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Accuracy in parameter estimation for ANCOVA
and ANOVA contrasts: Sample size planning via
narrow confidence intervals
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Contrasts of means are often of interest because they describe the effect size among
multiple treatments. High-quality inference of population effect sizes can be achieved
through narrow confidence intervals (CIs). Given the close relation between CI width
and sample size, we propose two methods to plan the sample size for an ANCOVA
or ANOVA study, so that a sufficiently narrow CI for the population (standardized
or unstandardized) contrast of interest will be obtained. The standard method plans
the sample size so that the expected CI width is sufficiently small. Since CI width is a
random variable, the expected width being sufficiently small does not guarantee that the
width obtained in a particular study will be sufficiently small. An extended procedure
ensures with some specified, high degree of assurance (e.g., 90% of the time) that
the CI observed in a particular study will be sufficiently narrow. We also discuss the
rationale and usefulness of two different ways to standardize an ANCOVA contrast, and
compare three types of standardized contrast in the ANCOVA/ANOVA context. All of
the methods we propose have been implemented in the freely available MBESS package
in R so that they can be easily applied by researchers.

1. Introduction
The analysis of variance (ANOVA) and analysis of covariance (ANCOVA) are among the
most popular statistical methods in psychology and related sciences. Most ANOVA or
ANCOVA studies test the null hypothesis that the population group means are all equal.
If the test result is statistically significant, the study reports that there is some difference
among the groups. However, as has been echoed numerous times in the literature
(e.g., Cohen, 1994; Meehl, 1997; Nickerson, 2000; Schmidt, 1996), there are serious
limitations to null hypothesis significance testing (NHST). In the context of comparing
group means, often before conducting an NHST, substantive theories already suggest that
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the null hypothesis of equal population means is almost certainly false. Correspondingly,
it has been suggested (e.g., Harlow, Mulaik, & Steiger, 1997) that NHST does not facilitate
the accumulation of knowledge because we are setting up a question that we essentially
already know the answer to (e.g., there is some difference among the population group
means).

Although NHST helps to understand whether or not an effect exists in the population,
the result of an NHST should not be the endpoint of scientific inquiry. We believe that
the method based on effect sizes and their corresponding confidence intervals (CIs)
offers more and better information about the parameter(s) of interest than does NHST.
In particular, we learn probabilistically not only what the parameter is not (i.e., those
values excluded by the CI) but also a range of plausible values (i.e., those values contained
within the CI), as opposed to NHST, which in and of itself does not provide information
about the effect’s magnitude. Due to the limitations of NHST, the emphasis in applied
research has been moving from the dichotomous, reject or fail-to-reject NHST to the
more informative approach based on CIs and effect sizes, which may well be the future
of quantitative research (Thompson, 2002). For example, the American Psychological
Association (2009, p. 33) states that NHST is ‘but a starting point’ and additional reporting
elements such as effect sizes and CIs are necessary to ‘convey the most complete meaning
of the results’ and are ‘minimum expectations for all APA journals’.

An effect size can be unstandardized, if it is wedded to the particular scale of a
measurement instrument, or standardized, if it is scaled in terms of the variability of the
population from which the measure was taken. Both types are important, but one can
be more useful than the other in certain circumstances, and the present paper focuses
on standardized effects. Standardized effect sizes can be helpful when raw effects are
difficult to interpret or raw effects from different studies cannot be directly compared,
which is often the case in psychology and related sciences. Constructs in psychology
and related disciplines are usually not observable and instruments used to measure
those constructs do not generally have a natural scaling metric. Therefore, researchers
often tend to adopt a metric that is believed to be ‘reasonable’ when measuring the
latent construct, but such a metric is in fact simply chosen by the instrument developer
and thus involves some degree of arbitrariness (Blanton & Jaccard, 2006; Embretson,
2006). As a result, effect measures based on raw scores are necessarily associated
with the corresponding measurement unit, and multiple scaling schemes for the same
phenomenon cannot be readily compared because there lacks a natural scale for the
latent construct. To better interpret results in a study and synthesize results from different
studies, a solution is to report standardized effect sizes (e.g., Glass, McGaw, & Smith,
1981; Hedges & Olkin, 1985; Hunter & Hamilton, 2002; Hunter & Schmidt, 2004). When
the metric is well understood, however, raw effect sizes are much easier to interpret and
more robust to factors such as instrument reliability and sample range, as compared to
standardized effects (see Baguley, 2009, for a comprehensive review on the merits of raw
effects and a detailed comparison between unstandardized and standardized effects).

To estimate a population effect of interest, one can construct a CI. All other things
being equal, it is desirable to observe a narrow CI as compared to a wider one, because
a narrow CI includes a narrower range of plausible parameter values and thus contains
less uncertainty in the estimation. Since the width of a CI is closely related to the study’s
sample size, the goal to obtain a sufficiently narrow CI can be achieved by carefully
planning the sample size for the study. Designing research with the goal to obtain
a narrow CI dates back to at least Guenther (1965) and Mace (1964), and has been
becoming popular recently due to the increasing emphasis on reporting effect sizes and
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CIs. This approach to sample size planning, alternative to the power-analytic one, is
termed accuracy in parameter estimation (AIPE; e.g., Kelley, 2007b, 2008; Kelley &
Lai, 2011b; Kelley & Maxwell, 2003; Kelley & Rausch, 2006; Lai & Kelley, 2011), where
the goal is to achieve a sufficiently narrow CI so that the parameter estimate will have a
high degree of expected accuracy (see Maxwell, Kelley, & Rausch, 2008, for a review of
the AIPE and power-analytic approaches to sample size planning). The goal to achieve
a sufficiently narrow CI is operationally defined as obtaining a CI that is no wider than
some desired value, denoted as �. The value of this desired width needs to be specified
a priori by the researcher on a case-by-case basis according to the goals of the study.

