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The root mean square error of approximation (RMSEA) is one of the most widely
reported measures of misfit/fit in applications of structural equation modeling.

When the RMSEA is of interest, so too should be the accompanying confidence

interval. A narrow confidence interval reveals that the plausible parameter values
are confined to a relatively small range at the specified level of confidence. The

accuracy in parameter estimation approach to sample size planning is developed for

the RMSEA so that the confidence interval for the population RMSEA will have a
width whose expectation is sufficiently narrow. Analytic developments are shown

to work well with a Monte Carlo simulation study. Freely available computer

software is developed so that the methods discussed can be implemented. The
methods are demonstrated for a repeated measures design where the way in which

social relationships and initial depression influence coping strategies and later

depression are examined.

Structural equation modeling (SEM) is widely used in many disciplines where
variables tend to be measured with error and/or latent constructs are hypothesized
to exist. The behavioral, educational, and social sciences literature, among others,
has seen tremendous growth in the use of SEM in the last decade. The general
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2 KELLEY AND LAI

goal of SEM is to recover the population covariance matrix, †, of k manifest
(observed) variables by fitting a theoretical model that describes the relationships
among the k measured variables and the specified latent variables.

The root mean square error of approximation (RMSEA; Browne & Cudeck,
1992; Steiger & Lind, 1980) has become one of the most, if not the most,
widely used assessment of misfit/fit in the applications of SEM (e.g., Jackson,
Gillaspy, & Purc-Stephenson, 2009; Taylor, 2008). Unlike many other fit indices,
the RMSEA is used both descriptively (i.e., sample estimates) and inferentially
(with confidence intervals and hypothesis tests). The two most important features
of the RMSEA are (a) it is a standardized measure not wedded to the scales of
the measured or latent variables and (b) its approximate distributional properties
are known, which makes it possible to obtain parametric confidence intervals
and perform hypothesis tests.

There are two popular ways to use the RMSEA to assess a model’s fit. The
first method is to examine the point estimate and compare it with a certain fixed
cutoff value, say c. In this context, if O© < c, the model is considered to have
a certain degree of fit (e.g., close fit, mediocre fit, etc.) where © refers to the
population RMSEA and O© refers to the point estimate. The second method is
to conduct hypothesis testing to infer if the null hypothesis H0 W © ! c can be
rejected at a specified significance level (e.g., MacCallum, Browne, & Sugawara,
1996). If the null hypothesis is rejected, it is concluded that © < c and the model
fit is better than the degree of fit corresponding to the cutoff value of the specified
null hypothesis. For both of the methods, choosing a proper cutoff value (c) is
critically important, and a widely used convention is that © " 0:05 refers to close
fit, © " 0:08 mediocre fit, and © > 0:10 poor fit (see, e.g., Browne & Cudeck,
1992; MacCallum, Browne, & Sugawara, 1996). Besides these two conventional
methods, a third way to assess the model fit is to form a confidence interval for
the population RMSEA. Instead of comparing O© to c or testing a null hypothesis,
a confidence interval for © is interested in the value of © itself and thus is not
wedded to any cutoff value c.

In applied research, sample estimates almost certainly differ from their cor-
responding population parameter. A confidence interval acknowledges such un-
certainty and provides a range of plausible values for the population parameter
at some specified confidence level (e.g., .90, .95, .99). Confidence intervals
“quantify our knowledge, or lack thereof, about a parameter” (Hahn & Meeker,
1991, p. 29), and correspondingly we know more, holding everything else
constant, about parameters that have narrow confidence intervals as compared
with wider confidence intervals. From a scientific perspective, the accuracy of
the estimate is of key importance, and in order to facilitate scientific gains by
building cumulative knowledge, researchers should work to avoid “embarrass-
ingly large" confidence intervals (Cohen, 1994, p. 1002) so that the accuracy
of the parameter estimate is respectable and appropriate for the intended use.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
e
l
l
e
y
,
 
K
.
]
 
A
t
:
 
1
0
:
2
3
 
1
8
 
F
e
b
r
u
a
r
y
 
2
0
1
1



AIPE FOR THE RMSEA 3

A general approach to sample size planning termed accuracy in parameter

estimation (AIPE; e.g., Kelley, 2007b, 2007c, 2008; Kelley & Maxwell, 2003;
Kelley, Maxwell, & Rausch, 2003; Kelley & Rausch, 2006) permits researchers
to obtain a sufficiently narrow confidence interval so that the parameter estimate
will have a high degree of expected accuracy at a specified level of confidence.

The AIPE approach to sample size planning is an important alternative or
supplement to the traditional power analytic approach (e.g., Cohen, 1988; see
Maxwell, Kelley, & Rausch, 2008, for a review and comparison of AIPE and
power analysis approaches to sample size planning). In structural equation mod-
eling, planning sample size so that the RMSEA is estimated with a sufficiently
narrow confidence interval will facilitate model evaluation and descriptions of
the extent to which data is consistent with a specified model. In this article
we first briefly review confidence interval formation for the population RMSEA
and then develop a method to plan sample size so that the expected confidence
interval width for the RMSEA is sufficiently narrow. Our sample size planning
method is then evaluated with an extensive Monte Carlo simulation study so that
its effectiveness is verified in situations commonly encountered in practice. We
then show an example of how our methods can be used in an applied setting.
Additionally, we have implemented the sample size planning procedure into R
(R Development Core Team, 2010) so that the methods can be readily applied
by researchers.

POINT ESTIMATE AND CONFIDENCE INTERVAL
FOR THE RMSEA

In this section we briefly review the confidence interval formation for RMSEA
and define our notation. Readers who want to implement the sample size plan-
ning methods may wish to only browse this section as it is not necessary to fully
understand the theory behind confidence interval formation in order to implement
the sample size planning methods. Nevertheless, this section is necessary to fully
understand the rationale of the methodological developments we make.

Let † be the population covariance matrix of k manifest variables and S be
the sample covariance matrix based on N individuals. Further, let ™

! be a q # 1
vector of potential parameter values for a postulated covariance structure where
the q values are each identified. The k # k model-implied covariance matrix is
denoted M.™!/. The model’s degrees of freedom, !, is then k.k C 1/=2 $ q.

For a correctly specified model, there exists a particular ™
!, denoted ™, such

that M.™/ D †, where ™ is the q # 1 vector of the population parameters. Of
course, ™ is unknown in practice and must be estimated. Estimation of ™ can
be done in several ways (e.g., maximum likelihood, generalized least squares,
asymptotic distribution-free methods) with the most widely used estimation
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4 KELLEY AND LAI

procedure being normal theory maximum likelihood. We use normal theory max-
imum likelihood estimation throughout the article and use O™ to denote the max-
imum likelihood estimate of ™. Values for O™ can be obtained by minimizing the
discrepancy function with respect to ™

! (e.g., McDonald, 1989; Bollen, 1989),

F
!

S; M
!

™
!
""

D log
!

jM
!

™
!
"

j
"

C t r
#

SM
!

™
!
""1

$

$ log jSj $ k; (1)

where t r.%/ refers to the trace of the matrix and an exponent of $1 denotes the
inverse of the matrix. Because O™ minimizes Equation 1,

min F
!

S; M
!

