holding everything
else constant, [z > [\ |, which will occur only (1 — y)100% of
the time because of the definition of A,. The noncentral nature
of d, as explained below, makes the development of a sample
size planning procedure more difficult than the development of
analogous procedures for effects that follow central distribu-
tions (e.g., Guenther, 1981; Hahn & Meeker, 1991; Kelley &
Maxwell, 2003; Kelley et al., 2003; Kupper & Hafner, 1989).

It is first helpful to compare Equation 20 with the integral
form for confidence intervals. The two-sided (1 — «)100%
confidence limits for a noncentral ¢ distribution are defined as

AL,

Jf(t(,\w))dt =o/2 (21)

and

%

j fltodt = a2, (22)
YA

where N, and N\, are the lower and upper two-sided (1 —
®)100% confidence limits for A, respectively. Finding A,
and A\, from Equations 21 and 22 would lead to a (1 -
@)100% confidence interval for N. (Notice that A, and A,
are the values in Figure 1 in which the lower and upper
vertical lines, respectively, define the confidence limits.)
The one-sided confidence limits for a noncentral ¢ distribu-
tion are defined as

A,

Jf(t()\;v))dt =« (23)

—%

for a lower (1 — a)100% confidence interval for \ or as

©

Jf(t(x;u))df =a (24)
AL,

for an upper (1 — a)100% confidence interval for A, where
Ay, and N, are the upper and lower one-sided confidence
limits. Notice how the form of the confidence limits for A
(Equations 21-24) differs from the form of Equation 20.
Equations 21-24 each have limits that stretch to positive or
to negative infinity, where the lower and the upper limits
contain (a/2)100% of the distribution on each side (for the
two-sided confidence intervals) or «100% on either side (for
the one-sided confidence intervals.) Equation 20 is defined
such that there is (I — v)100% of the distribution beyond
the confidence interval limits as a typical two-sided confi-
dence interval, with the nontypical requirement that the
confidence limits are of the same magnitude. Because of the
nonsymmetric properties of the noncentral ¢ distribution,
there is not an equal proportion beyond each of the limits.

For a given sample size and level of confidence interval
coverage, the width of the confidence interval for \ (or d) is
based only on A (or d). The rationale for determining A, via
Equation 19 is based on this fact, as a negative value or a
positive A larger in magnitude than \, the value on which
the sample size procedure is based, will lead to a confidence
interval wider than desired. Equation 20 can be solved for
the value that will ensure only (1 — v)100% of the distri-
bution of the noncentral parameter will be larger in magni-
tude than A,. The width of the confidence interval for the
noncentral parameter is of the same width regardless of
sign. Ultimately, N, will be converted to 8, so that 3., can be
used in place of 8 in the standard sample size procedure to
ensure that w will be no larger than w with y100% certainty.

Although Equation 20 does not have a straightforward
analytic solution, lower and upper bounds can be deter-
mined such that a range of values can be searched to find the
necessary value of A, that satisfies Equation 20. The con-
fidence limit from a one-sided confidence interval of the
form

Ay,

ff(%;v))dt =, (25)

—
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where A, is the limit of the y100% confidence interval, is
used as a lower bound for A,. The reason that A, is a lower
bound for A, is that using A, in place of A, would lead to
more confidence intervals that are wider than desired. The
proportion of confidence intervals wider than desired is not
only equal to the area beyond A, in Equation 25 but also
equal to the proportion of the noncentral distribution beyond
—Ay,. Thus, the total proportion of confidence intervals
wider than desired if A, was used in place of A, when
determining the modified sample size would be

=y, *®

jf(t()\:v))dt + J’f(t()\;v))dt = P(|t| > |)\U1

—o vy

), (26)

which is greater than 1 — <. The first integral is equal to
some positive value and the second integral is equal to 1 —
v, necessitating that p(|f > [\, [) > 1 — .

The confidence limits from a y100% two-sided confi-
dence interval are of the form

JVA

Jf(f(m)dt =1 =v)2 27)

—o0
and

%0

Jf(l‘()\;v))dl‘ = (1 - y)/Z (28)

A

Notice here that both confidence limits contain [(1 — +y)/
2]100% of the distribution beyond each confidence limit.
The upper confidence limit can be used as an upper bound
for A, because (unless A = 0) there will be less than (1 —
¥)100% of the distribution that is more extreme than —X;,
and A, . This is the case because [(1 — v)/2]100% of the
distribution is greater than \ v,» and because A, is smaller in
magnitude than )\U2, there must be less than [(1 — v)/
2]100% more extreme than A\, . Thus,

