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The statistical analysis of mediation effects has become an indispensable tool for helping scientists
investigate processes thought to be causal. Yet, in spite of many recent advances in the estimation and
testing of mediation effects, little attention has been given to methods for communicating effect size and
the practical importance of those effect sizes. Our goals in this article are to (a) outline some general
desiderata for effect size measures, (b) describe current methods of expressing effect size and practical
importance for mediation, (c) use the desiderata to evaluate these methods, and (d) develop new methods
to communicate effect size in the context of mediation analysis. The first new effect size index we
describe is a residual-based index that quantifies the amount of variance explained in both the mediator
and the outcome. The second new effect size index quantifies the indirect effect as the proportion of the
maximum possible indirect effect that could have been obtained, given the scales of the variables
involved. We supplement our discussion by offering easy-to-use R tools for the numerical and visual
communication of effect size for mediation effects.
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Consider the case in which a researcher has established that
some regressor (X) explains some of the variance in a criterion or
dependent variable (Y) via regression. Equation 1 expresses the
model for individual i:

Yi � dY.X � cXi � eY.Xi

, (1)

where c is the regression coefficient quantifying the total effect of
X on Y, dY.X is the intercept of the model, and eY.Xi

is the error
associated with individual i. Mediation analysis consists of esti-
mating the indirect effect of X on Y via an intervening variable
called a mediator (M). In the simplest case, the researcher re-
gresses M on X and separately regresses Y on both X and M using
the following equations:

Mi � dM.X � aXi � eM.Xi

, (2)

where dM.X is the intercept for M, a is the slope of M regressed on
X, and eM.Xi

is the error and

Yi � dY.MX � bMi � c�Xi � eY.MXi
, (3)

where dY.MX is the intercept for Y, b is the slope of Y regressed on
M controlling for X, c� is the slope of Y regressed on X controlling
for M, and eY.MXi

is the error. The indirect effect, defined as â � b̂,
often is used as an index of mediation (where throughout a
circumflex [ˆ] above a parameter denotes a sample estimate).
In general, â � b̂ � ĉ � ĉ�, and thus ĉ � â � b̂ � ĉ�.
Structural equation modeling may also be used to obtain both â
and b̂ simultaneously, correct for the attenuating effects of mea-
surement error, and test more complex models, such as those
where X, M, and Y are latent. Here we focus on the simplest case
of a single mediator (unless otherwise stated) and no latent vari-
ables. Tests of mediation effects have become very popular in the
managerial, behavioral, educational, and social sciences because
they help researchers understand how, or by what means, effects
unfold. A path diagram showing a simple mediation model is
presented in Figure 1.

Many methods have been developed to facilitate significance
testing and/or confidence interval formation for indirect effects
(MacKinnon, 2008; MacKinnon, Lockwood, Hoffman, West, &
Sheets, 2002). We find the increased attention being devoted to
appropriate modeling and testing techniques highly encouraging.
On the other hand, we believe this emphasis on modeling and
statistical significance falls short of the ideal. Despite the recom-
mendation of Baron and Kenny (1986, p. 1177) to consider the
absolute size of relevant regression weights in addition to their
statistical significance, very little attention has been devoted to
quantifying and reporting the effect size of indirect effects in
mediation models.

The fourfold purposes of this article are to (a) outline some
general desiderata for effect size estimation, (b) review existing
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effect sizes proposed in the mediation context, (c) use the desid-
erata to evaluate how effect size has been quantified and reported
in the context of mediation, and (d) suggest new ways to commu-
nicate the magnitude of the indirect effect while avoiding the
shortcomings of existing methods. The development of quality
effect sizes will facilitate meta-analytic work on mediation, some-
thing currently lacking in the mediation literature. Finally, we
provide R code (R Development Core Team, 2010) with the
MBESS1 package (Kelley & Lai, 2010; Kelley, 2007b) to aid
researchers who wish to use the methods we describe in their own
research. Graphical methods are an important supplement to quan-
titative descriptions of mediation and can themselves be useful
ways of communicating results. We discuss graphical methods in
an online supplement.2

Conceptualizing Effect Size: A Definition
and Desiderata

Numerous methodologists have recommended that effect size
measures accompany reports of statistical significance and nonsig-
nificance. As a result, effect size reporting is now encouraged or
mandated by many journal editors, as well as many organizations
with scientific oversight, including the National Center for Edu-
cation Statistics (NCES, 2003), the International Committee of
Medical Journal Editors (via the Consolidated Standard of Report-
ing Trials [CONSORT; Moher et al., 2010]), and the American
Educational Research Association (AERA, 2006). Furthermore, as
the American Psychological Association (APA) Task Force on
Statistical Inference recommended, reporting some measure of
effect size is “essential to good research” and “enables readers to

evaluate the stability of results across samples, designs, and anal-
yses” (Wilkinson & the Task Force on Statistical Inference, 1999,
p. 599). In addition, “it is almost always necessary to include some
measure of effect size in the Results section” (American Psycho-
logical Association, 2010, p. 34). But even though researchers are
now urged to report effect size to supplement or replace statistical
significance, researchers who use mediation models have few
resources to which to turn. For researchers who desire to report
effect size for mediation effects, there simply is not much work
that can be referenced (Albert, 2008; MacKinnon, Fairchild, &
Fritz, 2007; Preacher & Hayes, 2008a), and many of the meth-
ods that do exist have limitations that often go unrecognized.
We begin by offering a general definition of effect size, outlin-
ing some desirable properties (desiderata) to which new effect
size measures should aspire, and delineating the issues that
warrant attention when reporting effect size for mediation ef-
fects. Ultimately, we recommend a new effect size measure,
developed in a later section, that we believe has desirable
properties that will be useful in quantifying the magnitude of
the indirect effect in the application of mediation models.