™
!
""

D F
#

S; M

#

O™
$$

& OF ; (2)

where OF is the value of the maximum likelihood discrepancy function evaluated
at O™. Based on Equation 1, F

!

S; M
!

™
!
""

is zero only when S equals M
!

™
!
"

and increases without bound as S and M
!

™
!
"

become more discrepant.
For a correctly specified model, when the assumptions of independent ob-

servations and multivariate normality hold and sample size is not too small,
Steiger, Shapiro, and Browne (1985, Theorem 1; see also Browne & Cudeck,
1992) showed that the quantity

T D OF # .N $ 1/ (3)

approximately follows a central ¦2 distribution with ! degrees of freedom. For
an incorrectly specified model there exists no ™

! such that M.™!/ D †. The
discrepancy between the population covariance matrix and the population model-
implied covariance matrix can be measured as

min F
!

†; M
!

™
!
""

D F .†; M.™0// & F0; (4)

where ™0 is a vector of population model parameters and F0 is always larger
than zero for a misspecified model. For such a misspecified model, when the
assumptions of independent observations and multivariate normality hold, N is
not too small, and the discrepancy is not too large. Steiger et al. (1985, Theorem
1; see also Browne & Cudeck, 1992) showed that the quantity T from Equation 3
approximately follows a noncentral ¦2 distribution with ! degrees of freedom
and noncentrality parameter1

! D F0 # .N $ 1/: (5)

1The symbol ! introduced in Equation 5 is the Phoenician letter lamd, which was a precursor to

the Greek letter “ƒ=œ” (lambda) and the Latin letter “L/l” (ell; Powell, 1991). Although œ and ƒ

are sometimes used to denote the noncentrality parameter of the ¦2 distribution, in general œ and

ƒ are more often associated with noncentrality parameters from t distributions and F distributions,

respectively. Further, we use œ to denote path coefficients in a forthcoming section; the symbol ! is

used for the ¦2 noncentrality parameter to avoid potential confusion.
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AIPE FOR THE RMSEA 5

The population RMSEA is defined as

© D
r

F0

!
: (6)

Although a seemingly reasonable estimate of © would be based on substituting OF
from Equation 3 for F0 in Equation 6, OF is an appreciably biased estimator of F0

(McDonald, 1989; Wald, 1943). Because OF approximately follows a noncentral
¦2 distribution, the expected value of OF is approximately2

EŒ OF # D F0 C
!

N $ 1
: (7)

Thus, a better estimate of F0 is

OF0 D OF $
!

N $ 1
: (8)

However, it is possible for !
N"1

to be larger than OF , implying a negative value

for OF0, which should always be a nonnegative value (e.g., Browne, 1984).
Recognizing that OF0 may be negative, the estimated RMSEA is defined as

O© D

v

u

u

tmax

(

0;
OF0

!

)

: (9)

Technically, O© as defined in Equation 9 cannot be an unbiased estimate due to
possible truncation correcting for the possibility of negative values. Although not
unbiased, Equation 9 is an optimal estimator of © (see Steiger, 2000, for a review
of estimation and inference regarding the RMSEA). However, point estimates
in and of themselves do not convey the uncertainty associated with their use
as estimates of population quantities. Explicitly acknowledging the uncertainty
of the estimate is the reason it is widely recommended in the methodological
literature to report confidence intervals for © in addition to O©.

Steiger and Lind (1980) presented the idea of forming confidence intervals for
©, which was later formalized in Steiger (1989) and Browne and Cudeck (1992).
Confidence intervals for © can be obtained by using the inversion confidence
interval principle and the confidence interval transformation principle, both of
which have been discussed extensively elsewhere (Cumming & Finch, 2001;
Fleishman, 1980; Kelley, 2007a; Smithson, 2001; Steiger, 1989, 2000; Steiger

2The expectation of a ¦2.";!/ variate is " C !, where " is the degrees of freedom and ! is

the noncentrality parameter. In the present case .N " 1/ OF # ¦2."; !/, and thus E
h

.N " 1/ OF
i

D

" C .N " 1/F0 and Equation 7 follows.
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6 KELLEY AND LAI

& Fouladi, 1997). In order to form a confidence interval for ©, one can first
form a confidence interval for ! and then transform the confidence limits onto
the scale of © because there is a one-to-one monotonic relationship between !
and ©. The monotonic relationship can be shown by rewriting © in terms of !:

© D

s

!

!.N $ 1/
: (10)

Also note that confidence interval formation for © only depends on summary
statistics, and thus it does not require raw data. A supplement for this arti-
cle is available at https://repository.library.nd.edu/view/1/AIPE_RMSEA_MBR_
Supplement.pdf and it discusses how confidence intervals for © can be formed,
as well as the other methods we discuss, with the freely available MBESS
(Kelley, 2007a, 2007b; Kelley & Lai, 2010) R (R Development Core Team,
2010) package.

Unfortunately, the confidence interval for © does not always work well, in
the sense that the nominal confidence interval coverage can differ from the
empirical confidence interval coverage in certain situations. Curran, Bollen,
Chen, Paxton, and Kirby (2003) found that for some misspecified models the
nominal confidence interval coverage rate performed poorly. For example, they
showed that when © D :25 and N D 800, the empirical confidence interval
coverage rate was 76% even though the nominal confidence interval coverage
was 90%. Although the situation noted was based on a rather extreme situation
(i.e., where the © value was large for a very simple model), concern of the
possible failure of the confidence interval procedure was part of the reason
it is necessary to perform a Monte Carlo simulation study to evaluate the
effectiveness of the sample size planning method we develop, which we do
in a forthcoming section.

AIPE FOR THE RMSEA

Accuracy is a function of bias and precision so that obtaining a more precise
estimate without increasing bias implies that the estimate is more accurate.
We use the term accuracy in parameter estimation as a way to describe this
approach to sample size planning because precision is being improved without
increasing bias.3 Let ¨ be the desired width of the confidence interval for © and
w be the confidence interval width obtained in a particular situation. Thus ¨ is

3The RMSEA is not unbiased, but its bias decreases as sample size is increased. Correspondingly,

not only is the precision with which © is estimated improved when sample size is increased but also

the bias is reduced.
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AIPE FOR THE RMSEA 7

a constant, specified a priori, whereas w is a random variable, varying across
different samples. We seek to develop a method where the sample size can be
planned so that the expected value of the observed confidence interval width
is sufficiently narrow. In doing so, !, the confidence level (i.e., 1 $ ’), and a
value for © must be specified, which we denote ©!. Given a specific model of
interest, the value of ! is known a priori and fixed, and 1 $ ’ is a constant set
by the researcher. However, © is an unknown parameter that is of interest. Our
sample size approach is based on the assumption that ©! D ©. However, multiple
reasonable estimates of © can be used so that the researcher can evaluate the
necessary sample sizes based on different ©! values. Because the knowledge
of some (in general unknown) population parameters is necessary to calculate
N , as is generally the case of any formalized sample size planning methods,
researchers need to note that the sample size returned should be viewed as
approximations, conditional on the appropriateness of input information. Some
ideas for choosing reasonable estimates of © are (a) basing it on prior research
conducted with a similar population, (b) meta-analyses, or (c) norms for what
is considered “close” fit (e.g., ©! D :05) or “mediocre” fit (e.g., ©! D :08; e.g.,
MacCallum et al., 1996). Furthermore, we believe using several values of ©!

and ¨, and in some cases multiple degrees of freedom values, is helpful to
understand the impact of each component on the necessary sample size.

