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Longitudinal studies are necessary to examine individual change over time, with group status often being
an important variable in explaining some individual differences in change. Although sample size
planning for longitudinal studies has focused on statistical power, recent calls for effect sizes and their
corresponding confidence intervals underscore the importance of obtaining sufficiently accurate estimates
of group differences in change. We derived expressions that allow researchers to plan sample size to
achieve the desired confidence interval width for group differences in change for orthogonal polynomial
change parameters. The approaches developed provide the expected confidence interval width to be
sufficiently narrow, with an extension that allows some specified degree of assurance (e.g., 99%) that the
confidence interval will be sufficiently narrow. We make computer routines freely available, so that the
methods developed can be used by researchers immediately.
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Longitudinal studies have become a major source of knowledge
generation in psychology and related disciplines. This is the case
in part because of the rich information inherently provided by
repeated measurement of the same set of individuals over time, as
well as the sophisticated methods developed over the last three
decades that allow a wide variety of questions about intraindi-
vidual change and interindividual differences in change to be
addressed (see, for example, Collins & Horn, 1991; Collins &
Sayer, 2001; Fitzmaurice, Davidian, Verbeke, & Molenberghs,
2009; Singer & Willett, 2003, for reviews of longitudinal data
analytic methods). While the analysis of longitudinal data gained
widespread usage in psychology and related disciplines, compar-
isons of mean differences across groups continue to be widely
used. Naturally, the idea of examining group differences over time
itself became a widely used technique. Examining group-by-time
interactions allows researchers to infer (a) whether groups are
changing differently and (b) by how much groups are changing
differently.

The question of “are groups changing differently” functionally
is answered in a dichotomous manner via the results of a null
hypothesis significance test. Namely, if the p value is less than the

specified Type I error rate (e.g., .05), the null hypothesis of groups
changing the same over time (i.e., the group-by-time interaction) is
rejected, with the conclusion being that groups do indeed change
differently. However, if the p value is greater than the specified
Type I error rate, the null hypothesis is not rejected. Of course, the
failure to reject a null hypothesis does not imply that the null
hypothesis is in fact true. However, in such cases, the failure to
find statistical significance at least does not show support for a
difference. Obtaining a clear answer to the research question “are
groups changing differently” is functionally answered when the
null hypothesis of the group-by-time interaction is rejected.

The question of “by how much do groups change differently” is
not answered with a null hypothesis significance test, but rather it
is addressed continuously on the basis of a point estimate of the
group-by-time interaction and the corresponding confidence inter-
val for the population value. The magnitude of the group-by-time
interaction, that is, how different the slopes of two groups are, is
often an important outcome in longitudinal studies. Additionally,
there is a one-to-one relationship between two-sided (1 � �)100%
confidence interval and a nondirectional null hypothesis signifi-
cance test with a Type I error rate of �.1 Namely, if the value of
the specified null hypothesis (e.g., 0) is not contained within the
(1 � �)100% confidence interval limits, that same value would be
rejected as the value of the null hypothesis using a Type I error rate
of �100%. Thus, it is known that a particular null hypothesis will
be rejected if the corresponding confidence interval does not
contain the specified null value. However, because the confidence
interval contains those values that cannot be rejected as implausi-

1 There is also an analogous relationship between a one-sided confidence
interval and a directional hypothesis tests. As noted, if a confidence interval
contains the specified null value, then the corresponding null hypothesis,
with the same value, will be rejected.
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ble at the specified Type I error rate level, the confidence interval
brackets those values that are plausible parameter values at the
specified level of confidence (e.g., .95). Thus, a confidence interval
by its very nature provides more information than does the result
of a null hypothesis significance test.

Although long recognized, only relatively recently has the re-
porting of confidence intervals been essentially mandated. As the
new edition of the Publication Manual of the American Psycho-
logical Association (American Psychological Association [APA],
2010) states, “Historically, researchers in psychology have relied
heavily on null hypothesis significance testing (NHST) as a start-
ing point for many (but not all) of its analytic approaches. APA
stresses that NHST is but a starting point and that additional
reporting elements such as effect sizes, confidence intervals, and
extensive description are needed to convey the most complete
meaning of the results” (2010, p. 33). Thus, in order to “convey the
most complete meaning of the results” in the context of group
longitudinal designs, the effect size, namely the regression coef-
ficient for the group-by-time interaction, and the confidence inter-
val for the population value of the regression coefficient for the
group-by-time interaction should be reported. However, if the
confidence interval for the population value of the group-by-time
interaction is wide, it becomes clear that the population value has
not been estimated with a high degree of statistical accuracy.
Correspondingly, an “extensive description” of the value of the
group-by-time interaction becomes more difficult because of the
vagueness with which the group-by-time interaction has been
estimated.

All other things being equal, from a statistical perspective a
narrow confidence interval for an effect size of interest is preferred
to a wider confidence interval. With regards to why researchers
historically seldom reported confidence intervals, Cohen once
speculated that it may be because their widths were often “embar-
rassingly large” (Cohen, 1994, p. 1102). In an effort to plan sample
size so that “embarrassingly large” confidence intervals for the
population values of interest are not obtained, the accuracy in
parameter estimation (AIPE) approach to sample size planning
was developed. AIPE has been developed for various widely used
effect sizes (e.g., see Maxwell, Kelley, & Rausch, 2008, for a
review of the AIPE rationale and how it compares to power
analysis) but as of yet has not been developed in the context of
multilevel models. We develop the AIPE approach to sample size
planning here so that (a) sample size can be planned for the
expected confidence interval width of the group-by-time interac-
tion to be sufficiently narrow and (b) the confidence interval width
of the group-by-time interaction will be sufficiently narrow with
some specified degree of assurance (e.g., 99% assurance that the
95% confidence interval is sufficiently narrow). Our position is
essentially that if a particular effect size, such as the regression
coefficient for the group-by-time interaction, is the driving force
behind the research, then a confidence interval should be calcu-
lated for the population value for the effect size. So as to not have
a confidence interval that is “embarrassingly wide,” one should
plan sample size so that the confidence interval width is explicitly
considered, ideally by having a large (e.g., 99%) assurance that the
confidence interval will be sufficiently narrow.

Determining what sample size is necessary in order to achieve a
particular goal with some specified probability is often a perplex-
ing problem. Longitudinal studies are often designed in an effort to

obtain a sample size that will lead to a false null hypothesis being
rejected with some desired probability (i.e., have sufficient power).
Planning sample size in such a way is termed a power analysis.
Raudenbush and Xiao-Feng (2001) developed methods for plan-
ning sample size for a desired power and for calculating power
given a particular sample size. Although the Raudenbush and
Xiao-Feng’s (2001) work is useful for planning sample size from
a power analytic framework, under many circumstances, the re-
search goal may be an accurate estimate of the parameter of
interest, not merely the knowledge of whether the null hypothesis
can be rejected.

There are (at least) two fundamentally different methods for
planning sample size, namely (a) the power analytic approach and
(b) the AIPE approach. Raudenbush and Xiao-Feng (2001) devel-
oped sample size planning methods for the power analytic ap-
proach for the group-by-time interaction. We developed sample
size planning methods for the AIPE approach for the group-by-
time interaction. What the Raudenbush and Xiao-Feng (2001)
work did for the power analytic approach to sample size planning
in the context of longitudinal polynomial change models, our work
does for the AIPE approach to sample size planning. We do not
claim that either approach is better than the other, as both methods
are useful, but the method of choice is necessarily tied to the
research question of interest. As we will explain, planning sample
size from the AIPE approach is actually easier than planning from
the power analytic approach. In particular, it is not necessary to
specify the value of the group-by-time interaction when using the
AIPE approach, but it is necessary in the power analytic approach.

Many times the ideal scenario is one where an estimate is
accompanied with both a statistically significant hypothesis test as
well as a narrow confidence interval. Depending on the exact
situation, sometimes the power analytic approach demands a larger
sample size, whereas at other times the AIPE approach demands a
larger sample size. In general, if the effect size is close to the null
value, all other things being equal, sample size for the power
analytic approach will often exceed the necessary sample size for
the AIPE approach. However, if the effect size is very large, all
other things being equal, sample size for the AIPE approach will
often exceed the necessary sample size for the power analytic
approach. In general, the reason this holds is because the larger the
effect size, the smaller the sample size needed to obtain the same
degree of statistical power. However, obtaining an accurate esti-
mate of the parameter does not change at all on the basis of the
effect size or tends to do so rather slowly. The relationship be-
tween the necessary sample size for statistical power and AIPE
relationship has been illustrated for regression coefficients (Kelley
& Maxwell, 2003), mean differences (Kelley, Maxwell, & Rausch,
2003), and the standardized mean difference (Kelley & Rausch,
2006) among other effect sizes. Although the two sample size
planning approaches can suggest largely discrepant sample sizes at
times, such a situation is reasonable since they have very different
goals. However, when a desire exists to have both a high degree of
statistical power as well as a high degree of assurance that the
confidence interval will be narrow, both sample size planning
methods can be used, and the larger of the two sample sizes used.