In this paper we propose two procedures to plan sample size for ANCOVA and
ANOVA, with the goal to obtain a sufficiently narrow CI for the population contrast of
interest. We begin by briefly reviewing sample size planning for unstandardized contrasts,
so as to familiarize readers with the general philosophy of AIPE; then we move on to
standardized contrasts. An ANCOVA contrast can be standardized in at least two ways:
(a) divided by ANCOVA’s root mean square error; or (b) divided by the root mean square
error of the ANOVA model excluding the covariate. We first develop CI formation and
sample size planning for these two standardized effects, and then discuss their rationale
and usefulness. The standard procedure calculates the necessary sample size so that the
expected CI width is sufficiently small. However, since the CI width is a random variable,
the expectation of the random width being sufficiently small does not guarantee that the
CI width obtained in a particular study will be sufficiently small. An extended procedure
is developed so that there is some specified, high degree of assurance (e.g., 90% of the
time, 99% of the time, etc.) that the CI observed in a study will be sufficiently narrow.
All of the CI formation and sample size planning methods we discuss in the present
paper have been implemented in the MBESS package (Kelley, 2007a, 2007c; Kelley &
Lai, 2011a) in R (R Development Core Team, 2011), so that they can be readily applied
by researchers.1

2. Confidence interval and sample size for unstandardized contrasts
2.1 Notation and assumptions
Throughout this paper, we frame our discussion in the randomized design ANCOVA
context, and treat ANOVA as a special case of ANCOVA. We assume that all of the
ANCOVA and ANOVA model assumptions are satisfied (i.e., homogeneous variance,
normality, independent observations). Let j indicate the group status, J the total number
of groups ( j = 1, . . . , J ), nj the number of individuals in the jth group, and N the

total number of individuals (N = ∑J
j=1 nj ). This paper is based on the ANCOVA model

given by

Yij = � + � j + �(Xij − �X) + εi j , (1)

where Yij is the response variable of individual i in group j, � is the population grand
mean of the response, � j is the treatment effect of group j (i.e., � j = � j − �, where
� j is the population mean of group j), � is the population regression coefficient of the

1For detailed software documentation and an empirical illustration, refer to this paper’s online supplement at
https://repository.library.nd.edu/view/28/AIPE_for_Contrasts.pdf
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response on the covariate, Xij is the covariate score of individual i in group j, �X is
the population mean of the covariate, and εi j is the error term following N(0, �2

ANCOVA).
Note that this model assumes there is no interaction between the treatment and the
covariate. The ANOVA model that the present paper is based on is given by

Yij = � + � j + ε′
i j , (2)

where ε′
i j is the error term following N(0, �2

ANOVA). The relation between the population
error variances for ANCOVA and for ANOVA can be described as (e.g., Maxwell &
Delaney, 2004, p. 442; Rencher & Schaalje, 2007, p. 256)

�2
ANCOVA = �2

ANOVA(1 − �2), (3)

where � is the population correlation coefficient between the response and the covariate.
Equation (3) indicates that the population error variance of an ANCOVA model is always
smaller than the population error variance of an ANOVA model, unless the covariate
is uncorrelated with the response (in which case the two error variances are equal).
Including a covariate in a randomized design can reduce the error variance and increase
the precision of estimation.

2.2. Unstandardized ANCOVA contrasts
A sample contrast in the one-covariate ANCOVA context is defined as

�̂ ′ =
J∑

j=1

c jY
′
j =

J∑
j=1

c j

[
Y j − �̂(X j − X..)

]
, (4)

where c j is the contrast weight for group j and restricted by
∑J

j=1 c j = 0 and∑J
j=1 |c j | = 2, Y

′
j is the adjusted mean of group j, X j is the covariate mean of group j,

and X.. is the covariate grand mean. The t-statistic associated with �̂ ′,

T = �̂ ′ − � ′

s�̂ ′
∼ t(N−J −1), (5)

follows a t-distribution with N − J − 1 degrees of freedom, where s�̂ ′ is the stan-
dard error of �̂ ′. Given the covariate scores on the N individuals, s�̂ ′ equals

sANCOVA

√
(
∑J

j=1 c2
j/nj ) + D, where sANCOVA is the root mean square error of the ANCOVA

model, and D = (
∑J

j=1 c j X j )
2/

∑J
j=1

∑nj

i=1 (Xij − X j )2 (Cochran, 1957; Maxwell &
Delaney, 2004, pp. 460–464).

Given the distribution of the t-statistic associated with �̂ ′, a (1 − �)100% CI for � ′

can be formed:

CI1−� = [�̂ ′ − t(1−�/2,N−J −1)s�̂ ′ ≤ � ′ ≤ �̂ ′ + t(1−�/2,N−J −1)s�̂ ′], (6)

where t(1−�/2, N−J −1) refers to the (1 − �/2)th quantile of the t-distribution with
N − J − 1 degrees of freedom. Note that the above CI is two-tailed with equal rejection
probability on both tails. For symmetric unimodal distributions, an equal � split ensures
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the narrowest interval (Casella & Berger, 2002, Section 9.3.1); this paper assumes equal
rejection probability on both tails hereafter. Based on equation (6), the full width of a CI
for � ′ is

w = 2t(1−�/2,N−J −1)s�̂ ′ . (7)

2.2.1. Sample size planning for unstandardized ANCOVA contrasts
In this section we briefly review the rationale for sample size planning from the
AIPE perspective and explain how this approach applies to unstandardized ANCOVA
contrasts. Detailed expositions on different kinds of unstandardized mean differences
are available in Jiroutek, Muller, Kupper, & Stewart (2003), Kelley, Maxwell, and Rausch
(2003), Kupper and Hafner (1989), and Pan and Kupper (1999). Their methods can be
extended to the present unstandardized ANCOVA context.

Let � denote the desired CI full width, which is specified by the researcher according
to the goals of the study. The CI width obtained in a study is denoted by w and calculated
as in equation (7). Note that � is a constant and known when planning the sample size,
whereas w is a random variable and remains unknown until the researcher constructs a
CI based on a specific sample. The goal of AIPE is to find the smallest sample size such
that w ≤ �, and it can be achieved from two perspectives. The first perspective is to
study the expectation of w and find the sample size such that E[w] ≤ �. The expected
CI width can be expressed as

E[w] = E[2t(1−�/2,N−J −1)s�̂ ′] = 2t(1−�/2,N−J −1)E[s�̂ ′] ≈ 2t(1−�/2,N−J −1)��̂ ′ . (8)

The approximation follows because we use the population standard deviation as the
expectation of the sample standard deviation.2 Since ANCOVA and ANOVA designs
with equal sample size per group are most robust to violations of the normality and
homogeneous variance assumptions (e.g., Kirk, 1995, pp. 99–100), we develop sample
size planning procedures by assuming equal sample size per group. In addition, using
equal sample size per group reduces the amount of input information required when
planning sample size. We assume equal sample size per group throughout the rest of the
paper, and use n to denote such group sample size.