In order to plan sample size so that the expected confidence confidence
interval width is sufficiently narrow, we first seek to find the expected value of O©,
denoted EŒO©#, and compute the confidence interval width for © given EŒO©#, !, N ,
and 1$’. Given !, N , and 1$’, all of which are design factors, the value of w is
solely determined by O©. We regard the confidence interval width at EŒO©# with the
particular combination of !, N , 1 $ ’ as the expected confidence interval width
for ©. That is, the expected confidence interval width is EŒwj.EŒO©#; !; N; 1 $ ’/#,
which for simplicity we write as EŒw#, with the implicit understanding that EŒw#
necessarily depends on EŒO©#, !, N , and the confidence level.4

Given ©, !, and N , from Equation 9, the expectation of O© can be written as

EŒO©# D E

2

4

v

u

u

tmax

(

0;
OF0

!

)

3

5 : (11)

4Given ", N , and 1"’, the value of w is solely determined by O©, and we use w D h .O©/ to denote

such relationship, where h .$/ refers to a nonlinear confidence interval formation function (i.e., the

confidence interval formation function discussed previously). Using the Taylor expansion to expand

h.O©/ at EŒO©#, one would obtain that h.O©/ D h.EŒO©#/ C remainder (e.g., Casella & Berger, 2002,

p. 241). Taking the expectation on both sides of the equation, it leads to EŒh.O©/# % EŒh.EŒO©#/#.
Because EŒh.O©/# D EŒw# according to the definition of w and EŒO©# is a constant, it follows that

EŒw# % h .EŒO©#/, meaning the expectation of w is approximately equal to the confidence interval

width obtained based on EŒO©#.
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8 KELLEY AND LAI

If OF0 is negative, the expectation in Equation 11 is simply zero. Thus, the focus

of the derivation is the expectation of

q

OF0
!

. In situations where OF0 is larger than
zero, which is usually the case, Equation 11 becomes

EŒO©# D E

2

4

s

OF0

!

3

5 : (12)

Because ! is a constant given a specific model, we can move the expectation
calculation to the numerator of the right-hand side of the equation:

EŒO©# D
1

p
!

E

%q

OF0

&

: (13)

In general, the expectation of a variable’s function does not equal the function of
the variable’s expectation. Nevertheless, applying the Taylor expansion, one can

show that EŒg. OF0/# ' g
#

EŒ OF0#
$

, where g .%/ refers to a differentiable function

of OF0 under some fairly general conditions (e.g., Casella & Berger, 2002, p. 241).

In the present context, g
#

OF0

$

is

q

OF0. Because the expectation of OF0 is F0 (by

combining Equations 7 and 8), Equation 13 becomes

EŒO©# '
r

F0

!
; (14)

with the right-hand side being equal to the definition of © from Equation 6. Thus,

EŒO©# ' ©; (15)

with the bias decreasing as ! decreases and/or N increases.
As previously discussed, the confidence interval width is a function of (a) the

O© value, (b) degrees of freedom, (c) confidence level, and (d) sample size. If a,
b, and c were known, the confidence interval width would be determined solely
by the sample size. More specifically, the sample size planning procedure aims
to find the smallest value for N such that, for a specified value of © (i.e., ©!), !,
and ’,

EN Œw# " ¨; (16)

where ¨ is the desired confidence interval width specified by the researcher,
and the subscript N on the expectation emphasizes that the expectation of w
is determined by N , the only factor that varies in the sample size planning
procedure.
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AIPE FOR THE RMSEA 9

Algorithm to Obtain the Necessary Sample Size

Given the previous discussion, we now discuss the algorithm for obtaining the
necessary sample size. The way in which the sample size planning procedure
begins is at an initial sample size value, say N0, such that EN0 Œw# > ¨ (i.e.,
at a sample size where the expected confidence interval width is wider than
desired). The next step is to increase the sample size by 1 and then eval-
uate the expected confidence interval width at a sample size of N.0C1/. If
EN.0C1/ Œw# " ¨, the procedure stops and N.0C1/ is the necessary sample size.
If, however, EN.0C1/ Œw# > ¨, the sample size is increased by 1 and a check
is performed, as before, to determine if the sample size leads to an expected
confidence interval width that is sufficiently narrow. This process continues until
the sample size yields an expected confidence interval width that is sufficiently
narrow, that is, an iterative process of evaluating EN.0Ci/ Œw# to determine at
the minimum sample size where the expected confidence interval width is less
than or equal to ¨, where i in the subscript denotes the particular iteration and
where N.0Ci / is the sample size for the particular iteration. A supplement that
supports this article is available at https://repository.library.nd.edu/view/1/AIPE_
RMSEA_MBR_Supplement.pdf and provides information on how the necessary
sample size can be easily planned using the MBESS R package.

MONTE CARLO SIMULATION STUDY

Recall that Equation 15, which the sample size planning procedure depends on,
is an approximation. However, empirical support for Equation 15 exists. Curran
et al. (2003) were able to show in a variety of situations that when N ! 200,
EŒO©# ' ©. Thus, Curran et al.’s finding is an empirical demonstration of the
effectiveness of Equation 15 as an approximation, at least in certain situations.
Additionally, the confidence interval procedure itself has been shown at times
not to work well (Curran et al., 2003). The impact of the approximation in
Equation 15, the lack of an exact confidence interval procedure in all cases, and
the possible truncation of the lower confidence interval limit at zero was not
clear. Correspondingly, a Monte Carlo simulation study was needed to verify
the effectiveness of our proposed procedures in realistic situations.

The simulation study was conducted in the context of four models representa-
tive of applied research: (a) a confirmatory factor analysis (CFA) model (Model
1) based on Holzinger & Swineford (1939), (b) an autoregressive model (Model
2) based on Curran et al. (2003), (c) a complex SEM model (Model 3) based on
Maruyama and McGarvey (1980), and (d) a more complex SEM model (Model
4). Path diagrams and model parameters are provided in Figures 1 to 4. Model 4
extends Model 3 in that (a) reciprocal relationship between endogenous variables
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14 KELLEY AND LAI

(i.e., ˜1 and ˜2) is included, (b) errors for the endogenous variables are allowed
to covary, and (c) a manifest variable is included in more than one measurement
model for the latent variables. Some modifications of both the original model
and/or parameters were made so that these models are more generally applicable.
All simulation and analysis was conducted in R. The MASS package (Venables
& Ripley, 2002, 2010) was used to generate the multivariate normal data, the
models were fitted with the sem (Fox, 2006) package, and the MBESS (Kelley,
2007a, 2007b; Kelley & Lai, 2010) package was used to obtain a confidence
interval for the population RMSEA.