—Aus ©

f flto,)de + f fpade = p(ltf > [\g)),  (29)

—o \u,

which is less than 1 — +. This is the case when 8 is positive
because the first integral is necessarily smaller than the
second integral, and the second integral is equal to 1 — y/2,
necessitating that p([t| > [\, |) < 1 — v (the opposite is true

when 8 is negative). Because —A, and A, bound more
than (I — vy)100% of the distribution, )\U] must be smaller
in magnitude than \,. Because —A, and N\, bound less
than (1 — v)100% of the distribution, A, must be larger
than )‘v in magnitude. Thus, )‘v lies somewhere between A\ v,
and Ay, . The closer A is to zero, the closer A, is to Ay, in
magnitude (as the noncentral ¢ distribution becomes more
symmetric). The farther away A is from zero, the closer )\y
is to A, in magnitude (as the proportion of the distribution
less than —A,, approaches zero). An optimization routine
that iterates over the interval A, to A searching for A,
such that

pt< —N)+pt>N)=1—1v 30)

will yield the N that can be substituted for \ in the standard
procedure. Because the standard procedure is based on 8, A,
can be transformed into 3, so that 8, can replace 6 from the
standard procedure.

Given the detailed discussion above, a summary follows.
First, recall (from Equation 19) that p(|f| = [\, |) = -y implies
(from Equation 18) that p(jd| = [3,]) = . A d larger in
magnitude than 8, implies w = w (due to the definition of
3., as it is the value that will be exceeded in magnitude only
[1 — y]100%). Basing the sample size procedure on 3., will
thus ensure that no less than y100% of the confidence
interval widths will be greater than w, because at least
¥100% of the sampling distribution of d is less than d..
Because w = o whenever |d| = [3_], planning sample size
on the basis of 8., will lead to no less than y100% certainty
that w = w.

A brief conceptual overview. The discussion up to this
point has thus far been rather technical. A very general
review that is largely conceptual is provided. On the basis of
the necessary sample size from the original procedure,
where sample size was based on the expected confidence
interval width being sufficiently narrow, determine 8.. Re-
call that the value of 8, is the value on the scale of 3 that is
expected to be exceeded in magnitude only (1 — v)100% of
the time. The value of 8, is found by solving iteratively for
9, (using the noncentral 7 distribution; see Equation 30) in
the following equation:

pld< —d)+pd>58)=1-4. 31)

Given 3., substitute &, for & in the original procedure and
solve for sample size as before, by incrementing sample
size, beginning where the starting value is now the original
sample size, until the E[w] = w. The effect of replacing &
with 3, leads to y100% of the sampling distribution of d
being less than &,. When sample size is based on ., any d
less than &, in magnitude, which will occur y100% of the
time, will imply an observed confidence interval width less
than w.
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Tables of Necessary Sample Size

Although the AIPE approach to sample size planning for
the standardized mean difference can be readily carried out
using MBESS, selected tables of necessary sample size are
provided. The tables are not meant to supplant the computer
routines; rather, they are designed so that researchers can
quickly estimate the necessary sample size to obtain some
desired confidence interval width, possibly with some de-
gree of certainty. The necessary parameters manipulated in
the tables are 8, w, 1 — «, and .

The values of & used in the tables are 0.05 and 0.10
through 1.00 by 0.10s. The values of the desired full width
(w) used in the tables are 0.10 through 0.50 by 0.05s, and
0.60 through 1.00 by 0.10s. The desired degree of certainty
values used in the tables are no y specification (i.e., E[w] =
) and +y values of .80 and .99. The confidence level (1 —
o) was specified at .90, .95, and .99 for the values in Tables
1, 2, and 3, respectively. There are thus a total of 1,386 cells
in the tables representing a wide variety of situations. The
tables can easily be consulted when considering sample size
planning given the goals of AIPE for the standardized mean
difference. Of course, not all interesting combinations of J,
, ¥, and «a are tabled. However, for situations not covered
in the tables, the Appendix provides computer code using
MBESS that show how sample size can be easily deter-
mined.

