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Abstract. The reliability of a composite score is a fundamental and important topic in the social and behavioral sciences. The most
commonly used reliability estimate of a composite score is coefficient a. However, under regularity conditions, the population value of
coefficient a is only a lower bound on the population reliability, unless the items are essentially s-equivalent, an assumption that is likely
violated in most applications. A generalization of coefficient a, termed x, is discussed and generally recommended. Furthermore, a point
estimate itself almost certainly differs from the population value. Therefore, it is important to provide confidence interval limits so as not to
overinterpret the point estimate. Analytic and bootstrap methods are described in detail for confidence interval construction for x. We go on to
recommend the bias-corrected bootstrap approach for x and provide open source and freely available R functions via the MBESS package to
implement the methods discussed.
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Researchers have a vested interest in the quality of the mea-
surement instruments they employ. One important, but
sometimes overlooked, aspect of a research study is the reli-
ability of the scores upon which inferences will be based and
the proper way the reliability of scores should be reported
and interpreted. Reliability has been a central issue in the
measurement of constructs for more than a century, dating
to at least Spearman when he attempted to overcome atten-
uated correlations due to observational errors that ‘‘inevita-
bly arise from errors in measuring’’ (Spearman, 1904,
p. 253; see Jones & Thissen, 2007, for a review). Although
measurement error is ubiquitous in research, better measure-
ment leads to better inferences and ultimately better conclu-
sions. Without high-quality measurements, the conclusions
and inferences based on those measurements can be called
into question and, in some circumstances, shown to be mis-
leading or even incorrect. If the integrity of conclusions and
inferences cannot be trusted because of unreliable scores in a
particular study, the study will likely contribute little to the
cumulative knowledge of a discipline.

In a study utilizing composite scores from a certain mea-
surement instrument collected on a sample, whether the
instrument is a test, procedure, questionnaire, survey, rating
scale, etc., it is a general recommendation that the reliability

of these scores be reported along with the information about
the population from which the sample was selected.
Although researchers using established measurement instru-
ments with known reliability properties are encouraged to
report the reliability as provided by the developer, the devel-
oper reported reliability may or may not be the same as for
the particular population from which the sample was
selected (e.g., a clinical sample, a different age group, a sam-
ple from another country, a test translated into another
language, etc.). It is important to realize that a measurement
instrument is itself not inherently reliable or unreliable and
that reliability is not an inherent property of a particular
measurement instrument – rather, reliability is a property
of the scores for a particular population on a particular mea-
surement instrument (e.g., Thompson, 2003; Wilkinson &
the American Psychological Association Task Force on
Statistical Inference, 1999).

Arguably more important than the estimated reliability
coefficient itself, however, is the confidence interval for
the population value of the reliability coefficient. The confi-
dence interval is valuable because the point estimate itself
almost certainly does not equal the population parameter
exactly, however, providing the confidence limits identifies
a range of plausible parameter values that will contain the
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population value of the reliability with the specified (e.g.,
90%, 95%, or 99%) degree of confidence.1 It is this popula-
tion value that is of interest, not the point estimate itself. As
Wilkinson and the American Psychological Association
(APA) Task Force on Statistical Inference recommended,
‘‘interval estimates should be given for any effect size
involving principal outcomes’’ (1999, p. 599). In the context
of measurement instruments, the effect size of interest is the
reliability coefficient of the scores. In line with the recom-
mendation from Wilkinson and the APA Task Force, some
journals request or require confidence intervals of reliability
coefficients whenever these coefficients are reported in their
instructions to authors (e.g., Fan & Thompson, 2001).

This article assumes a homogeneous measurement
instrument, which is an instrument that measures only a sin-
gle construct, where a one-factor model will hold. The stan-
dard procedure for estimating the reliability of a
homogeneous measurement instrument in the social and
behavioral sciences is coefficient a. However, given the sin-
gle construct measured in a homogeneous measurement
instrument, the population value of coefficient a is only a
lower bound on the population value of reliability, unless
the stringent assumption of essential s-equivalence holds,
which is an assumption that is likely untenable in most
applied settings (Novick & Lewis, 1967).2 The assumption
of essential s-equivalence is such that item score means dif-
fer only by additive constants, but not in scale (Lord & Nov-
ick, 1968, p.50). Under the one-factor model, this means the
items are equally sensitive (i.e., same value of the factor
loading) at measuring the underlying construct. Essential
s-equivalence has also been referred to in the literature as
a true-score equivalence model (e.g., McDonald, 1999,
p. 85). An alternative estimate of population reliability,
termed omega (x), allows for some items to be more or less
sensitive than others at measuring the underlying construct.
A formal discussion clarifying the similarities and differ-
ences of coefficient a and x is forthcoming.

One thing that is clear from the applied literature is that
coefficient a is currently the way in which researchers tend
to operationalize the reliability of a measurement instrument.
However, the meaning and usage of coefficient a is such a
pressing matter that Psychometrika recently published an
article calling into question the usefulness of coefficient a
(Sijtsma, 2009a) with commentary articles (Bentler, 2009;
Green & Yang, 2009a, 2009b; Revelle & Zinbarg, 2009)
and a rejoinder (Sijtsma, 2009b). We second many concerns
raised in those recent articles. We address the concerns by
(a) advocating the use of an appropriate reliability coeffi-
cient, (b) discussing the importance of a confidence interval

for the population value of reliability, (c) reviewing methods
of confidence interval formation for population reliability
coefficients, and (d) offering an easy-to-use R package so
that applied researchers can use the methods we discuss.