After specifying the (true) model and (true) model parameters, the model
implied covariance matrix, M.™/, can be obtained, and it is used as the pop-
ulation covariance matrix of the manifest variables (i.e., † D M.™/; e.g.,
Davey & Savla, 2010, Chapter 4) to generate random data. Then the models
are intentionally misspecified to different extents.5 Each model is misspecified
in three ways to create three models with different values of ©. In particular,
Model 1 is misspecified in the manner that (a) œ4 D œ1 D œ7, œ5 D œ2 D œ8,
œ6 D œ3 D œ9; (b) the specifications in (a) plus •1 D •4 D •7, •2 D •5 D •8,
•3 D •6 D •9; and (c) the specification in (a) plus all •’s being equal and
¥21 D 0, so that the population RMSEA values are 0.0242, 0.0526, and 0.123,
respectively. Model 2 is misspecified in the manner that (a) œ6 D 0; (b) œ3 D
œ6 D œ7 D 0; and (c) œ3 D œ6 D œ7 D 0, •1 D •2 D •3, •4 D •5 D •6,
•7 D •8 D •9, so that the population RMSEA values are 0.0268, 0.0614, and
0.0865, respectively. Model 3 is misspecified in the manner that (a) “21 D 0 and
§21 added (i.e., the path from ˜1 to ˜2 is replaced by the covariance between
the two); (b) “21 D ¥21 D ¥32 D 0 and §21 and ”21 added; and (c) “21 D ”11 D
”12 D ”23 D 0, ¥21 D ¥31 D ¥32 D 0 and “12, ”21, and ”22 added in the model,
so that the population RMSEA values are 0.028, 0.0435, and 0.09, respectively.
Model 4 is misspecified in the manner that (a) “21 D “12 D 0; (b) §21 D 0;
and (c) errors for X’s all being equal, ©1 D ©2, ©3 D ©4, and §21 D 0, so that
the population RMSEA values are 0.0386, 0.0525, and 0.0833, respectively. The
desired confidence interval width for © is set from .01 to .05 with an increment
of .01. Given ©, ¨, and the model degrees of freedom, the necessary sample size
N is returned by the sample size planning procedure as discussed in the previous
section and as illustrated in the supplement available at https://repository.library.
nd.edu/view/1/AIPE_RMSEA_MBR_Supplement.pdf. A random sample of size
N is generated from a particular multivariate normal distribution with population

5Another way to create misspecified models is to use the Cudeck-Browne procedure (Cudeck &

Browne, 1992). This procedure is implemented in the function Sigma.2.SigmaStar() in the

MBESS package. See the supplement available at https://repository.library.nd.edu/view/1/AIPE_

RMSEA_MBR_Supplement.pdf for detailed documentation of this function and its possible use

when performing Monte Carlo simulations.
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AIPE FOR THE RMSEA 15

covariance matrix †, and then it is used to fit the (misspecified) model and obtain
a 95% confidence interval for ©. The results from each condition are based on
5,000 replications. All programming scripts and code are available from the
authors upon request.

Simulation results are reported in detail in Tables 1 to 4 where (a) “Mw” and
“Mdnw ” refer to the mean and median of the 5,000 random confidence interval
widths, respectively; (b) “P99,” “P97,” “P95,” “P90,” “P80,” and “P70” refer to
the respective percentiles of the random widths; and (c) “’up ,” “’low ,” and “’”
refer to the empirical Type I error rate on the upper tail, lower tail, and both
tails, respectively.

Results show that the method is effective at producing confidence intervals
whose mean (and median) value is ¨, which is the goal of the sample size
planning procedure. In the worst cases, the mean of the random w’s exceeds ¨
by only a trivial amount. For example, Mw is 0.0556 in Table 2 when © D :0526,
¨ D :05, and N D 317, exceeding the desired confidence interval width by
about only .006; Mw D 0:0562 in Table 3 when © D :0903, ¨ D :05, and
N D 146, again exceeding the desired value by about only 0.006. For another,
Mw is 0.0534 at N D 191, given © D :0834 and ! D 45 (Table 4), exceeding
the desired value ¨ D :05 by just 0.0034. As sample size becomes larger,
the discrepancy between empirical mean and ¨ further reduces. In practice,
obtaining a confidence interval that exceeds the desired width by such a small
amount is very unlikely to produce any substantive impact. Thus, the procedure
is effective at accomplishing its stated goal of planning sample size so that the
expected confidence interval width is sufficiently narrow.

In addition, in some cases, given the same © and !, the sample size planning
procedure returns the same N for different ¨ values. In particular, N D 1,263
for both ¨ D :03 and :04 (Table 2; © D :0268, ! D 23); N D 1,107 for
both ¨ D :02 and :03 (Table 3; © D :028; ! D 58); N D 458 for both
¨ D :04 and :05 (Table 3; © D :0436; ! D 58); N D 586 for both ¨ D
:04 and :05 (Table 4; © D :0386; ! D 38). This somewhat paradoxical phe-
nomenon can be explained by the truncation of the lower confidence limit
when it is theoretically below zero. To better understand this, it is helpful
to plot the width of the 95% confidence interval for © as a function of O©,
N , and !. Figure 5 shows the 95% confidence interval width for © given N
(for 250 and 1,000) and ! (for 10 and 25) at different values of O© (for values
between 0.00 and 0.15). What is immediately obvious from Figure 5 is the
nonmonotonic relationship between O© and w. Theoretically, there is a monotonic
decreasing relationship between w and O©, but due to truncation of the lower
confidence limit when it would otherwise extend below zero, the nonmonotonic
and discontinuous relationship develops. Nevertheless, after the break in the
functional relationship between w and O©, it is clear that larger values of O© lead to
narrower confidence intervals, holding constant N , !, and the confidence level.
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16 KELLEY AND LAI

TABLE 1
Empirical Distributions of Confidence Interval for RMSEA

in the Context of Misspecified Model 1

© D 0.0242 ! D 30

¨ 0.01 0.02 0.03 0.04 0.05

N 5,858 1,901 1,504 894 421
Mw 0.0100 0.0224 0.0268 0.0360 0.0497
Mdnw 0.0100 0.0201 0.0237 0.0362 0.0488
P99 0.0105 0.0315 0.0354 0.0459 0.0661
P95 0.0103 0.0309 0.0349 0.0449 0.0632
P90 0.0102 0.0302 0.0342 0.0439 0.0606
P80 0.0101 0.0282 0.0327 0.0419 0.0571
P70 0.0101 0.0242 0.0311 0.0400 0.0541
P60 0.0100 0.0206 0.0287 0.0382 0.0516
’up 0.021 0.024 0.027 0.00 0.00
’low 0.025 0.024 0.026 0.028 0.026
’ 0.046 0.049 0.053 0.028 0.026

© D 0.0526 ! D 36

¨ 0.01 0.02 0.03 0.04 0.05

N 4,439 1,224 617 398 317
Mw 0.0100 0.0201 0.0310 0.0460 0.0556
Mdnw 0.0100 0.0200 0.0300 0.0401 0.0497
P99 0.0101 0.0210 0.0527 0.0669 0.0749
P95 0.0100 0.0206 0.0332 0.0657 0.0738
P90 0.0100 0.0204 0.0322 0.0640 0.0724
P80 0.0100 0.0203 0.0312 0.0602 0.0696
P70 0.0100 0.0202 0.0307 0.0507 0.0663
P60 0.0100 0.0201 0.0303 0.0411 0.0615
’up 0.030 0.027 0.026 0.025 0.023
’low 0.028 0.024 0.028 0.026 0.031
’ 0.059 0.052 0.054 0.052 0.055