Defining Effect Size

There is almost universal agreement among methodologists that
effect size is very important to report whenever possible (Grissom
& Kim, 2005; Thompson, 2007; Vacha-Haase, Nilsson, Reetz,
Lance, & Thompson, 2000). Yet, there are inconsistencies in how
effect size is defined in the methodological literature, with the
preponderance of authors favoring either a definition based on the
magnitude of departure from a particular null hypothesis or a
definition relating effect size to practical importance. For example,
Cohen (1988) defined effect size as the “degree to which the
phenomenon is present in the population or the degree to which the
null hypothesis is false” (pp. 9–10). Similarly, Vacha-Haase and
Thompson (2004) defined effect size as a “statistic that quantifies
the degree to which sample results diverge from the expectations
. . . specified in the null hypothesis” (p. 473). Other major works
on effect size have similar definitions (Grissom & Kim, 2005). On
the other hand, some authors prefer to regard effect size as any
numeric quantity intended to convey the practical significance (or
importance) of an effect (Kirk, 1996). Practical importance, in
turn, is the substantive importance of an effect in real terms. That
is, practical importance is the degree to which scientists, practi-
tioners, executives, consumers, politicians, or the public at large,
for example, would consider a finding important and worthy of
attention. Yet other authors use both kinds of definition inter-
changeably (Henson, 2006). These two kinds of definitions—one
based on the size of an effect relative to a null hypothesis and the
other based on practical importance—imply related but separate
concepts.

1 Originally MBESS stood for Methods for the Behavioral, Educational,
and Social Sciences. However, MBESS is now an orphaned acronym,
meaning that what was an acronym is now literally its name.

2 The supplemental material on graphical methods may be found at the
Psychological Methods website and at the authors’ websites (http://quantpsy
.org and https://repository.library.nd.edu/view/5/Mediation_Effect_Sizes.pdf).

Figure 1. Diagram of models in which the effect of X on Y is (upper)
versus is not (lower) mediated by M. Circles represent residuals, single-
headed arrows represent regression weights, and double-headed arrows
represent variance parameters.
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In response to the need for a general, inclusive definition of
effect size, we define effect size as any measure that reflects a
quantity of interest, either in an absolute sense or as compared
with some specified value. The quantity of interest might refer to
variability, association, difference, odds, rate, duration, discrep-
ancy, proportionality, superiority, or degree of fit or misfit. It is
possible for an effect size measure conforming to this definition to
be used as an index of practical importance, although practical
importance is not tied to our definition of effect size.

Desiderata for Good Effect Size Indices

Some desirable properties for effect size measures, which we
term desiderata, are now outlined. First, virtually all effect size
indices should be scaled appropriately, given the measurement and
the question of interest. Without an interpretable scale, it is diffi-
cult to use effect size to communicate results in a meaningful and
useful way. Often effect size is associated with standardized effect
sizes; indeed, sometimes standardization is a defining characteris-
tic of effect size, and in many cases, standardization frees the
researcher from having to prepare a new set of interpretive bench-
marks for every new scale or application (Cohen, 1988). Through-
out, we define a standardized effect size as one that is not wedded
to a particular measurement scale. More formally, it is an effect
size that does not change in value based on linear transformations
of the variable(s) involved. Although standardized effect sizes can
be valuable, they are not always to be preferred over an effect size
that is wedded to the original measurement scale, which may
already be expressed in meaningful units that appropriately ad-
dress the question of interest (Baguley, 2009; Frick, 1999). For
example, group mean differences in scores on a widely understood
instrument for measuring depressive symptoms are already ex-
pressed on a metric that is understandable to depression research-
ers, and to standardize effects involving the scale would only
confuse matters.

Second, it should be emphasized that effect size estimates are
themselves sample statistics and thus will almost certainly differ
from their corresponding population values. Therefore, it is im-
portant to report confidence intervals for effect sizes because the
real interest lies not in the estimated value but in the population
value (Balluerka, Gómez, & Hidalgo, 2005; Bird, 2002; Cumming
& Finch, 2001; Fidler & Thompson, 2001; Henson, 2006; Kelley,
2007a; Kirk, 1996; Smithson, 2001; Thompson, 2002, 2007).
Third, although sampling error will affect the uncertainty in any
effect size estimate and sampling error will tend to decrease as
sample size (n) increases, the point estimate itself should be
independent of sample size. Effect sizes are usually considered to
have corresponding population values (parameters), so the estima-
tion of an effect should be independent of the arbitrary size of the
sample that is collected in order to estimate that population effect.
Two researchers should not come to different conclusions about
the size of an effect simply because their samples are of different
sizes, all other things being equal. None of the effect sizes in
common use depends on n for their respective definitions (r,
Cohen’s d, odds ratios, etc.) other than in a limited fashion that
quickly diminishes as n increases. More broadly, the sample esti-
mators of population effect sizes should be unbiased (i.e., the
expected value of the effect size should equal the parameter over
infinite repeated sampling), consistent (i.e., the effect size estimate

should converge on the population value as n increases), and
efficient (i.e., the effect size estimator should have reasonably low
sampling variability).