Given the covariate scores in a design, ��̂ ′ equals �ANCOVA
√

C /n + D, where
C = ∑J

j=1 c2
j . Since the covariate is usually considered as a random effect in psychology

and related sciences, the interest is in the value of ��̂ ′ across all possible covariate values
rather than conditional on certain specific covariate scores. In randomized designs, the
covariate scores across different groups will be equal in the long run, and thus the

numerator (
∑J

j=1 c j X j )
2

in D is zero in the population, reducing ��̂ ′ to �ANCOVA
√

C /n.
Moreover, in randomized designs the sample value of D is usually close to zero and
negligible, because its numerator is much smaller than the denominator. This is the
case because (a) often the covariate means are not much different among groups as a
result of randomization, making the numerator close to zero; and (b) the denominator

2Sample standard deviation is a biased estimator of its population counterpart, but the bias is negligible as long
as the sample size is not too small. The expectation of sample standard deviation is E[s] = � · 	(n), where
	(n) = √

n − 1�((n − 1)/2)/[
√

2�(n/2)] and �(·) is the gamma function (e.g., Casella & Berger, 2002, p. 364).
The quantity 	(n) depends on n only and is a decreasing function of n. When n = 50, 	(n) = 1.0051; when
n = 100, 	(n) = 1.0025.
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is the error sum of squares of performing ANOVA on the covariate, whose value tends
to be much larger compared to the numerator in randomized designs.3 Therefore, in
the planning stage, we use �ANCOVA

√
C /n as the proxy population standard deviation of

�̂ ′ to calculate the sample size. However, in the data analysis stage, the term D is still
involved in calculating s�̂ ′ , but its value is usually of little impact on s�̂ ′ in randomized
designs.

Based on the assumptions of randomized design and equal sample size per group, the
goal E[w] ≤ � can be expressed formally as

2t(1−�/2,nJ −J −1)�ANCOVA

√
C /n ≤ �, (9)

where the left-hand side of the inequality follows from equation (8). Solving (9) for n
gives the (minimum) sample size per group that satisfies E[w] ≤ �. Note that n also plays
a role in the t-distribution quantile, and thus n needs to be solved for numerically rather
than analytically. One way to solve for n is implemented in the MBESS R package.4

Although the sample size obtained from the above process satisfies E[w] ≤ �, it does
not guarantee that in a particular study the observed CI width will be smaller than or
equal to �. As is indicated by equations (7) and (8), w is a random variable based on
the random variable sANCOVA, whereas � is a constant based on the constant �ANCOVA.
When the sample size is not too small, sANCOVA is smaller than �ANCOVA about 50% of
the time, making w smaller than � about 50% of the time (e.g., Liu, 2009). In order to
obtain a sufficiently narrow CI in a study with high degree of assurance (e.g., 90% of
the time, 99% of the time, etc.), a larger sample size is necessary. Let 
 (.50 < 
 < 1)
denote the desired degree of assurance, and the task now becomes one where we need
to determine the (increased) sample size per group, n+, such that P (w ≤ �) = 
 . When
sANCOVA < �ANCOVA, w will tend to be smaller than �, and when sANCOVA > �ANCOVA,
w will tend to be larger than �. Therefore, if a quantity �∗

ANCOVA can be found such
that P (sANCOVA ≤ �∗

ANCOVA) = 
 , substituting �∗
ANCOVA for �ANCOVA in equation (9) will

ensure P (w ≤ �) = 
 . Given the properties of a sample variance (e.g., Hays, 1994,
pp. 355–358), the relation between s2

ANCOVA and �2
ANCOVA can be described as

(n+ J − J − 1)
s2

ANCOVA

�2
ANCOVA

∼ � 2
(n+ J −J −1). (10)

Based on this distribution, there is a quantity that s2
ANCOVA does not exceed 
100% of

the time:

P

[
s2

ANCOVA ≤ �2
ANCOVA

� 2
(
, n+ J −J −1)

n+ J − J − 1

]
= 
, (11)

where � 2
(
, n+ J −J −1) is the 
 th quantile of the chi-square distribution. Since taking

the square root of both sides of the inequality in equation (11) does not change the

3Even when randomization is carefully implemented, the covariate means can still differ statistically
significantly among groups about �100% of the time, where � is the Type I error rate used in comparing
the covariate group means. This phenomenon is termed ‘unhappy randomization’ (Kenny, 1979, p. 217), and
we will study its implications in more detail in Section 5.
4The function that fulfils this task is ss.aipe.c.ancova( ). Please refer to its help file in the MBESS R package for
detailed documentation. See also ci.c.ancova( ) for CI formation for � ′.
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probability statement, substituting �ANCOVA

√
� 2

(
, n+ J −J −1)/(n+ J − J − 1) for �ANCOVA in

(9) gives a way to calculate the sample size that ensures P (w ≤ �) = 
 :

2t(1−�/2, n+ J −J −1)�ANCOVA

√
� 2

(
, n+ J −J −1)

n+ J − J − 1

√
C

n+ ≤ �. (12)

All components in equation (12) except n+ are either constants or specified a priori
by the researcher, and thus solving the inequality for n+ will give the necessary sample
size per group that ensures P (w ≤ �) = 
 . Since n+ also plays a role in the distribution
quantiles, this equation needs to be solved numerically with an iterative process.5

2.3. Unstandardized ANOVA contrasts
Let � denote the population ANOVA contrast; it can be estimated by �̂ = ∑J

j=1 c jY j .

The t-statistic associated with �̂, in the context of equal sample size per group, is

T = �̂ − �

s�̂

= �̂ − �

sANOVA
√

C /n
∼ t(nJ −J ), (13)

and it follows a t-distribution with nJ − J degrees of freedom. In the same manner as
we formed a CI for � ′ in the ANCOVA context, a (1 − �)100% CI for � is

CI1−� = [�̂ − t(1−�/2,nJ −J )s�̂ ≤ � ≤ �̂ + t(1−�/2,nJ −J )s�̂]. (14)

Regarding ��̂ as the approximate expectation of s�̂ , the expected width of the CI in
equation (14) is approximately 2t(1−�/2,nJ −J )��̂ , or equivalently

E[w] ≈ 2t(1−�/2,nJ −J )�ANOVA

√
C /n. (15)

Exactly as in the ANCOVA case, we can find the smallest sample size per group
that satisfies E[w] ≤ � with an iterative process. To ensure that the CI obtained in
a particular study is no wider than desired with 
100% assurance, we can substi-

tute �ANCOVA

√
� 2

(
, n+ J −J )/(n+ J − J ) for �ANCOVA in the standard sample size planning
process.6

In summary, we have discussed CI formation and sample size planning for unstan-
dardized contrasts. Since the CI width is a random variable, one approach is to focus on
the expected width. An extended procedure ensures that the CI observed in a particular
study is sufficiently narrow with a specified, high degree of assurance.