© D 0.1232 ! D 39

¨ 0.01 0.02 0.03 0.04 0.05

N 3,973 1,018 470 277 187
Mw 0.0100 0.0200 0.0300 0.0400 0.0501
Mdnw 0.0100 0.0200 0.0300 0.0400 0.0499
P99 0.0100 0.0201 0.0304 0.0412 0.0531
P95 0.0100 0.0200 0.0302 0.0407 0.0518
P90 0.0100 0.0200 0.0302 0.0405 0.0513
P80 0.0100 0.0200 0.0301 0.0403 0.0507
P70 0.0100 0.0200 0.0300 0.0402 0.0504
P60 0.0100 0.0200 0.0300 0.0401 0.0502
’up 0.024 0.025 0.032 0.023 0.029
’low 0.025 0.026 0.026 0.027 0.029
’ 0.049 0.051 0.058 0.050 0.058

Note. © refers to the population RMSEA, ! the model degrees of freedom, ¨ the desired expected confidence
interval width, N the sample size calculated with our sample size planning method. Mw and Mdnw refer to the
mean and median of the 5,000 random confidence interval widths, respectively. P99 , P97, P95 , P90, P80 , and P70

refer to the respective percentiles of the random widths. ’up , ’low , and ’ refer to the empirical Type I error rate
on the upper tail, lower tail, and both tails, respectively.
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AIPE FOR THE RMSEA 17

TABLE 2
Empirical Distributions of Confidence Interval for RMSEA

in the Context of Misspecified Model 2

© D 0.0268 ! D 23

¨ 0.01 0.02 0.03 0.04 0.05

N 7,301 2,216 1,263 1,263 572
Mw 0.0100 0.0211 0.0316 0.0472
Mdnw 0.0100 0.0201 0.0293 0.0466
P99 0.0103 0.0306 0.0407 0.0603
P97 0.0102 0.0301 0.0403 0.0594
P95 0.0102 0.0294 0.0399 0.0587
P90 0.0101 0.0265 0.0390 0.0570
P80 0.0101 0.0214 0.0374 0.0543
P70 0.0101 0.0208 0.0355 0.0517
’up 0.026 0.024 0.028 0.0
’low 0.032 0.030 0.033 0.024
’ 0.057 0.054 0.060 0.024

© D 0.0614 ! D 25

¨ 0.01 0.02 0.03 0.04 0.05

N 6,273 1,657 797 491 347
Mw 0.0100 0.0200 0.0302 0.0414 0.0542
Mdnw 0.0100 0.0200 0.0300 0.0401 0.0502
P99 0.0100 0.0204 0.0326 0.0633 0.0762
P97 0.0100 0.0203 0.0318 0.0603 0.0755
P95 0.0100 0.0203 0.0315 0.0527 0.0746
P90 0.0100 0.0202 0.0310 0.0436 0.0722
P80 0.0100 0.0201 0.0306 0.0419 0.0636
P70 0.0100 0.0201 0.0304 0.0411 0.0527
’up 0.025 0.027 0.030 0.029 0.027
’low 0.028 0.026 0.029 0.035 0.030
’ 0.053 0.053 0.059 0.063 0.057

© D 0.0865 ! D 31

¨ 0.01 0.02 0.03 0.04 0.05

N 5,022 1,303 611 367 253
Mw 0.0100 0.0200 0.0301 0.0404 0.0509
Mdnw 0.0100 0.0200 0.0300 0.0401 0.0501
P99 0.0100 0.0202 0.0335 0.0432 0.0802
P97 0.0100 0.0201 0.0335 0.0432 0.0552
P95 0.0100 0.0201 0.0307 0.0432 0.0540
P90 0.0100 0.0201 0.0305 0.0418 0.0527
P80 0.0100 0.0200 0.0303 0.0410 0.0521
P70 0.0100 0.0200 0.0302 0.0406 0.0514
’up 0.021 0.021 0.047 0.074 0.098
’low 0.019 0.019 0.017 0.020 0.024
’ 0.040 0.040 0.065 0.094 0.122

Note. © refers to the population RMSEA, ! the model degrees of freedom, ¨ the desired expected confidence
interval width, N the sample size calculated with our sample size planning method. Mw and Mdnw refer to the
mean and median of the 5,000 random confidence interval widths, respectively. P99, P97 , P95, P90 , P80, and P70

refer to the respective percentiles of the random widths. ’up , ’low, and ’ refer to the empirical Type I error
rate on the upper tail, lower tail, and both tails, respectively. Additionally, simulations were not conducted for
the situations where © D 0:0268, ! D 23, and ¨ D :04 because the required sample size was the same as the
preceding condition when ¨ was .01 units smaller.
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18 KELLEY AND LAI

TABLE 3
Empirical Distributions of Confidence Interval for RMSEA

in the Context of Misspecified Model 3

© D 0.0280 ! D 58

¨ 0.01 0.02 0.03 0.04 0.05

N 3,181 1,107 1,107 779 316
Mw 0.0100 0.0265 0.0351 0.0500
Mdnw 0.0100 0.0268 0.0372 0.0498
P99 0.0106 0.0374 0.0446 0.0679
P97 0.0104 0.0372 0.0443 0.0655
P95 0.0104 0.0370 0.0439 0.0640
P90 0.0103 0.0364 0.0431 0.0615
P80 0.0102 0.0351 0.0415 0.0574
P70 0.0101 0.0337 0.0402 0.0546
’up 0.028 0.025 0.024 0.0
’low 0.029 0.029 0.026 0.011
’ 0.057 0.054 0.050 0.011

© D 0.0436 ! D 58

¨ 0.01 0.02 0.03 0.04 0.05

N 2,889 867 471 458 458
Mw 0.0100 0.0203 0.0395 0.0408
Mdnw 0.0100 0.0200 0.0300 0.0306
P99 0.0101 0.0391 0.0574 0.0582
P97 0.0101 0.0216 0.0570 0.0578
P95 0.0101 0.0213 0.0566 0.0575
P90 0.0101 0.0210 0.0556 0.0566
P80 0.0101 0.0206 0.0537 0.0546
P70 0.0100 0.0203 0.0512 0.0521
’up 0.019 0.019 0.018 0.023
’low 0.025 0.028 0.024 0.026
’ 0.044 0.047 0.042 0.048

© D 0.0903 ! D 61

¨ 0.01 0.02 0.03 0.04 0.05

N 2,580 687 333 207 146
Mw 0.0100 0.0200 0.0300 0.0404 0.0562
Mdnw 0.0100 0.0200 0.0300 0.0398 0.0497
P99 0.0100 0.0203 0.0313 0.0444 0.1025
P97 0.0100 0.0202 0.0310 0.0431 0.1012
P95 0.0100 0.0202 0.0308 0.0424 0.0997
P90 0.0100 0.0201 0.0306 0.0416 0.0950
P80 0.0100 0.0201 0.0304 0.0409 0.0521
P70 0.0100 0.0200 0.0302 0.0405 0.0511
’up 0.022 0.026 0.021 0.025 0.021
’low 0.022 0.026 0.024 0.029 0.037
’ 0.044 0.052 0.045 0.054 0.058