Effect Size in the Context of Mediation Analysis

The magnitude of the indirect effect can be informally signified
by the a and b coefficients themselves. MacKinnon (2008) and
MacKinnon et al. (2007) suggested that either the standardized
regression coefficient or the raw correlation can be used as an
effect size measure for the a coefficient, and a partial correlation
can be used as an effect size measure for the b coefficient. This
method is not entirely satisfactory, as a and b alone do not convey
the full meaning of an indirect effect. Therefore, it is important to
develop a way to gauge the effect size of the product term ab itself.
Unfortunately, the indirect effect does not fit any of the classic
effect size measures developed in methodological works or re-
ported in research, such as the standardized mean difference
(Cohen’s d, Hedges’ g), association (�, r, rbis), odds ratio (OR),
percentage of variance explained (intraclass correlation, R2, �2,
�2), or the coefficient of variation. In mediation models, the
primary effect of interest is an indirect effect. Such an effect is
complex because it is the product of (here) two regression coeffi-
cients and does not fit conveniently into the framework of existing
effect sizes. Thus, it is challenging to adapt existing effect size
measures for use in mediation analysis. In developing and evalu-
ating new methods of expressing effect size for indirect effects, it
will be important to do so in light of the definition and desiderata
outlined earlier. That is, effect sizes suggested for mediation
analysis should be on a meaningful metric, should be amenable to
the construction of confidence intervals, and should be indepen-
dent of sample size. A meaningful metric in this context is any
metric where the size of the effect can be interpreted in a mean-
ingful way vis-à-vis the constructs under study. Standardized ef-
fect sizes are on a meaningful scale in units of standard deviations.
For example, in a regression model with a single independent
variable and a single dependent variable that are both standardized,
a correlation coefficient can be interpreted as the number of
standard deviations that the dependent variable is expected to
increase for a change of one standard deviation in the independent
variable. Our suggestion for effect sizes to be on a meaningful
metric implies no preference for standardized or unstandardized
effect sizes. The metric that most effectively communicates the
particular effect size in the specific context is what we regard as
the preferred metric. This will vary by situation.

Illustrative Example

To make our discussion more concrete, we make use of a
publicly available data set, Jessor and Jessor’s (1991) Socialization
of Problem Behavior in Youth 1969–1981 (SPBY; Jessor & Jessor,
1991). The sample size is n � 432 with complete data. In the
applications to follow, the predictor variable is achievement values
(VAC), obtained by averaging 10 items from the Personal Values
Questionnaire (Jessor & Jessor, 1977) administered in 1969 to high
school students in the Boulder area of Colorado. Example items
ask respondents how much they like having good grades for
entering college and how much they like being on the honor roll.

95REPORTING EFFECT SIZE FOR MEDIATION



The mediator variable is attitude toward deviance (ATD), obtained
by averaging 30 items from the Attitude Toward Deviance Scale
(Jessor & Jessor, 1977) administered to the same students in 1970.
Example items ask respondents how wrong it is to break into a
locked place or to beat up another kid. Because of the manner in
which responses were scored, higher scores on ATD indicate
greater intolerance of deviant behavior. The outcome variable is
deviant behavior (DVB), obtained by averaging 30 items from the
Deviant Behavior Report Scale (Jessor & Jessor, 1977) adminis-
tered to the same sample in 1971. An example item asks respon-
dents how often they have threatened a teacher out of anger. Basic
results for the direct and indirect effects linking VAC, ATD, and
DVB are provided in Table 1, and covariances, correlations, and
means for the three variables are provided in Table 2. Figure 2 is
a Venn diagram depicting the variances of VAC, ATD, and DVB
as circles, overlapping to the degree that these variables are re-
lated.

Existing Methods of Expressing Effect Size for
Mediation Effects

In this section, we describe and evaluate existing measures of
effect size for mediation effects. Each method is evaluated in light
of the definition and desiderata identified above and illustrated
using SPBY data.

Verbal Descriptors

The literature about, and using, mediation is fraught with language
invoking the idea of effect size but not directly addressing it in a

rigorous, quantitative manner. The most popular way to express effect
size for mediation is through informal descriptors, such as complete,
perfect, or partial mediation (Mathieu & Taylor, 2006). James and
Brett (1984) described complete mediation as occurring when the
effect of X on Y completely disappears (i.e., c� � 0) when M is added
as a predictor of Y. Baron and Kenny (1986) asserted that “the
strongest demonstration of mediation occur[s] when Path [c�] is zero”
(p. 1176), effectively proposing a way to judge the effect size of an
indirect effect by examining the statistical significance of c�. The
condition in which c�� 0 after the detection of a statistically signif-
icant mediation effect they dub perfect mediation (p. 1177). In prac-
tice, a researcher may claim that a mediation effect is perfect or
complete if c� is not statistically significantly different from zero,
which is to say that perfect mediation exists when there is not
sufficient evidence to demonstrate that it does not. In other words, the
status quo is to claim perfect mediation when the null hypothesis that
c�� 0 is not rejected by the null hypothesis significance test, thus
using the absence of evidence (i.e., a failure to reject the null hypoth-
esis that c�� 0) as evidence of absence (of the direct effect exerted by
X on Y). For example, in the SPBY data, c�� �.0102 (p � .25, ns;
95% CI [�.028, .007]), and thus the statistically significant indirect
effect would signify complete mediation by Baron and Kenny’s
criterion. Of course, one could fail to reject the null hypothesis that
c�� 0 due to insufficient statistical power from an insufficiently large
n. Furthermore, it is not clear what should be done when c�� 0 by

Figure 2. Venn diagram showing the extent to which VAC, ATD, and
DVB share variance in common. Each circle represents the total variance
of a variable, and the overlap of two circles represents the portion of
variance shared in common by two variables. VAC � (higher) achieve-
ment values; ATD � (more intolerant) attitude toward deviance; DVB �
(more) deviant behavior.