3. Confidence interval and sample size for standardized contrasts
3.1. Standardized ANCOVA contrasts
An ANCOVA contrast can be standardized in at least two ways: (a) divided by the root
mean square error of the ANCOVA model, or (b) divided by the root mean square error

5The function that performs this task is ss.aipe.c.ancova( ).
6The functions for CI formation and sample size planning for � are ci.c( ) and ss.aipe.c( ), respectively.
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of the ANOVA model excluding the covariate. We first develop CI construction and
sample size planning methods for these two standardized effect sizes, and then discuss
their rationale and usefulness in a later section.

3.1.1. Root mean square error of ANCOVA as standardizer
Let the observed standardized ANCOVA contrast be defined as �̂ ′ = �̂ ′/sANCOVA. The
t-statistic associated with �̂ ′,

T ′ = �̂ ′

sANCOVA
√

C /n
= �̂ ′

√
C /n

∼ t′
(nJ −J −1,), (16)

follows a non-central t-distribution with nJ − J − 1 degrees of freedom and non-
centrality parameter . Note that the difference between equations (16) and (5) is in the
numerator: in equation (5) � ′ is subtracted from �̂ ′ and the resulting statistic follows
a central t-distribution, whereas the numerator in equation (16) is �̂ ′ alone and the
resulting statistic follows a non-central t-distribution (see Johnson, Kotz, & Balakrishnan,
1995; Johnson & Welch, 1940, for technical discussions of the non-central t-distribution).
The population non-centrality parameter is defined as

 = � ′/
√

C /n, (17)

and can be estimated by

̂ = �̂ ′/
√

C /n. (18)

Therefore, ̂ is equivalent to T ′ in equation (16).
Although �̂ ′ multiplied by some constant follows a non-central t-distribution as

equation (16) indicates, the CI for � ′ cannot be readily constructed based on the non-
central t-distribution, because  is unknown. Given the monotonic relation between 
and � ′ (see equation (17)) and the relative ease of forming a CI for , the CI formation
for � ′ can be accomplished indirectly. First we form a CI for , and then we transform
the CI limits of  onto the scale of � ′, so that those limits become the CI limits of � ′.
This indirect method shares the same rationale with the CI formation for many other
effect sizes in the general linear model context (Steiger & Fouladi, 1997; Steiger, 2004;
see also Cumming & Finch, 2001; Fleishman, 1980; Kelley, 2007a; Smithson, 2003), as
well as the CI formation for root mean square error of approximation (RMSEA, Browne
& Cudeck, 1992; Steiger & Lind, 1980) of structural equation models.

To form a CI for , first let t′
(q,�,) denote the qth quantile of the non-central

t-distribution with � degrees of freedom (� = nJ − J − 1 in the present context) and
non-centrality parameter , and let U and L denote the (1 − �)100% upper and lower
confidence limits for , respectively. Then U and L are values that satisfy

t′
(�/2, �,U ) = T ′and t′

(1−�/2, �,L ) = T ′,

where T ′ is the observed non-central t-statistic defined in equation (16) (Casella &
Berger, 2002, p. 432). The same T ′ value can equal two different quantiles because
those quantiles are from distributions of different non-centrality parameters. Also note
that U and L have different values given different T ′ values observed, and thus they
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are random variables. We denote a (1 − �)100% CI for  as CI1−� = [L ≤  ≤ U |T ′].
Given the monotonically increasing relation between  and � ′ (see equation (17)), the
CI for � ′ can be formed based on the CI for :

CI1−� = [
L

√
C /n ≤ � ′ ≤ U

√
C /n |�̂ ′]. (19)

The CI width obtained is thus

w = (U − L )
√

C /n |�̂ ′. (20)

Note that the observed CI width is a random variable depending only on �̂ ′.
Similar to the case of unstandardized ANCOVA contrasts, we first develop methods

to plan for sample size so that E[w] ≤ �. Due to the complexity and non-linear nature
of the CI formation for � ′, the exact expected value of E[w] is analytically intractable at
present; nevertheless its expectation is approximately equal to the CI width evaluated
at � ′.7 That is,

E[w] ≈ (U − L )
√

C /n |� ′. (21)

Therefore, the necessary sample size per group that satisfies E[w] ≤ � is the smallest
n that satisfies (U − L )

√
C /n ≤ �|� ′. The quantity n cannot be directly solved for

from this inequality, because n is involved in the degrees of freedom in t′
(�/2,�,U ) and

t′
(1−�/2,�,L ), which in turn affect the value of (U − L )|� ′. One needs to obtain the value

of n numerically with an iterative process.8

Although sometimes the goal is to plan the sample size so that E[w] ≤ �, in many
situations the desire is to obtain a sufficiently narrow CI in the study the researcher
is going to carry out. An extended procedure can be performed so that there is 
100%
assurance that the w obtained in a particular study will be no larger than �. As can be seen
from equation (20), when n and C remain constant, the observed CI width is affected only
by the difference between U and L , which are in turn affected by the observed t-value
T ′ (since T ′ is simply a constant times �̂ ′). Due to the asymmetric nature of non-central
t-distributions, the farther the t-value is from zero, the more positively skewed (when
T ′ > 0, which implies ̂ > 0) or more negatively skewed (when T ′ < 0, which implies
̂ < 0) the distribution becomes, all other things being equal. Moreover, as the skewness
of the distribution increases, the distance between U and L increases, implying a larger
value of U − L , all other things being equal. Therefore, if a quantity t′


 can be found
such that

P
(∣∣T ′∣∣ ≤ ∣∣t′




∣∣) = 
, (22)