An impediment to new methods being adopted by researchers is
often the difficulty of implementation. As Revelle and Zinbarg
(2009) noted when referring to the disconnect between new meth-
odological developments and the use of such developments in
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applied research, “it is likely that psychometric contributions
would have greater impact if they were readily available in such
open source programs” (p. 153). We have eliminated as much of
the difficulty of implementation of our methods as possible by
developing easy-to-use functions that have been incorporated into
the R package (R Development Core Team, 2010) MBESS (Kel-
ley, 2007a, 2007b; Kelley & Lai, 2010) that are both open source
and freely available.2 We demonstrate the ease of use of the
functions developed in the appendix. We hope this article will
benefit researchers who seek an accurate estimate of the group-
by-time interaction in longitudinal studies.

Multilevel Models for Change

Multilevel models, also referred to as hierarchical linear models,
mixed effects models, and random coefficient models, which in
some cases can be equivalent to latent growth curves, are widely
used methods for modeling an outcome as it changes, or remains
relatively constant, over time. In this section, we provide an
overview of the multilevel model as it applies to longitudinal data
and define much of the notation used in the article.

In longitudinal data, observations are nested within the individ-
ual (e.g., person), where the individual may also be nested within
one or more organizational structures. We operationally define a
longitudinal polynomial change model as

yit � �
m�0

M

�mi ait
m � εit, (1)

where �mi is the mth polynomial coefficient of change (m � 0, . . . ,
M; M � T), and ait is some basis of time (e.g., time itself, age,
measurement occasion, and so forth) for the ith individual (i � 1,
. . ., N) at the tth measurement occasion �t � 1, . . ., T�, and εit is
the error for the ith individual at the tth measurement occasion.
Equation 1 is often termed the “Level 1” model. The degree of
polynomial fit describes the type of individual change (e.g., M �
1 is a straight-line model, M � 2 is a quadratic model, M � 3 is
a cubic model, and so on). The variance of εit across the individ-
uals for the tth measurement occasion is denoted �εt

2 .
Equation 1 models intraindividual change for each of the N

individuals. This is the case because the coefficients of change
(i.e., the �mi) in Equation 1 have i subscripts. Each of the coeffi-
cients of change in Equation 1 can thus be specific to the individ-
ual, and thus individual differences in change are explicitly taken
into consideration in the model.

For research design purposes when planning sample size, we
restrict all measurement occasion to be the same across individu-
als, implying that there is a common vector of measurement
occasions (i.e., time values) for each of the N individuals and that
there are no missing data for the derivation of the model and
development of the method. Later we will revisit the idea of
missing data in the method that we develop. Thus, we remove the
i subscript from ait in Equation 1:

yit � �
m�0

M

�mi at
m � εit. (2)

Further, we assume that the errors at the different time points have
a common variance, implying that �ε1

2 � �ε2

2 � . . . � �εT

2 � �ε
2,

and errors are independent and identically distributed random
variables.

After data have been obtained, assumptions made for statistical
analysis purposes, such as (a) that there are no missing data, (b)
that all individuals share a common vector of measurement occa-
sions, (c) that errors have homogeneous variances across time, and
(d) that the errors are independent and identically distributed
random variables, are not always tenable. Fortunately, these as-
sumptions can generally be relaxed easily in the specification and
estimation of the change model of interest so that certain types of
missing data, interindividual differences in measurement occa-
sions, and more complicated error structures can be incorporated
explicitly. However, for purposes of designing a longitudinal
study, it is generally unnecessary to incorporate these potential
model modifications unless there are strong a priori reasons to do
so.

Equation 2 is a general polynomial model used to map a math-
ematical model onto observed scores over time. A polynomial
change model implies that the set of exponents of the time basis is
a complete set of whole numbers (i.e., nonnegative integers) from
0 to M.3 Special cases of Equation 2 are

yit � �0i � �1i at � εit (3)

for a straight-line change model,

yit � �0i � �1i at � �2ij at
2 � εit (4)

for a quadratic change model, and

yit � �0i � �1i at � �2i at
2 � �3i at

3 � εit. (5)

for a cubic change model, and so forth. Extensions beyond the
cubic change model are certainly possible, provided that enough
measurement occasions have been collected. Although time-vary-
ing covariates can be included in Equation 1, and thus in Equations
2–5, we do not consider such models in the present article.

The multilevel nature of the model is evidenced when the
coefficients of change in Equation 2 are themselves modeled by
what is termed a Level 2 model. Each coefficient of change from
Equation 2 can itself be modeled as a dependent variable from
interindividual difference variables (e.g., sex, age, education level,
etc.). In particular, as dependent variables, the M �mis from Equa-
tion 2 can be explained by an overall fixed effect (i.e., the 	mks, K
regressor variables (denoted xki, and potentially a unique effect
(denoted 
mi associated with the ith individual for the mth change
coefficient. Such a conceptualization can be written as

2 Originally, MBESS stood for “Methods for the Behavioral, Educa-
tional, and Social Sciences.” However, MBESS is now an orphaned acro-
nym, meaning that what was an acronym is now literally its name.

3 The general polynomial change model can easily be relaxed so that
time values can be exponentiated to nonwhole numbers. Doing so does not
change our presentation in any way. For example, it is not problematic to
exponentiate a number to 1/2, implying that the square root of time is used.

393AIPE FOR LONGITUDINAL MODELS



�mi � 	m0 � �
k�1

K

	mkxki � 
mi, (6)

where 	mk represents the effect of the kth (k � 1, . . ., K) x variable
(e.g., group status) for the ith individual on the mth individual
specific polynomial change coefficient (e.g., m � 1 for a straight-
line model, m � 2 for a quadratic model, and so on).

The 
mi values are assumed to be independent across individuals
and independent of the εit values. The K x variables are regressors
(e.g., predictor or explanatory variables) that can be used to ac-
count for the variance of the individual uniqueness on the mth
change coefficient. The variance of ��m

2 (the last component of
Equation 6) is denoted. Although only a model with two levels has
been illustrated, the 	mks can themselves be modeled as dependent
variables if one or more additional organizational structures exist,
and so forth.

In the present article, we are concerned primarily with the test of
the group effect for polynomial change coefficients or, more pre-
cisely, the coefficient of the group-by-trend interaction. Without
loss of generality, we will use the term group-by-time interaction
to refer to what is formally the group-by-trend interaction. The
term group-by-trend interaction is more general in that it applies to
any particular trend. However, the linear trend is so often the only
trend included in a model (Kelley & Maxwell, 2008; Mehta &
West, 2000), and correspondingly it is the way that the effect of
group status on individual change parameters is often discussed in
the literature. We are focused explicitly on multilevel models with
two levels and with two groups due to their prevalence in the
applied literature. We use the values 0 and 1 to represent the two
groups. Of course, other coding schemes can be used to identify
group membership (e.g., [�.5, .5], [�1, 1]), but we regarded the
0/1 scheme as generally the most intuitive for our purposes. In
such a coding scheme, the group effect is the effect of Group 1 as
compared with Group 0. In this notational framework, Equation 6
can be written as

�mi � 	m0 � 	m1Groupi � 
mi (7)

for a straight-line change model, which itself can be written as

�mi � 	m0 � 
mi (8)

for individuals in Group 0 and

�mi � 	m0 � 	m1 � 
mi (9)

for individuals in Group 1. Thus, if there is a difference in the mth
change coefficient due to group, that difference will be manifested
in 	m1. In our notational scheme, 	m1 is the group-by-trend inter-
action, with 	11 being the group-by-time interaction that quantifies
the differences in group change over time for straight-line change
models.

Using Orthogonal Polynomials

We use orthogonal polynomials for the time values rather than
the observed time values themselves in the remainder of the article.