In particular, we argue that coefficient a is oftentimes an
inadequate estimate of reliability and that there are other bet-
ter estimates available, including the one that will be dis-
cussed at length in this paper, x. Although other estimates
of reliability are available (e.g., maximal reliability, u [Li,
1997; Yuan & Bentler, 2002], Revelle’s b [1979], greatest
lower bound [Ten Berge, 2004], and reliability for a hierar-
chical factor, xh [McDonald, 1970; Zinbarg, Revelle, Yovel,
& Li, 2005]), our discussion focuses on x because it is the
best reliability estimate for composite scores of homogeneous
tests.3 Therefore, we provide a tutorial type treatment of x
and emphasize that a point estimate is not enough – a confi-
dence interval for the population reliability coefficient is
needed also to effectively communicate information about
the reliability of a particular instrument in a particular popu-
lation. Correspondingly, we discuss the construction of con-
fidence intervals for population x using both analytic and
bootstrap methods. As Revelle and Zinbarg (2009) have
noted, quality software must exist and be available to those
who would benefit from its use. Along those lines, we pro-
vide a freely available and easy-to-use software package
(Kelley, 2007a, 2007b; Kelley & Lai, 2010) that is part of a
more general and freely available software program (R
Development Core Team, 2010). We demonstrate the meth-
ods discussed with the software provided in order to illustrate
how the software can be used. We believe that the expository
nature of this article, coupled with the software that we have
provided, will promote the use of the methods we discuss and
will be helpful for advancing social and behavioral science.

Estimating the Reliability
of an Unweighted Composite

The classical test theory (CTT) decomposition of the
observed value for a particular item is

X ij ¼ sij þ �ij; ð1Þ
where Xij is the observed value for the ith individual
(i = 1, ..., N) on the jth item (j = 1, ..., J), sij is the true-
score for the ith individual on the jth item, and �ij is the
error for the ith individual on the jth item (e.g., Guilford,
1954; Gulliksen, 1950; Lord & Novick, 1968; McDonald,
1999; Zimmerman, 1975).4 The theorem defining CTT

1 The confidence interval is based on random data and is thus itself a random value. Provided assumptions are met, if an infinite number of
confidence intervals were computed, (1 � a 0)100% of the confidence intervals would bracket the value of the population parameter, where
(1 � a 0) is the desired confidence level. See Hahn and Meeker (1991) for more details about the technical meaning of confidence intervals.

2 When the one-factor model does not hold because errors are correlated and are treated purely as measurement errors, coefficient a may
overestimate the value of the population reliability (Green & Hershberger, 2000; Komaroff, 1997; Zimmerman, Zumbo, & Lalonde,
1993). Throughout the article, we assume that the errors are uncorrelated.

3 When a general factor can be identified for a scale that measures multiple constructs, a hierarchical version of x (xh) will be more
appropriate (Zinbarg et al., 2005). When only one construct is being measured, as the focus of this paper, x is the most appropriate.

4 It should be noted that it is assumed that the variance of the Xij values and the variance of �ij values are finite, which further implies that the
means are finite, since if the r + 1 moment is finite so too must be the rth moment (e.g., Lord & Novick, 1968, p. 36).
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states that the errors of measurement (i.e., the �.js) are
mutually uncorrelated (i.e., q(�.j, �.j 0) = 0 for all j 5 j 0),
are uncorrelated with all true-scores (i.e., q(sj, �.j 0) = 0
for all j = j 0 and j 5 j 0), and have a mean of zero (i.e.,
E[�.j] = 0), where a centered dot in place of i in the sub-
script denotes across individuals (Lord & Novick, 1968,
Theorem 2.7.1, p. 36, see also p. 38). With the appropriate
generalization of the models, the stated assumptions can
be relaxed and a more general framework can be used.

Although Equation 1 is the CTT representation of an
observed item, an individual’s score for many measurement
instruments is the sum of the values from the J items. Form-
ing a score from the sum of items generally makes sense
only when the items form a homogeneous measurement
instrument, which is an instrument that measures only a sin-
gle construct. For homogeneous measurement instruments,
the score for the measurement instrument is termed an
unweighted (unit-weighted) composite,

Y i ¼
XJ
j¼1

X ij: ð2Þ

Because Yi is itself an observed score, it can be conceptu-
alized in a form analogous to Equation 1,

Y i ¼ si þ �i; ð3Þ

where si ¼
PJ
j¼1

sij and �i ¼
PJ
j¼1
�ij. Note that there are no j

subscripts for Y or s in Equation 3, as these values
represent the observed (composite) score and the true
(composite) score, respectively, for the ith individual.

The psychometric definition of reliability for an
unweighted (unit-weighted) composite is

q Yð Þ ¼ r2
s

r2
s þ r2

�

; ð4Þ

which can be rewritten as

q Yð Þ ¼ r2
s

r2
Y

; ð5Þ

where r2
s is the population variance of the true-scores for

the composite (i.e., si values), r2
� is the population vari-

ance of the error of the scores for the composite (i.e., �i
values), and r2

Y is the population variance of the observed
scores for the composite (i.e., Yi values). Notice that r2

Y is
the sum of r2

s and r2
� , which holds because of the assump-

tion that s and � are uncorrelated. In other words, the psy-
chometric definition of reliability is the ratio of the
variance of the true-scores to the sum of the variance of
the true-scores and the variance of the errors, or equiva-
lently, the ratio of the variance of the true-scores to the
variance of the observed scores. Because unweighted
(unit-weighted) composite scores play an important role
in the literature of the social and behavioral sciences,

understanding issues of reliability of composite scores is
important for researchers who use such scales directly or
indirectly.