7Given �, �, C , and n, the value of w is solely determined by �̂′, and we use w = h(�̂′) to denote such
a relation, where h refers to the non-linear confidence interval formation function (i.e., the CI formation
discussed previously). Applying the Taylor expansion to h(�̂′) at �′, we obtain h(�̂′) = h(�′) + h′(�′)
(�̂′ − �′) + Remainder, where h′( ) refers to the first derivative of h( ) (e.g., Casella & Berger, 2002,
p. 241). Taking expectation on both sides of the equality and omitting the remainder leads to E[h(�̂′)] ≈
E[h(�′)] + h′(�′)E[�̂′ − �′]. The left-hand side E[h(�̂′)] is E[w] according to the definition of E[w]. The first
term on the right-hand side equals h(�′), and the second term equals zero. Thus it follows that E[h(�̂′)] ≈ h(�′)
or equivalently E[w] ≈ h(�′).
8The functions that perform CI formation and sample size planning for �′ are ci.sc.ancova( ) and
ss.aipe.sc.ancova( ), respectively.
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then, 
100% of the time, the CI width based on the random value T ′ will be no wider
than the one based on t′


 (see Kelley & Rausch, 2006, for an application in the context
of two-group standardized mean difference). The algorithm to numerically obtain t′


 in
equation (22) is a generalization of the method proposed by Kelley and Rausch (2006),
and is implemented in a specialized function in the MBESS R package.9 After t′


 is found,
it is transformed into the population effect size � ′


 ; planning the sample size based on
� ′


 instead of � ′ ensures a particular CI will be no wider than desired 
100% of the time.

This is the case because |�̂ ′| does not exceed |� ′

 |, 
100% of the time, causing w (which

is based on |�̂ ′|) not to exceed � (which is based on |� ′

 |) 
100% of the time.

3.1.2. Root mean square error of ANOVA as standardizer
Let the ANCOVA contrast standardized with ANOVA root mean square error be defined
as � ′′ = � ′/�ANOVA; it can be estimated by �̂ ′′ = �̂ ′/sANOVA, which is equivalent to
�̂ ′sANCOVA/sANOVA. To form a CI for � ′′, equations (16) and (17) need to be rewritten
in a form that contains the root mean square error of ANOVA. This can be achieved by
rearranging the equations as follows:

T ′ = �̂ ′

sANCOVA
√

C /n
· 1/sANOVA

1/sANOVA
= �̂ ′′

u
√

C /n
∼ t′

(nJ −J −1,) (23)

and

 = � ′

�ANCOVA
√

C /n
· 1/�ANOVA

1/�ANOVA
= � ′′

�
√

C /n
, (24)

where u = sANCOVA/sANOVA and � = �ANCOVA/�ANOVA.
The CI for  depends on the value of T ′ only and thus is not affected by the

rearrangement in equation (23). The difference between the CIs for � ′ and � ′′ is in
how the confidence limits of  are transformed back to the scale of their respective
standardized contrasts. After finding the (1 − �)100% CI for , the confidence limits for
� ′′ can be obtained as follows:

CI1−� = [
L �

√
C /n ≤ � ′′ ≤ U �

√
C /n |T ′], (25)

when � is known. However, in practice � is almost always unknown and thus it requires
an estimate for this population quantity to construct the CI. A reasonable estimator of �
is u. Applying the delta method, it can be shown that the expectation of sANCOVA/sANOVA

is approximately �ANCOVA/�ANOVA (e.g., Casella & Berger, 2002, p. 245).
Using u to estimate its corresponding value, therefore, returns the CI for � ′′:

CI1−� ≈ [
L u

√
C /n ≤ � ′′ ≤ U u

√
C /n |T ′]. (26)

The full CI width is

w = (U − L )u
√

C /n |�̂ ′′, u. (27)

9The function that fulfils this task is ss.aipe.sc.ancova( ). See the online appendix to the present paper or the
help file in the MBESS R package for illustration and documentation.



360 Keke Lai and Ken Kelley

Although the CI for  is exact, the one for � ′′ is only approximate, because the
confidence limits for  are later multiplied by u, which is an estimate of � . Nevertheless,
extensive Monte Carlo simulations we conducted indicate that u is a very good estimator
of �, and that using u instead of � to construct CI for � ′′ has no substantive impact on
the confidence level (e.g., the empirical Type I error rate is not affected).10

Similar to the case of sample size planning for � ′, we first develop methods to find n
so that E[w] ≤ �. The expected CI width is approximately equal to the width evaluated
at the population effect sizes:

E[w] ≈ (U − L )�
√

C /n |� ′′, � . (28)

To calculate n, one can first substitute � ′′ and � for �̂ ′′ and u respectively in the CI
formation to obtain E[w], and then solve E[w] ≤ � for n. Since n also plays a role in
the values of U and L , it needs to be solved for numerically with an iterative process.
Since the sample size planning process requires only the ratio � instead of the respective
values of �ANOVA and �ANCOVA, sometimes it is easier to conceptualize � in terms of the
correlation between the response and the covariate. Based on equation (3), � = √

1 − �2,
and thus one can specify � instead of � if the knowledge about the correlation is easier
to obtain.

The extended method to ensure that a CI for � ′ is sufficiently narrow with 
100%
assurance is not appropriate in the present context of CI for � ′′. A comparison between
equations (20) and (27) helps explain this problem. As can be seen from equation (20),
U − L is the only factor of w that varies, and when |T ′| ≤ |t′


 |, the CI width for � ′ will
be no larger than desired. On the other hand, the observed CI width for � ′′ is influenced
by two random variables, (U − L ) and u; even when |T ′| ≤ |t′


 |, the CI width for � ′′

would still be larger than desired if u exceeds � by a non-trivial amount. To develop
a satisfactory procedure, it needs to restrict the variation of both T ′ and u, but the
distribution of u is an issue that has received little attention in the literature and remains
unknown.

To achieve 
100% assurance that the CI for � ′′ observed in a particular study is
sufficiently narrow, currently there are two practical solutions. The first of these is to
use a normal distribution to approximate the distribution of � ′′. Instead of relying on
the exact non-central t-distribution of � ′′, Bonett (2008, 2009) proposed using a normal
distribution to approximately construct CI and plan sample size for � ′′ and other kinds of
standardized contrast. This is reasonable because as the sample size approaches infinity,
the distribution of � ′′ approaches normal. However, it is not known how well Bonett’s
methods perform at common, finite sample sizes. In addition, at the time of writing,
there is no software available that readily implements his methods.