As can be seen from the tables, necessary sample size can
become very large for very narrow desired confidence in-
terval widths (e.g., ® = 0.10 and ® = 0.15). Few behav-
ioral, educational, or social scientists will likely have such
resources at their disposal to achieve a confidence interval
for 8 whose expected value is close to 0.10 units wide. Thus,
the expectation is that almost all confidence intervals for &
will be wider than 0.10 in practice. Even when the value
shown on one of the tables for a particular condition may be
distressingly large, the tables will help to illustrate that
obtaining a confidence interval less than some desired width
may not be practical for a particular situation. Furthermore,
because the ultimate goal might be to obtain accurate esti-
mates of the parameters of interest, when this cannot be
done satisfactorily in a single study, the use of meta-analysis
should be considered. Of course, when an investigator is
entering into a new area of research or performs the study in
a fundamentally different way compared with previous
studies, the use of meta-analysis may be inapplicable. An-
other possibility is multiple-site studies, an idea that has
recently been reproposed (Maxwell, 2004, p. 161), in which
several collaborative research teams collect the same type of
data under the same (or realistically similar) conditions. The
idea of such multisite studies is to spread the burden but
reap the benefits of estimates that are accurate and/or sta-
tistically significant.

The way in which the tables are used is to first identify the

table that corresponds to the confidence level of interest (the
1 — « values for Tables 1, 2, and 3 are .90, .95, and .99,
respectively). After identifying the correct confidence level,
one of the three vy values must be specified (each table
consists of three subtables where the particular vy is specified
at the top of each subtable). Next, base the sample size
calculation on & (3 is specified in the column headings).
Finally, the desired @ must be specified (w is given in the
first column of each subtable). The combination of each of
the required values leads to a particular cell in the table that
corresponds to the per-group sample size. The total sample
size is thus twice the value on the table because the proce-
dure assumes equal per-group sample sizes.

As an example of the use of the tables, suppose that a
researcher wishes to obtain a confidence interval with an
expected width of 0.50 units when & = 0.80 at the 95%
confidence level. Determining the necessary sample size
requires the first subtable (where E[w] is the subtable head-
ing) of Table 2 (where o« = .05), where @ = 0.50 (the 9th
row) and & = 0.80 (the 10th column). The necessary sample
size in this situation is shown to be 133 participants per
group (266 total).

Further suppose that the researcher wishes to be 99%
certain that the 95% confidence interval will be no larger
than 0.50 units wide. Using the third subtable of Table 2
(where vy = 0.99) and the same procedure just discussed, a
sample size of 142 per group (284 total) is necessary. As is
demonstrated here, increasing the sample size from the
expected value being sufficiently narrow to a narrow con-
fidence interval with a high degree of certainty generally
does not necessitate a large increase in sample size relative
to the initial value of sample size. This phenomenon is
discussed in the next section.

Why Such a Small Change in Sample Size?

In some cases, modifying the sample size so that there is
a high probability of obtaining a confidence interval no
wider than desired adds a surprisingly small increase in
necessary sample size. From the previous example, recall
that a 95% confidence interval when & = 0.80 and w = 0.50
requires a necessary sample size of 133 per group. When the
desired degree of certainty is specified at .99, the necessary
sample size required increases to 142 per group (an increase
in total sample size of 18; 6.767%). Thus, in this situation,
a fairly small increase in sample size has a fairly large effect
on the probability of obtaining a sufficiently narrow confi-
dence interval.

Small increases in sample size when going from the ex-
pected width being sufficiently narrow to having a degree of
certainty that the width will be sufficiently narrow arise for
several reasons. First, with reasonably large sample sizes, 3,
will not be much larger than 3. Recall that the upper y100%
limit from a one-sided confidence interval is the lower bound
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Table 1
Necessary Sample Size per Group for 90% Confidence Intervals for the Population Standardized Mean Difference for Selected
Situations

)
® 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
v = E[w]
0.10 2166 2168 2176 2189 2208 2233 2262 2298 2338 2384 2436
0.15 963 964 967 973 982 993 1006 1021 1039 1060 1083
0.20 542 542 544 548 552 559 566 575 585 596 609
0.25 347 347 349 351 354 358 362 368 375 382 390
0.30 241 241 242 244 246 249 252 256 260 265 271
0.35 177 177 178 179 181 183 185 188 191 195 199
0.40 136 136 136 137 138 140 142 144 147 150 153
0.45 107 108 108 109 110 111 112 114 116 118 121
0.50 87 87 88 88 89 90 91 92 94 96 98
0.60 61 61 61 61 62 63 63 64 65 67 68
0.70 45 45 45 45 46 46 47 47 48 49 50
0.80 34 34 34 35 35 35 36 36 37 38 39
0.90 27 27 27 28 28 28 28 29 29 30 31
1.00 22 22 22 22 23 23 23 24 24 24 25
v = .80
0.10 2166 2169 2179 2194 2214 2240 2271 2307 2349 2397 2450
0.15 963 965 969 976 986 997 1012 1028 1047 1068 1092
0.20 542 543 546 550 555 562 570 580 591 603 617
0.25 347 348 350 353 356 361 366 372 379 387 396
0.30 242 242 243 245 248 251 255 259 264 270 276
0.35 178 178 179 181 183 185 188 191 195 199 204
0.40 136 136 137 139 140 142 144 147 150 153 157
0.45 108 108 109 110 111 113 114 116 119 121 124
0.50 88 88 88 89 90 91 93 95 97 99 101
0.60 61 61 62 62 63 64 65 66 68 69 71
0.70 45 45 45 46 47 47 48 49 50 51 53
0.80 35 35 35 35 36 37 37 38 39 40 41
0.90 28 28 28 28 29 29 30 30 31 32 32
1.00 23 23 23 23 23 24 24 25 25 26 27
vy =.99