Coefficient a

In 1951 Cronbach authored a conceptually appealing treat-
ment of reliability in a manner that was accessible to many
researchers.5 The definition of coefficient a is given as

a � J

J � 1
1�

PJ
j¼1

r2
j

r2
Y

0BBB@
1CCCA; ð6Þ

where r2
j denotes the population variance of the jth item. It

can be shown that coefficient a is a ‘‘lower bound’’ on the
true reliability of a set of scores, where it underestimates
reliability under the usual CTT assumptions unless items
are essentially s-equivalent (see, e.g., Lord & Novick,
1968, pp. 87–90; McDonald, 1999, pp. 92–93; Novick
& Lewis, 1967). Recall that essentially s-equivalent items
are items that have means that differ only by additive
constants.6

McDonald (1999) shows that a general factor analytic
model can be used as a way to largely unify seemingly
diverse models in CTT. Figure 1 is a path diagram, using
reticular action model notation (McArdle & McDonald,
1984) of a true-score equivalent model from a factor analytic
perspective, where g is the common factor that the J items
are thought to measure. Without loss of generality, we
assume the variance of the common factor to be 1 (i.e.,
r2

g ¼ 1) . Figure 1 shows that the true-score for the ith indi-
vidual on any item is the product of the individual’s factor
score and the factor loading as

sij ¼ gik: ð7Þ
Notice from Equation 7 that a j subscript is not necessary for
k because they are constant across all items for all individ-
uals. Figure 1 makes it explicit that the underlying factor
(i.e., g) is measured by each of the J items (i.e., the Xj val-
ues) with equal sensitivity, but with potentially unique error
variances (i.e., the w2

j values) of the item errors (i.e., the �j
values).

Recall that in the special case of essential s-equivalence,
coefficient a is exactly equal to the composite reliability
[i.e., a = q(Y)]. However, because true-score equivalence
is not likely to hold in many situations in applied research,
coefficient a is not recommended here as an estimate of
composite reliability. Historically, coefficient a has been
the most widely recommended and used measure of reliabil-
ity of the social and behavioral sciences. From a theoretical
perspective, however, the assumption that all items measure

5 Note that Equation 6 was published as L3 by Guttman (1945, p. 259) 6 years before Cronbach published the same formula that he denoted a.
Guttman’s L3 is a generalization of Kuder and Richardson’s Equation 20 (KR-20) (1937, p. 158) when items are continuous. Rather than
referring to Equation 6 as ‘‘Cronbach’s a,’’ which is often done in the literature to Cronbach’s embarrassment (Cronbach & Shavelson, 2004,
p. 397), it is referred to as coefficient a, which was Cronbach’s original intent and preference (Cronbach & Shavelson, 2004).

6 Following the factor analytic model, essentially s-equivalent and s-equivilant also means that the item covariances are all equal.
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the factor equally sensitive is almost certainly false in many
applications. Thus, basing the estimated reliability of a set
of scores on a reliability coefficient that is thought to be inap-
propriate a priori in the vast majority of situations is problem-
atic. The next section describes a generalization of coefficient
a to the situation where the items need not measure the factor
with the same degree of sensitivity, which implies that the
assumption of all factor loadings being equal is relaxed.

Coefficient x

Coefficient a makes the assumption of essential s-equiva-
lence, in other words, equal population factor loadings,
which leads to a theoretically implausible model in many
practical situations. Here we introduce a model that allows
factor loadings to differ (see Figure 2). This model can eas-
ily be used for estimating the reliability of a set of scores for
some measurement instrument. In Figure 2, kj is the path
coefficient linking the underlying attribute (g) to the
observed score (Xj), and �j is the error of the particular
observed score with mean zero and variance w2

j . (Note that
sij = gikj.)

Notice that unlike Figure 1, each path coefficient (i.e.,
k value) in Figure 2 has a corresponding subscript. Figure 2
represents a flexible model that is known as congeneric.
A congeneric factor model is one where a single factor
has factor loadings that need not be equivalent across the
items and where the error variances are potentially unique.

Although the true-score equivalent and the congeneric
models are different, the definition of reliability remains
the same, which is that reliability is the ratio of the
true-score variance to the observed variance. However, the
models have fundamentally different ways of estimating
the true-score variance. The estimated true variance in
this case, that is, the variance that is due to the homogeneous
factor model, is a function of the estimated model

parameters. It can be shown that for a congeneric model,
the variance of Y is

Var Yð Þ ¼ Var
XJ
j¼1

kjg

 !
þ Var

XJ
j¼1

�j

 !
: ð8Þ

Recalling that the error variances are uncorrelated with
one another, the variance of the sum of the errors is simply
the sum of the error variances, implying

Var Yð Þ ¼ Var
XJ
j¼1

kjg

 !
þ
XJ
j¼1

w2
j : ð9Þ

Applying covariance algebra rules to Equation 9, with the
realization that the J kj values are fixed in any situation,
Equation 9 can be rewritten as

Var Yð Þ ¼
XJ
j¼1

kj

 !2

Var gð Þ þ
XJ
j¼1

w2
j : ð10Þ

Because Var (g) is a fixed quantity we set to 1, due to the
necessity in factor analysis for model identification, the
variance of Y is reduced to

Var Yð Þ ¼
XJ
j¼1

kj

 !2

þ
XJ
j¼1

w2
j : ð11Þ

Given Equation 11, the reliability coefficient for the con-
generic factor model, termed coefficient x, is defined as
follows

x �

PJ
j¼1

kj

 !2

PJ
j¼1

kj

 !2

þ
PJ
j¼1

w2
j

; ð12Þ

which can be rewritten as

1 53 42

4
2

1

X1 X5X4X3X2

1
2

5
2

3
2

2
2

Figure 1. Path diagram for a homogeneous measurement
instrument, where the underlying attribute (g) has been
measured by five items (X1–X5), and where essential
s-equivalence (i.e., true-score equivalence) holds.
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Figure 2. Path diagram for a homogeneous measurement
instrument, where the underlying attribute (n) has been
measured by five items (X1–X5), and where essential
s-equivilance (i.e., true-score equivalence) does not hold.
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x �

PJ
j¼1

kj

 !2

r2
Y

; ð13Þ

or

x � 1�

PJ
j¼1

w2
j

 !
r2
Y

: ð14Þ

The population value x can be estimated by substituting
the corresponding sample values for their population ana-
logs in Equation 12 (or equivalently Equation 13 or 14).
Note that the model parameters can be estimated using dif-
ferent methods and consequently can affect the estimation
of x. But in terms of the population value, x is at least as
large as a, given the assumptions introduced earlier.