For the orthogonal polynomial approach, Equation 2 can be re-
written as

yit � �
m�0

M

�mi cmt � εit, (10)

where cmt is the mth orthogonal polynomial coefficient for the tth
measurement occasion, and the value of cmt depends only on T and
M. Orthogonal polynomials can facilitate the interpretation of
fitted model parameters. In contrast to an approach based on
observed time values, orthogonal polynomials make it “straight-
forward to derive simple expressions for estimators and exact
standard errors that apply in studies of arbitrary length and for
polynomials of any degree” (Raudenbush & Xiao-Feng, 2001, p.
389). The ability to obtain exact analytic standard errors for
longitudinal studies of arbitrary length and polynomial degree
facilitates the sample size planning procedures in the work of
Raudenbush and Xiao-Feng (2001) as well as in our work. Re-
gardless of whether orthogonal polynomials or the observed time
values are used, the value of the highest order polynomial change
coefficient will remain the same. Correspondingly, for a straight-
line change model, the value of the slope is equivalent in models
where orthogonal polynomials are used or where the observed
values of time are used. Similarly, for a quadratic change model,
the value of the quadratic term is equivalent in models where
orthogonal polynomials are used or where the observed values of
time were used, and so forth. Finally, the overall fit of the model
is left unaltered, implying that the proportion of variation ac-
counted for by the model is the same for both scalings of time
values, regardless of whether orthogonal polynomials coefficients
or raw time values are used.4

Means and Variances of Estimates

Like the procedure developed by Raudenbush and Xiao-Feng
(2001), our sample size planning procedures depend on properties
of least squares estimators of the individual change coefficients. In
practice, longitudinal models will be fitted with maximum likeli-
hood methods. However, under certain conditions, an approach
based on least square estimates used in a two-stage analysis
procedure and one based on maximum likelihood estimates are
conceptually equivalent and numerically similar. More specifi-
cally, when �mi is modeled with an intercept and group status (i.e.,
as in Equation 7) in situations where the vector of time values is
the same across individuals and there are no missing data, the two
estimation methods will generally yield essentially the same re-
sults (e.g., see Rogosa and Saner, 1995, for illustrative examples of
the similarity between use of the two-stage least squares estimates
and maximum likelihood estimates for longitudinal data analysis).
Thus, although maximum likelihood estimation methods are gen-
erally more advantageous (e.g., when there are missing data, an
unequal number of measurement occasions, more complex mea-
surement occasions, more complex models, and so on) than least
squares estimation, in the situation described here, the least

4 Although the overall model fit is the same regardless of the legitimate
scaling used, interpretation of the lower ordered effects is altered.
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squares and the maximum likelihood estimates are essentially
the same. However, expressions for the least squares estimates are
much more straightforward to use than are maximum likelihood
estimation, which are generally based on difficult or analytically
intractable expressions.5

The estimated individual specific least squares estimates of the
change coefficients can be written as

�̂mi � 	m0 � 	m1Groupi � 
mi � ��̂mi � �mi�, (11)

where �̂mi � �mi is the difference (i.e., the error) between the
least squares estimate of �mi, denoted �̂mi, and �mi itself (e.g.,
Raudenbush & Xiao-Feng, 2001).6 Notice that in Equation 11 �̂mi

is on both the left-hand side and the right-hand side of the equals
sign. Thus, Equation 11 can thus be rewritten as

0 � 	m0 � 	m1Groupi � 
mi � �mi. (12)

which in turn can be rewritten as

�mi � 	m0 � 	m1Groupi � 
mi (13)

for the true individual specific least squares estimate of the mth
change coefficient.

Of course, the parameters of Equation 13 are not known in
practice and must be estimated, but the grouping variable will be
known for any individual. Returning to Equation 11 and recalling
the assumption of independence between 
mi and εit (which implies
that 
mi and �̂mi ��mi are independent), covariance algebra shows
that

Var��̂mi� � Var�	m0� � Var�	m1Groupi� � Var�
mi�

� Var��̂mi � �mi�, (14)

where all the variances are conditional on group. The interpretation
of Equation 14 is the variance of the estimated change coefficients
within a group for the mth change coefficient. The interpretation of
the components of Equation 14 is that Var�	m0� is the variance of
the fixed effect of the intercept for the mth change coefficient,
Var�	m1� is the variance of the fixed effect for the slope for the mth
change coefficient, Var�
mi� is the variance of the unique effects for
the mth change coefficient within the groups, and Var��̂mi � �mi� is
the variance of the error in estimating the mth change coefficient.
As we will show shortly, the last two terms are of primary importance
(since the first two terms will drop from the equation). The Var�
mi�
component is the true variance within a group for the mth change
coefficient, whereas Var��̂mi � �mi� is the variance across individ-
uals within a group for the difference between the estimated and true
mth change coefficient.

Because 	m0 is a constant, Equation 14 can be reduced to

Var��̂mi� � 	m1
2 Var�Groupi� � Var�
mi� � Var��̂mi � �mi�.

(15)

Of interest, however, is the within-group variance. Because Groupi

is a constant within either group (either 0 or 1) Equation 15 can be
rewritten as

Var��̂mi�j � Var�
mi�j � Var��̂mi � �mi�j. (16)

However, because we assume homogeneity of variance across
groups in the planning stage, Equation 16 need not have a grouping
subscript and thus can be simplified to

Var��̂mi� � Var�
mi� � Var��̂mi � �mi�. (17)

By letting Var��̂mi� � ��̂m

2 (i.e., the variance of the estimated mth
change coefficients), Var�
mi� � �
m

2 (i.e., the variance of the
unique effects for the mth change coefficient across the individu-
als), and Var��̂mi � �mi� � ��̂m��m

2 (i.e., the variance of the
difference between the mth estimated and true change coefficients
for each individual across the individuals), Equation 17 can be
rewritten as

��̂m

2 � �
m

2 � ��̂m��m

2 , (18)

where

��̂m��m

2 �
�ε

2

�
t�1

T

cmt
2 (19)

due to the orthogonal approach we use.
Recalling the standard error of the two independent groups t test,

there is an exact analog with the standard error of 	m1. The
variance for the mth change coefficient for the jth group (j � 0, 1)
is �̂
mj

2 � �̂��̂m��m�j

2 , with a pooled estimate when n0 � n1 simply
being the mean of the two group estimates of variance, denoted as
before without a “j” subscript. Because the value of 	m1 represents
a difference in the slope for the two groups, the variance of the
difference is needed. The variance of a difference is the sum of the
variances when the groups are independent; thus, twice the pooled
variance is the variance of the difference. To obtain the standard
error in this context, we multiply the pooled variance by the
quantity (1/n0 � 1/n1) in an analogous way as the pooled standard
deviation is used in the two independent group t tests:

SÊ�	̂m1� � �2��̂
m

2 � �̂�̂m��m

2 ��1/n0�1/n1�. (20)

5 Technically, the framework used for design purposes is not the same as
maximum likelihood estimation. One clear difference between these esti-
mation approaches becomes evident when an estimate of the random effect
variance for one of the polynomial change parameters is negative using the
least squares two-stage estimation approach. In this case, the maximum
likelihood estimate of the parameter cannot be negative because from the
definition of a maximum likelihood estimate, an estimate must be within
the parameter space (e.g., Stuart, Ord, & Arnold, 1999, chapter 18).
Clearly, a population variance cannot be negative and thus is not in the
parameter space. Consequently, the maximum likelihood estimation of the
random effect variance is typically set to 0 in such a scenario, which yields
different values for these parameter estimates across these two estimation
approaches, sometimes yielding different standard errors for other param-
eter estimators in the model as well. This is an important issue and leads
to the distributional properties of the maximum likelihood estimators being
substantially more complex than those of the two-stage parameter estima-
tors (e.g., McCulloch, Searle, & Neuhaus, 2008). However, in many
“well-behaved” cases, the results of the two approaches are virtually
identical.