The second solution is to perform a priori Monte Carlo simulations. In an a priori
Monte Carlo simulation study, the researcher specifies both the population parameters

10The simulations were conducted in the four-group context with the covariate being considered as random.
The specifications were � = 0, .10, .30, .50, and .80; � = 0.1 (0.1) 0.6; �′′ = 0.1, 0.2, 0.3, 0.5, 0.7, and 1.0,
� = .05. Each condition was replicated 10,000 times, and there were 5 × 6 × 6 = 180 conditions in total.
Empirical Type I error rates typically ranged from 4.7% to 5.3%; the maximum was 5.6% and the minimum was
4.4%. The complete set of simulation results were given to the anonymous reviewers as part of the assessment
of our paper. Also note that the sample size planning methods for all three of the standardized effect sizes
(i.e., � , �′, and �′′) developed in the present paper were tested by extensive Monte Carlo simulations, and
the complete sets of results were given to the reviewers. The simulation results are included in this article’s
online supplement accessible from https://repository.library.nd.edu/view/28/AIPE_for_Contrasts.pdf
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and the sample size n∗, and generates a large number (e.g., 10,000) of random samples
of size n∗ under the specified population parameters. Then one can empirically evaluate
the properties of the CIs obtained. With a priori Monte Carlo simulations, one can
continue to increase the sample size until the empirical percentage of w ≤ � is equal to
the desired degree of assurance.

To illustrate sample size planning for � ′′ using a priori Monte Carlo simulation, let n


denote the sample size per group that satisfies P (|T ′| ≤ |t′

 |) = 
 . Then one can insert

n
 + 1 as the selected sample size, along with other necessary specifications, generate a
large number of random samples, calculate the CI for � ′′ based on each random sample,
and compute the empirical percentage of w ≤ �. If the percentage is still less than 
 ,
increase the sample size by 1 and repeat the simulation; otherwise stop the process and
take the current sample size as the one that satisfies w ≤ � with 
100% assurance.11

3.2. Standardized ANOVA contrasts
Let the population standardized ANOVA contrast be defined as � = �/�ANOVA, which
can be estimated by �̂ = �̂/sANOVA. Note that the numerator in the present context is
an unadjusted contrast because the model does not include a covariate. The t-statistic
associated with �̂ ,

T ′ = �̂

sANOVA
√

C /n
= �̂√

C /n
∼ t′

(nJ −J ,), (29)

follows the non-central t-distribution with nJ − J degrees of freedom. Although equation
(29) has a similar form to equation (16), the T ′ value, the degrees of freedom, and the
non-centrality parameter are all different. The population non-centrality parameter is
 = �/

√
C /n and can be estimated by ̂ = �̂ /

√
C /n, which is equivalent to T ′. CI

formation and sample size planning for � are analogous to those for � ′ discussed
previously. An exact CI for � can be constructed with the CI formation process discussed
previously in the � ′ case. Sample size can be planned with the standard method so that
E[w] ≤ �, or with the extended method so that P (w ≤ �) = 
 .12

In summary, we have discussed CI formation and sample size planning methods
for three types of standardized contrasts. The methods are all based on non-central
t-distributions. In the ANCOVA context a contrast can be standardized in two ways,
and in the ANOVA context there is one standardized contrast. These three standardized
effect sizes have great similarity as well as important distinctions, and we will discuss
them in more detail in the following section.

4. Comparing three types of standardized contrasts
In randomized designs, the population adjusted contrast � ′, which is calculated in an
ANCOVA context, is equal to the population unadjusted contrast �, which is calculated
in an ANOVA context. This is the case because the expected value of the covariate is
the same across all groups in randomized designs, and the adjustment in contrast due to
the covariate is zero in the population. Therefore, the population standardized ANCOVA
contrast using �ANOVA as divisor, � ′′ = � ′/�ANOVA, is equal to the population standardized

11The function ss.aipe.sc.ancova.sensitivity( ) implements such a priori Monte Carlo simulation.
12The functions for CI formation and sample size planning for � are ci.sc( ) and ss.aipe.sc( ), respectively.
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ANOVA contrast � = �/�ANOVA. When the interest lies in �, the researcher can also use
the CI for � ′′ to estimate �. Although these two quantities and their corresponding CIs
usually have different observed values in the same sample, the interest is the population
parameter instead of any specific sample value. When it is relatively easy to obtain
information about a covariate, even if the interest is in �, the researcher can include a
covariate in the model and use the CI for � ′′ to estimate �. The benefit is that in the same
sample the CI for � ′′ is narrower than that for � . As can be seen from equations (27) and
(29), when C and n remain the same, the CI width for � ′′ is affected by T ′ and u, while
that for � is affected by T ′ only. The value of T ′ in the CI formation for � ′′ is roughly u
times as large as the value of T ′ in the CI formation for �, where u falls between 0 and
1. Moreover, the value of U − L , which is a function of T ′, changes much more slowly
than does u. Both (U − L ) and u are in turn affected by � , the correlation between the
response and the covariate. When � is small, both the difference in the (U − L ) values
and the magnitude of the factor u are negligible, and thus the CI widths for � ′′ and for
� are close. As � increases, u increases more quickly than does U − L , making the
CI for � ′′ narrower than that for �. The benefit gained in the CI width by reporting � ′′

instead of � becomes more obvious as � increases. Therefore, in randomized designs, if
it is relatively easy to obtain information about a covariate, even when the interest is in
�, it is still beneficial to construct and report the CI for � ′′.

The present paper has discussed three types of standardized contrasts: � , � ′, and
� ′′. Table 1 summarizes these three effect sizes. The t-statistics associated with them are
of different forms and follow different non-central t-distributions. The CI formation and
sample size planning methods for � are in the ANOVA context, and those for � ′ and
� ′′ are in the ANCOVA context. Although the expected CI widths for � and � ′ are of
the same form, they should not be confused with each other because they necessarily
have different confidence limits for the population non-centrality parameter. Different
notations (i.e., [U − L ] and [′

U − ′
L ]) are used in the table to emphasize the different

values in the confidence limits for the non-centrality parameter. A comparison between
equations (20) and (27) indicates the relation between the CIs for � ′ and � ′′. The CI for
� ′′ has an extra term u, and because 0 < u < 1, the CI for � ′′ is narrower than that for � ′,
other things being equal. The notations w� , w� ′ , and w� ′′ in the last column of Table 1
denote the CI widths for � , � ′, and � ′′, respectively.