Table 1
Regression Results for the Mediation of the Effect of
Achievement Values on Deviant Behavior by
Attitude Toward Deviance

Model Estimate SE p
CI

(lower)
CI

(upper)

Model without mediator
Intercept 1.9236 .0698 �.0001 1.7864 2.0608
VAC 3 DVB (c) �.0383 .0095 .0001 �0.0571 �0.0196
RY,X

2 .0361 0.0095 0.0779
Model with mediator

Intercept 2.2900 .0704 �.0001 2.1517 2.4282
VAC 3 ATD (a) .2916 .0462 �.0001 0.2008 0.3825
ATD 3 DVB (b) �.0963 .0088 �.0001 �0.1136 �0.0789
VAC 3 DVB (c�) �.0102 .0088 .2472 �0.0276 0.0071
Indirect effect (a � b) �.0281 �0.0390 �0.0189
RM,X

2 .0848 0.0408 0.1405
RY,MX

2 .2456 0.1750 0.3155

Note. Regression weights a, b, c, and c� are illustrated in Figure 1. RY,X
2

is the proportion of variance in Y explained by X, RM,X
2 is the proportion of

variance in M explained by X, and RY,MX
2 is the proportion of variance in Y

explained by X and M. The 95% CI for a � b is obtained by the
bias-corrected bootstrap with 10,000 resamples. The CIs for R2 indices are
obtained analytically. In this example, VAC (achievement values) is the
independent variable (X), ATD (attitude toward deviance) is the mediator
(M), and DVB (deviant behavior) is the outcome (Y). CI (lower) � lower
bound of a 95% confidence interval; CI (upper) � upper bound; 3 �
affects.

Table 2
Correlations, Covariances, and Means for Jessor and
Jessor’s (1991) Data

VAC (X) ATD (M) DVB (Y)

VAC (X) 2.268 .291 �.190
ATD (M) 0.662 2.276 �.493
DVB (Y) �0.087 �0.226 0.092
M 7.158 5.893 1.649

Note. Numbers on the diagonal are variances, those below the diagonal
are covariances, and those above the diagonal (italicized) are correlations.
VAC � (higher) achievement values; ATD � (more intolerant) attitude
toward deviance; DVB � (more) deviant behavior.
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even a small amount. Baron and Kenny cautioned that at least in
psychology, complete mediation is expected to be rare because of the
prevalence of multiple mediators. These descriptors are found in
common usage and are intended to denote either the practical impor-
tance of an effect (describing an effect as complete carries the impli-
cation that it is “large” or “important,” whereas, a partial mediation
effect is not as impressive) or the potential for identifying additional
mediators (complete implies that there is no room for further media-
tors, whereas partial potentially indicates a need to continue looking
for additional mediators).

The informal descriptors complete and partial do not fulfill the
desiderata identified earlier. First, they are not expressed in a mean-
ingfully scaled metric. Although the words complete and partial
invoke the idea of proportion, they are not numerical, so the impor-
tance attached to the terms is largely subjective. Second, because they
are not numerical, it is impossible to compute confidence intervals for
them. Third, these descriptors are defined in terms of the statistical
significance of c� and so are not independent of sample size. Because
of this, we argue that a researcher is implicitly rewarded for using a
small sample with a greater likelihood of obtaining “complete medi-
ation,” which runs counter to the universal recommendation to prefer
larger samples. Fourth, although they do convey something about
practical importance, they are highly imprecise. In general, holding
everything else constant, it is more likely that a mediator will com-
pletely mediate a relatively small total effect (c) than a relatively large
total effect, so an effect in which M partially mediates a relatively
large c may be more impressive than one in which M completely
mediates a relatively small c.

Ratio Measures of Relative Magnitude

Several quantitative measures of relative magnitude, in addition
to the verbal descriptors discussed earlier, have been proposed for
mediation effects. Alwin and Hauser (1975) proposed several such
measures in their classic article on the decomposition of effects in
path analysis (see also MacKinnon, 1994; MacKinnon & Dwyer,
1993; Sobel, 1982). Two measures that are relevant for simple
mediation models are the ratio of the indirect effect to the total
effect,

PM �
ab

ab � c�
�

ab

c
� 1 �

c�

c
, (4)

and the ratio of the direct effect to the total effect,

1 � PM � 1 �
ab

ab � c�
� 1 �

ab

c
�

c�

c
, (5)

where a is the slope linking X to M, b is the conditional slope
linking M to Y, c is the total effect of X on Y, and c� is the
conditional slope linking X to Y (Alwin & Hauser, 1975; Buyse &
Molenberghs, 1998; MacKinnon, 2008; MacKinnon et al., 2007;
MacKinnon, Warsi, & Dwyer, 1995; Shrout & Bolger, 2002;
Tofighi, MacKinnon, & Yoon, 2009; Wang & Taylor, 2002). The
sample statistic P̂M is obtained by substituting sample quantities
for their corresponding population values. PM is also known as
the validation ratio (Freedman, 2001) or mediation ratio
(Ditlevsen, Christensen, Lynch, Damsgaard, & Keiding, 2005)
in epidemiological research and as the relative indirect effect

(Huang, Sivaganesan, Succop, & Goodman, 2004) and is often
interpreted loosely as the proportion of the total effect that

is mediated. In the SPBY data, P̂M �
âb̂

âb̂ � ĉ�
�

	.2916
	�.0963


	.2916
	�.0963
 � .0102
� .733 (95% CI [.458, 1.357]),3

signifying, if P̂M is to be interpreted as a proportion (an assump-
tion we soon question), that attitudes toward deviance mediate
approximately three-fourths of the total effect of achievement
values on deviant behavior. The complement of P̂M, if in fact it
is interpreted as a proportion, is thus 1 � P̂M � .266.