6 A circumflex above a parameter always denotes an estimate of that
parameter.
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However, because the group sample sizes are equal, Equation 20
simplifies to

SÊ�	̂m1� � �2

n
��̂
m

2 � �̂�̂m��m

2 �. (21)

In order to evaluate the null hypothesis that 	m1 equals some
specified value, 0 in most cases and that which is assumed here, a
t statistic can be formed:

t �
	̂m1

SÊ�	̂m1�
. (22)

If the null hypothesis of no group effect on the mth polynomial
change coefficient is true, the t statistic will follow a central t
distribution with 2n � 2 degrees of freedom. Of course, ultimate
interest is in 	m1, not 	̂m1. Thus, it is generally desirable to know
the confidence interval limits for 	m1. Computing the confidence
interval for 	m1 is a simple matter. The margin of error for the mth
polynomial change coefficient is the standard error multiplied by
the appropriate critical t value. For a symmetric two-sided confi-
dence interval, the critical value is t�2n � 2, 1 � �/ 2�, where there are
2n � 2 degrees of freedom because of the two-stage estimation
procedure used for the derivation, which is literally a two inde-
pendent group t test. Thus, the confidence interval for the mth
polynomial change coefficient is

probability�	̂m1 � SÊ�	̂m1�t�2n�2,1��/ 2� � 	m1 � 	̂m1

� SÊ�	̂m1�t�2n�2, 1��/ 2� � 1 � �, (23)

where 1 � � is the desired confidence level (e.g., .95).

Accuracy in Parameter Estimation for Polynomial
Change Models

Although planning sample size for sufficient statistical power is
an important research design consideration, statistical power can
be high while the corresponding confidence interval for the pa-
rameter of interest is wide. Conversely, the expected confidence
interval width can be sufficiently narrow, but the statistical power
low, albeit this tends to happen only when the population param-
eter is relatively close to the null value. Kelley and Rausch (2006)
discussed the potential discrepancy in the sample size from the
power and AIPE approaches to sample size planning in the context
of the standardized mean difference, but conceptually the issue is
the same here in the context of longitudinal polynomial change
models for the group-by-time interaction. When interest concerns
the population value of the parameter, a reject or fail-to-reject
outcome of a null hypothesis significance test does not provide
much information. Sample size planning with the goal of obtaining
a narrow confidence interval dates back to at least Guenther (1965)
and Mace (1964) and has been discussed in the recent literature
(e.g., Algina & Olejnik, 2000; Bonett, 2008; Bonett & Wright,
2000, in press; Kelley, 2007, 2008; Kelley & Lai, 2011; Lai &
Kelley, in press; Liu, 2010) as an alternative or supplement to
power analysis as effect sizes and confidence intervals have be-
come a more widely used approach to making scientifically based

inferences. Of course, in some situations, there may be a desire for
sufficient statistical power as well as a narrow confidence interval
(e.g., Jiroutek, Muller, Kupper, & Stewart, 2003).

To begin, from the confidence interval procedure discussed
earlier, the observed confidence interval width for any realization
of a confidence interval is

w � 2SÊ�	̂m1�t�2n�2,1��/ 2�. (24)

Let  be the desired confidence interval width. The basic AIPE
approach seeks to find the minimum sample size so that the
expected confidence interval is sufficiently narrow. That is, the
AIPE approach seeks the minimal sample size so that

E�w� � . (25)

In many cases, the theoretical sample size where E�w� �  will be
fractional. The necessary sample size is always rounded to the next
largest integer, so in reality E�w� is generally slightly less than .

Operationalizing a “sufficiently narrow” confidence interval for
the group-by-time interaction is very context specific and will vary
greatly from one situation to another. For example, educational
psychologists studying vocabulary development over time for
third-graders randomly assigned to treatment group (e.g., an ad-
vanced work immersion program) or control group (e.g., tradi-
tional third-grade vocabulary instruction) may set the desired
confidence interval width (i.e., ) for the confidence interval for
the group-by-time interaction to a width of 20 vocabulary words.
However, industrial–organizational psychologists studying the
productivity of new investment generation over time for account
representatives randomly assigned to treatment group (e.g., repre-
sentatives who use a comprehensive customer relations database
for maintaining client information) or control group (representa-
tives who choose their own approach for maintaining client infor-
mation) may set the desired confidence interval width (i.e., ) for
the confidence interval for the group-by-time interaction to a width
of $1,000. The point is, the desired confidence interval width will
be based on a minimum of the particular measurement scale and
the specific goals of the researcher with regards to how accurately
estimated the coefficient for the group-by-time interaction is. Us-
ing another strategy, rather than choosing the desired confidence
interval width on the basis of a specified number of raw-score
units, the researcher could plan the desired confidence interval
width on the basis of (a) a certain percentage (e.g., 20%) of the
estimated standard deviation of the group-by-time standard devi-
ation (e.g., set  � .20 � ���̂m

2 ), (b) a certain percentage of the
estimated standard deviation of the errors (e.g., set  � .20 �
��ε

2), or (c) a certain percentage of the estimated value of the
group-by-time coefficient itself (e.g., set  � .20 � 	m1).

Recalling the standard error of a polynomial change coefficient
from Equation 21, suppose that �
m

2 and �ε
2 could be known or well

approximated. Given this, the standard error would be a function
only of n. Furthermore, the sample size could be planned such that
the confidence interval width had an approximate expected value
of . In other words, the research question addressed is the
following: Given �
m

2 and �ε
2, at what sample size is E[w]� for

a particular design? Recalling that T and �
t�1

T cmt
2 are fixed design

factors, ��̂m � �m

2 is implicitly known if �ε
2 is known, and conse-
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quently could be determined if �ε
2 was known or could be well

approximated.
The expectation of the confidence interval width is not a pre-

cisely known quantity but can be approximated. Using the confi-
dence interval formulation for 	m1 from Equation 23, we first write

E�w� � E�2SÊ�	̂m1�t�2n�2,1��2��. (26)

Realizing that 2t�2n � 2, 1 � �/ 2� is a constant, we can rewrite Equa-
tion 26 as

E�w� � 2t�2n�2,1��/ 2E�SÊ�	̂m1��. (27)

We substitute for the sample variances used to compute SÊ�	̂m1� in

Equation 21 the population variances when computing E�SÊ�	̂m1��
in order to obtain an approximate expectation. That is, we set

E�SÊ�	̂m1�� � �2

n
��
m

2 � ��̂m��m

2 �. (28)

In general, the expectation of a function is not the same as the
function of the expectation, that is, E���z�� does not generally
equal ��E�z��, where �(�) is some function and z is some random
variable. Nevertheless, the delta method (i.e., a commonly used
way of obtaining the standard error for a parameter estimate) says
that under some fairly general conditions, this approximation is
reasonable, especially as sample size increases (e.g., Oehlert,

1992). Also, using SÊ�	̂m1� with population values substituted for

their sample analogs to approximate E�SÊ�	̂m1)] is justified be-
cause the variance estimates are unbiased and consistent, implying
that as sample size grows sufficiently large the estimates of �̂
m

2 and
�̂ε

2 converge to �
m

2 and �ε
2, their respective population values.7

With this approximation (i.e., Equation 28), an approximate
expression for the expected value of the standard error is available
that allows the approximate confidence interval width to be deter-
mined:

E�w� � 2t�2n � 2, 1 � �/ 2��2

n
��
m

2 � ��̂m��m

2 �. (29)

Given our approximation for the expected confidence interval
width, we set E[w] from Equation 29 to the desired value of the
confidence interval width,

 � 2t�2n � 2, 1 � �/ 2��2��
m

2 � ��̂m��m

2

n �. (30)

Solving Equation 30 for sample size yields

n � ceiling���
m

2 � ��̂m��m

2 �8t�2n � 2, 1 � �/ 2�
2

2 � (31)

or, equivalently, because of Equation 18

n � ceiling���̂m

2 8t�2n � 2, 1 � �/ 2�
2

2 �. (32)

Thus, solving Equation 31 for the desired confidence interval

width, which requires knowledge of �
m

2 and ��̂m� �m

2 , or solving
Equation 32 which requires only ��̂m

2 , yields the necessary sample
size so that the expected confidence interval width for the mth
polynomial change coefficient will be sufficiently narrow.

Notice that the sample size procedure of Equation 31 (or Equation
32) is the per group sample size. The total sample size necessary is
thus 2n � N. In the power analysis framework, not only do �
m

2 and
��̂m��m

2 , or just ��̂m

2 , need to be specified, so too does 	m1.8 This is the
case because statistical power depends not only on the sampling
variability of the estimate, but also on the location of the parameter.
Thus, an advantage of the AIPE approach over the power analysis
approach in terms of implementation is that the AIPE approach does
not require specification of an extra parameter, namely the population
value of 	m1 or a value of 	m1 that is of minimal interest.9 Although
difficult to discern from Equation 32 initially, halving the desired
confidence interval width will lead to approximately a four-fold
increase in the planned sample size. This is the case because if w⁄2 is
substituted for w in Equation 32, the net effect is that 4 goes to the
numerator because the fraction (i.e., w⁄2) in the denominator is
squared, which functionally moves 4 (i.e., 2 squared) into the numer-
ator of the equation.

