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The average rate of change is a concept that has been misunderstood in the
literature. This article attempts to clarify the concept and show unequivocally
the mathematical definition and meaning of the average rate of change in longi-
tudinal models. The slope from the straight-line change model has at times been
interpreted as if it were always the average rate of change. It is shown, however,
that this is generally not the case and holds true in only a limited number of
situations. General equations are presented for two measures of discrepancy
when the slope from the straight-line change model is used to estimate the aver-
age rate of change. The importance of fitting an appropriate individual change
model is discussed, as are the benefits provided by models nonlinear in their
parameters for longitudinal data. An empirical data set is used to illustrate the
analytic developments.

Keywords: average rate of change; longitudinal data analysis; analysis of change;
growth modeling; nonlinear growth models; nonlinear change models; functional form of
growth; functional form of change

Modern conceptualizations of the analysis of change regard intraindividual
change as the starting point for longitudinal data analysis (e.g., Collins, 1996;
Mehta & West, 2000; Raudenbush, 2001; Rogosa, Brandt, & Zimowski, 1982;
Rogosa & Willett, 1985). It is by first focusing on the individual that broad gen-
eralizations over individuals can or cannot be made. The description of intrain-
dividual change can be given in numerous ways and is limited only by the
research design and the researcher’s creativity in forming and testing models.
For example, by focusing on one individual trajectory, the unknown functional
form of change can be described as any combination of linear, quadratic, expo-
nential, logistic, or even as a dampened or undampened oscillating function.
The adequacy of the particular model chosen, however, depends in large part on
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the true functional form of change and the number of measurement occasions.
Given that such a vast array of possibilities exists for describing intraindividual
change, a measure of change that can describe all possible functional forms of
change by way of a single descriptive statistic would have great practical value
for the numerical description that it could provide. A quantity known as the
average rate of change (ARC) has been conceptualized as such a measure in the
literature.

The major purpose of this article is to delineate the meaning and interpreta-
tion of the ARC, as well as what the ARC is not, for this measure to be better
understood by researchers who study phenomena that change over time. A
better understanding of the ARC will allow researchers to realize when the
ARC addresses the question of interest and when it should be avoided.
Although the ARC provides a single measure of overall change, many facets
of change are ignored by this global measure, such as the process of change.
A thorough delineation of the ARC is given in this article to clarify concepts
that have been misunderstood in the methodological and the substantive
literatures.

Our delineation of the ARC begins at an intuitive level and progresses to a
formal mathematical description. The primary emphasis throughout the article
concerns a single trajectory, as describing individual trajectories is a necessary
condition before describing a collection of individual trajectories.

Implicitly or explicitly, the ARC is often a central focus for many longitudi-
nal research projects. Attempts are often made to succinctly describe the aver-
age or typical amount of change that occurs within some time interval. The
regression coefficient from the straight-line change model has often been the
way in which such a succinct description of change has been attempted.
Although potentially beneficial, the remainder of the article shows that the
regression coefficient from the straight-line change model is generally not equal
to the ARC for a given trajectory and treating it as such will generally yield
biased estimates of the ARC.

The ARC is a parsimonious measure that describes the overall trend of a tra-
jectory, regardless of the functional form of change. Although the concept of the
ARC is appealing and seems to be straightforward, the technical underpinnings
have not received much formal attention (cf. Seigel, 1975). The majority of
attention that the ARC has received, however, is often misguided and sur-
rounded by confusion and misinterpretation. It is believed that a thorough deli-
neation of the ARC will help researchers to understand the dynamic and static
relationships that exist among sets of variables over time.

Derivation of the Average Rate of Change

The rate of change of a nonvertical straight line that passes through two sets
of points, (a1, Y1) and (aT , YT ), is the slope of the line, where at represents some
basis of time and Yt is a continuous function of time, Yt = f (at), at the tth
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measurement occasion (t= 1, T).1 The slope of the line connecting two points is
the change in Yt divided by the change in time:

Slope= f ðaTÞ− f ða1Þ
aT − a1

= YT − Y1
aT − a1

= DY
Da

, ð1Þ

where f (at) is the dependent variable Yt, DY is the change in the dependent vari-
able, and Da is the change in time.

Equation 1 is closely related to the derivative. In the limit as Da approaches
zero, Equation 1 yields the instantaneous rate of change when evaluated at a
specific time value. The derivative of a function can be written as

dY

da
= lim

Da→ 0

f ðat +DaÞ− f ðatÞ
Da

= f 0ðaÞ, ð2Þ

where dY
da is read as the derivative of Yt with respect to a, which is represented as

f 0(a) to make explicit that the derivative of the function is contingent on time.
The next step is to relate the ARC to f 0(a) over time.

Deriving the mean of an infinite number of derivatives, because the true func-
tional form of change is generally assumed to exist continuously over time,
requires integration. The mean value theorem for integrals states that over a
closed interval, an integrable function assumes its mean value at least once
within the interval. The particular mean value for a continuous function that is
differentiable over the interval a1 to aT is given as

fc =
1

aT − a1

ZaT

a1

f ðaÞda, ð3Þ

where fc represents the mean value of the function f ( · ), in this case a continuous
function that is differentiable (Finney, Weir, & Giordano, 2001, p. 352; Stewart,
1998, p. 470). Thus, after the function has been integrated, the value is then
divided by the length of the interval to obtain the mean value of the function.
The f ( · ) in Equation 3 of interest for the ARC is f 0(a). Because Equation 3
yields the mean of a continuous differentiable function and Equation 2 is a spe-
cial case of a continuous function, combining the two equations will yield the
mean instantaneous rate of change of the function from a1 to aT .