Sobel (1982) proposed the ratio of the indirect effect to the
direct effect:

RM �
ab

c�
. (6)

A recent example of the use of RM is provided by Barreto and
Ellemers (2005), who reported that the ratio of the indirect to direct
effect of type of sexism (hostile vs. benevolent) on perceived
sexism through evaluation of the source was 1.7. In the SPBY data,

R̂M �
âb̂

ĉ�
�

	.2916
	�.0963


�.0102
� 2.742 (95% CI [�4.162, 147.689]),

indicating that the indirect effect of VAC on DVB is approximately
2.75 times the size of the direct effect, but this ratio is not statistically
significantly different from zero at the 5% level because 0 is contained
in the 95% confidence interval.

Although PM and RM are easy to estimate in samples, as measures
of effect size they suffer from several limitations; we discuss limita-
tions of PM first, followed by limitations of RM. First, consider that as
an index PM can convey misleading estimates of practical importance.
Depending on the context, obtaining PM � .9 for a relatively small but
statistically significant total effect may not necessarily be as impres-
sive as obtaining PM � .6 for a relatively large and statistically
significant total effect, yet the former sounds as if it is somehow more
important, whereas the latter seems as though it is less impressive
when quantified using a standardized effect size like P̂M. As we
discuss later, it is important to be mindful of the distinction between
the value of an effect size, even if it seems rather small or large, and
the practical importance of the effect size in the specific context.
Second, despite the fact that many researchers refer to it as a propor-
tion, P̂M is not a proportion and thus cannot be interpreted as such. The
quantity âb̂/	âb̂ � ĉ�
 can exceed 1.0 or be negative, depending on
the relation of ĉ� to ĉ (Albert, 2008; Alwin & Hauser, 1975; Mac-
Kinnon, 2008), which implies that it is not a proportion. The fact that

3 This and subsequently reported confidence intervals use bias-corrected
and accelerated (BCa) bootstrap confidence limits. Bootstrapping involves
treating the original sample as if it were a population and simulating the
sampling process assumed to have led to the original sample. An arbitrarily
large number B of bootstrap samples of size n are selected with replacement
from the original sample of size n. (B is recommended to be several thousand
for acceptable precision; we used B � 10,000.) Each of these B “resamples”
is used to compute the statistic of interest, resulting in B bootstrap estimates of
the statistic. The empirical sampling distribution of these bootstrap estimates
serves as a basis for obtaining confidence limits by referring to values at the
appropriate percentiles (e.g., 2.5 & 97.5) for what are termed percentile
confidence intervals. BCa confidence limits are obtained by adjusting the
limits from the percentile confidence intervals according to instructions pro-
vided by Efron (1987) and Efron and Tibshirani (1993).
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PM is not literally a proportion is not a limitation of PM per se but
rather of how PM has been discussed and used. Nevertheless, since PM

cannot be appropriately interpreted as a proportion, it is less useful
than its label implies. Measures of explained variance are better suited
to bear such proportion interpretations, which we discuss later. Third,
focusing on the overall value of PM may neglect additional mediators
in models where multiple mediators are plausible (MacKinnon et al.,
2007). It is easy to assume that if P̂M seems large (i.e., approaches 1.0,
which, as we indicated earlier, is not its upper limit), there is “no
room” for additional mediators, when in fact it is possible to identify
additional and/or better mediators. An additional mediator may well
be correlated with the one already included in the model, in which
case the indirect effect would be partitioned into parts unique to each
mediator. Fourth, P̂M and R̂M have large variances over repeated
samples, and thus they are not very efficient estimators. In fact,
MacKinnon (1994) showed that both ratio measures can be unstable
and commented that they “should be used only with relatively large
sample sizes” (p. 139). Simulation research has shown that P̂M is
unstable unless n � 500 (MacKinnon, 1994; MacKinnon et al., 1995).
Similarly, R̂M is unstable unless n � 5,000 (MacKinnon et al., 1995).
RM is so unstable because the numerator (ab) varies inversely with the
denominator (c�). Consequently, minor fluctuations in ab and c� can
lead to large fluctuations in their ratio. These large fluctuations can
become enormous when c� is near zero because RM approaches
infinity when c� approaches zero. Examination of Figure 3 shows this
sensitivity for specific situations, where the value of RM abruptly
approaches positive or negative infinity as the value of c is ap-
proached. Tofighi et al. (2009) similarly reported that very large
samples are required for stable estimation of ratio measures. Both of
these measures vary in bias and precision as a function of the size of
the effects, with larger effects imparting less bias and being more
precise. Taken together, these four limitations make us question the
usefulness of PM as a population value worth estimating and inter-
preting.

Although the ratio measure RM does not have any pretensions
toward being a proportion, it simply repackages the same infor-
mation as PM without conveying any additional information [RM �
PM/(1 � PM)]. Like PM, RM can assume values that exaggerate

relatively small effects or trivialize relatively large ones. Consid-
ering the reasonable case where ĉ � .63 and ĉ� � �.01, the ratio
of the indirect to direct effect will equal a nonsensical –64, yet if
ĉ � .63 and ĉ� � �.01, the ratio will equal �62. In addition, if ĉ
is relatively small but âb̂ is relatively large, the ratio can assume
extremely large values, as RM is an unbounded quantity. Con-
versely, if ĉ is relatively large and âb̂ is relatively small, small yet
substantively important effects can easily slip through the cracks.
Figure 3 shows that for a fixed value of the total effect (c � .4), RM

assumes small values for most indirect effects likely to occur
between .0 and .35 and then increases rapidly to � as c is
approached from below. For indirect effects above c, RM ap-
proaches � as c is approached from above.