Although Equation 31 (or Equation 32) yields the desired sam-
ple size, implementation of Equation 31 (or Equation 32) is not as
simple as it might first appear. This is the case because sample size
is on the left-hand side of the equation and implicitly on the
right-hand side of the equation via the critical t value by way of its
degrees of freedom, 2n � 2. Thus, Equation 31 (or Equation 32)
requires an iterative solution in order for it to be solved. Solving
Equation 31 (or Equation 32) can be implemented by first selecting
an initial sample size that has an expected width that is wider than
desired. From that sample size, which is too small, sample size is
increased until successive iterations of the sample size do not
change, and thus an equilibrium is reached on the left-hand and
right-hand sides of the equation. The sample size where successive
iterations of the sample size remain the same is the minimum
sample size necessary so that the inequality is satisfied.

Achieving a Narrow Confidence Interval With a
Desired Degree of Assurance

Although sample size from Equation 31 (or Equation 32) pro-
vides necessary sample size so that the expected confidence inter-
val width for the group-by-time interaction on the mth polynomial
change coefficient will be sufficiently narrow, any given realiza-
tion of a confidence interval will almost certainly be larger or
smaller than the desired width. That is, the expectation only

7 Although we have based the presentation thus far on a two-stage
approach, as McCulloch et al. (2008, chapter 2, section b) pointed out, even
in the simplest case of a multilevel model, the expectation of the standard
error of a fixed effect can be difficult to determine. Thus, the value of

E�SÊ�	̂m1� is not known exactly for the general case for maximum likeli-
hood estimation.

8 Rather than specifying 	m1 itself for the power analysis, the minimum
value of 	m1 that would be practically important could be specified.

9 A standardized version of 	m1 could be supplied (see footnote 4 of
Raudenbush & Xiao-Feng, 2001, p. 391), which technically requires only
a single parameter, but implicitly is based on 	m1 and �
m

2 .
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satisfies approximately the mean confidence interval width but
does not guarantee a sufficiently narrow confidence interval in any
particular situation. This issue is similar to when a mean is esti-
mated from a normal distribution. Even though the sample mean is
an unbiased estimator of the population mean, the sample mean
will either be smaller or larger than the population value, almost
certainly. This is the case because the sample mean is a continuous
random variable, as is the confidence interval width, due to the fact
that both are based on random data. Thus, approximately half of
the time, the computed confidence interval will be narrower than
the desired width specified, and the other half of the time the
computed confidence interval will be wider than desired.

Because the confidence interval width actually depends only on
��̂m

2 , the sum of the two random quantities �̂
m

2 and �̂�̂m� �m

2 , under-
standing the distributional properties of ��̂m

2 will be beneficial.
As can be seen from Equation 29, if a realization of �̂�̂m

2 (i.e.,
�̂
m

2 � �̂�̂m��m

2 ) is larger than ��̂m

2 , the confidence interval will tend
to be too wide. (Recall, however, that w may be less than  in this
case because of the requirement that n be a whole number, and thus
the expected width is slightly narrower than .) However, when a
realization of �̂�̂m

2 is obtained that is smaller than the corresponding
population value on which the sample size was based, the confi-
dence interval width will be narrower than desired (i.e., w � ).
If sample size could be planned so that �̂�̂m

2 would be smaller than
��̂m

2 with some specified degree of probabilistic assurance (e.g.,
99%), then the observed confidence interval would be sufficiently
narrow more than the roughly half of the time that it is sufficiently
narrow with the expected width approach.

Let � be the desired degree of assurance, a probabilistic statement,
that the confidence interval will be sufficiently narrow. That is,

probability�w � � � �.

Further, let ���̂m

2 be the value of �̂�̂m

2 that will not be exceeded with
�100% assurance for the particular condition. That is,

probability��̂�̂m

2 � ���̂m

2 � � �.

Substituting ���̂m

2 for ��̂m

2 from the standard procedure (i.e., Equa-
tion 32) will then ensure that the confidence interval will be
sufficiently narrow with assurance. A method of finding ���̂m

2

would thus be desirable.
Obtaining ���̂m

2 is possible because �̂�̂m

2 is an estimated variance
(i.e., the pooled variance of the unique effects for the mth change
coefficient) of normally distributed values (i.e., the unique effects of
the mth change coefficient), which is assumed for the unique effects
in multilevel models fitted via maximum likelihood estimation meth-
ods. Confidence limits can be found for the variance (or standard
deviation via transformation) of normally distributed values using a
chi-square distribution (e.g., Hays,1994). In particular,

�̂�̂m

2 �2n � 2�

��̂m

2 � ��2n�2�
2 , (33)

where � means “is distributed as” and the 2n � 2 in the numerator
is the value of the degrees of freedom. Note that Equation 33 is
analogous to the general properties of variances as they relate to
chi-square distributions. In order to find the value of �̂�̂m

2 that will
not be exceeded �100% of the time, one needs to find the �

quantile from a (central) chi-square distribution with 2n � 2
degrees of freedom and convert that to the scale of �̂�̂m

2 . More
formally,

���̂m

2 �
��̂m

2 ��2n�2, ��
2

2n � 2
, (34)

where ��2n�2, ��
2 is the �th quantile from a chi-square distribution

with 2n � 2 degrees of freedom. The degrees of freedom in this
situation, as before, are 2n � 2 because an estimate of the variance
is obtained by pooling from across the two groups.

Now, given ���̂m

2 (i.e., the value not to be exceeded by �̂�̂m

2 with
assurance �) has been obtained, substituting ���̂m

2 for ��̂m

2 in Equation
32 and solving, which involves iteration due to n being on the
left-hand side and implicitly on the right-hand side of the equation,
will provide the sample size such that the confidence interval will be
no wider than desired with assurance no less than �. That is, solving

n � ceiling����̂m

2 8t�2n�2, 1��/ 2�
2

2 �. (35)

will provide the necessary sample size such that the obtained
confidence interval will not be wider than desired with assurance
�. Like with the standard procedure, the requirement that fractional
sample size be a whole number implies that sample size is always
slightly larger than desired, and thus the empirical will tend to be
larger than the nominal. This poses no practical problem provided
that the sample size based on is the minimal sample size where

probability�w � � � �

holds.

Monte Carlo Simulation Study of the Effectiveness of
the Procedures

O’Brien and Mueller (1993), in discussing the exactness of power
computations that are based on population parameters, recognized that
“strict numerical accuracy of the power computations is usually not
critical,” as “the population parameters [used in the power analysis]
are conjectures or estimates” anyway (p. 23). Nevertheless, ideally if
the population parameters were in fact known, the sample size plan-
ning procedures would produce the desired result, at the very least to
a reasonable approximation. Because we used properties of least
squares when developing sample size planning methods in which
maximum likelihood is used for estimation, in an analogous fashion
as Raudenbush and Xiao-Feng (2001) did, our methods are approxi-
mate to a certain degree. Further, relying upon the consistency prop-
erty of maximum likelihood for finite sample sizes is potentially
problematic, in that the particular finite sample size suggested by the
procedure might not be large enough for the desirable properties of
maximum likelihood estimates to be realized. In order to assess the
effectiveness of the proposed sample size planning procedures, we
conducted a Monte Carlo simulation study. The Monte Carlo simu-
lation study was based on two different situations taken from the
literature, where we examine the expected confidence interval width
as well as when a desired degree of assurance is incorporated.

It should be noted that any sample size planning procedures that
require a population parameter to be specified will necessarily be
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limited by the appropriateness of the value(s) used for the popu-
lation parameter(s). The appropriateness of the sample size plan-
ning procedure output to the misspecification of the population
parameter input speaks to the robustness of the procedure. Al-
though the robustness of a statistical procedure is important, it is
beyond the scope of this article. What is important here is that the
proposed sample size planning methods perform as they should,
given that the appropriate values for the population parameters
have been specified. That is, under the ideal circumstances, we
seek to answer the question “Does the method we propose perform
in an optimal way?” We used our Monte Carlo simulation study to
evaluate the appropriateness of the procedure given that the correct
values are supplied. We now outline the two studies we used for
the bases of the parameter values.