A corollary of the fundamental theorem of calculus implies that the derivative
of an integrated function is the original function itself (Kline, 1977, p. 258).
Thus, when Equations 2 and 3 are combined, the mean of the derivatives, which
is literally the ARC, can be written as the following:

ARC= f 0ðatÞ=
1

aT − a1

ZaT

a1

f 0ðatÞda ð4Þ
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= f ðaTÞ− f ða1Þ
aT − a1

ð5Þ

= DY
Da

: ð6Þ

As can be seen in Equation 6, the mathematical definition of the ARC is the
change in Yt divided by the change in time during some specified interval. The
resultant formulation of Equation 6 is well known in analytic calculus (e.g.,
Finney, Weir, & Giordano, 2001, pp. 86–88; Stewart, 1998, pp. 146–147, 208),
where regardless of the function, the mean of all of the derivatives evaluated

over a specified continuous interval must equal DY
Da. Notice that the true func-

tional form of change was never specified. Equation 6 holds regardless of
whether the functional form is known or unknown, as only the initial and final
pairs of points are required. Although the ARC was defined in the case where
time was continuous, the same formulation holds true in the more typical case
where the occasions of measurement are discrete. More explicitly,

ARC= ðYT −Y1Þ| f ðatÞ
aT − a1

ð7Þ

when time is discrete, where (YT − Y1Þ| f ðat) implies the difference between the
final and initial value of Y given a particular functional form for the specific
time basis. This holds true because aT − a1 =Da and YT −Y1 =DY , regardless
of whether time is continuous or discrete and regardless of whether the true
functional form governing change is known or unknown. Even though Equa-
tion 6 is well known in the field of analytic calculus, in the context of longitudi-
nal data analysis the mathematics underlying the ARC have not been well
delineated. Because of the lack of technical attention given to the ARC, yet its
intuitive appeal as the mean instantaneous rate of change, the ARC has often
been misunderstood in practice. The major purpose of this article is to clarify
misconceptions about the ARC that persist, both implicitly and explicitly, in the
analysis of change literature.

Statistical Models of Individual Change

Before delineating the ARC in the context of longitudinal data analysis, a
necessary digression provides an overview of statistical models useful for describ-
ing individual trajectories. This digression provides a broad context for the ARC
as well as elucidating a variety of change models not often discussed or consid-
ered in applications of longitudinal data analysis within the behavioral, educa-
tional, and social sciences.

Throughout the article, Yit is the dependent variable for the ith individual
(i= 1, . . . ,N) at the tth time point (t= 1, . . . , T). Unless otherwise specified, it
is assumed that the occasions of measurement are equally spaced, have the same
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starting point, and have a constant t with no missing data, where t is defined as
the change in time from time t to t+ 1(t= at+ 1 − at). Such a data structure
implies that all N individuals have the same starting value, no missing data,
T measurement occasions, and constant t both within and across individuals.
Thus, all of the N individuals have a common set (i.e., vector) of time values.
Data are required to follow this measurement scheme because in this special
case simplified derivations follow without loss of generality.

Relationship Between Straight-Line Change
Models and the Average Rate of Change

Because of the hierarchical structure of longitudinal data (scores over time
nested within persons, who in turn may be nested within group, etc.), statistical
models that take into consideration the nonindependence of the hierarchically
structured data are required (see Davidian & Giltinan, 1995; Goldstein, 2003;
Pinheiro & Bates, 2000; or Raudenbush & Bryk, 2002, for a thorough treatment
of these issues). The most common method of analyzing an individual’s trajec-
tory is with a multilevel model (MLM) using a polynomial functional form.2

Change models linear in their parameters allow various polynomial and nonpo-
lynomial trends to be specified and then tested against other competing models
linear in their parameters. Given an observed set of data, provided a sufficient
number of polynomial trends are specified (at the expense of parsimony and
degrees of freedom), the change model can be made to accurately represent the
data. This desirable property, combined with the relative ease of calculation, has
made the MLM of polynomial change essentially the model of choice for ana-
lyzing change in the behavioral, educational, and social sciences.3

The general MLM linear in its parameters for the ith individual’s set of scores
can be given as

Yi =Xiβ+ZiUi + εi, ð8Þ

where β is the vector of unknown fixed-effect population parameters linked to
the vector Yi by the design matrix Xi, Ui is a matrix of unknown unique indivi-
dual effects linked to Yi by the design matrix Zi, and εi is a vector of errors
generally assumed to be normally distributed about a mean of zero with a con-
stant variance across time (Laird & Ware, 1982). This general MLM formula-
tion allows for the desired polynomial function(s) of time to be included in the
model, as well as other time-varying and fixed covariates. Furthermore, models
having the form of Equation 8 offer great flexibility in terms of model testing,
model comparisons, and parameter estimation.

A straight-line change model for individual i can be represented as

Yit = p0i + p1iait + eit, ð9Þ
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where p0i is the intercept and p1i is the slope for the ith individual. The para-
meters of Equation 9 can themselves be modeled as dependent variables, but we
will focus on the unconditional case where the intercept and slope consist of a
fixed and a unique effect for each of the individuals in the following manner:

p0i = b00 + u0i, ð10Þ
p1i = b10 + u1i, ð11Þ

where b00 is the theoretical mean of the individual intercepts, b10 is the theoreti-
cal mean of the individual slopes across the population of individuals, and u0i
and u1i represent the unique (random) effects associated with the ith individual’s
intercept and slope parameter, respectively.

In the context of change models where each of the N individuals share a com-
mon design matrix for the unique effects (Zi from Equation 8 equals Z for all N
individuals), the means of the ordinary least squares (OLS) regression coeffi-
cients calculated for each individual are equivalent to the estimated fixed effects
of the MLM model (see Laird & Ware, 1982). In the context of the straight-line
change model of Equation 9, a common design matrix of the unique effects
implies a common set (i.e., vector) of time values across each of the N indivi-
duals. Thus, b00 and b10, from Equations 10 and 11, respectively, will be equiva-
lent to the theoretical mean of the OLS estimates across individuals. That is, if
OLS regression analyses were performed for each of the N individuals, the mean
of the estimated intercepts and slopes would correspond to the estimated fixed
effects calculated via the MLM change model. Because the estimated fixed
effects of the MLM model are equal to the mean OLS estimates in the case of
fully balanced data, to make the discussion more comprehensible and generaliz-
able, the remainder of the article focuses specifically on the OLS estimates of a
single trajectory. The MLM regression model of straight-line change for a speci-
fic individual thus simplifies to the following OLS formulation:

Yt = b0 + b1at + et, ð12Þ

where the intercept is

b0 = mY −b1ma, ð13Þ

and the slope from the straight-line change model is

b1 =

PT

t= 1

ðYt − mYÞðat −maÞ

PT

t= 1

ðat − maÞ
2

= bSLCM, ð14Þ
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where mY and ma represent the population means of the dependent variable and
time, respectively, and bSLCM is the regression coefficient for the straight-line
change model.4 Notice that no i subscripts are needed in Equation 12 (and thus
Equations 13 and 14) because N= 1:

When straight-line models are used in the context of the analysis of change,
an implicit assumption for descriptive and inferential purposes is that bSLCM pro-
vides a meaningful measure of change. If the relationship between time and the
dependent variable of interest is something other than a straight line, use of
bSLCM for individual trajectories may lead to incorrect conclusions. When using
statistical methods that treat bSLCM as a dependent variable, such as MLMs,
growth curve models, or two-stage analyses, the results of such statistical proce-
dures may be misleading, as the chosen measure of change (bSLCM) may not
accurately reflect the particular phenomenon under study as it changes and/or
evolves over time. Two situations arise when using bSLCM as an estimate of the
ARC: (a) when change is governed by a straight line and (b) when change is
governed by something other than a straight line. A major goal of the article is
to delineate the bSLCM and the ARC so that it can be shown that the two are fun-
damentally different and are not generally equal to one another. The remainder
of the article illustrates that conceptualizing bSLCM as a measure of the ARC
potentially leads to incorrect conclusions, not only for an individual trend, but
also for examining group differences across individuals.

Models Nonlinear in Their Parameters for the Analysis of Change

Statistical models that are linear in their parameters are generally straightfor-
ward to fit given a set of observed data. As the phenomenon under study grows
increasingly more complex, the order of the polynomial change model can be
increased accordingly until the predicted scores reasonably correspond with the
observed scores. Models nonlinear in their parameters of the same complex phe-
nomenon can often be more interpretable and parsimonious and are generally
more valid beyond the observed range of data when compared with models lin-
ear in their parameters (Pinheiro & Bates, 2000, p. 273). Furthermore, it is often
the case that the parameters in models nonlinear in their parameters can be
easily interpreted, whereas once a polynomial model is beyond quadratic, the
meaning of the higher order parameters typically offers little physical or sub-
stantive interpretation. An example of such a difference between models non-
linear and linear in their parameters models relates to asymptotes.

Polynomial change models are generally unable to model an asymptote
beyond the range of the observed data. Thus, researchers who use polynomial
trends must accept the fact that their model will necessarily fail at some point
beyond the range of the data actually collected. Such scenarios can potentially
lead to inadequate models where impossible values are implied by the model.
Illustrations of three models nonlinear in their parameters are provided that are
thought to be especially helpful for phenomena in the behavioral, educational,
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and social sciences. The selected models nonlinear in their parameters are the
asymptotic regression change curve, the Gompertz change curve, and the logis-
tic change curve. Although a wide variety of models nonlinear in their para-
meters exist, these models of change were chosen because they seem especially
useful for behavioral, educational, and social science research. A brief introduc-
tion to each of these models is provided.

The Asymptotic Regression Change Curve

The general asymptotic regression change curve—sometimes referred to as
the negative exponential or exponential growth/decay model—describes a
family of regression models where the dependent variable approaches some lim-
iting value as time increases. A general asymptotic regression equation for a sin-
gle trajectory is given by Stevens (1951) as

Yt = a+ brat + et, ð15Þ

where a is the asymptotic value approached as a→∞, b is the change in Yt
from a= 0 to a→∞ (i.e., b represents total change in Yt), and r (0< r< 1) is a
scalar that defines the factor by which the deviation between Yt and a is reduced
for each unit change of time, thus reflecting the rate at which Yt →a. Equation
15 can be equivalently written as

Yt = a+ b expð−gatÞ+ et, ð16Þ

where g= −logðrÞ ð0< g<∞Þ, and can be thought of as a scaling parameter
(Stevens, 1951). The top left plot in Figure 1 is provided as an illustrative exam-
ple of change curves typical of the asymptotic regression model.5

The Gompertz Change Curve

The Gompertz curve is nonlinear in its parameters and has been used most
often in the biological sciences. The asymmetric sigmoidal (‘‘S’’ shape) form of
the Gompertz change curve offers an option for those who seek to model certain
types of sigmoidal trends. The general three-parameter Gompertz model for a
single trajectory can be written as

Yt = a expð− expðb− gatÞÞ+ et, ð17Þ

where a is the positive asymptote as T→∞ when g is positive or the negative
asymptote as T→ −∞ when g is negative. The parameters b and g define the

point of inflection on the abscissa at a= b
g. The point of inflection on the ordinate

is at Y = a
expð1Þ, which is approximately 37% of the asymptotic value (Ratkowsky,

1983, chap. 4, pp. 163–167; Winsor, 1932). The top right plot in Figure 1 is
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provided as an illustrative example of change curves typical of the Gompertz

change model.6

The Logistic Change Curve

The logistic change model is nonlinear in its parameters and another option
for sigmoidal change where the sigmoidal form is symmetric. The general three-
parameter logistic change model for a single trajectory can be written as

Yt =
a

1+ exp b− at
g

! " + et, ð18Þ
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FIGURE 1. Illustration of models nonlinear in their parameters that are potentially
appropriate for modeling phenomena over time in the behavioral, educational, and
social sciences.
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where a is the positive asymptote as T→∞ when g is positive or the negative
asymptote as T→ −∞ when g is negative. The parameters b and g define the
point of inflection on the abscissa and the curvature, respectively. The point of
inflection on the ordinate is at Y = a

2, 50% of the asymptotic change (Pinheiro &

Bates, 2000; Ratkowsky, 1983, chap. 4, pp. 167–169). The bottom left plot in
Figure 1 is provided as an illustrative example of change curves typical of the

logistic change model.7

Models Nonlinear in Their Parameters
for the Behavioral, Educational, and Social Sciences

Given the three types of models nonlinear in their parameters that have been
introduced, it is beneficial to relate their functional forms to phenomena encoun-
tered in the behavioral, educational, and social sciences. When limits on some
behavior, ability, or measure of performance exist, models nonlinear in their
parameters will likely offer more realistic representations of reality than do
models linear in their parameters.8 As Cudeck (1996) states, referring to human
behavior, ‘‘many responses are inherently nonlinear and cannot be treated by a
linear mixed [i.e., multilevel] model’’ (p. 372).