0.10 2169 2173 2185 2202 2225 2253 2287 2326 2370 2420 2475
0.15 965 968 974 982 993 1007 1023 1041 1062 1085 1110
0.20 544 546 550 555 562 570 579 590 602 615 630
0.25 349 350 353 357 361 367 373 380 388 397 407
0.30 243 244 246 249 252 256 261 266 272 279 286
0.35 179 180 182 184 187 190 193 197 202 207 212
0.40 138 138 140 142 144 146 149 152 156 160 164
0.45 109 110 111 113 114 117 119 122 125 128 131
0.50 89 89 90 92 93 95 97 100 102 105 108
0.60 62 63 64 65 66 67 69 71 72 74 77
0.70 47 47 47 48 49 51 52 53 55 56 58
0.80 36 36 37 38 39 40 41 42 43 44 46
0.90 29 29 30 30 31 32 33 34 35 36 37
1.00 24 24 25 25 26 27 27 28 29 30 31

Note. 9 is the population standardized mean difference, vy is the desired degree of certainty of achieving a confidence interval for 8 no wider than desired,
w is the desired confidence interval width, and E[w] is the expected confidence interval width.
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Table 2
Necessary Sample Size per Group for 95% Confidence Intervals for the Population Standardized Mean Difference for Selected
Situations

)
® 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
v = E[w]
0.10 3075 3078 3089 3108 3135 3170 3212 3262 3320 3385 3458
0.15 1367 1368 1373 1382 1394 1409 1428 1450 1476 1505 1537
0.20 769 770 773 777 784 793 803 816 830 847 865
0.25 492 493 495 498 502 508 514 522 532 542 554
0.30 342 342 344 346 349 353 357 363 369 377 385
0.35 251 252 253 254 256 259 263 267 272 277 283
0.40 193 193 194 195 196 199 201 204 208 212 217
0.45 152 152 153 154 155 157 159 162 164 168 171
0.50 123 124 124 125 126 127 129 131 133 136 139
0.60 86 86 86 87 88 89 90 91 93 95 97
0.70 63 63 64 64 64 65 66 67 68 70 71
0.80 49 49 49 49 49 50 51 52 52 53 55
0.90 38 38 39 39 39 40 40 41 42 42 43
1.00 31 31 31 32 32 32 33 33 34 34 35
v = .80
0.10 3076 3079 3093 3113 3142 3178 3222 3274 3333 3400 3475
0.15 1368 1369 1376 1385 1398 1415 1435 1458 1485 1515 1548
0.20 770 771 774 780 788 797 809 822 837 854 873
0.25 493 494 496 500 505 511 519 527 537 548 561
0.30 343 343 345 348 351 356 361 367 374 382 391
0.35 252 252 254 256 258 262 266 270 276 281 288
0.40 193 193 195 196 198 201 204 208 212 216 221
0.45 153 153 154 155 157 159 162 164 168 171 175
0.50 124 124 125 126 127 129 131 134 136 139 142
0.60 86 86 87 88 89 90 92 93 95 97 100
0.70 64 64 64 65 66 67 68 69 70 72 74
0.80 49 49 49 50 51 51 52 53 54 56 57
0.90 39 39 39 40 40 41 42 42 43 44 45
1.00 32 32 32 32 33 33 34 35 35 36 37
vy =.99

0.10 3078 3083 3100 3123 3155 3194 3241 3295 3358 3428 3505
0.15 1370 1372 1381 1392 1407 1426 1448 1473 1502 1534 1569
0.20 772 773 779 786 795 806 819 833 850 869 889
0.25 495 496 500 505 511 518 527 537 548 560 574
0.30 344 345 348 352 356 362 368 375 383 392 402
0.35 253 254 257 260 263 267 272 278 284 290 298
0.40 195 195 197 200 202 206 210 214 219 224 230
0.45 154 155 156 158 161 164 167 170 174 179 183
0.50 125 126 127 129 131 133 136 139 142 146 150
0.60 88 88 89 91 92 94 96 98 101 103 106
0.70 65 65 66 67 69 70 72 73 75 77 80
0.80 50 51 51 52 53 55 56 57 59 61 62
0.90 40 41 41 42 43 44 45 46 47 49 50
1.00 33 33 34 35 35 36 37 38 39 41 42