Study 1: Tolerance of Antisocial Thinking
During Adolescence

We used the Elliot, Huizinga, and Menard (1989) study of the
tolerance of antisocial thinking during adolescence as the basis for
part of our Monte Carlo simulation study. The Elliot et al. (1989)
used data from the National Youth Survey, where a dependent
variable of interest was “tolerance of antisocial behavior” and five
measurement occasions for Cohort 1 (age 11 years at the beginning
and 15 years at the end of the study) with a sample size of 239.
This study was also used by Raudenbush and Xiao-Feng (2001) in
the context of power analysis, as well as in other works to illustrate
various methodological issues (e.g., Miyazaki & Raudenbush,
2000; Raudenbush & Chan, 1992, 1993; Willett & Sayer, 1994).
Like Raudenbush and Xiao-Feng (2001), we used sex as a group-
ing variable so as to estimate the group-by-time (i.e., sex-by-time)
interaction (i.e., 	11). The estimates used are those reported in
Raudenbush and Xiao-Feng (2001): the error variance (i.e., �̂2) is
0.0262, the true variance of the intercept is 0.0333, and the true
variance of the slope is .0030. Note that it is not necessary to
specify a population value or a parameter of minimal interest for
the slope, as is the case in power analysis, as the width of the
confidence interval is independent of the value of the slope.10

For the tolerance of antisocial thinking during adolescence data, a 3
(number of measurement occasions � 3, 5, and 10) by 2 (widths � .25
and .05) by 2 (sample size procedure for the expected confidence interval
width will be sufficiently narrow and there will be 85% assurance that the
confidence interval will be sufficiently narrow) Monte Carlo simulation
was used. Our reading of the literature suggested that there often tend to
be fewer rather than many measurement occasions in psychology and
related disciplines. The number of measurement occasions of three, five,
and 10 seemed quite reasonable, given what has been found in the
literature for typical longitudinal designs (e.g., Kwok, West, & Green,
2007).

Each of the 12 conditions was based on 10,000 replications
using the PROC MIXED procedure in SAS (Version 9.2). Such a
large number of replications were used so that we could very
accurately estimate the mean and median confidence interval
widths for the expected width case and the percentile and percen-
tile rank of the desired width for the assurance case. In the Monte
Carlo simulation, all assumptions were satisfied, illustrating the
ideal conditions in order to evaluate the effectiveness of our
sample size planning methods. Our combination of conditions led

to planned sample sizes that ranged from small (e.g., 43) to
relatively large (e.g., 793); demonstrating the relative variety of
situations of the conditions used in the Monte Carlo simulation
study to examine the effectiveness of the sample size planning
procedures.

Table 1 shows the results of the Monte Carlo simulation based
on the tolerance of antisocial thinking during adolescence data for
the expected confidence interval width. As Table 1 shows, the
mean and median confidence interval widths were nearly identical
to the desired width in most cases. The biggest discrepancy was for
the widest confidence interval condition, where the desired width
() was 0.05 and necessary sample size was only 43 per group. In
this most discrepant condition, the mean of the confidence interval
widths was 0.0487, illustrating the mean confidence interval
widths that were 0.0013 units smaller than specified. As the sample
sizes became larger, the desired width and the empirical widths
converged and became nearly identical. Thus, in this situation, the
procedure developed for planning sample size to ensure that the
expected width would be sufficiently narrow worked very well.

Table 2 shows the results of the Monte Carlo simulation based
on the tolerance of antisocial thinking during adolescence data
when an assurance parameter is incorporated produced the desired
proportion of confidence intervals that were sufficiently narrow no
less than the specified assurance of .85. The biggest discrepancy
was again for the 0.05 condition, where the procedure implied
sample size was 49. Analogous to the expected width situation, as
the sample size becomes larger, the empirical assurance ap-
proaches the specified value. Thus, in this situation, the procedure
developed for planning sample size to provide a desired degree of
assurance worked very well.

Study 2: Quality of Marriage

Karney and Bradbury (1995) provided a tutorial on how change
models can be used to better understand the way in which the
quality of marriage changes over time that is based on repeatedly
measuring the same set of married individuals. Karney and Brad-
bury (1995) provided illustrative data from a study of newlywed
couples. In particular, the data were from 25 newlywed wives from
five measurement occasions over the first 30 months of marriage
(measured approximately every 6 months), where the participants
self-reported marital quality using the Marital Adjustment Test
(MAT; Locke & Wallace,1959). In general, a sample size of 25 is
inordinately small for an application of a multilevel change model.
However, we used their data simply for illustrative purposes,
where the estimate of the error variance (i.e., �̂ε

2) is 134.487, the
estimate of the true variance of the intercept is 447.393, and the

10 For power analysis, a value for the group-by-time interaction, or a
standardized version which implicitly includes the slope as well as the
variance, must be specified, as the noncentral parameter depends on it.
However, because the confidence interval width is independent of the
variability, as is the case for a normal distribution, the slope is not specified
in the AIPE approach to sample size planning. This is true for AIPE
whenever the effect size is independent of its variance, which is not the
case for all effect sizes (e.g., standardized mean difference, coefficient of
variation, squared multiple correlation coefficient, and so on). Thus, be-
cause one less parameter value needs to be specified in the AIPE approach,
it is easier to plan sample size from an AIPE perspective.
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estimate of the true variance of the slope is 27.928. Although
the Karney and Bradbury (1995) study was for only a single group,
assuming homogeneity of variance across groups implies that only
a single group is necessary for the estimation of the necessary
parameters to plan sample size. Imagine, for example, that interest
concerned newlywed first-time wives and newlywed second-time
wives. In such a situation, the group-by-time interaction may be of
interest and estimating the difference between the two groups with
a sufficiently narrow confidence interval may provide a valuable
research outcome. Thus, data from single-group designs can po-
tentially be helpful for planning sample size when multiple groups
are involved.

Again, as before, the number of measurement occasions chosen
was three, five, and 10, which we believe is representative of the
literature (e.g., Kwok et al., 2007), not considering two measure-
ment occasions, which is not sufficient to estimate the fixed and
random effects of both an intercept and a slope in a multilevel
model (although certain restrictions, such as a fixed slope with no
random effect, would allow a multilevel model to be fitted to two
measurement occasions). Further, rather than having specified

absolute values of the expected width directly, we set the specified
width to be a proportion of the estimated true variance of the slope.
In particular, we specified the desired confidence interval widths to
be 5% ( � 1.396), 10% ( � 2.793), and 20% ( � 5.586) of the
true variance of the slope. These proportions are arbitrary, but we
believe they are reasonable and provide what many might consider
small, medium, and large sample sizes. Although the confidence
interval widths in terms of an absolute value as well as a propor-
tion are arbitrary in general, for purposes of a Monte Carlo
simulation, we have covered what we regard as adequate coverage
of the range of sample sizes used in applied psychological re-
search. Our combination of conditions led to a wide range of
planned sample sizes that ranged from small (e.g., 42) to relatively
large (e.g., 1,566), demonstrating the relative variety of situations
of the conditions used in the Monte Carlo simulation study to
examine the effectiveness of the sample size planning procedures.

Table 3 shows the results of the Monte Carlo simulation based
on the quality of marriage data for the expected confidence interval
width. As Table 3 shows, the mean and median confidence interval
widths were very close for the narrow and medium sample size for

Table 1
Monte Carlo Simulation Results for the Tolerance of Antisocial Thinking Example: Proposed
AIPE Sample Size Planning Method For Expected Width of the Confidence
Interval (Equation 31)

Per-group sample size  Mw Mdnw SDw

T � 3

793 .0250 0.0249932 0.0249965 0.000442782
200 .0500 0.0498566 0.0498429 0.0017698

T � 5
278 .0250 0.0249251 0.0249327 0.000743270
71 .0500 0.0493865 0.0494098 0.0029557

T � 10

165 .0250 0.0248532 0.0248318 0.000978308
43 .0500 0.0486610 0.0485635 0.0037387

Note. Mw, Mdnw, and SDw denote the mean, median, and standard deviation, respectively, of the observed ws.
AIPE � accuracy in parameter estimation.