Van Geert (1991) provides a powerful argument for taking seriously the notion
of applying models nonlinear in their parameters and states that a variant of the
logistic change function ‘‘applies to all—or at least a very significant majority—
of the variables involved in cognitive growth processes’’ (p. 45). Van Geert con-
tends that cognitive processes occur under the constraints of limited resources and
that these constraints need to be explicit in models of change. Models that are lin-
ear in their parameters, the ones most commonly used in the behavioral, educa-
tional, and social sciences, are usually untenable models for the phenomenon of
interest as there is no constraint on growth or decline. For example, as time
increases, the model-implied predictions may be erratic and unrealistic. Such
untenable characteristics of unconstrained models are evidenced by models linear
in their parameters that continuously ‘‘grow’’ or ‘‘decay’’ as time increases.

In the context of latent variable models, Browne and du Toit (1991) present
three different model formulations for data on learning with the goal of isolating
interindividual differences in intraindividual learning characteristics and to dis-
cern the effects of a covariate on this relationship. Browne and du Toit use the
Gompertz change curve of Equation 17 for each of the model formulations, but
state that the exponential (a special case of Equation 15) and logistic curves
(Equation 18) may also be suitable (p. 56). Using such models nonlinear in their
parameters seems reasonable in the sense that learning is not an unlimited cogni-
tive process (van Geert, 1991), but yet instead one that changes little after the
task has been nearly mastered and tends to level off at some asymptotic value
(Browne & du Toit, 1991, pp. 57–59).

Although numerous types of change in the behavioral, educational, and social
sciences likely follow functional forms nonlinear in their parameters, the
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straight-line change model seems to be used more than any other change model.
In fact, Mehta and West (2000) state that ‘‘linear growth [i.e., the straight-line
change model] is virtually the only form of change that is investigated by sub-
stantive researchers’’ (p. 40). Other reasons exist, but one reason that the
straight-line change model is so often used is because change is then described
by one parameter, the slope. However, the adequacy of the straight-line change
model when the true functional form is something other than a straight line is
often suspect and can lead researchers astray when attempting to understand
change. For example, making statements about the ‘‘average’’ rate or ‘‘typical’’
amount of change is often appealing. Statements about the ‘‘average’’ rate or
‘‘typical’’ amount of change are often based on the estimated slope from the
straight-line change model. The next section explores the relationship between
the slope from the straight-line change model and the ARC.

The Regression Coefficient From the Straight-Line
Change Model and the Average Rate of Change

The slope from the straight-line change model implied by Equation 14 has been
labeled and/or interpreted as the ARC for an individual trajectory. Evidence of
this is available by examining how some authors determine and use the term aver-
age rate of change. It is thus important to clarify the technical meaning of the
ARC so that substantive researchers do not (a) ignore searching for the true func-
tional form of change, (b) ‘‘fall back’’ on the straight-line change model, and/or
(c) interpret biased estimates of the ARC or mean ARC across individuals.

A commonly used but potentially confusing statement regarding the ARC
occurs when the average rate of change is presented and interpreted in MLMs.
This ‘‘average rate of change,’’ however, is generally not the ARC examined in
this article. When fitting the straight-line change model in the context of MLM,
each individual is typically allowed a unique value for their slope over time, as
well as a unique intercept. As previously stated, the expected value (i.e., the
mean) of each parameter across all individuals is known as a fixed effect. Recall
that the fixed effect for the slope is represented in Equation 11 by b10. In straight-
line change models, this parameter is often referred to as the average rate of
change (e.g., Laird & Wang, 1990, p. 405; Raudenbush & Bryk, 2002, p. 184;
Raudenbush & Xiao-Feng, 2001, p. 387) because it is literally the mean of all
individual slope (i.e., rate of change) estimates. Authors who use the term average
rate of change when referring to the fixed effect are not wrong, provided the aver-
age rate of change is not interpreted as the grand mean of the instantaneous rate of
change for the individual trajectories over time, but as the mean of the individual
slopes. As will be shown momentarily, in general bSLCM 6¼ ARC and b10 6¼ mARC,
where mARC is the population mean of the individual ARC values.

In summary, b10 (Equation 11) is the mean slope across all individuals in
some population; however, b10 generally does not represent the mean ARC
across individuals, nor does bSLCM (Equation 14) generally represent the ARC
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for an individual (as will be shown in the next section). The belief that the slope
from the straight-line change model is always equal to the ARC is explicit in
some work and implicit in the interpretations of many others. The overall group
effect for the rate of change, although it is an averaged value, is not generally a
measure of the overall ARC across individuals.

The Discrepancy Between the Regression Coefficient From
the Straight-Line Change Model and the Average Rate of Change

We describe the potential discrepancy between the regression coefficient and
the ARC by two parameters. For fixed values of time, the first parameter that
describes the discrepancy is the bias, which is operationally defined as

B=E½bSLCM| f ðaÞ%−
E½ðYT − Y1Þ| f ðaÞ%

aT − a1
= bSLCM −ARC, ð19Þ

where Yt is conditional on the true functional form of change and E[ · ] repre-
sents the expected value of the random variable in brackets. Bias, as defined
here, is analogous to its definition in an estimation context, whereas the formal
definition of bias is the expected value of the difference between an estimator
and the parameter it estimates (e.g., Rozeboom, 1966). For fixed values of time,
the second parameter that describes the discrepancy is the discrepancy factor
and is operationally defined as