Note. 9 is the population standardized mean difference, vy is the desired degree of certainty of achieving a confidence interval for 8 no wider than desired,
w is the desired confidence interval width, and E[w] is the expected confidence interval width.
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Table 3
Necessary Sample Size per Group for 99% Confidence Intervals for the Population Standardized Mean Difference for Selected
Situations

)
® 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
v = E[w]
0.10 5310 5315 5335 5368 5415 5474 5547 5633 5733 5846 5972
0.15 2360 2363 2371 2386 2407 2433 2466 2504 2548 2599 2654
0.20 1328 1329 1334 1342 1354 1369 1387 1409 1434 1462 1493
0.25 850 851 854 859 867 876 888 902 918 936 956
0.30 590 591 593 597 602 609 617 626 638 650 664
0.35 434 434 436 439 442 447 453 460 469 478 488
0.40 332 333 334 336 339 343 347 353 359 366 374
0.45 263 263 264 266 268 271 274 279 284 289 295
0.50 213 213 214 215 217 219 222 226 230 234 239
0.60 148 148 149 150 151 153 155 157 160 163 166
0.70 109 109 109 110 111 112 114 116 118 120 122
0.80 83 84 84 84 85 86 87 89 90 92 94
0.90 66 66 66 67 67 68 69 70 71 73 74
1.00 54 54 54 54 55 55 56 57 58 59 60
v = .80
0.10 5311 5317 5339 5375 5423 5485 5561 5649 5751 5866 5994
0.15 2361 2364 2374 2391 2413 2441 2475 2514 2560 2612 2669
0.20 1329 1330 1336 1346 1359 1375 1394 1417 1443 1472 1505
0.25 851 852 856 862 870 881 893 908 925 944 965
0.30 591 592 595 599 605 613 621 632 644 657 672
0.35 434 435 437 441 445 451 457 465 474 484 495
0.40 333 333 335 338 341 346 351 357 363 371 379
0.45 263 264 265 267 270 273 278 282 288 294 301
0.50 213 214 215 217 219 222 225 229 234 239 244
0.60 148 149 150 151 153 155 157 160 163 166 170
0.70 109 109 110 111 112 114 116 118 120 123 126
0.80 84 84 85 85 86 88 89 91 93 95 97
0.90 66 67 67 68 69 70 71 72 73 75 77
1.00 54 54 54 55 56 57 58 59 60 61 63
vy =.99

0.10 5314 5322 5348 5388 5440 5506 5585 5677 5783 5902 6034
0.15 2364 2368 2381 2400 2424 2455 2491 2534 2582 2636 2696
0.20 1331 1334 1341 1353 1367 1385 1407 1431 1459 1491 1525
0.25 853 855 860 868 878 890 904 920 939 959 982
0.30 593 594 599 604 612 620 630 642 655 670 686
0.35 436 437 441 445 451 457 465 474 484 495 507
0.40 334 336 338 342 346 352 358 365 373 381 391
0.45 265 266 268 271 275 279 284 290 296 303 311
0.50 215 216 218 220 223 227 231 236 241 247 253
0.60 150 151 152 154 156 159 162 166 170 174 178
0.70 111 111 113 114 116 118 121 123 126 129 133
0.80 85 86 87 88 90 91 93 96 98 101 103
0.90 68 68 69 70 72 73 75 76 79 81 83
1.00 55 56 57 58 59 60 61 63 65 66 68

Note. 9 is the population standardized mean difference, vy is the desired degree of certainty of achieving a confidence interval for 8 no wider than desired,
w is the desired confidence interval width, and E[w] is the expected confidence interval width.



AIPE FOR THE STANDARDIZED MEAN DIFFERENCE

for 3., and the upper limit from a two-sided confidence interval
is the upper bound for 8. In the example, the upper limit of a
99% one-sided confidence interval for § is 1.0959. The upper
limit from a 99% two-sided confidence interval for & is 1.1277.
Substituting these values for 0.80 as if they were 8 in the
standard procedure leads to necessary sample sizes of 142 and
144 for the upper one-sided and two-sided confidence inter-
vals, respectively. The actual 3, value in this case is 1.1073,
which leads to the necessary sample size of 142 per group.
Holding constant 3, the larger the required sample size, the
closer 3., will be to d.