Table 2
Monte Carlo Simulation Results for the Tolerance of Antisocial Thinking Example: Proposed
AIPE Sample Size Planning Method for Obtaining an 85% Assurance of Sufficiently Narrow
Confidence Interval (Equation 35)

Per-group sample size  PR() 85%ile

T � 3

822 .0250 0.8547 0.024991
214 .0500 0.8595 0.049930

T � 5

295 .0250 0.8733 0.024926
79 .0500 0.8884 0.049542

T � 10

178 .0250 0.8814 0.024856
49 .0500 0.9104 0.048978

Note. PR() is percentile rank of , and 85%ile is the 85th percentile. AIPE � accuracy in parameter
estimation.
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each of the three measurement occasions (six situations). The
biggest discrepancy was for the widest confidence interval condi-
tions for four and five measurement occasions (four situations). In
these two situations, the procedure implied sample sizes were 56
and 42, respectively. The mean confidence interval width in these
conditions was approximately 5.50 and 5.51, respectively, whereas
the desired confidence interval widths were both 5.86. Thus, there
were discrepancies of �.36 and �.35 units for the widest confi-
dence interval conditions for four and five measurement occasions,
or a �6.14% and �5.97% disparity, respectively. Although not
ideal, the discrepancy is so slight that the implications for applied
research seem to be, at worst, negligible. However, because the
confidence interval widths are narrower than desired, this is actu-
ally an advantageous problem. Overall, the method to plan sample
size, so that the expected width is sufficiently narrow, works well.

Table 4 shows the results of the Monte Carlo simulation based
on the quality of marriage data with an assurance parameter
incorporated that produced the desired proportion of confidence
intervals that were sufficiently narrow (no less than the specified
assurance of 95%). An assurance of 95% was used here to show
the generality of the procedure. The 85% used previously is what
we regard as about the smallest assurance that seems to be mean-
ingfully justified. We chose 95%, rather than an assurance of 99%,
so that we could determine how much over the specified assurance
the empirical assurance would be. For example, had we specified
an assurance of 99% and 100% of the confidence intervals been
sufficiently narrow, we would not have been able to tell if the
sample size was in fact appropriate or if the planned sample size
was much too large. However, setting the assurance to 95%
allowed us to gauge the appropriateness of the sample size by
ensuring that the empirical assurance was not too much larger than
the nominal assurance value.11

Out of all of the empirical assurances, the biggest discrepancy was
again for the widest desired confidence interval condition, where the
procedure implied sample size was 53. In this situation, 97.28% of the
confidence intervals were sufficiently narrow, whereas the assurance
parameter was such that 95% of the intervals should have been

sufficiently narrow. Thus, the worst case was off by only 2.28 raw
percentage points in a situation with a reasonably small sample size
(i.e., 53 per group). Analogous to Table 2, as the sample size becomes
larger, the empirical assurance approaches the specified value. Thus,
in this situation, the procedure developed for planning sample size so
that there was a desired degree of assurance worked very well.

Discussion

Longitudinal research involving two groups is a common way to
assess group differences in change. In their work on the power
analytic approach to sample size planning for the group-by-time
interaction, Raudenbush and Xiao-Feng (2001) provided compelling
reasons why the group-by-time or, more generally, the group-by-trend
(e.g., linear, quadratic, cubic) effect is often important in applied
research contexts. Realizing the importance of the group-by-time
interaction and the fact that the estimate will almost certainly not
equal the population value illustrates the value of providing a confi-
dence interval for the population value so that the population value
can be bracketed with the specified level of confidence. However, a
wide confidence interval illustrates the uncertainty with which the
population value has been estimated. Planning sample size so that the
confidence interval width for the group-by-time interaction will (a)
have a sufficiently narrow expectation or (b) have a desired degree of
assurance that the confidence interval will be sufficiently narrow is a
natural way to plan sample size in longitudinal studies involving two
groups.

Although our work provides a way to plan sample size to have a
narrow confidence interval for the group-by-time interaction in a
two-group design, there are limitations. An important limitation is that
we do not allow for missing data in the design phase of the research
study, but we presume that all available data will be used in the

11 Note that it is purely coincidental that the necessary sample sizes from
the T � 10 case for the tolerance of antisocial thinking example and the
T � 5 case from the quality of marriage example are so similar.

Table 3
Monte Carlo Simulation Results for The Quality of Marriage Example: Proposed AIPE Sample
Size Planning Method for Expected Width of the Confidence Interval Skip (Equation 31)

Per-group sample size Desired width Mw Mdnw SDw

T � 3

1,503 5% of slope variance ( � 1.396) 1.3955940 1.3955972 0.0177483
377 10% of slope variance ( � 2.793) 2.7888950 2.7884883 0.0716498

95 20% of slope variance ( � 5.586) 5.5718544 5.5697285 0.2865597

T � 4

866 5% of slope variance ( � 1.396) 1.3948369 1.3949514 0.0236478
218 10% of slope variance ( � 2.793) 2.7817167 2.7810272 0.0932619

56 20% of slope variance ( � 5.586) 5.5022490 5.4976906 0.3708220

T � 5

654 5% of slope variance ( � 1.396) 1.3945582 1.3943652 0.0275262
165 10% of slope variance ( � 2.793) 2.7765749 2.7746552 0.1063374

42 20% of slope variance ( � 5.586) 5.5079918 5.5065839 0.4338801

Note. Mw, Mdnw, and SDw denote the mean, median, and standard deviation, respectively, of the observed ws.
AIPE � accuracy in parameter estimation.
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analysis phase. Under fairly general assumptions—such as data miss-
ing at random or missing completely at random (e.g., Rubin, 1976),
sample size not too small, and an approximately correct model—
multilevel models tend to provide quality results when there is some
degree of missing data. However, when the sample size is less than
that suggested by the planning procedure, the goal set forth in the
procedure will likely not be met with the same probabilistic proper-
ties.

Hedeker, Gibbons, and Waternaux (1999) developed sample size
planning methods for statistical power in the context of longitudinal
designs that are anticipated to have a known missing data structure.
Hedeker et al. (1999) noted that the assumptions in methodological
works on longitudinal study design (e.g., power analysis) are (a) that
sample size is constant across time and (b) that a minimum expected
sample size is used at any measurement occasion when sample size is
planned. For example, if the procedure implied sample size was 1,000
per group, with the greatest rate of attrition at any of the measurement
occasions being 10%, the recommendation would be to use a sample
size of 1,112 per group: ceiling(1000/.9) � 1,112. That is, if 1,112 is
the sample size used per group and if the data for 10% of the
individuals are missing at one particular measurement occasion, the
sample size at that particular measurement occasions will still be
1,000 per group, which is the procedure-implied value (if no missing
data existed). This is a generally conservative approach (Hedeker et
al., 1999) because the “extra” 112 individuals will contribute some
information to the analysis based on their other observed data. Cor-
respondingly, the actual statistical power will be greater than desired.
Having a greater than desired power is not in and of itself problematic,
but because each additional individual in the study takes additional
resources, it is undesirable to have more participants than necessary to
accomplish the stated goal (e.g., 80% statistical power). Nevertheless,
consideration of missing data in this manner leads to boundaries upon
which the theoretically ideal sample size will be contained within
(here between 1,000 per group and 1,112 per group). A difficulty in
implementing the Hedeker et al. (1999) approach is that one must
anticipate the percentage of missing data (i.e., retention rates) for each

of the two groups at each of the measurement occasions. Neverthe-
less, if such information could be estimated, using the Hedeker et al.
(1999) approach would provide the theoretically ideal sample size,
rather than the theoretically ideal sample size being bounded, as
exemplified above. Although we think missing data needs to be
carefully considered when designing a longitudinal study, we deal
only with the idealized case of no missing data in this article.

Like all mathematical models, if the initial assumption(s) on which
the model is based are not correct, then the output value(s) may not be
correct. Correspondingly, another limitation to our method is the
requirement of specifying the input value of ��̂m

2 . An obvious question
is, “How could one ever know ��̂m

2 ?” Unfortunately, it is very likely
that ��̂m

2 will not be known exactly in any particular situation. How-
ever, reasonable estimates of ��̂m

2 can often be obtained from a
previous study, meta-analysis, or pilot study. Like many sample size
planning procedures, where estimation of one or more population
values is required, the degree to which the value specified conforms to
the population values in reality is usually unknown.