Although the limitations of P̂M and R̂M we note above are
serious, estimates P̂M and R̂M are currently the most widely used
measures of effect size. There are perhaps four reasons why P̂M and
R̂M are so widely used. First, consistent with our third desideratum,
the estimates P̂M and R̂M are relatively unaffected by sample size.
Second, Alwin and Hauser (1975) noted that the proportionate
decomposition of effects into direct and indirect components can
facilitate interpopulation comparison of such effects, even when
the variables of interest are not measured on the same scales across
groups. Third, consistent with our second desideratum, both PM

and RM are amenable to the construction of confidence intervals.
Regarding confidence interval construction, Lin, Fleming, and
DeGruttola (1997) gave a confidence interval for PM based on the
delta method, and this interval and one based on Fieller’s method
are discussed by Freedman (2001) and Wang and Taylor (2002).4

Sobel (1982) provided derivations necessary for constructing an
asymptotic confidence interval for R̂M. MacKinnon et al. (1995)
and Tofighi et al. (2009) provided delta method standard errors for
both ratio measures, for the cases where b and c� are either
correlated or uncorrelated. However, because neither P̂M nor R̂M is
normally distributed except in very large samples, it is not advis-
able to use any of the above noted confidence interval methods but
rather to use the bootstrap approach, as we have discussed (e.g.,
Wang & Taylor, 2002). The fourth reason that P̂M and R̂M are so
widely used, we believe, is that there really have been no better
alternatives proposed in the literature for communicating the mag-
nitude of effect.

Buyse and Molenberghs (1998) suggested a ratio that we ab-
breviate as SM:

SM �
c

a
. (7)

4 The delta method is used to derive an approximate probability distribution
for a function g	�̂
 of asymptotically normal parameter estimates in the vector
�̂. It proceeds by first finding the first- or second-order (usually higher orders
are not necessary) Taylor series expansion of the function, g̃	�̂
, and then
applying the definition of a variance, var(g̃	�̂
) � E�	g̃	�̂

2� � �E	g̃	�̂

�2.
The delta method is commonly used to derive estimated standard errors for
functions of parameter estimates, which can then be used to construct confi-
dence intervals for estimates that are assumed normally distributed. Fieller’s
method involves linearizing the ratio, finding the values of the squared linear-
ized form that are less than or equal to the desired critical value under the �2

distribution, then solving for values of g	�̂
 satisfying the inequality.

ab
0.0 0.1 0.2 0.3 0.4 0.5 0.6

R
M
 =

 a
b/

c'

-200

-100

0

100

200

c = .4

Figure 3. Plot of the ratio measure RM for total effect c � .4 and indirect
effects ab ranging from 0 to .7.
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SM is a measure of the success of a surrogate endpoint, a measure
of an intermediate variable that may be related to an important
clinical endpoint. For example, gum inflammation may be treated
as a surrogate endpoint for tooth loss, and LDL cholesterol is often
treated as a surrogate for heart disease. Thus, although surrogate
endpoints share much in common with mediators, the emphasis is
on coefficients a and c rather than a and b. The ratio c/a should be
about 1.0 if X predicts M to the same extent that it predicts Y
(MacKinnon, 2008; Tofighi et al., 2009). Tofighi et al. (2009)
provided a delta method standard error for this ratio measure and
recommend a sample size of at least 500 for accurate SEs when the

regression weights are small. In the SPBY data, ŜM �
ĉ

â
�

�.0383

.2916
�

�.131 (95% CI [�.195, �.077]). However, we caution that SM has
at least two flaws that limit its usefulness as an effect size measure
for mediation. First, it does not incorporate b, a crucial component
of the indirect effect. Thus, the indirect effect could be quite small
or even zero for even a respectably sized ŜM. Second, because it is
a ratio, SM depends on the relative size of the component param-
eters rather than their absolute magnitudes. As an example of why
this might be problematic, consider the case of standardized coef-
ficients â � .0001 and ĉ � .0001. In a situation in which ĉ � .0001
is a trivial effect (even if statistically significant), we probably
should not be impressed by ŜM � 1.

Unstandardized Indirect Effect

It often is not appreciated that statistics in their original metrics
can be considered effect sizes if they are directly interpretable
(Abelson, 1995; Baguley, 2009; Frick, 1999; Ozer, 2007). The
most obvious method of expressing the magnitude of the indirect
effect is to directly interpret the sample âb̂ as an estimate of the
population ab. The unstandardized indirect effect âb̂ is indepen-
dent of n and can be interpreted using the original scales of the
variables in the model. The product ab has a straightforward
interpretation as the decrease in the effect of X on Y when M is
added to the model or as the amount by which Y is expected to
increase indirectly through M per a unit change in X. In the SPBY
data, for example, âb̂ � �.0281 (95% CI [�.039, �.019]), im-
plying that DVB is expected to decrease by .0281 units (on its
4-point scale) for every one-unit increase in VAC (on its 10-point
scale) if one considers only the indirect influence via ATD.