In fact, coefficient a is a special case of coefficient x. In
particular, coefficient a and coefficient x are equal if and
only if k1 = k2 = . . . = kJ. In particular, by imposing such
constraints on the path coefficients, coefficient a can be
conceptualized as

a ¼ Jkð Þ2

Jkð Þ2 þ
PJ
j¼1

w2
j

: ð15Þ

Therefore, rather than estimating coefficient a by way of
Equation 6, it can be estimated by applying a homogeneous
factor model with the restriction of essential s-equivilance
(i.e., true-score equivalence), that is, setting the path coeffi-
cients (i.e., the kj values) to be equal. Estimating coefficient
a then proceeds by using a special case of Equation 12
where the model of essential s-equivilance (i.e., true-score
equivalence) has been imposed (i.e., the kj values are set
to a single value).

The discussion thus far has attempted to reframe exist-
ing but disparate knowledge of reliability theory that is
often presented in a technical manner. As compared to
the estimation of reliability coefficients, relatively little
information exists on methods of confidence interval for-
mation for coefficient x (cf. Cheung, 2009; Raykov,
1997; Yuan & Bentler, 2002). Furthermore, such discus-
sions tend to be rather technical with estimation procedures
that are not readily known or easily implemented in stan-
dard software, thus making implementation of the methods
difficult for many of the researchers who might be most
interested in using them. The next two subsections
illustrate three methods of confidence interval formulation
for x.

Analytic Confidence Intervals
for Coefficient x

Using the delta method, Raykov (2002) discussed an ana-
lytic confidence interval for x that is asymptotically correct
for multivariate normally distributed items, as the sample
size grows toward infinity. The delta method is a way to
obtain a standard error for a function of one or more param-
eter estimates, which can then be used for confidence inter-
val formation in certain situations (e.g., Casella & Berger,
2002; Oehlert, 1992). The method produces asymptotically
correct confidence intervals, where ‘‘asymptotically correct’’
refers to the confidence interval procedure actually produc-
ing (1 � a0)100% confidence intervals when sample size
approaches infinity. This implies that for finite sample size
the procedure is ‘‘approximately correct.’’ This issue, how-
ever, is not unique to confidence intervals for reliability
coefficients, but rather is generally the case for any confi-
dence interval constructed on the basis of asymptotic
theory.7

Using the parameters from the homogeneous congeneric
factor model, let

t ¼
XJ
j¼1

kj ð16Þ

and

m ¼
XJ
j¼1

w2
j : ð17Þ

x (Equation 12) can then be written as

x ¼ t2

t2 þ m
: ð18Þ

Let

�1 ¼
2tm

t2 þ mð Þ2
ð19Þ

and

�2 ¼ �
t2

t2 þ mð Þ2
; ð20Þ

where D1 and D2 are the first derivatives of Equation 18
with respect to t and m, respectively. Defining t and m,
and then D1 and D2 based on t and m, allows for easier
manipulation of the parameter estimations obtained from
the confirmatory factor model so that they can be used
more straightforwardly in the derivation of the confidence
interval procedure.

7 Yuan and Bentler (2002) investigated the robustness of the asymptotic properties of analytic confidence intervals of several reliability
coefficients, including x, when the assumption of multivariate normality is violated. They also offered a general solution to confidence
interval construction when the multivariate normality assumption is violated. When multivariate normality holds, Raykov (2002)’s method
is easier to understand due to the way in which it is parameterized and is less computationally laborious. Ultimately, we suggest another
approach for confidence interval construction when multivariate normality does not hold that we believe is more generally applicable,
does not require asymptotically large sample sizes, and is embedded in the bootstrap method of confidence interval formation.
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The approximate standard error of the estimated value of
x can be given as

SE bxð Þ � b�2
1Var btð Þ þ b�2

2Var bmð Þ þ 2 b�1
b�2Cov bt;bmð Þ

h i1=2
;

ð21Þ
where Cov(Æ, Æ) represents the covariance of the quantities
in parentheses, bt, bm, b�1, and b�2 are estimates of t, m, D1,
and D2, respectively (Raykov, 2002). Given the standard
error of bx, an approximate (1 � a 0)100% confidence
interval can be formed as follows:

probability bx � z1�a0=2SE bxð Þ � x � bx þ z1�a0=2SE bxð Þ� �
� 1� a0=2; ð22Þ

where z1�a 0/2 is the 1�a 0/2 quantile of the standard normal
distribution, and SE(bx) is equal to Equation 21 and esti-
mated using the estimates obtained from the homogeneous
factor model.

The way in which Raykov (2002) suggests the compo-
nents of the standard errors from Equation 21 be estimated
relies on nonlinear parameter constraints in the program
LISREL (Jöreskog & Sörbom, 1996) with maximum likeli-
hood optimization, where part of the LISREL output is then
analyzed with another program or via hand calculations.
Although Raykov (2002) provides example code, the rela-
tive difficulty in implementation is likely to deter many
users. Our approach is one based on the same underlying
maximum likelihood theory implemented in a different
way. In our approach, the estimates of the components
(i.e., Var btð Þ, Var bmð Þ, and Cov bt; bmð Þ) are easier to obtain
in any fully capable structural equation model or confirma-
tory factor analysis program. Note that the estimates
obtained from our modified implementation are equivalent
to those obtained through Raykov (2002), but available
without nonlinear constraints or special programing. Our
modified implementation is detailed in Appendix A. Ulti-
mately we suggest researchers use the MBESS R package
where implementation is automated. Appendix B shows
how the MBESS R package can easily be used. We now dis-
cuss the bootstrap methodology so that we can apply the
bootstrap to the aforementioned reliability coefficients in
an effort to obtain a statistically optimal confidence interval
for reliability coefficients.