With regards to the requirement of specifying the input value of
��̂m

2 , we believe that using values available from the literature, in
particular those based on several studies in a meta-analysis context, is
the ideal way to estimate the necessary parameters, provided that
appropriate studies exist. If such studies are not available, then esti-
mates obtained from a pilot study could be used to implement the
procedure, with the realization that the estimates from the pilot study
may differ considerably from the population values. That is to say, in
cases of pilot studies, the sampling variability of �̂�̂m

2 may be large
(e.g., Kraemer, Mintz, Noda, Tinklenberg, & Yesavage, 2006). One
possible solution is to use the upper limit of a plausible value for the
variance of the slope, as the upper limit of the set of plausible values
for ��̂m

2 could be obtained and used as if it was the population value.
Such a procedure would help to ensure with a high degree of confi-
dence that the sample size will be no smaller than necessary. Of
course, caution is also warranted if a previous study or meta-analysis
was based on a population that differs from the one from which the
sample will be taken.

Table 4
Monte Carlo Simulation Results for the Quality of Marriage Example: Proposed AIPE Sample
Size Planning Method for 95% Assurance of Sufficiently Narrow Confidence
Interval (Equation 31)

Per-group sample size Desired width PR () 95%ile

T � 3

1,566 5% of slope variance ( � 1.396) 0.9535 1.39535
408 10% of slope variance ( � 2.793) 0.9533 2.79021
111 20% of slope variance ( � 5.586) 0.9561 5.57026

T � 4

914 5% of slope variance ( � 1.396) 0.9488 1.39631
241 10% of slope variance ( � 2.793) 0.9570 2.78601

67 20% of slope variance ( � 5.586) 0.9627 5.54140

T � 5

696 5% of slope variance ( � 1.396) 0.9592 1.39380
185 10% of slope variance ( � 2.793) 0.9609 2.78202

53 20% of slope variance ( � 5.586) 0.9728 5.47623

Note. PR() is percentile rank of , and 95%ile is the 95th percentile. AIPE � accuracy in parameter
estimation.
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There is no question that designing a research study is difficult,
especially when parameter values that are unknown to the re-
searcher are required. The difficulty in determining the population
parameter(s) has led many researchers to not plan sample size.
However, we believe that the alternative of not formally planning
sample size is sufficiently worse than planning sample size on the
basis of a reasonable estimate, in this case, ��̂m

2 (see Equation 32).
To assist in the implementation of the sample size planning pro-
cedure, we have developed freely available software (see the
Appendix). We hope the methods developed assist researchers
who are interested in an accurate estimate of the group-by-time
interaction in longitudinal models.
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Appendix

Using R and MBESS to Implement the Methods Discussed

A function for sample size planning from the AIPE perspective
for polynomial change models was written and incorporated into
the MBESS (Kelley, 2007a, 2007b, 2007c; Kelley & Lai, 2010) R
package (R Development Core Team, 2010).12

Throughout the appendix, sans serif font denotes R functions,
options of functions, or output. Sans serif font followed by an open
parenthesis and immediately by a closed parenthesis denotes a par-
ticular R function. When specifications are given within the paren-
theses of a function, that function is directly executable in R, after the
MBESS packages have been installed and loaded. The easiest way to
install MBESS is with the install.packages() function in the
following manner
install.packages(pkgs�“MBESS”)

assuming that the machine has an active Internet connection, which
may require the user to select one of many download (i.e., mirror)
sites. Alternatively, MBESS can be installed via the Package Manager
drop-down menu (in the Windows and Macintosh versions) from the
R toolbar, where the user selects from the many packages available to
install onto his or her system. After MBESS is installed, it is loaded
into the current session with the require() function, which is
implemented as follows:
require(MBESS).
A set of help files also accompanies MBESS. For any function

in MBESS (or R more generally), the help file can be displayed
with the help function, help(). For example, the associated help
files for the ss.aipe.pcm() function, the function that imple-
ments the sample size planning methods developed in the article,
help(ss.aipe.pcm).
Additionally, when the exact name of a function is not known,

one can search for functions and help files by using the
help.search() function. For example, if one were interested
in computing a covariance matrix on a data set, searching for
“covariance matrix” via the help.search() function as fol-
lows
help.search(“covariance matrix”)

returns information on functions that pertain to covariance matrices.
More details on the way in which R is installed and used is available

for download via the freely available book An Introduction to R
(Venables, Smith, & the R Development Core Team, 2010).

For the ss.aipe.pcm() function, which is the function that
implements the methods developed in this article, the parameters
of the function are
ss.aipe.pcm(true.variance.trend, error.vari-

ance, variance.true.minus.estimated.trend�NULL,
duration, frequency, width, conf.level�.95,
trend�“linear”, assurance�NULL),
some of which need to be specified on any implementation of the
function, where true.variance.trend is the variance of the individ-
uals’ true change coefficients (i.e., �
m

2 , the first component on the
right-hand side of Equation 18), error.variance is the true error
variance (i.e., �ε

2 from the numerator of the right-hand side of
Equation 19), and variance.true.minus.estimated.trend is the vari-
ance of the difference between the mth true change coefficient
minus the mth estimated change coefficient (i.e., ��̂m��m

2 from
Equation 19). Because of the one-to-one relationship between �ε

2

and ��̂m��m

2 , only one of the two values needs to be specified.
Further, the parameters of duration, frequency, width, confidence
level (e.g., .90, .95, .99, and so forth), trend (either linear, qua-
dratic, or cubic), and assurance (e.g., NULL for only an expected
width, .85, .95, .99, and so forth) each need to be specified.

To illustrate how the ss.aipe.pcm() MBESS function is
used, we will use the previously discussed tolerance of antisocial
behavior example from Elliot et al. (1989), which was used as an
exemplar by Raudenbush and Xiao-Feng (2001) for their contri-
bution on sample size planning in the context of polynomial
change model for the power analytic approach.

12 R and MBESS are both open source and thus freely available. R is
available for download via the Comprehensive R Archival Network
(CRAN; http://www.r-project.org/) for computers running Microsoft Win-
dows, Linux/Unix, and Apple Macintosh operating systems. The direct link
to the MBESS page on CRAN, where the most up-to-date version of
MBESS and its corresponding manual are available, is http://cran
.r-project.org/web/packages/MBESS/index.html (note that these Internet
addresses are case sensitive).

(Appendix continues)
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Suppose that a researcher would like to plan sample size so that
the straight-line change coefficient has an expected 95% confi-
dence interval width of 0.025 units, which the researcher believes
is sufficiently narrow for the purposes of establishing an accurate
difference between a treatment group and a control group. The
study will have a duration of 4 years with one measurement
occasions per year, for a total of five measurement occasions. The
supposed variance of the linear trend (i.e., �
m

2 ) of 0.003 and the
supposed error variance (�ε

2) of 0.0262, both of which are obtained
from literature (i.e., in Raudenbush & Xiao-Feng, 2001 based on
the data of Elliot et al., 1989).

In this situation, the way in which the ss.aipe.pcm() MBESS
function is implemented, after MBESS has been installed and loaded
via the require() function, is as follows
ss.aipe.pcm(true.variance.trend�0.003,
error.variance�0.0262, duration�4,
frequency�1, width�0.025, conf.level�.95),

which returns the following output
“Results for expected width to be sufficiently

narrow”
278.

Thus, a sample size of 278 is required when the duration of the
study will be 4 units and the frequency of measurement occasions
is 1 year in order for the expected confidence interval width to be
0.025 units.

Suppose that the researcher was not happy with having only an
expected confidence interval width for the group-by-time interac-
tion of 0.025 units. Rather, suppose that the researcher wanted to
have 99% assurance that the 95% confidence interval would be
sufficiently narrow. The way in which sample size can be planned

in this situation with the ss.aipe.pcm() MBESS function is as
follows,
ss.aipe.pcm(true.variance.trend�.003,
error.variance�.0262,
duration�4, frequency�1, width�.025,
conf.level�.95, assurance�.99),
which returns the following output
“Results for Assurance”
316.
Thus, a sample size of 316 will be required to ensure that the

95% confidence interval will be sufficiently narrow (i.e., have a
width less than .025 units) at least 99% of the time.

As can be seen, the functions are easy to use and require only
minimal knowledge of R. Even if R will not be used for the
analysis of the results, R can easily be used for sample size
planning purposes. An additional function in the MBESS R pack-
age is the ss.power.pcm() function, which implements sam-
ple size planning for statistical power in this context. That is, the
ss.power.pcm() function implements the methods developed
by Raudenbush and Xiao-Feng (2001) for planning sample size in
order to have a desired statistical power. Detailed information on
the ss.power.pcm() function is available in the MBESS man-
ual or from R via the command
help(ss.power.pcm)

after MBESS has been installed and loaded.
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