If the variables X and Y are already on meaningful metrics,
simply reporting ab and interpreting it may suffice to communicate
effect size and practical importance. As has been discussed in the
mediation literature, there are multiple ways to construct confi-
dence intervals for ab, the product term does not depend on n, and
the product conveys information about practical importance if the
units of X and Y bear meaningful interpretation. If, however, the
metric of either X or Y (or both) is arbitrary (as is the case in much
applied work), not easily interpretable, or not well calibrated to the
phenomenon of interest, it may not be sensible to directly interpret
ab. Without knowing more about the scales of VAC and DVB,
how they are applied in certain areas, or what should be considered
“impressive” in the specific context of predicting deviant behavior
using the Deviant Behavior Report Scale, it is difficult to know
whether to be impressed by the finding that DVB is expected to
decrease by .0281 units per unit change in VAC indirectly through
ATD. A disadvantage of using ab as an effect size measure is that

it is not robust to changes in scale, which limits its usefulness in
meta-analysis.

Partially Standardized Indirect Effect

MacKinnon (2008) suggested that indirect effects may be stan-
dardized in the following way:

abps �
ab

�Y

, (8)

which is the ratio of the indirect effect to the standard deviation of
Y. This index represents the size of the indirect effect in terms of
standard deviation units in Y. Because ab is interpreted in raw units
of Y, dividing by �Y removes the scale of Y, leaving a metric
standardized in Y but not X or M. The interpretation of abps is the
number of standard deviations by which Y is expected to increase
or decrease per a change in M of size a. Coefficient a, in turn,

remains unstandardized. In the SPBY example, âb̂ps �
âb̂

sY
�

	.2916
	�.0963


.3036
� �.092 (95% CI [�.125, �.064]), implying

that DVB is expected to decrease by .092 standard deviations for
every one-unit increase in VAC (on its 10-point scale) indirectly
via ATD.

Completely Standardized Indirect Effect

Carrying MacKinnon’s (2008) logic further, we could fully
standardize the indirect effect by multiplying abps by sX. The
resulting index would be fully insensitive to the scales of X, M, and
Y. Preacher and Hayes (2008a) suggested the term index of medi-
ation for this effect size measure:

abcs � ab
�X

�Y

. (9)

Alwin and Hauser (1975, p. 41) and Cheung (2009) discussed
this index as well, noting that it can be used to compare indirect
effects across populations or studies when variables use different
metrics in each population. Thus, standardized indirect effects may
be useful in meta-analysis. However, as we note later, many
authors point out that the standardization factor varies from study
to study, implying that standardized effect sizes may be less useful
than is generally thought. Bobko and Rieck (1980) also considered
indirect effects using standardized variables, and Raykov, Bren-
nan, Reinhardt, and Horowitz (2008) advocated a scale-free cor-
relation structure modeling approach to estimating mediation effects. In

the SPBY example, âb̂cs � âb̂
sX

sY
� (.2916)(�.0963)

1.5061

.3036
� �.139

(95% CI [�.187, �.097]), indicating that DVB decreases by .139
standard deviations for every 1 SD increase in VAC indirectly via
ATD.

To summarize the three effect size measures just described, note
that all three may be expressed in terms of standardized regression
weights (�) and standard deviations:

ab � �MX�YM��Y

�X
�; (10)
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abps � �MX�YM� 1

�X
�; (11)

abcs � �MX�YM
. (12)

It is interesting to note that the metric of M is absent from all

three indices. The formula for coefficient a includes a ��M

�X
� term,

and the formula for b includes a ��Y

�M
� term; the �M terms cancel

when a and b are multiplied (MacKinnon, 2000; Preacher &
Hayes, 2008b). It is a simple matter to construct confidence inter-
vals for any of these indices (the bootstrap is recommended;
Cheung, 2009), and none of them depend on sample size. Even
though abps is partially standardized, the fact that it relies in part
on the metric of X prevents it from being used to compare indirect
effects across multiple studies, even though it can be used to
quantify effect size for a given study if the scale of X can be
meaningfully interpreted. Of the three indices above, only abcs can
generally be used in other situations where it is important to
compare indirect effects across situations using different metrics
for X and/or Y. A possible limitation of abcs is that it is not
bounded in the way that a correlation or a proportion is—either
component may be negative, and �YM may exceed 1.0. Neverthe-
less, unlike PM, abcs retains its interpretability when this happens.

On the other hand, not all methodologists support the use of
standardized effect sizes. Bond, Wiitala, and Richard (2003),
for example, strongly cautioned against the use of standardized
mean differences in meta-analysis. Achen (1977), Baguley
(2009), Greenland (1998), Greenland, Schlesselman, and Criqui
(1986), Kim and Ferree (1981), King (1986), and O’Grady
(1982) are decidedly pessimistic about the use of correlations
and r2 and other standardized effect sizes for expressing effects,
as they depend on the variances of the measured variables.

Indices of Explained Variance

A common type of effect size is expressed in terms of explained
variance. That is, the researcher often seeks to include predictors
of a criterion such that the variance of residuals is reduced by some
nontrivial amount. For example, �2 and �2 in the analysis of
variance framework, intraclass correlation in the mixed-model
framework, and R2 in the regression framework all can be inter-
preted as proportions of explained variance. These indices equate
effect size with the proportion of the total variance in one variable
shared with, or explained by, one or more other variables. They are
popular as effect size estimates in part because they use an easily
interpretable standardized metric, namely, a proportion metric.
Therefore, it is not surprising that such measures should be con-
sidered in the mediation context as well.

MacKinnon (2008) suggested three such measures for use in the
mediation context. Here they are referred to by his equation
numbers (4.5, 4.6, and 4.7) to distinguish among them.