C= E½bSLCM| f ðaÞ%
E½ðYT − Y1Þ| f ðaÞ%

aT − a1

= bSLCM
ARC

, ð20Þ

where again Yt is conditional on the true functional form of change.
In situations where B= 0 (implying C= 1), interpreting bSLCM as the ARC

yields no inconsistency in research conclusions or interpretation. However,
when B 6¼ 0 (by implication C 6¼ 1), conceptualizing bSLCM as the ARC may be
problematic and can potentially lead to misinformed conclusions regarding
intraindividual change and interindividual change, as well as group differences
in change. Although there is a one-to-one correspondence between B and C,
both values are helpful for interpretation. Depending on the particular situation,
a seemingly small bias could have a large discrepancy factor, or vice versa.
Furthermore, the bias is not invariant with respect to transformation. Although
the value of B is often more straightforward to interpret than C, it is also poten-
tially arbitrary owing to rescaling time and/or the dependent variable. Therefore,
it is helpful to base the developments in the article on both forms of discrepancy.
For example, suppose bSLCM = 100 and ARC= 90, yet after rescaling bSLCM = 1
and ARC = :90. Although there is a dramatic drop in B (10 compared with .10),
the C is left unchanged (1.11).
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Before examining B and C, it is first helpful to realize that any functional
form can generally be represented by a power series, such that the sum of
squared deviations between values of the true function and the values approxi-
mated by the power series can be made to be infinitesimally small by adding
enough polynomial powers and coefficients (Finney et al., 2001, chap. 8; Stew-
art, 1998, section 8.6). A power series in the longitudinal context is a limiting
sum of coefficients multiplied by positive integer powers of time. Such a power
series is given as

f ðatÞ= lim
M→∞

XM

m= 0

lmamt
# $

, ð21Þ

where lm is the coefficient (−∞< lm <∞ ) for the mth power (m= 0, . . . ,M).
Although a power series is infinite by definition, known functional forms can

be represented by finite sums. In general, the following finite sum can be used to
impose or approximate some known or unknown functional form of change and
is more general than the power series, as the powers of time are not limited to
nonnegative integers (as is the definition of a polynomial change model), but
can take on any real values:

f ðatÞ=
XK

k= 1

lka
!k
t

! "
, ð22Þ

where !k( −∞ < !k <∞) represents the kth (k = 1, . . . , K; 1 ≤ K <∞)
power.9 General results emerge for B and C by realizing that functional forms
of change can generally be represented by Equation 22. The following section
uses this fact when examining B and C for any model linear in its parameters.

Examining the Bias in the Average Rate of Change

In the context of continuous time models, Kelley and Maxwell (2006) give
expressions for B andC for the most general case and show that B= 0 (implying
C= 1) in general only when the functional form of change consists of only linear
and/or quadratic components. From a methodological perspective, the work on
continuous time models is very interesting; however, in practice time is nearly
always measured at discrete occasions. Thus, it is important to examine B and C
when time is limited to a finite number of measurement occasions. For finite
occasions of measurement, the general equation for the bias can be written as

B=

PT

t= 1

ðYt − mYÞðat −maÞ

PT

t= 1

ðat − maÞ
2

− YT − Y1
aT − a1

: ð23Þ
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The equation for C in the general case is given by

C=

PT
t= 1

ðYt − mY Þðat − maÞ

PT
t= 1

ðat − maÞ2

ðYT − Y1Þ
ðaT − a1Þ

=
ðaT − a1Þ

PT

t= 1

ðYt − mYÞðat − maÞ

ðYT − Y1Þ
PT

t= 1

ðat − maÞ
2

: ð24Þ

For equally spaced occasions of measurement, Equations 23 and 24 can be sim-
plified by realizing that all of the values of time can be written in terms of a1
and aT . Knowing T , a1, and aT , the remaining T − 2 values of time can be
expressed as

at = a1 + ðt− 1Þ aT − a1
T− 1

: ð25Þ

Combining Equation 25 with Equation 23 and Equation 24 allows B and C to
be derived for arbitrary values of T in situations with equally spaced measure-
ment occasions. Given T equally spaced occasions of measurement, B can be
written as

BT =

PT

t= 1

Yt a1 + ðt− 1ÞaT − a1
T− 1

# $
− ma

% &

PT

t= 1

ða1 + ðt− 1ÞaT − a1
T− 1 Þ− ma

% &2
− ðYT − Y1Þ

ðaT − a1Þ
, ð26Þ

whereas C can be written as

CT =
ðaT − a1Þ

PT

t= 1

Yt a1 + ðt− 1ÞaT − a1
T− 1

# $
− ma

% &

ðYT − Y1Þ
PT

t= 1

ða1 + ðt− 1ÞaT − a1
T− 1 Þ− ma

% &2
: ð27Þ

From the previous results and the derivations given in the appendix, it can be
shown that when the true functional form follows a quadratic change model and
the at values are symmetric about ma (and thus ma is equivalent to the median value
of time), the ARC (Equation A3) and bSLCM (Equation A13) are equivalent:

ARCQCM = bSLCM|QCM = b1 + b2ðaT + a1Þ, ð28Þ

where ARCQCM and bSLCM|QCM are the ARC and bSLCM when data are governed
by a quadratic functional form with b1 and b2 representing the linear and
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quadratic coefficients, respectively, in a quadratic change model. It is important
to remember that Equation 28 was proven only for situations where the true
change was governed by a quadratic change model and when the values of at
were symmetric about ma. The equality in Equation 28 holds for population
values as well as sample values. An obvious special case of at being symmetric
about ma is when time is equally spaced. In fact, Siegel (1975) shows similar
findings for quadratic change curves that have equally spaced time points, but
does not relate bSLCM|QCM to other functional forms or to multilevel models (as
they were not fully developed at that time). Thus, when at is symmetric about ma
and when change is governed by a quadratic change model (a special case being
a straight-line change model when b2 = 0), ARCQCM = bSLCM|QCM. In general,
this equality does not hold for other functional forms of change and equally
spaced measurement occasions. Special cases of other functional forms lead to
bSLCM that equal ARC, but generally the two concepts are not equal to one
another and represent fundamentally different quantities.10

By setting B= 0 and C= 1; general results for the specific value of T can be
obtained showing when bSLCM and ARC are equal. Table 1 shows the general B
and C for 2 to 12 equally spaced measurements with arbitrary a1 and aT values.
Notice that regardless of the true functional form of change, for two or three
equally spaced values of time, the slope from the straight-line growth model and
the ARC are always equivalent. Thus, for T = 2 or T = 3; one need not worry
about any discrepancy that may arise if bSLCM is labeled and interpreted as the
ARC, provided the time points are equally spaced. However, for T ≥ 4, the
ARC generally does not generally equal bSLCM .