The General Bootstrap Technique

The bootstrap technique is a nonparametric alternative to
parametric statistical techniques. The major advantage of
the bootstrap technique is that it does not rely on the poten-
tially untenable assumptions of ‘‘standard’’ statistical tech-
niques. Rather, bootstrap techniques avoid the stringent
parametric assumptions by creating an empirical distribution
of the statistic(s) of interest, and, from this empirical distri-
bution, the observed quantiles can be used to find confi-

dence limits for the statistic of interest (e.g., Efron &
Tibshirani, 1993).

When forming confidence intervals for x, consideration
of bootstrap techniques is especially important because the
assumption of multivariate normality will likely be violated
in many situations. In particular, the multivariate normality
refers to the set of J items being multivariate normally dis-
tributed. However, the items of many measurement instru-
ments are based on Likert scalings, possibly with
relatively few response categories. In such situations the
multivariate normality assumption of the set of items being
multivariate normally distributed will tend to be violated and
the aforementioned analytic procedure may not yield the
nominal confidence interval coverage. Additionally, issues
of ceiling and floor effects for some items often arise in
applied research. A similar rationale in the context of coef-
ficient a motivating the bootstrap technique is given in
Yuan, Guarnaccia, and Hayslip (2003), where the bootstrap
procedure is compared and ultimately recommended to the
analytic confidence interval approach.

The two most common bootstrap techniques for confi-
dence interval estimation are the percentile method and
the bias-corrected and accelerated (BCa) method. The
BCa method is the generally preferred implementation of
the bootstrap, but the BCa depends on the percentile method
so the discussion necessarily begins with the percentile
method. The next two sections describe each of these meth-
ods as they apply to the estimation of confidence intervals
for the population value of x.

The Percentile Method

Suppose a random sample of N independent individuals
each respond to all items on a measurement instrument with
J items. The idea of bootstrapping is to sample, with
replacement, the results of N measurement instruments B
times, where B is the number of bootstrap replications and
should be relatively large (e.g., B = 10,000). It is important
to remember that in the context of the bootstrap, each indi-
vidual’s set of scores has an equal probability of being
selected on each random sampling from the complete set
of observed data. Specifically, each individual’s set of scores
has a probability of 1/N of being selected on any given ran-
dom selection. These repeated samplings occur N times for
each of the B bootstrap replications.

The idea of the percentile method is that the statistic of
interest is calculated for each of the B bootstrap replications.
These B statistics then form an empirical distribution (i.e.,
one not based on assumptions but on the observed distribu-
tion of the statistic of interest), where the percentiles of the
empirical distribution are used as confidence limits for the
population parameter of interest.

Let bx� be a vector of length B of each of the bootstrap
estimates of x. Suppose one is interested in the (1 � a0)
100% confidence interval for x, where a0 designates the
Type I error rate. The lower and upper confidence limits
for a (1 � a0)100% symmetric confidence interval are
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defined as the value of bx� corresponding to the a0/2 percen-
tile and the (1 � a0/2) percentile, respectively.8 Formally,
the lower and upper confidence interval limits for the per-
centile method are given as

LPM ¼ bG�1 bx�ja0=2ð Þ ð23Þ
and

UPM ¼ bG�1 bx�j1� a0=2ð Þ; ð24Þ
where LPM and UPM are the lower and upper confidence
limits of the percentile method, respectively, bG is the esti-
mated cumulative distribution function of the distribution
of values identified on the left of the given sign (|) at the
specified quantile on the right of the given sign, andbG�1 is its inverse. By definition, bG�1 bx�ja0=2ð Þ equals
the a 0/2 quantile of bx�. For example, if a 0 is .05 for a sym-
metric confidence interval, bG�1 bx�j:025ð Þ is the .025 quan-
tile and bG�1 bx�j:975ð Þ is the .975 quantile from the
bootstrap distribution of bx�.
The Bias-Corrected and Accelerated Method

Conceptually, the BCamethod is analogous to the percentile
method in the sense that, from the empirical distribution of
the statistic of interest (here bx�), quantiles are found that
represent the confidence limits of the population parameter
of interest. The two methods of confidence interval
construction differ in the particular quantile that is selected
to form the limits of the confidence interval. Whereas the
confidence limits for the percentile method are a0/2 and
1 � a0/2, the confidence limits for the BCa method are
dependent on these two and two other values obtained from
the empirical distribution of the statistic of interest, which
we now briefly discuss.

The bias-correction estimate, denoted bz0, is obtained by
first determining the proportion of bootstrap replications less
than the original estimate (Efron, 1998) and then finding the
inverse of a standard normal distribution for that proportion.

That is,

bz0 ¼ U�1
] bx� < bxð Þ

B

� �
; ð25Þ

where ] represents ‘‘the number of’’ and U is the standard
normal cumulative distribution function and U�1 its
inverse (e.g., U(1.96) = .975 and U�1 (.975) = 1.96).
When the distribution of bx� is perfectly symmetric, bz0 = 0.

The acceleration estimate bað Þ, on the other hand, quan-
tifies the rate of change of the standard error of the estimate,
with respect to the true value of the parameter and is mea-
sured on a normalized scale (Efron, 1998, 1987). Unfortu-
nately, an intuitive explanation for ba is not readily
available, as derivation of its estimator depends on a higher

level of statistical knowledge than assumed in the present
article. Nevertheless, the definition for ba can be given which
may help in the understanding of what a computer program
does when it computes ba. Calculation of ba depends on the
jackknife estimation procedure, which estimates bx with
each of the N observations removed one-by-one (see, e.g.,
Miller, 1974 for a review). Let bxð�iÞ be the value of bx when
the ith data point has been deleted from the original sample
and ~x be the mean of the N jackknife bxð�iÞ values. The
acceleration is then computed as

ba ¼
PN
i¼1

~x� bx �ið Þ
� �3

6
PN
i¼1

~x� bx �ið Þ
� �2� 	3

2

: ð26Þ

Thus, the BCa is a more accurate method of confidence
interval formation as compared to the percentile method.