When the common population variance is unity and thus
8 = p; — Mo, the standardized and unstandardized confi-
dence intervals for the mean difference estimate the same
quantity. Confidence intervals for the population quantities
thus try to bracket the same population value. Comparing
the confidence interval widths between the two methods of
confidence interval formation shows that for the same sam-
ple size, the width is much less variable for the standardized
mean difference than it is for the unstandardized mean
difference. Figure 2 illustrates the standard deviation of
confidence interval widths calculated in a population in
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which the common variance is unity with three different
values of w; — W, and for per-group samples sizes of 3 to
25. The three curves show that the standard deviation of the
confidence interval width for the standardized mean differ-
ence changes as a function of w; — p,, holding constant o
at 1. The unstandardized mean difference is unaffected by
changes in the mean difference because the observed mean
difference does not determine the confidence interval width.
This is the case because & changes as a function of p; — w,,
holding constant o, but (for normally distributed data) the
unstandardized mean difference is independent of o.

It is well-known that the width of the confidence interval
for & becomes larger, holding everything else constant, for
larger values of d. What does not seem to be well-known,
however, is that the confidence interval does not become
much wider as 8 becomes larger over what is thought to be
the typical range of d in the behavioral, educational, and
social sciences. For example, the 95% confidence interval
when d is 0.05 with n;, = n, = 30 is —0.4564 to 0.5559,
whereas it is 0.5052 to 1.5868 when d is 1.05. Although the
limits are much different, their widths are relatively close.
The width of the former example is 1.0123 and for the latter

1.0

Standard Deviation of Confidence Interval Width
0.4
I

0.0

—— ClI for Standardized Mean Difference, §=0.2
— - ClI for Standardized Mean Difference, 6 =0.5
Cl for Standardized Mean Difference, 6 =0.8
Cl for Unstandardized Mean Difference

Per-Group Sample Size

Figure 2. Standard deviation of confidence interval widths for the standardized and unstandardized
mean difference when the common within-group standard deviation is unity. Regardless of the size
of the mean difference, the width of the confidence interval (CI) for the unstandardized mean
difference does not change because the width depends only on sample size and the estimated
common standard deviation. The standard deviation of the CI widths was calculated from a Monte
Carlo simulation study with 25,000 replications. All of the assumptions of the CI procedures were
satisfied, and thus the variability of the CI widths represent the theoretical CI variability.
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example is 1.0816. When the per-group sample size is 30,
values of d between 0.05 and 1.05 have a 95% confidence
interval width between 1.0123 and 1.0816, a remarkably
small range given the large range of d (the confidence
interval width has a range of 0.0693 whereas d has a range
of 1).

Because the expected confidence interval width does not
change much as & gets larger, substituting 8, from the
modified sample size procedure when a degree of certainty
is incorporated for 8 in the standard procedure will thus not
generally lead to a much larger sample size. Furthermore,
changes in sample size follow a step function (because
sample size can subsume only whole numbers), whereas
values of 8 change following a smooth continuous function.
Thus, a range of & values will have the same necessary
sample size, holding everything else constant. For example,
ds between 0.7659 and 0.8070 all lead to a necessary sample
size of 133 when w = 0.5 for a 95% confidence interval.
When incorporating a desired degree of certainty of v =
.99, where 67 is 1.1073, &s between 1.0814 and 1.1106 all
lead to a necessary sample size of 142. These ideas taken
together explain why sample size does not increase as much
as might be expected when incorporating a desired degree
of certainty.

Given the present discussion, a note of caution is war-
ranted. Because the sample size may not change much from
the standard approach even when a large degree of certainty
parameter is specified, some researchers may get the im-
pression that using the modified sample size is unnecessary.
Although this may be largely true for very small & values,
ignoring vy and the modified sample size procedure cannot
be recommended. This is the case because even though the
sample size may not change much, the proportion of con-
fidence intervals that are sufficiently narrow may be much
less than desired when only the standard sample size pro-
cedure is used. This is the case because the confidence
intervals are not very variable (and thus from sample to
sample they tend to be close in value) and because the
expected width will increase (even if it does so by only a
small amount). Combining the relatively small variability
for the confidence interval widths and the expected width
being wider for larger values of & has the effect that even a
small increase in sample size can lead to a much larger
proportion of the sampling distribution of confidence inter-
val widths being less than the value specified. Furthermore,
as d gets larger, the difference between the standard and
modified sample sizes becomes more pronounced and can
lead to very large differences in necessary sample size.