Table 1 can be used in at least two ways. Suppose that some functional form
of growth, the initial value of time, and T are known for equally spaced values
of time. The value of B and C can then be determined with the expressions
given in Table 1 (2 ≤ T ≤ 12). For any case where B does not equal zero
(implyingC 6¼ 1), the extent of the discrepancy will be known for the functional
form of interest. In the event that the true functional form of growth is known
exactly, the expected value for bSLCM could be ‘‘corrected’’ by scaling the
expected bSLCM for B to equal 0 (equivalently, C= 1), such that the scaled
regression coefficient could be used as an unbiased estimate of the ARC.11

Furthermore, for a given T , B could be set to 0 (or C set to 1) to discern under
what circumstances the expected bSLCM will equal ARC. For example, when
T = 4, bSLCM =ARC whenever Y1 − Y4 = 3(Y2 − Y3). Thus, there is 0 bias when-
ever −Y1 + 3Y2 − 3Y3 + Y4 = 0:

Note that the coefficients in the bias equation when T = 4(−1, 3,−3, and 1
for Y1 through Y4, respectively) have an interpretation beyond that of the present
context. In fact, the coefficients (or the coefficients scaled by a constant) corre-
spond to orthogonal polynomial coefficients in the context of trend analysis.
Specifically, for four levels of a quantitative factor in an analysis of variance
context, the coefficients in the bias equation for T = 4 correspond to the
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coefficients for the test of the cubic trend (tables of which can often be found in
experimental design books). When T = 4, fitting a third-degree polynomial
growth model ensures a perfect fit. For the expected value of bSLCM to be equal
to the ARC when T = 4, there must be no cubic trend. That is, the coefficients
for the bias from Table 1 multiplied by the appropriate expected dependent vari-
ables must equal zero. Because any strictly linear trend or a combination of lin-
ear and/or quadratic trends (when measurement occasions are equally spaced)
yields an unbiased estimate of the ARC as measured from bSLCM , the sum of the
coefficients multiplied by the appropriate Yt will equal zero. In cases where
T = 4 (and indeed when T > 4) with no cubic trend, bSLCM will not be an
unbiased estimate of the ARC.

A similar interpretation for values of T > 4 also exists, namely that when a
strictly linear trend exists, when occasions of measurement are equally spaced
and a quadratic trend exists, or when occasions of measurement are equally
spaced and a combination of linear and quadratic trends exists, the sum of the
orthogonal polynomials multiplied by the appropriate Yt will be zero for all
trends greater than quadratic. Thus, when measurement occasions are equally
spaced, the sum of the orthogonal polynomials multiplied by the appropriate Yt
is zero for trends greater than quadratic, implying that only a linear and/or a
quadratic trend exists, bSLCM will exactly equal ARC. The point is that when a
strictly linear trend exists, when measurement occasions are equally spaced and
a strictly quadratic trend exists, or some combination of linear and quadratic
trends exists for equally spaced measurement occasions, the bias in Table 1 will
be zero. When there are higher order trends beyond quadratic, the equations in
Table 1 will generally, if not always, differ from 0 for B and from 1 for C,
implying that bSLCM will differ from the ARC.

Given the general bias in using bSLCM as an estimator of ARC for a single tra-
jectory, there is no reason to believe that taking the mean bSLCM would lead to
the mean ARC. In fact, assuming all individuals have the same fixed-effect para-
meters conditional on appropriate covariant(s) and/or grouping variable(s),
which is assumed in standard multilevel models (cf. Muthén, 2001; Muthén
et al., 2002),

E½bSLCM|X% 6¼ E½ARC|X%, ð29Þ

where X is the appropriate conditioning factor(s) (e.g., group membership,
values of covariates, etc.). Thus, conceptualizing the mean ARC as the slope
from a multilevel model will generally lead to the mean ARC being biased. This
is the case because E[ARC] is simply the mean of the ARC (the expected value
of an expected value is simply the mean of that value). Furthermore, if the mean
of a single trajectory is biased, and because E[bSLCM|X] is a constant in any par-
ticular situation, there is no reason to believe that positive and negative biases
would cancel to yield unbiased estimates.
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Application to Empirical Data

Gardner’s (1958) data, which were used by Tucker (1960) to illustrate novel
methods for dealing with change, are used here to illustrate empirically some of
the analytic results. The data consist of 24 participants, where each participant
responded to 420 presentations of one of four letters. The task was to identify the
next letter that was to be presented. The ‘‘target’’ letter had a .70 probability of
being presented, and the three distracter letters each had a probability of .10.
After some number of trials, and what would be optimal to maximize the chances
of a correct response, participants tended to choose the target letter with a high
probability (if not always). Many of the trajectories resembled the asymptomatic
regression or the logistic change curve. A logistic change curve was used to fit
the data in part owing to learning theory and in part owing to visual inspection.12

Using R (R Development Core Team, 2007) and the nlme package (Pinheiro,
Bates, DebRoy, & Sarkar, 2007), a multilevel logistic change curve was fit to
the data. The fixed-effect change curve, where each parameter also had an asso-
ciated unique effect for each individual and assuming a homogeneous and inde-
pendent error structure, was

Y0
t =

16:06

1+ exp 2:09− at
1:62

# $ , ð30Þ

where Y 0
t is the predicted score at the tth time point and each of the coefficients

was statistically significant (p< :01 for each fixed effect).
Recall that this article did not discuss ways to estimate the ARC for an

individual or for a group of individuals. Nevertheless, the mean ARC across
individuals was estimated for purposes of the example in three ways: (a) The
first method used the difference scores of the empirical Bayes estimates
obtained from fitting the logistic change curve, (b) the second method used the
simple difference scores divided by the change in time, and (c) the third method
used the difference score based on the parameter estimates from Equation 30 as
if they were the parameters themselves. The slope from the straight-line change
model for the first two methods was estimated for each individual in the stan-
dard way, and for the third method the slope was based on the model-implied
trajectory using the fixed effects estimated from the original time basis. For sim-
plicity, we focus only on C. The estimated C was found by taking the mean of
the 24 individual C values for the first two methods and by dividing the slope
by the estimated ARC for the final method. Whereas the intermediate time
points were implicitly used in the first and third methods (as they are based on
the parameter estimates themselves), all intermediate time points are ignored
when calculating the simple difference score in the second method.