Given the characteristics of the empirical distributions, in
particular the bias and acceleration of the rate of change of
the standard error of the estimate with respect to the popu-
lation value, the BCa method increases the accuracy of
the obtained confidence interval. In fact, the BCa method
is second-order accurate, whereas the percentile method is
only first-order accurate. This means that confidence inter-
vals from the percentile method approach the correct value
of confidence interval coverage at a rate of 1=

ffiffiffiffi
N
p

, whereas
the BCa method approaches the correct value of the confi-
dence interval coverage at a rate of 1/N (Efron & Tibshirani,
1993, pp. 187–188).

Given bz0 and ba, the lower and upper confidence limits of
BCa confidence intervals are obtained by

LBCa ¼ bG�1 bx�jU bz0 þ bz0 þ ðza0=2Þ
1� ba bz0 þ z a0=2ð Þ

� � ! !
ð27Þ

and

UBCa ¼ bG�1 bx�jU bz0 þ bz0 þ z 1�a0=2ð Þ

1� ba bz0 þ z 1�a0=2ð Þ
� � ! !

ð28Þ
respectively, where LBCa and UBCa are the lower and upper
confidence limits of the BCa method, respectively. Notice
that when ba and bz0 equal zero, LBCa ¼ bG�1ðbx�ja0=2Þ and
UBCa ¼ bG�1ðbx�j1� a0=2Þ, which are equal to the confi-
dence limits of the percentile method.

Although the percentile and BCa confidence interval
methods are statistically and conceptually appealing, such
confidence intervals are computationally intensive. Boot-
strap confidence intervals require randomly selecting B ran-
dom bootstrap data sets, fitting a confirmatory factor model
with the appropriate constraints, collecting the output of
B bootstrap replications, and implementing the methods
outlined for the bootstrap confidence interval procedure.

8 Note that the confidence interval need not be symmetric. For example, one could form a 95% confidence interval where there were four
percentage points of the Type I error rate on the lower side of the distribution and only one percentage point of the Type I error rate on the
upper side of the distribution.
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The MBESS (Kelley & Lai, 2010; Kelley, 2007a, 2007b) R
(R Development Core Team, 2010) package automates this
task and implements bootstrap confidence intervals for x
with a simple to use function, which is illustrated in detail
in Appendix B. In the next section, an example is shown
to demonstrate the utility of the three methods of confidence
interval construction for x.

Empirical Example

Teams are an integral part of many organizations (e.g.,
Guzzo & Dickson, 1996; Kozlowski & Ilgen, 2006;
Sundstrom, 1999). Objective measurements of the various
dimensions of team effectiveness, collaboration, function,
cohesion, etc., are important topics in many areas of applied
research. The Ford Motor Company Partnership for
Advanced Studies (Ford PAS) (Zhuang, MacCann, Wang,
Liu, & Roberts, 2008) is a program that ‘‘provides students
with content knowledge and skills necessary for future suc-
cess – in such areas as business, economics, engineering,
and technology’’ (Ford Motor Company Fund, 2008–
2010). In order to assess various dimensions of the Ford
PAS program, 159 participants from high school (77 male
and 82 female; mean/standard deviation of age was 16.10/
1.03; 64.2% African-American, 18.9% White non-Hispanic,
3.1% Hispanic, 3.1% multiethnic, and 10.7% Native
American, Asian, or Other) responded to a self-report
questionnaire (see Zhuang et al., 2008; Wang, MacCann,
Zhuang, Liu, & Roberts, 2008 for details). The question-
naire consisted of 30 items on a 6-point Likert scale with
lower anchor 1 (never) and upper anchor 6 (always).9

The questionnaire was used to measure three constructs:

(a) Cooperation (12 items), (b) Advocate/Influence (9 items),
and (c) Negotiation (9 items) (Zhuang et al., 2008). Perform-
ing listwise deletion on the 30 items of interest wheremissing
data occurred yielded a sample size of 127.

The estimated composite reliability, assuming a conge-
neric factor structure (i.e., where x is most appropriate as
coefficient a’s assumption of essential s-equivilance would
likely be violated), of each of the three subscales, assuming
a congeneric factor structure, is .8841 for the Cooperation
subscale, .8000 for the Advocate/Influence subscale, and
.7796 for the Negotiation subscale, respectively. Of course,
the point estimates themselves are fallible and interest does
not literally revolve around the sample value, but rather the
population value. Correspondingly, confidence intervals for
the population reliability coefficients in each of these situa-
tions are needed. The point estimates themselves as well as
the confidence interval limits are available from MBESS,
where the way in which they are calculated is illustrated
in Appendix B.

Table 1 displays the confidence intervals coming from
the three different methods for the x coefficient of the Nego-
tiation subscale. As can be seen from Table 1, for each of the
subscales the estimated confidence interval limits for the
three methods in Table 1 tend to be fairly close to each other.
One reason why this may occur is because in this situation
the sample size may be sufficiently large and/or multivariate
normality may hold approximately. Furthermore, Yuan and
Bentler (2002) showed that the asymptotic confidence inter-
val methods can be quite robust to violations of the multi-
variate normality assumption under a variety of
conditions.10

With regard to which method of confidence interval
construction should be used in general, we take a moderate
approach suggested by Kelley (2005), which is a

Table 1. Point estimate of x and confidence interval limits for the cooperation, advocate/influence, and negotiation
subscales

Lower limit Estimate Upper limit

Analytical 0.8542 0.9141
Cooperation Percentile method 0.8466 .8841 0.9128

BCa 0.8493 0.9147

Analytical 0.7474 0.8526
Advocate/Influence Percentile method 0.7384 .8000 0.8460

BCa 0.7374 0.8453

Analytical 0.7221 0.8371
Negotiation Percentile method 0.7098 .7796 0.8332

BCa 0.7137 0.8349

Note. BCa represents the bias-corrected and accelerated bootstrap procedure. The point estimate is the same for each of the three
(analytic, percentile method, and BCa) methods of confidence interval formation.