Note. © refers to the population RMSEA, ! the model degrees of freedom, ¨ the desired expected confidence
interval width, N the sample size calculated with our sample size planning method. Mw and Mdnw refer to the
mean and median of the 5,000 random confidence interval widths, respectively. P99 , P97, P95 , P90, P80 , and P70

refer to the respective percentiles of the random widths. ’up , ’low , and ’ refer to the empirical Type I error rate
on the upper tail, lower tail, and both tails, respectively. Additionally, simulations were not conducted for the
situations where © D 0:0280, ! D 58, and ¨ D :03 and © D 0:0436, ! D 58, and ¨ D :05 because the required
sample size was the same as the preceding conditions when ¨ was .01 units smaller.
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AIPE FOR THE RMSEA 19

TABLE 4
Empirical Distributions of Confidence Interval for RMSEA

in the Context of Misspecified Model 4

© D 0.0386 ! D 38

¨ 0.01 0.02 0.03 0.04 0.05

N 4,351 1,280 687 586 586
Mw 0.0100 0.0203 0.0351 0.0403
Mdnw 0.0100 0.0200 0.0301 0.0348
P99 0.0101 0.0227 0.0503 0.0546
P97 0.0101 0.0219 0.0500 0.0542
P95 0.0101 0.0216 0.0496 0.0539
P90 0.0101 0.0211 0.0485 0.0530
P80 0.0100 0.0206 0.0459 0.0508
P70 0.0100 0.0204 0.0420 0.0483
’up 0.022 0.024 0.021 0.023
’low 0.023 0.024 0.024 0.030
’ 0.045 0.048 0.046 0.053

© D 0.0526 ! D 37

¨ 0.01 0.02 0.03 0.04 0.05

N 4,324 1,195 604 390 317
Mw 0.0100 0.0201 0.0310 0.0460 0.0546
Mdnw 0.0100 0.0200 0.0300 0.0400 0.0461
P99 0.0101 0.0209 0.0532 0.0673 0.0746
P97 0.0100 0.0207 0.0498 0.0668 0.0742
P95 0.0100 0.0206 0.0334 0.0663 0.0737
P90 0.0100 0.0204 0.0322 0.0650 0.0722
P80 0.0100 0.0203 0.0312 0.0606 0.0693
P70 0.0100 0.0202 0.0307 0.0503 0.0656
’up 0.022 0.021 0.031 0.031 0.030
’low 0.024 0.026 0.025 0.024 0.027
’ 0.046 0.047 0.056 0.055 0.058

© D 0.0834 ! D 45

¨ 0.01 0.02 0.03 0.04 0.05

N 3,485 921 442 272 191
Mw 0.0100 0.0201 0.0301 0.0404 0.0534
Mdnw 0.0100 0.0200 0.0300 0.0400 0.0499
P99 0.0100 0.0243 0.0350 0.0447 0.0925
P97 0.0100 0.0202 0.0311 0.0440 0.0906
P95 0.0100 0.0202 0.0309 0.0430 0.0891
P90 0.0100 0.0201 0.0306 0.0420 0.0538
P80 0.0100 0.0201 0.0304 0.0410 0.0524
P70 0.0100 0.0200 0.0302 0.0406 0.0514
’up 0.024 0.032 0.030 0.038 0.037
’low 0.019 0.020 0.023 0.027 0.024
’ 0.043 0.052 0.053 0.066 0.060

Note. © refers to the population RMSEA, ! the model degrees of freedom, ¨ the desired expected confidence
interval width, N the sample size calculated with our sample size planning method. Mw and Mdnw refer to the
mean and median of the 5,000 random confidence interval widths, respectively. P99, P97 , P95, P90 , P80, and P70

refer to the respective percentiles of the random widths. ’up, ’low, and ’ refer to the empirical Type I error rate
on the upper tail, lower tail, and both tails, respectively. Additionally, simulations were not conducted for the
situation where © D 0:0386, ! D 38, and ¨ D :05 because the required sample size was the same as the preceding
condition when ¨ was .01 units smaller.
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20 KELLEY AND LAI

FIGURE 5 Width of the 95% confidence interval for © as a function of O©, N , and ". Note.

w is the observed confidence interval width, O© is the estimate of the population value of

the root mean square error of approximation (RMSEA), N is the sample size, and " is the

value of the degrees of freedom. The discontinuity in the confidence interval width is due to

truncation of the lower confidence interval limit at zero, due to the fact that the population

RMSEA is necessarily nonnegative.

Understanding what the figure conveys is important because it shows that as O©
gets close to zero, holding everything else constant, the confidence interval is
artificially truncated, which has the impact of reducing the confidence interval
width. Now returning to the tables, as a function of © and !, holding these two
terms constant at a place near the functional break points in Figure 5, the neces-
sary sample size at a particular ¨ tends to change more slowly compared with the
change in ¨ (i.e., a change in N requires larger change in ¨). Put another way, in
the four cases where different ¨ values yield the same value for N , the difference
of 0.01 in ¨ is too small to cause a change in N because © changes continuously
but N changes as an integer. This is analogous to the case where one inputs,
say ¨ D 0:030 and ¨ D 0:031, other things being the same, and the sample size

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
e
l
l
e
y
,
 
K
.
]
 
A
t
:
 
1
0
:
2
3
 
1
8
 
F
e
b
r
u
a
r
y
 
2
0
1
1



AIPE FOR THE RMSEA 21

planning procedure returns (unsurprisingly) the same N . Similar issues arise
in power analysis where power changes as a continuous function theoretically,
but sample size necessarily changes as a step-function (i.e., whole numbers).

Further note in the Monte Carlo simulation study results that in some situ-
ations the confidence interval formation method itself did not work well. For
example, although the nominal Type I error rate was set to .05, the empirical ’
values are (a) .026 when © D 0:0242, ! D 30, and N D 421 (Table 1); (b) .122
when © D 0:0865, ! D 31, and N D 253 (Table 2); (c) .011 when © D 0:0280,
! D 58, and N D 316 (Table 3); and (d) .066 when © D 0:0834, ! D 45, and
N D 272 (Table 4). In these four conditions the empirical confidence coverage
is quite different from the nominal value. Recall that we used the typical method
to form confidence intervals for ©, namely, the one based on a noncentral chi-
square distribution. The failure of the confidence interval method is thus not due
to our sample size planning method but rather is a problem with the confidence
interval procedure itself. Such a finding is consistent with the work of Curran
et al. (2003), who report confidence interval empirical coverage rates as low as
76% when the nominal value was specified as 90%. The conditions we included
in our Monte Carlo simulation study show that the discrepancy found by Curran
et al. was not unique to their specific situations.6 Nevertheless, the confidence
interval procedure worked well in the vast majority of situations.

As stated previously, the method we have proposed is necessarily limited by
the existing methods of maximum likelihood estimation and RMSEA confidence
interval formation in the SEM literature. Therefore, instead of our sample size
planning procedure having a problem, the reason the empirical ’ does not equal
the nominal ’ in a few cases lies in some combination of maximum likelihood
estimation, formation methods for ©, and the fact that O© only approximately
follows a noncentral chi-square distribution. Even so, in the conditions noted
earlier, the mean and median of those confidence interval widths were all very
close to the desired ¨ value.