The values for Ĉ1, Ĉ2, and Ĉ3 were .585, .617, and .681, respectively, for
Methods 1, 2, and 3. Although the third method is not as discrepant as the first
two, using the slope from the straight-line change model underestimates the
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ARC in this situation by more than 30%. Thus, given the three estimates of C,
at best, using the slope from the straight-line change model underestimates the
ARC by more than 30% for these data, which is unacceptable by essentially any
standard of estimation quality. Although at present the optimal way to estimate
ARC, C, and B is not known, the three methods used here are each reasonable
and yield consistent results.

Discussion

The ARC has been, both implicitly and explicitly, conceptualized as the
regression coefficient from the straight-line change model in the methodological
literature as well as in applications of straight-line change models in substantive
research. However, as this article has shown, the slope from the straight-line
change model and the average rate of change are not generally equal to one
another for an individual trajectory. The bias between the two values can be posi-
tive or negative, potentially yielding misleading conclusions regarding change
over time in the context of longitudinal data analysis. One or more of the follow-
ing four sufficient conditions being met implies that the regression coefficient
from the straight-line change model yields an unbiased estimate of the ARC:

1. The true functional form of change consists of only a linear component.
2. The true functional form of change consists only of some combination of linear

and/or quadratic components with occasions of measurement symmetric about the
mean of time.

3. Change is described by two time points.
4. Change is described by three symmetric (and thus equally spaced as T = 3) time

points.

Special cases of Condition 2 are when time is equally spaced and change is
governed by a completely linear, completely quadratic, or some combination of
linear and quadratic change. Of course, Condition 3 and Condition 4 can be con-
sidered special cases of Condition 1 or Condition 2, but they also hold true when
the functional form of change is some arbitrary or unknown function. The rea-
son Condition 3 and Condition 4 hold true is because there are no intermediate
time points to alter bSLCM . Because a2 − ma is in the numerator of bSLCM when
T = 3, Y2 receives a weight of zero because a2 − ma. Thus, when T = 2 or T = 3
and time points are symmetric about ma, bSLCM reduces to (YT − Y1)=(aT − a1).
Although not proven here, the discrepancy between the true bSLCM and the ARC
will increase as T increases; the case where time is continuous yields the great-
est amount of bias. This fact is contrary to conventional wisdom because it is
generally thought that as more time points are included, better estimates are
obtained. Actually, better estimates are obtained for bSLCM , but because this
quantity does not generally equal the ARC, better estimates for the ARC are not
obtained. When there are many time points, the precision of bSLCM is improved,
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but when it is used to estimate the ARC, what is obtained is a precise estimate
of a biased quantity.

Although not proved here, when the time interval is fixed, the reliability of
the ARC estimated by way of the difference score (YT − Y1) divided by the
change in time (aT − a1) is equal to the reliability of the difference score; this
also provides an unbiased estimate of the ARC (Rogosa et al., 1982). When
estimating the ARC by way of Equation 6, all intermediate time points are
ignored. Ignoring data is not generally advisable, and using intermediate time
points in an informative way could lead to increased reliability and accuracy
when estimating the ARC. Thus, future work could investigate various proce-
dures for efficiently and accurately estimating the ARC. One reasonable way to
estimate the ARC for an individual is to fit the correct functional form of
change and use the predicted values of Y1i and YTi—which are denoted Y 0

1i and
Y 0
Ti, respectively—in place of the numerator of Equation 6. Such a method

implicitly uses the specified functional form and intermediate values for calcu-
lating Y 0

1i and Y 0
Ti. For more than one individual, the predicted scores used can

be the empirical Bayes estimates from a MLM context, which many times have
desirable properties.

We believe that the present article adds meaningfully to the analysis of
change literature by clarifying and extending the current understanding of the
ARC. By better understanding the ARC, researchers may realize that their ques-
tions are or are not appropriately addressed by such a measure. The ARC may
not be very helpful when the process of change is of interest. However, if a
description of the mean of the instantaneous rates of change across time is of
interest, the ARC will provide such a measure. It is believed that a better under-
standing of the ARC, and what it is not, will help researchers better describe and
understand change over time.

Appendix
Proof That βSLCM =ARCQCM When Y

Is a Quadratic Function of Equally Spaced Time Points

A proof that bSLCM equals ARCQCM when Y is a quadratic function of equally
spaced time points can be seen by first realizing the average rate of change (ARC)
for a quadratic change model (i.e., Yt = b0 + b1at + b2a2t ) can be written as

ARCQCM = YT − Y1
aT − a1

= ðb0 + b1aT + b2a2TÞ− ðb0 + b1a1 +b2a21Þ
aT − a1

: ðA1Þ

Equation A1 can first be reduced (by canceling the b0s) and then rewritten:

ARCQCM = b1ðaT − a1Þ+ b2ða2T − a21Þ
aT − a1

: ðA2Þ
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The quantity (aT − a1) can be factored in the numerator, which cancels with the
denominator leading to the following:

ARCQCM = b1 + b2ðaT + a1Þ: ðA3Þ

Thus, Equation A3 is the reduced form of the ARC when the true functional
form of change is governed by a quadratic change model.