Sample Size Planning for Power Versus Accuracy

As has been implicit in the previous discussion, there are
fundamental differences in the goals of sample size plan-
ning for power and sample size planning for accuracy. The

power analytic approach has as its goal rejecting a false null
hypothesis with some specified probability. The AIPE ap-
proach has as its goal obtaining an accurate estimate, op-
erationalized by a narrow confidence interval. An accurate
estimate need not be significant and a significant estimate
need not be accurate. Although each of the approaches is
valuable, each is designed to answer a different question. As
is shown in the following paragraphs, necessary sample size
can be very different depending on the particular question
asked.

Kelley and Maxwell (2003) compared power and accu-
racy for a regression coefficient, and Kelley et al. (2003)
compared power and accuracy for the unstandardized mean
difference. Figure 3 shows the necessary sample sizes for
power levels of .50, .80, and .95 and desired confidence
interval widths of 0.35, 0.25, and 0.15 for & values between
0.10 and 0.50. Although the desired levels of power and
desired confidence interval widths are arbitrary, they are
thought to be reasonable values for comparison purposes.
Notice that the abscissa begins shifted 0.10 units from O.
Values of 8 closer to 0 lead to very large necessary sample
sizes for the power analytic approach. Similarly, as desired
power increases arbitrarily close to 1 (especially for small &
values) and as desired confidence interval width decreases
arbitrarily close to 0, necessary sample sizes also become
very large.

As can be seen in the figure, as the size of the effect
increases, necessary per-group sample size for a desired
degree of power decreases, holding everything else con-
stant. Not obvious from a casual glance at the figure is the
fact that the necessary per-group sample size for AIPE
increases as d gets larger, holding everything else constant.
However, the rate of decreasing sample size for power as
the effect gets larger is much faster than the rate of increas-
ing sample size for AIPE as the effect gets larger for the
standardized mean difference. For example, when the de-
sired confidence interval width is 0.25 and 8 = 0.10 for a
95% confidence interval, the necessary per-group sample
size is 493, yet when 8 = 0.50, the necessary per-group
sample size is 508. When the desired power is .80 and & =
0.10 when the Type I error rate is .05, the necessary per-
group sample size is 1,571, yet when & = 0.50, the neces-
sary per-group sample size is 64. Planning sample size from
a power analytic approach is a fundamentally different task
than planning sample size from an AIPE approach. As is
illustrated in Figure 3, the power analytic approach and the
AIPE can lead to very different answers to the question
“What size sample do I need?”

Discussion

In the context of comparing the means of two groups,
the confidence interval for the population group mean
difference is often of interest. In many cases in the
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Figure 3.  Comparison of the power analytic and the accuracy in parameter estimation approach to
sample size planning for desired power of .50, .80, and .95 and for desired confidence interval
widths of 0.15, 0.25, and 0.35 when the Type I error rate is .05.

behavioral, educational, and social sciences, the stan-
dardized mean difference is more appropriate than the
unstandardized mean difference because of the arbitrari-
ness of many measurement scales. Using point estimates
in the construction of confidence intervals for population
parameters that lead to wide intervals does not shed
much light on the population parameter of interest. The
value of the population parameter is often the driving
force of research, and thus an accurate estimate of the
parameter is generally the most useful information that
can be obtained. Holding the confidence interval cover-
age constant, the narrower the confidence interval, the
more information about the population parameter of in-
terest is obtained. Learning the value of the parameter,
whatever it may be, is generally more informative than
the results of a null hypothesis significance test. Even
when what is of interest is the direction of the effect,
something null hypothesis significance tests are espe-
cially helpful at discerning, learning the value of the
parameter is informative because knowing the value of
the parameter implies you know its direction. Given that,

sample size planning should often be considered from the
AIPE perspective (Kelley & Maxwell, 2003; Kelley et
al., 2003), which has as its goal obtaining narrow confi-
dence intervals corresponding to accurately estimated
parameters.

In the present article, we developed methods that can be
used to determine necessary sample size so that the ex-
pected width of the confidence interval for the standardized
mean difference will be sufficiently narrow, optionally with
some desired degree of certainty that the obtained interval
will be sufficiently narrow. The methods discussed were
implemented in the freely available MBESS (Kelley,
2006a) package for the R software program (R Develop-
ment Core Team, 2006). Tables have been provided so that
researchers can quickly determine or approximate the nec-
essary sample size when the goal is to obtain a narrow
confidence interval for 8. It is our hope that those planning
sample size will consider the AIPE approach, either instead
of or in addition to the power analytic perspective. Embrac-
ing the AIPE perspective of sample size planning will lead
to a better understanding of the particular phenomenon of
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interest than will approaching sample size planning solely
from a power analytic perspective.
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Appendix