9 Originally, there were 57 items evaluated for inclusion in the questionnaire. Of the original 57, 27 items were eliminated based on
psychometric principles.

10 Because we do not advocate for a, we did not compute it here nor have we discussed formally in Appendix B. However, we should note
that (Green & Yang, 2009a) showed that the true reliability and that estimated by coefficient a can be quite different. In the examples
Green and Yang (2009a) showed, where the loadings for the general factor vary using 14 combinations of loadings of 0.20, 0.50, and 0.80
for a 6-item scale, the percentage of bias ranges from 0% to 11.10%. Green and Yang (2009a) also show how the bias decreases for similar
situations for a 12-item scale, where the percentage of bias ranges from 0% to 5.1%. Correspondingly, we believe that coefficient x should
always be reported for scales designed to measure a single factor with uncorrelated errors.
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compromise where both the analytic confidence interval and
the bootstrap (ideally the BCa, we argue) confidence inter-
val are reported. Such a compromise works well because
some readers will not be familiar with the bootstrap
approach and/or may believe the results were not as impres-
sive as when using the analytic procedure (or they would
have been presented since it is a parametric procedure and
widely seen by some as preferable to a nonparametric pro-
cedure). However, ignoring the advancements and benefits
of a bootstrap approach to statistical inference so as to sat-
isfy some reviewers/editors/readers is also unfortunate. Cor-
respondingly, presenting both results will presumably satisfy
both types of readers and will allow readers to make more
informed conclusions. Similarly, for those critical of the
bootstrap approach, the results of the parametric alternative
are provided. Thus, no single approach is given all of the
weight when interpreting the results and when instances
arise that lead to interpretational differences, the underlying
data can be interrogated more thoroughly in an attempt to
discover what might be contributing to major differences
between the two approaches, as they should be similar if
all assumptions are satisfied.

If only one confidence interval for the population reli-
ability coefficient can be reported, the suggestion provided
here is to use the BCa bootstrap approach, which is a gen-
eral approach widely recommended in the methodological
literature. When all assumptions of the model are realized,
the three confidence interval approaches will tend to provide
results that are similar. Given that the assumption of multi-
variate normality is not likely to hold for data often collected
in social and behavioral settings (e.g., Micceri, 1989), the
BCa approach is the choice we recommend.

Discussion

This article has served several purposes. First, it provided a
review of the underlying fundamentals of composite scores.
Second, it discussed the limitations of coefficient a, which is
the most commonly used way to assess the reliability of a
composite score in psychology and related disciplines.
Third, the article discussed x, which is a useful measure
of reliability that is not well known and seldom used in
the applied literature, even though its assumptions are more
consistent with typical empirical data than the most widely
used measure of reliability, coefficient a. Fourth, the article
discussed methods of confidence interval formation (ana-
lytic and bootstrap) for reliability coefficients. Fifth and
finally, the article develops software for the methods dis-
cussed and illustrates how the methods can easily be imple-
mented with the freely available computer program R using
the MBESS package. With the MBESS R package research-
ers can easily and immediately implement the methods
discussed throughout the article. Taken together, the hope
is that this article will be useful to researchers who use
composite scores in their work and want to obtain statisti-
cally sound interpretations of the reliability of those compos-
ite scores.

Because of the importance of composite scores and their
reliability in research, using the most appropriate estimate of
the reliability is important. Furthermore, because of the
importance of confidence intervals in modern research,
and the unequivocal call for them to be reported (e.g.,
American Psychological Association, 2010; Grissom &
Kim, 2005; Harlow, Mulaik, & Steiger, 1997; Hunter &
Schmidt, 2004; Schmidt, 1996; Task Force on Reporting
of Research Methods in AERA Publications, 2006;
Thompson, 2002; Wilkinson & the American Psychological
Association Task Force on Statistical Inference, 1999, etc.),
the most meaningful confidence interval method should be
used. Due to the assumption of multivariate normality likely
being violated in many situations, the bootstrap approach is
recommended, with the preferred type being the BCa. Even
if a researcher appreciates the benefits of x and the bootstrap
confidence interval, implementation of those methods is not
generally straightforward. However, with the MBESS R
package, the intricate procedures discussed can easily be
implemented, making the methods discussed in the present
article immediately available to researchers.
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Appendix A

In maximum likelihood theory, the first derivative of the
likelihood function is termed the score function. The score
function provides the maximum likelihood point estimates
of the model parameters. The negative expected value of
the derivative of the score function (i.e., the second deriva-
tive of the likelihood function) is the information matrix,
often termed the Fisher information matrix. The inverse of
the information matrix is the covariance matrix of the esti-
mates. Thus, provided a likelihood function is twice differ-
entiable and the appropriate assumptions met, the estimates
(from the score function) and the variance/covariance of the
estimates (from the inverse of the information matrix) can be
obtained. Therefore, VarðbtÞ, VarðbvÞ, and Covðbt;bvÞ from
Equation 21 are readily available in a maximum likelihood
context by way of the information matrix. A discussion of
maximum likelihood estimation in general and the score
function and information matrix in particular is provided
by Pawitan (2001) and Schervish (1995).

In the present context, the sum of the values of the first J
elements of the principal diagonal is the variance of ðbtÞ (i.e.,
the variance of the sum of the Jbkjs; VarðbtÞ) and the sum of
the second set of J elements on the principal diagonal is the
variance of ðbvÞ (i.e., the variance of the sum of the J w2

j s,
VarðbmÞ), with the sum of the off diagonal elements, the
covariances of the bkjs and w2

j s, being the covariance of
ðbtÞ and ðbmÞ (i.e., Covðbt;bvÞ).

To help solidify the above discussion, a general example
is provided. For a measurement instrument with J items, the
inverse of the information matrix, for parameter estimate setbh, can be partitioned as follows:

I bh� ��1
¼

Cov bk� �
Cov bk; bw2

� �
Cov bw2; bk� �

Cov bw2
� �

264
375;

where I bh� ��1
is the inverse of the information matrix.