PLANNING SAMPLE SIZE:
AN EMPIRICAL APPLICATION

The sample size planning method we developed requires the following infor-
mation to be specified in order to obtain a confidence interval for population
RMSEA that is sufficiently narrow: (a) model degrees of freedom (i.e., !), (b) a

6During the peer review of this article the effectiveness of the sem R package and optimization

routine was called into question. To show that this was not specific to the sem package, we performed

a Monte Carlo simulation study to obtain O© for Model 2c using Mplus (Muthén & Muthén, 2010). The

results were essentially identical with 88.10% of the 10,000 Mplus replications correctly bracketing

the population value when confidence intervals for © were formed (recall that the reported value

here was 87.80% with 5,000 replications).
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22 KELLEY AND LAI

presumed population RMSEA value (i.e., ©!), (c) desired confidence interval
width (i.e., ¨), and (d) confidence level (i.e., 1$’). In SEM the model or models
of interest are typically known before the data are collected: the model of interest
represents the theoretically hypothesized relationships that are the driving force
of the research. Correspondingly, the model degrees of freedom (a from previous
text) will be known once a model is chosen. Determining the ©! value that needs
to be specified poses a more difficult problem than determining the degrees of
freedom. The value(s) chosen for ©! are the values that the researcher presumes
to be true in order to implement the sample size planning procedure. When ©! D
©, the sample size planning procedure we developed is optimal with the procedure
tending to work less well when ©! and © become more discrepant. When a single
reasonable estimate of ©! is not available, the effects of several reasonable values
on necessary sample size can be explored in a sensitivity analysis. The desired
confidence interval width is based on the goals of the researcher and is context
specific—the more accurately the RMSEA is to be estimated, the smaller ¨
needs to be. Finally, the confidence level needs to be specified. In general, a
90% or 95% confidence interval is typically used, but certainly any reasonable
value could be used (e.g., 99%). Note that higher confidence levels (e.g., .99
as compared with .90) imply a larger necessary sample size for a particular
expected confidence interval width, all other things being equal.

Our empirical example is based on Holahan, Moos, Holahan, and Brennan
(1997), who studied the relations between social context and depressive symp-
toms at Time 1, coping strategies at Time 2, and depressive symptoms at Time 3.
Figure 6 presents the path diagram for the model of interest. Based on Holahan et
al.’s results, ¦2.30/ D 35:66, N D 183, p D :44, RMSEA D .0322. Given these
statistics, we can form a 95% confidence interval for the population RMSEA:
CI:95 D Œ0 " © " :0729#. Although O© is small, supporting a close-fitting model,
the confidence interval for © is wide. The implication of the wide confidence
interval is that plausibly the population RMSEA can be as small as 0 (a perfect
fit) or as large as .073 (a reasonable model fit). Thus, there is a fairly large
degree of uncertainty about the population value of © and thus about to what
extent the model explains the relationships among the variables.

Suppose a researcher plans to replicate the analysis on a sample from another
well-defined population (e.g., patients undergoing treatment for cancer). The
study is initially designed to follow the procedures, measures, and model (which
has 30 degrees of freedom) used by Holahan et al. (1997). The researcher
believes that demonstrating a small value of the RMSEA on the new sample with
a narrow 95% confidence interval is an important goal. Suppose the researcher
believes that 0.035 is the ideal width for a confidence interval for the population
RMSEA, with a confidence interval width larger than 0.05 too wide to be
informative and a confidence interval width smaller than 0.02 unnecessarily
narrow. Thus, the researcher investigates the necessary sample size for confi-
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AIPE FOR THE RMSEA 23

FIGURE 6 A simplified path diagram for the model in Holahan et al. (1997). Squares

represent manifest variables. The positive/negative signs next to the paths refer to the signs

of the model parameter estimates obtained in Holahan et al.

dence interval widths of 0.02 (minimum), 0.035 (ideal), and 0.05 (maximum)
as the input for ¨.

The researcher also needs to chose a value for ©! to implement the sample
size planning procedure. Not knowing the population value of the © for the new
population leads the researcher to consider several reasonable values of the ©!

so that the researcher can better understand the effects of various ©! values on
the sample size calculated. Based on the Holahan et al. (1997) study, the values
of ©! for the model of interest are .02 to .06 by .01. Table 5 shows how values
of the ©! and desired confidence interval width interact to produce the necessary
sample size for 95% confidence intervals with 30 degrees of freedom. Based
on the assumptions of how well the model fits and how narrow a confidence
interval is desired, the necessary sample size can be planned. For example, if
the researcher believes that .04 is the population value of the © and desires a
confidence interval that has an expected width of 0.035, a sample size of 643
would be necessary (Table 5).

Suppose that a third indicator were available for each of the constructs with
only two indicators: (a) Time 1 depression, (b) Approach coping, and (c) Time 2
depression. This new model now with four indicators for Social context and three
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24 KELLEY AND LAI

TABLE 5
Necessary Sample Size for the RMSEA (©) to Have a 95% Confidence
Interval With an Expected Width That Is Sufficiently Narrow for Models

With 30 Degrees of Freedom for 5 Selected RMSEA Values and
3 Desired Confidence Interval Widths (¨)

¨

© .02 .035 .05

.02 2,208 1,053 364

.03 1,711 982 562

.04 1,541 643 553

.05 1,455 572 355

.06 1,406 531 307

Note. Tabled values were calculated with the ss.aipe.rmsea() function
from the MBESS R package. Details on how to implement the function to plan
sample size in other situations is given in the supplement.

each for Time 1 depression, Approach coping, and Time 2 depression would
have 60 degrees of freedom. In general, increasing the number of indicators
improves the quality of estimating latent variables. Because the interest is in
the relations among the latent variables and the extended model has the same
structural paths as the original model, the extended model can be used to study
the same phenomena.

As can be seen in Table 6, the extended model with 60 degrees of freedom
requires smaller sample sizes than does the original model with 30 degrees of

TABLE 6
Necessary Sample Size for the RMSEA (©) to Have a 95% Confidence
Interval With an Expected Width That Is Sufficiently Narrow for Models

with 60 Degrees of Freedom for 5 Selected RMSEA Values and
3 Desired Confidence Interval Widths (¨)

¨

© .02 .035 .05

.02 2,171 647 232

.03 1,014 966 343

.04 875 544 544

.05 802 349 349

.06 759 309 243

Note. Tabled values were calculated with the ss.aipe.rmsea() function
from the MBESS R package. Details on how to implement the function to plan
sample size in other situations is given in the supplement.
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AIPE FOR THE RMSEA 25

freedom. For the example noted earlier, if the researcher believes that .04 is
the population value of © and desires a confidence interval that has an expected
width of 0.035, a sample size of 544 would be necessary (recall that it was
643 for the original model). A seemingly odd outcome stands out in Table 6
where for ©! values of .04 and .05 the necessary sample sizes for widths of
0.035 and 0.05 require the same value of sample size. The reason for this is
the truncation of confidence intervals that would theoretically extend below 0 as
discussed previously. Nevertheless, the tables illustrate with a specific example
how the sample size can be planned based on the specifics of the model and the
goals of the researcher.