4.1. Which standardized ANCOVA contrast should we use?
When the metric of the response variable is not fully understood, standardized measures
can help interpret an effect of interest. An ANCOVA contrast � ′ can be standardized
with �ANOVA or �ANCOVA. Both � ′/�ANOVA and � ′/�ANCOVA can be regarded as reasonable
measures of the effect � ′, yet they describe the magnitude from different perspectives.
In the ANOVA context, �ANOVA describes the variability of Y within a group; that is,
sd(Y· j ) = �ANOVA. In the ANCOVA context, �ANCOVA describes the conditional variability
of Y within a group given a covariate value; that is, sd(Y· j |X) = �ANCOVA. Since the
conditional variability of Y is assumed to be homogeneous across all X values, one can
focus on the variability of Y conditional on �X without loss of generality. Then the
ANCOVA root mean square error can be interpreted as sd(Y· j | �X) = �ANCOVA, and it
ties in well with an important question ANCOVA addresses: how would the response of
different groups compare if the groups are equivalent on the covariate?

To better illustrate the connection between � ′ and � ′′, consider a simple case of
two-group randomized ANCOVA as depicted in Figure 1. The effect size of interest is the
adjusted difference between two group means, as graphically represented by the bold
line segment of length �2 − �1. The quantity �ANOVA is the unconditional within-group
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Figure 1. Graphical presentation of two types of standardized ANCOVA contrasts in the context of
randomized one-way ANCOVA with two groups. The two oblique lines represent the population
scores of the response and the covariate in the two groups. The bold line segment represents
the adjusted mean difference of the two groups (i.e., � ′). There are two standardized measures
of this raw effect: (a) in terms of unconditional within-group standard deviation (i.e., �ANOVA as
represented by the flatter bell curves); and (b) in terms of the within-group standard deviation
conditional on the mean of the covariate (i.e., �ANCOVA as represented by the sharper bell curves).

standard deviation of Y, which takes all values of Y into account, whereas the quantity
�ANCOVA is the conditional within-group standard deviation of Y evaluated at a specific
value, say X = �X, without loss of generality. The standardized contrast � ′/�ANOVA

measures the length of interest (i.e., the magnitude of � ′) in �ANOVA units, and � ′/�ANCOVA

is another measure of the same length in �ANCOVA units. Therefore, if the purpose is to
interpret an adjusted ANCOVA (raw) contrast in a study, both ways of standardization
are reasonable.

Another important use of standardized effect sizes is to compare results from different
studies, and depending on the occasions, � ′ or � ′′ can be more reasonable. An instance
where � ′/�ANOVA is more reasonable is when one compares � from an ANOVA study
to � ′ from an ANCOVA study. Suppose two randomized studies investigate the same
treatment effect, but study 1 is an ANOVA design and study 2 ANCOVA. If all assumptions
hold and all other things are equal, at the population level the unadjusted contrast �

in study 1 will equal the adjusted contrast � ′ in study 2, since the adjustment due to
covariate is zero in a randomized design in the long run. That is, studies 1 and 2 would
have the same expected treatment effect (though they would observe different values
due to sampling variation). However, if one uses �ANCOVA to standardize the contrast
in study 2, � ′/�ANCOVA from study 2 will be larger than �/�ANOVA from study 1 since



ANCOVA and ANOVA: Sample size planning 365

study 2 has a smaller denominator, and thus it creates an illusion that study 2 observes
a larger effect. In this case, comparing � ′/�ANOVA from an ANCOVA study to �/�ANOVA

from an ANOVA study is more appropriate (e.g., Glass et al., 1981; Olejnik & Algina,
2000, 2003).

Consider another instance where one compares two randomized ANCOVA studies
that investigate the same treatment effect. Suppose studies 1 and 2 are the same in all
aspects except that study 1 samples adolescents only and study 2 samples people at any
ages. Due to the restricted range of sampling, the within-group variability in study 1 will
be smaller, and comparing � ′/�ANOVA in the two studies leads to the biased conclusion
that study 1 observes a larger effect. Based on equation (1), the within-group variance is
Var(Y· j ) = �2Var(X· j ) + �2

ANCOVA, and one source of the within-group variation is in the
covariate. Since the two studies sample from different populations, the variances of the
covariate in these two studies are also different. Therefore, the differential covariate
variation contributes in part to the differential within-group variation. In this case,
comparing � ′/�ANCOVA is more appropriate, because �ANCOVA removes the variation
due to the covariate and makes the groups more homogeneous across the two studies.
Nevertheless, note that besides the covariate, other components of the within-group
variation may as well be different across the two studies. But it is not possible to single
them out because they are all accounted for by the error term; consequently, �ANCOVA in
the two studies may still be different.

Both � ′ and � ′′ can be regarded as reasonable and have their own advantages. If
the primary purpose is to plan sample size and interpret the results within a study,
we recommend using � ′, because the extended sample size planning procedure for � ′

is easier to implement. Comparison of standardized contrasts across different studies
needs to proceed on a case-by-case basis. In fact, given the relation between �ANOVA and
�ANCOVA, there is a one-to-one mapping between the standardized contrasts � ′/�ANOVA

and � ′/�ANCOVA, which is � ′ = � ′′/
√

1 − �2. Therefore, it will facilitate the task to
compare � ′ and � ′′ among different studies if the researcher reports the denominator
used in standardization, the correlation coefficient between X and Y , as well as an
explanation for choosing the particular measure of effect.