Applying the Methods With the MBESS R Package

All of the methods and procedures discussed and the
algorithms presented can easily be implemented in the
Methods for the Behavioral, Educational, and Social Sci-
ences (MBESS) R package (Kelley, 2006a). This Appendix
provides a brief overview of the way in which the functions
can be used. Those not familiar with R will see that R is a
command-driven language, in which various functions are
input directly into the R program. Before using the functions
contained within MBESS, one must load the MBESS pack-
age into the current R session. Loading MBESS is accom-
plished with the command library at the command
prompt (>) after the package has been installed: 1ibrary
(MBESS). The easiest way to install a package is to use the
Install Package(s) feature under the Packages menu.

Confidence Intervals for Noncentral ¢+ Parameters

For constructing confidence intervals for the noncentral
parameter from a noncentral ¢ distribution, the conf
.limits.nct () function can be used. The lower and
upper critical values from the noncentral ¢ distribution for
the example used in Figure 1 are returned by specifying the
following arguments in the conf.limits.nct () func-
tion:

conf.limits.nct(ncp=2.7951, df=18,

conf.level=0.95),
where ncp is the (estimated) noncentral parameter, d f is
the degrees of freedom, and conf.level is the desired
level of confidence (1 — «). Execution of this function
yields 0.6038 and 4.9227 for the lower and upper 95%
confidence limits for A, respectively.

Confidence Intervals for the Standardized Mean
Difference

Given the one-to-one relation between A and & and the
confidence interval transformation principle previously dis-
cussed, the confidence limits for & can be found by trans-
forming the confidence limits of N given the relation spec-
ified in Equation 8. Alternatively, the ci.smd () function
can be used directly to determine the confidence limits for 3.
The lower and upper critical value from the example used in
Figure 1 are returned using the following specifications:

ci.smd(smd=1.25, n.1=10, n.2=10,

conf.level=0.95),
where smd is the standardized mean difference (i.e., d),
n.1 and n.2 are the per-group sample sizes for Groups 1
and 2, respectively, and conf . level is the desired level

of confidence. Application of this function yields 0.2700
and 2.2015 for the lower and upper 95% confidence limits
for §, respectively.

Computing Necessary Sample Size for the
Standardized Mean Difference From the AIPE
Perspective

The function ss.aipe.smd () determines the neces-
sary sample size so that the expected value of w = w for the
standardized mean difference. An example call to the
ss.aipe.smd () function is given as follows:

ss.aipe.smd(delta=.50,
conf.level=.95, width=.30),

which yields n;, = n, = 353, where delta is the popula-
tion standardized mean difference, conf.level is the
level of confidence, and width is the desired confidence
interval width. Thus, if & = .50, the confidence interval
coverage is set to .95 and the width of the interval is
specified as .30, a per-group sample size of 353 (706 total)
is necessary.

The degree.of .certainty parameter can be spec-
ifiedinthe ss.aipe.smd () function so that there will be
some desired degree of certainty (i.e., y) that the observed
confidence interval is sufficiently narrow. Setting the degree
of certainty to .99 and using the ss.aipe.smd () func-
tion as

ss.aipe.smd(delta=.50, conf.level=.95, width=.30,
degree.of.certainty=.99)

yields a necessary sample size of 362 (724 total).

Sensitivity Analysis for the Standardized Mean
Difference

Sensitivity analysis to assess the effect of misspecifying &
on the width of the confidence interval can be performed
with the ss.aipe.smd.sensitivity () function.
The function ss.aipe.smd.sensitivity () allows
one to specify the true population & and an estimated but
incorrect 9, so that the effect of misspecifying & on the
width of the confidence interval can be empirically deter-
mined. The function performs a simulation whereby the
empirical findings regarding the width of the confidence
interval can be determined. Visualization of the results of
the simulation can be very helpful for determining how
discrepant the assumed value can be from & to still have
an acceptably narrow confidence interval for &. The
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ss.aipe.smd.sensitivity () function can be spec-
ified as

ss.aipe.smd.sensitivity(true.delta=1.00,
estimated.delta=1.25, desired.width=.50,
certainty=.85, conf.level=0.95, G=10000),
where true.delta and estimated.delta are the
true and the estimated & values, desired.width is the
desired confidence interval width, certainty is the de-
sired degree of certainty, conf.level is the desired con-
fidence level (1 — a), and G is the number of replications

that take place within the simulation study. Instead of spec-
ifying estimated.delta, one can select a particular
sample size using selected.n, so that the properties of
the confidence interval can be readily determined with a
specified & value and a specific per-group sample size.
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