DISCUSSION

Our sample size planning procedure requires an input value for what is believed
to be the population value of © and the model degrees of freedom. Thus, the
necessary sample size returned is conditional on this input information as is the
case with any sample size planning method. Any sample size planning method
that requires information about population parameter(s) should be viewed as
an approximation as the presumed parameter value used for the sample size
planning procedure and the actual parameter value will almost certainly differ.
Nevertheless, planning the appropriate sample size for the specified goal can be
very useful in planning and evaluating a research design provided the input is
reasonable (e.g., Cohen, 1988, pp. 12–13; MacCallum, Browne, & Cai, 2006,
p. 34).

The ideal sample size being based on © is not unique to our work; in fact, it
is a strategy that has already been implemented in the current literature of SEM
sample size planning. For example, MacCallum et al. (1996) propose a method to
plan sample size so that there is sufficient power to reject the null hypothesis that
© ! :05 (or © ! :10). MacCallum et al. (2006) provide guidelines for specifying
reasonable values of what we call ©! to plan sample size. Although our sample
size planning method is from the AIPE perspective instead of the power analytic
perspective, those guidelines are equally applicable to our method. Of course,
our method and the method of MacCallum et al. (2006) differ at a fundamental
level: their method seeks to reject a null hypothesis, whereas our method seeks
to bracket the population value with a narrow confidence interval. The choice
of the appropriate method depends on the researcher’s goals for how inference
will be made based on the RMSEA.

The cutoff values for the RMSEA are arbitrary conventions yet they are
widely used in practice. There is increasing doubt and criticism in the recent
literature on the appropriateness of using fixed cutoff values across a wide range
of models and situations. For example, some research indicates that the RMSEA
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26 KELLEY AND LAI

value for a model to be considered close fit/poor fit can vary among different
substantive areas or model characteristics (e.g., Beauducel & Wittmann, 2005;
Marsh, Hau, & Wen, 2004; Raykov, 1998). In addition, Chen, Curran, Bollen,
Kirby, and Paxton (2008) argue that there is little empirical support for using .05,
or any other fixed value, as a universal cutoff value for RMSEA to determine
adequate model fit (p. 462). Instead of being wedded to a certain fixed cutoff
value of the RMSEA (i.e., .05, .08, .10), the AIPE approach strives to obtain
a narrow confidence interval for © so that more accurate information about ©
is available in order for the researcher and reader to evaluate the model fit on
a case-by-case basis. Although MacCallum et al. (1996) discuss sample size
planning in the power analysis context, they argue that the confidence interval
for RMSEA is more informative than a significance test and “strongly urge”
(p. 130) the use of confidence intervals. They also warn that conventional cutoff
values are aids for interpretation rather than absolute thresholds (p. 134). Thus,
there is an identified need and an existing framework for the AIPE method we
develop to be used in applications of SEM.

Rather than there being a requirement that a single point estimate of © be
available in order to plan sample size, a reasonable range of estimates of ©
can be used to plan sample size to ensure that the sample size produces an
expected width that is at least as narrow as desired. The way in which the size
of O© relates to confidence interval width (recall Figure 5) implies that when O©
is larger than ©!, the confidence interval width will tend to be narrower than
¨, holding everything else constant. Conversely, when O© is smaller than ©!,
the confidence interval width will tend to be wider than ¨, holding everything
else constant. In practice, researchers may consider several alternative models
representing competing theoretical hypotheses and have some uncertainty about
© and what value(s) ©! to use to plan sample size. Figures 7 to 9 depict
the necessary sample size as a function of !, ©, and ¨. From these figures,
there are four observations. First, fixing © and ¨, the necessary sample size
decreases or remains the same as ! increases, holding everything else con-
stant. Second, smaller © values imply larger necessary sample size, holding
everything else constant. Third, the sample size changes more slowly after !
exceeds a certain point, as can be seen in the curves for smaller RMSEA values
(e.g., .04, .05), with this “certain point" being dependent on several factors.
Fourth, within each plot, the curves for the larger values of the specified ©
(e.g., .10, .08, and .06) are more tightly clustered than the smaller values of
the specified © (e.g., .05 and .04), which indicates that the change in N is
not proportional to the change in ©, holding everything else constant. These
observations illustrate the usefulness of the MBESS (Kelley, 2007a, 2007b;
Kelley & Lai, 2010) R (R Development Core Team, 2010) package that contains
the ss.aipe.rmsea() function for planning sample size for the RMSEA from
the AIPE framework.
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AIPE FOR THE RMSEA 27

FIGURE 7 The necessary sample sizes for various population RMSEA values and model

degrees of freedom, holding the desired expected 95% confidence interval width at 0.05.

Note. The figure shows the relationship between the necessary sample size and degrees of

freedom for five values of the population RMSEA value for a desired 95% confidence interval

width of .05.

As can be seen from Tables 5 and 6 and Figures 7, 8, and 9, in some situations
(e.g., small degrees of freedom) where the desired confidence interval width is
rather small (e.g., ¨ D :02), the necessary sample size is very large. These large
sample sizes are larger than some researchers would reasonably be able to collect
given limited time and resources. An implication of this is that not all studies
will be able to have confidence intervals for © that are very narrow due to the
large sample size required and lack of resources to obtain such large sample size.
Kelley and Rausch (2006) discuss the implicit issue of trading “embarrassingly
large” confidence intervals for “distressingly large" sample sizes (p. 369). They
argue that such knowledge is still beneficial because it will be known a priori that
the confidence interval will likely be wider than desired, which would alleviate
any unrealistic expectations about the width of the confidence interval a priori.
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28 KELLEY AND LAI

FIGURE 8 The necessary sample sizes for various population RMSEA values and model

degrees of freedom, holding the desired expected 95% confidence interval width at 0.04.

Note. The figure shows the relationship between the necessary sample size and degrees of

freedom for five values of the population RMSEA value for a desired 95% confidence interval

width of .04.

Researchers who are only able to obtain smaller sample sizes could use the
methods to show that it would be difficult or impossible in some situations to
obtain the required sample size so that the confidence interval for © had an
expected width that was sufficiently narrow, even if the sample size provides
sufficient statistical power (e.g., for a large effect size).

In concluding, the RMSEA is widely used in applications of SEM and is
often the only or the main overall assessment of model fit. The RMSEA is
important because it provides an overall assessment of the extent to which a
theoretical model is supported by the data. However, when a confidence interval
for © is wide, the uncertainty with which O© represents © becomes apparent.
What might initially appear to be a “good fitting" model might at best (i.e.,
the lower confidence interval limit) be an exceptional fitting model or at worst
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AIPE FOR THE RMSEA 29

FIGURE 9 The necessary sample sizes for various population RMSEA values and model

degrees of freedom, holding the desired expected 95% confidence interval width at 0.03.

Note. The figure shows the relationship between the necessary sample size and degrees of

freedom for five values of the population RMSEA value for a desired 95% confidence interval

width of .03.

(i.e., the upper confidence interval limit) be a very poorly fitting model, at
some specified level of confidence. The AIPE approach to sample size planning
strives to obtain an accurate estimate of © so that the researcher can evaluate
the model fit on a case-by-case basis. Because of sampling error, O© (a point
estimate) will differ from ©. A confidence interval provides a range of plausible
values for the population parameter, and the narrower the confidence interval
is, the more information is available about the population parameter, holding
everything else constant. Therefore, in an effort to obtain an accurate estimate
of ©, the AIPE approach to sample size planning should be considered when
planning a research study that involves the evaluation of a theoretically interest-
ing model.
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