Using the same ordering scheme as used in the Cartesian
coordinate plane, quadrant I (top right) and III (bottom

left) of I bh� ��1
are equivalent and are denoted

Covðbk; bw2Þ. Quadrant II (top left) contains the variance/
covariance matrix of the bks, whereas quadrant IV (bottom
right) contains the variance/covariance matrix of
the bw2s.

As is shown in Equation 21, estimates of the variance ofbt, the variance of bm, and the covariance of the two are nec-
essary in order to estimate the standard error of x. The var-
iance of bt is the sum of all elements in quadrant II, that is,
VarðbuÞ is the sum of the variances of the bks plus the sum of
their covariances (i.e., the off diagonal elements in quadrant
II). The variance of bm is the sum of all quadrant elements in
IV, that is, VarðbmÞ is the sum of the variances of the bw2s plus
the sum of all off diagonal elements in quadrant IV. The
covariance of the bks and bw2s is then the sum of all elements
in quadrant I or quadrant III (the two are equal because of
their symmetry, as is always the case with a covariance
matrix). Thus, 2Covðbt;bvÞ is simply the sum of all of the ele-
ments in quadrant I plus the sum of all of the elements in
quadrant III (or twice the sum of either quadrant I or III).
After VarðbtÞ, VarðbvÞ, and Covðbt;bvÞ have been calculated,
formation of the confidence interval for the reliability of an
unweighted composite is straightforward via Equation 22.
However, all of the methods discussed can be implemented
with the MBESS package for the R program, which elimi-
nates the need for dealing with the equations, estimation
procedures, and computations directly, if one so desires.

Appendix B

The MBESS (Kelley, 2007a, 2007b; Kelley & Lai, 2010)
package for the R program (R Development Core Team,
2010) package for the R program (R Development Core
Team, 2010) can be used for the reported reliability esti-
mates. The way to estimate the reliability for a composite
variable of a set of scores with MBESS is by substituting
the appropriate information into the ci.reliability()
function as

ci.reliability(S=S, N=N, model=‘‘Congeneric’’,
type=‘‘Factor Analytic’’, conf.level=1 — a’),
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where S is the observed covariance matrix of the items mea-
suring a particular factor, N is the sample size, and 1�a0 is
the desired level of confidence interval coverage.11 The
argument model in the ci.reliability() function
is used to identify the model of interest, which can subsume
either Parallel, True-Score Equivalent (i.e.,
coefficient a), or Congeneric (i.e., x). The type argu-
ment can subsume either Normal Theory or Factor
Analytic for the standard formula based approach or
the factor analytic approach, respectively. Although any
model can be estimated with the type=‘‘Factor Ana-
lytic’’ specification, the model=‘‘Congeneric’’
requires type= ‘‘Factor Analytic’’.

For example, the way ci.reliability() function
can be used to estimate x and the corresponding 95% con-
fidence interval coverage for x can be implemented as

ci.reliability(S=Cov.Negotiation,

N=127, model=‘‘Congeneric’’,
type=‘‘Factor Analytic’’, conf.level=.95),

where Cov.Negotiation is the covariance matrix of the
nine items used to measure the negotiation factor. After sub-
mitting the above code, the function returns

$CI.lower

[1] 0.722051

$CI.upper

[1] 0.8370732

$Estimated.reliability

[1] 0.7795621

$SE.reliability

[1] 0.02934295

$Conf.Level

[1] 0.95.

As can be seen, the returned lower and upper confidence
limits are .7221 and .8371, respectively, with the point esti-
mate itself being .7796. What is important to realize is that
the confidence interval implemented above is based on the
analytic approach to confidence interval formation, which
itself is quite involved as discussed in the analytic approach
to confidence intervals section, but is easily implemented
with the MBESS ci.reliability() function. Notice

also that the standard error of the reliability coefficient is
reported, as well as a reminder of the confidence interval
coverage selected.

In addition to the analytic confidence intervals performed
above, another MBESS function can be used to easily
implement the bootstrap procedures discussed in the boot-
strap sections. Now, bootstrap confidence intervals can be
performed by using the ci.reliability() function
with the option Bootstrap=TRUE specified, along with
B (the number of bootstrap replications) and Bootstrap CI
(type of bootstrap confidence interval). The ci.

reliability() function for bootstrap BCa confidence
intervals can be implemented as follows:

ci.reliability(data=Negotiation,

model=‘‘Congeneric’’

type=‘‘Factor Analytic’’, conf.level=

.95, Bootstrap = TRUE, B=10000, Bootstrap

CI=‘‘BCa’’)

where data is the full data set, Negotiation here, B is
the desired number of bootstrap replications (a large num-
ber, such as 10,000, is recommended), with the other param-
eters being equivalent to those given in the
ci.reliability() function. In this situation the
ci.reliability() function returns the following:

Desired.

Conf.

Level

Lower.

Limit.

Index

Upper.

Limit.

Index

Lower.

Conf.

Limit

Upper.

Conf.

Limit

Percentile.

Method

0.95 250.00 9750.00 0.7086157 0.8324301

BCa. method 0.95 292.39 9791.26 0.7123922 0.8341273

For both the percentile and the BCa bootstrap methods
an index is provided, which shows the relative position of
the ordered bootstrap replicates. For the percentile method
the values are the desired quantiles of the distribution
(e.g., .025 and .975) multiplied by B, the number of boot-
strap replications. Because the BCa method uses additional
parameters to estimate the confidence interval limits, the
indices will tend to differ from the well-defined indices used
for the percentile method.

11 Use of MBESS requires R and for MBESS to be installed within R and loaded. MBESS is loaded with the command require (MBESS)
and can be installed directly from within R by using the package installation utility on the menu bar within Windows and Macintosh
operating systems.
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