5. Discussion
Researchers should be reminded that sample size is not the only controllable factor
in CI width, and that other factors such as confidence level and effect size can also
influence the CI width (e.g., Baguley, 2004; Lenth, 2001). Other things being equal, a
lower coverage gives a narrower CI. Although reducing the confidence level is generally
discouraged, it can be an option in some circumstances (e.g., when the cost of Type I
errors is not too high). An example in this regard is the CI for RMSEA: In the structural
equation model context, conventionally a 90% CI for RMSEA is reported, yet a 95% CI is
usually reported for other effects.13 Another example is the two one-sided test (TOST) of
(bio)equivalence. A TOST null hypothesis consists of two parts: H0L : � < �1 and H0R :
� > �2. A TOST with � = .05 rejects the null hypothesis only if both H0L is statistically

13The reason why a 90% CI for RMSEA is generally reported is simply due to convention: in their seminal paper
Browne and Cudeck (1992) used .05 for both the upper and lower Type I error rate when illustrating their
CI formation method for RMSEA, resulting a 90% confidence level. Mainstream structural equation modelling
software also uses 90% as the default confidence level for RMSEA. We are not arguing that a 90% CI for RMSEA
is more reasonable than a 95% one; we use this example simply to illustrate that the Type I error rate is flexible
in some situations.
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significant at .05 and H0R is statistically significant at .05. This is equivalent to forming a
90% two-sided CI for � (Schuirmann, 1981; Westlake; 1981). Besides confidence level, in
experimental studies, sometimes the researcher can manipulate the amount of treatment
administered and thus influence the effect size, which in turn affects the CI width. A
third way is to reduce standard error by increasing the reliability in measurement. In
the ANCOVA or ANOVA context, one component of the root mean square error is the
variation due to measurement error in the response. By reducing the measurement error,
one can reduce the standard error in estimating contrasts. For more detailed discussions
on various controllable factors other than N on the CI width, interested readers are
referred to Allison, Allison, Faith, Paultre, and Pi-Sunyer (1997), Baguley (2004), Lenth
(2001), and McClelland (1997).

Although standardized effect sizes can facilitate the interpretation of results and
comparison of different studies, they need to be used carefully. If the original scale of
the (raw) effect is not meaningful or the standardizer is not meaningful, the mere act of
standardizing will not make the resulting standardized effect any more meaningful (Bond,
Wiitala, & Richard, 2003; Morris & DeShon, 2002; Tukey, 1969). Since the standardizer
is usually a measure of variability (e.g., standard deviation of some kind), it is influenced
by at least (a) the instrument’s reliability, (b) the range of the sample, and (c) the
design of the study (Baguley, 2009). All other things being equal, scores measured
with an instrument that has high reliability have a smaller variance compared to those
measured with lower reliability, and scores from a truncated distribution have a smaller
variance compared to those from the complete population. Different designs usually
have different error variances of their respective models, and thus analysing the same
data with different models may lead to different estimates of error variance. The above
three factors influence the estimation of standardized effect sizes to different extents in
different studies, and therefore researchers need to be cautious when comparing studies
that differ dramatically in those three factors.

The ANCOVA model on which we base our methods does not include an interaction
between the treatment and the covariate, and it assumes that the treatment and
the covariate are statistically independent. When this independence assumption is
violated, the estimation of treatment effect will be affected. Maxwell and Delaney (2004,
pp. 422–427) discussed four cases where lack of independence can arise and their
possible solutions. Out of those four cases, the situation that can happen in the context
of randomized studies is unhappy randomization (Kenny, 1979, p. 217), which refers to
the fact that the researcher collects the covariate scores before the experiment, performs
random assignment carefully, and only then finds that the groups differ statistically
significantly on the covariate. In this case, the term D used to calculate s�̂ ′ is not close
to zero and may not be negligible. However, the CI formation discussed previously is
still valid because D is always involved in s�̂ ′ in data analysis (see equation (6)). The
discrepancy is in the sample size planning procedure because it omits D. Therefore,
when unhappy randomization happens, the planned N may fail to help achieve the
desired CI width, because the unusually large D becomes not ignorable yet is ignored
when calculating ��̂ ′ and planning for N . Nevertheless, note that such type of lack
of independence between the treatment and the covariate is simply a Type I error:
when the groups are equal on the covariate in the population, comparing the sample
covariate means will still yield statistical significance about �100% of the time.14 A second
implication of unhappy randomization is that the large and non-ignorable D term can

14Some people suggest performing randomization again in this situation (e.g., Rubin, 2008).
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cause s�̂ ′ to be larger than s�̂ ; that is, the standard error of adjusted (raw) ANCOVA
contrast can be larger than the standard error of unadjusted (raw) ANOVA contrast, and
thus including covariates in the model can sometimes reduce the precision (Liu, 2011).
This can happen when the sample size is especially small (e.g., n = 10), or the difference
in the covariate among groups is large.15

Since equal sample size per group is usually beneficial, we have assumed equal
n to plan the sample size and reduce the amount of input information required.
However, in practice unequal nj values can happen, for example, if the researcher
uses smaller group sizes for more expensive treatments due to a limited budget. The
sample size planning methods discussed previously can be extended to situations
like this, and the researcher needs to plan the sample size for each group and use

the full formula sANCOVA

√
(
∑J

j=1 c2
j/nj ) + D to calculate s�̂ ′ instead of the simplified one

sANCOVA
√

(C /n) + D. One way to achieve this is to define nj as mj · ñ, where mj is some
measure of the cost per participant and ñ is a baseline sample size being constant across
groups (Hsu, 1994; see also Cochran, 1983; Liu, 2009). The sample size planning process
requires mj values as input information and returns ñ, which in turn leads to nj values.
Unequal nj values can also happen if some treatments are more disagreeable than others
and cause more people to drop out. In the case of differential attrition, besides using
the full formula to calculate s�̂ ′ and form CIs, the research may also need to study the
missingness pattern of the data and apply appropriate missing-data treatments. Analysing
incomplete data is outside the scope of the present paper; interested readers are referred
to sources such as Little and Rubin (2002). Note that if unequal nj values happen, the
observed CI will tend to be wider than desired, because the full formula leads to a larger
s�̂ ′ than does the simplified one, and the study is planned assuming equal n but analysed
based on unequal nj values.

ANOVA and ANCOVA are among the most popular methods in psychology and related
sciences. Contrasts of means are often of ultimate interest, because those targeted effects
indicate to what extent groups differ from each other after administering treatments.
CIs for contrasts provide more information than do hypothesis tests or point estimates,
because from a CI we know not only what the population parameter is not, but also
plausible values of that parameter. All other things being equal, a wider CI contains
more uncertainty about the estimation, and therefore a narrow CI is usually desirable.
Given the close relation between CI width and sample size, the issue of wider CIs can be
addressed if the researcher plans the sample size from the AIPE perspective. Therefore,
it is our hope that researchers consider the AIPE approach when planning an ANCOVA
or ANOVA design.
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