The regression coefficient for the straight-line change model can be writ-
ten as

bSLCM =

PT

t= 1

Ytat − ma
PT

t= 1

Yt

PT

t= 1

a2t −
PT
t= 1

at

' (2

T

, ðA4Þ

which after substituting b0 + b1at + b2a2t for Yt and defining the denominator of
Equation A4 as the sum of squares of a (SSa) can be rewritten as

bSLCM =

PT

t= 1

ðb0 + b1at + b2a2t Þat − ma
PT

t= 1

ðb0 + b1at + b2a2t Þ

SSa
: ðA5Þ

After distributing at and ma in the numerator of Equation A4 and then distribut-
ing the summation, Equation A5 can be rewritten as

bSLCM =
ðb0

PT

t= 1

at + b1
PT

t= 1

a2t + b2
PT

t= 1

a3t Þ− ðb0maT+b1ma
PT

t= 1

at + b2ma
PT

t= 1

a2t Þ

SSa
:

ðA6Þ

Because
PT

t= 1

at=T = ma, the terms involving b0 in each quantity of the numerator

reduce, and Equation A6 can be rewritten as

bSLCM =
b1ð
PT

t= 1

a2t −ma
PT

t= 1

atÞ+ b2ð
PT

t= 1

a3t − ma
PT

t= 1

a2t Þ

SSa
: ðA7Þ
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Substituting
PT

t= 1

at=T for ma in Equation A7 yields

bSLCM =

b1SSa+ b2
PT

t= 1

a3t −
PT
t= 1

at
PT
t= 1

a2t

T

0

B@

1

CA

SSa
: ðA8Þ

Realizing that
PT

t= 1

ðat −maÞ
3 is necessarily zero when at is symmetric about ma,

it is helpful to expand this quantity

XT

t= 1

at − mað Þ3 =
XT

t= 1

a3t − 3ma
XT

t= 1

a2t + 3m2a
XT

t= 1

at − Tm3a = 0, ðA9Þ

and then solve for
PT

t= 1

a3t so that
PT

t= 1

a3t can be replaced in Equation A8 with the

following reexpression:

XT

t= 1

a3t = ma 3
XT

t= 1

a2t − 3ma
XT

t= 1

at + Tm2a

 !

: ðA10Þ

Rewriting Equation A8 by replacing
PT

t= 1

a3t with the right-hand side of Equation
A10 yields

bSLCM =

b1SSa+ b2 ma 3
PT

t= 1

a2t − 3ma
PT

t= 1

at + Tm2a

' (
−
PT
t= 1

at
PT
t= 1

a2t

T

0

B@

1

CA

SSa
: ðA11Þ

Factoring the ma from the second quantity in the numerator of Equation A11 and
then reducing the remaining terms in the quantity yields

bSLCM = b1SSa+ 2mab2SSa
SSa

: ðA12Þ

After factoring out SSa and realizing that because time is symmetric about the
mean of time ma = ða1 + aT )/2, Equation A12 reduces to

bSLCM = b1 +b2ðaT + a1Þ: ðA13Þ
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Therefore, ARCQCM from Equation A3 and bSLCM from Equation A13 are
equivalent:

bSLCM =ARCQCM ðA14Þ

when Y is governed by linear and/or quadratic components and the time points
are equally spaced.

Notes

1. The ‘‘basis of time’’ can be any variable that is a function of time. For
example, the time basis could be time itself, grade level, age, the identifier of a
particular measurement occasion, and so forth. The term time is used generically
throughout this article rather than using basis of time, but time is meant to be
regarded much more generally.

2. Because latent growth curves (Bollen & Curran, 2006; McArdle &
Epstein, 1987; Meredith & Tisak, 1990) can be formulated to be equivalent to
multilevel models (MLMs) linear in their parameters, the discussion also applies
to applications of latent growth curve analysis. See Bauer (2003), Curran
(2003), and Willett and Sayer (1994) for a discussion of the relations that exist
between MLMs linear in their parameters and latent growth curves.

3. However, by adding additional polynomial trends to a change model,
the sum of squared deviations between the predicted scores and the observed
scores will necessarily decrease (or at the very least stay the same). In fact, as
the number of polynomial trends approach the number of time points, the sum
of squared deviations between predicted and observed scores approaches zero
(T waves of data can be perfectly fit with T − 1 polynomial trends). One wants
to avoid overparameterization in change models, otherwise the model will
account for measurement error in addition to the true relationship (Box, 1984).

4. The Yt in Equation 14 is technically E[Yt] because b1 is a population
parameter. Such an expectation of Yt is assumed throughout the work for nota-
tional ease.

5. The asymptotic regression Curves I, II, and III have an a value of 1,
whereas Curves IV, V, and VI have an a value of 0. Curves I, II, and III have a
b value of−1, whereas Curves IV, V, and VI have a b value of 1. The g values
for Curves I through VI are, respectively, 0.9, 0.4, 0.2, 1.2, 0.5, and 0.3.

6. All Gompertz curves have an a value of 1. Curves I, II, and III have b
values of 2, whereas Curves IV, V, and VI have b values of 3. The g values for
Curves I through VI are, respectively, 1.75, 1, 0.45,−0.35, −0.60, and−2.

7. All logistic curves have an a value of 1. Curves I, II, and III have b values
of 2, whereas Curves IV, V, and VI have b values of 3. The g values for Curves
I through VI are, respectively, 0.75, 1.25, 3,−3.5,−2, and−1.
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8. Of course, the phenomena of interest may display local linearity, where
over the time interval of interest change is well approximated by a straight line.
In such a situation the use of a model nonlinear in its parameters is not as com-
pelling. However, it is especially important when using a model linear in its
parameters to avoid extrapolation beyond the range of observed data.

9. The intercept of a particular change curve is the sum of the lks whose !k

is zero. In the special case where a ∈ [0, aT ] the intercept is
Pk

k= 1

lk0!k , which

strictly speaking is an indeterminate form when !k = 0: However, because of
l’Hôpital’s Rule, which uses derivatives to evaluate the converging limit of
a function that would otherwise be indeterminate under standard algebraic rules,
the quantity 00 ≡ 1 by standard conventions (Finney, Weir, & Giordano, 2001,
section 7.6; Stewart, 1998, section 4.5). When evaluating the equations given in
this section by computer, care should be taken to ensure the particular program
defines 00 as 1 (rather than returning an error message).

10. For example, any functional form with three equally spaced measurement
occasions has a bSLCM that equals average rate of change (ARC).

11. Of course, this second potential use for Table 1 would imply that the true
functional form of growth was known exactly. If this were true, it would be bet-
ter to fit the correct functional form of growth to begin with rather than fitting
the straight-line growth model for ‘‘interpretational ease.’’

12. Gardner’s learning data are available from the MBESS (Kelley, 2007), R (R
Development Core Team, 2007) package with the command ‘‘data(Gardner.LD)’’
after MBESS has been loaded with the command ‘‘library(MBESS)’’.
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