R4.5
2 � rYM

2 � 	RY,MX
2 � rYX

2 
; (13)

R4.6
2 � 	rMX

2 
	rYM.X
2 
; (14)

R4.7
2 �

	rMX
2 
	rYM.X

2 


RY,MX
2

. (15)

The RY,MX
2 term in the expressions for R4.5

2 and R4.7
2 is the proportion

of variance in Y together explained by X and M; visually, RY,MX
2

corresponds to the proportion of the DVB circle in Figure 2 that is
also covered by the VAC or ATD circles. The term rYX

2 is the
squared correlation of X and Y (the proportion of the DVB circle
occluded by VAC), and rYM.X

2 is the squared partial correlation of Y
with M, partialling out X (the proportion of the DVB circle not
shared with VAC that is shared with ATD). Alternative expres-
sions yielding each of these indices purely in terms of multiple R2

(for ease of computation) are

R4.5
2 � RY,M

2 � 	RY,MX
2 � RY,X

2 
; (13b)

R4.6
2 �

RM,X
2 	RY,MX

2 � RY,X
2 


1 � RY,X
2 ; (14b)

R4.7
2 �

RM,X
2 	RY,MX

2 � RY,X
2 


RY,MX
2 	1 � RY,X

2 

. (15b)

An equivalent expression for R4.5
2 is

R4.5
2 � rYM

2 � rY(M.X)
2 , (16)

where rY(M.X)
2 is the squared semipartial correlation of Y with the

part of M from which X has been partialed. R4.5
2 has a straight-

forward interpretation as the overlap of the variances of X and
Y that also overlaps with the variance of M, or “the variance in
Y that is common to both X and M but that can be attributed to
neither alone” (Fairchild, MacKinnon, Taborga, & Taylor,
2009, p. 488). Overall, R4.5

2 has many of the characteristics of a
good effect size measure: (a) It increases as the indirect effect
approaches the total effect c and so conveys information useful
in judging practical importance; (b) it does not depend on
sample size; and (c) it is possible to form a confidence interval
for the population value. In the SPBY data example,
R4.5

2 � rYM
2 � 	RY,MX

2 � rYX
2 
 � (�.4932)2 � (.2456 �

(�.1901)2) � .034 (95% CI [.010, .064]). In some situations,
R4.5

2 can be negative, as it is not literally the square of another
value. Fairchild et al. (2009) noted that a negative R4.5

2 can
indicate that suppression rather than mediation is occurring.
However, because negative values can occur, R4.5

2 is not tech-
nically a proportion of variance as the label R2 would seem to
imply (Fairchild et al., 2009). We believe this limits the use-
fulness of R4.5

2 as an effect size, but we do not rule out that it
may have heuristic value in certain situations.

Unlike R4.5
2 , R4.6

2 is a product of two squared correlations, in
this case the squared correlation between X and M and the
squared partial correlation of M and Y, partialling for X. In other
words, R4.6

2 is the proportion of Y variance that is not associated
with X but is associated with M, weighted by the proportion of
variance explained in M by X. Like R4.5

2 , it increases roughly as
the indirect effect increases. Like R4.5

2 , it is standardized and
does not depend on n, and it is possible to form confidence
intervals for it. However, even though the lower bound is 0, and
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it cannot exceed 1,5 R4.6
2 is difficult to interpret because it is the

product of two proportions of variance. Because it is the prod-
uct of two R2 measures that are computed for different vari-
ables, it is not itself a proportion of variance as the label R2

would imply.6 Therefore, it is not appropriate to interpret it on
an R2 metric. Of the three R2 indices suggested by MacKinnon,
R4.6

2 bears the closest resemblance to ab, and regardless of its
interpretability as a proportion, it mirrors effect size very well.
In the SPBY data example, R4.6

2 � (rMX
2 )(rYM.X

2 ) �
(.2911)2(�.4662)2 � .018 (95% CI [.009, .032]). That is, .018
is the proportion of variance in deviant behavior that is not
associated with achievement values but is associated with atti-
tude toward deviance, weighted by the proportion of variance in
attitude toward deviance explained by achievement values.

R4.7
2 is simply R4.6

2 divided by RY,MX
2 , the proportion of variance in

Y together explained by X and M. Because it divides by a number
that is between 0 and 1, R4.7

2 represents a simple rescaling of R4.6
2 .

Correspondingly, we find R4.7
2 difficult to interpret. Whereas it is

bounded from below by 0, it can exceed 1, but not in situations
likely to correspond to mediation. Because of this, it (like the other
two R2 indices) cannot be interpreted on a standardized proportion
metric. In the SPBY example, R4.7

2 � (rMX
2 )(rYM.X

2 )/RY,MX
2 �

.0184/.2456 � .075 (95% CI [.041, .119]).
We present plots to enable readers to anticipate the behavior of

various R2 statistics. We do not suggest that similar figures be
produced in applied research. These figures are intended to help
readers better understand the ranges that the values can assume.
Each plot was created by generating 15,000 random 3 � 3 corre-
lation matrices,7 denoted R; fitting a simple mediation model to
each R; and plotting relevant statistics and effect size indices. For
example, Figure 4 displays plots of R4.5

2 plotted against ab for
15,000 randomly generated negative and indirect effects, holding
the standardized total effect c constant at .2 (top) and .8 (bottom).
From Figure 4 we can tell that when c is held constant, the most
extreme positive score of R4.5

2 is c2. The effect size cannot exceed
the square of the standardized total effect. R4.6

2 is plotted as a
function of ab in Figure 5 for 15,000 randomly generated indirect
effects, holding the standardized total effect c constant at .2 (top)
and .8 (bottom). R4.7

2 is plotted as a function of ab in Figure 6 for
15,000 randomly generated indirect effects, holding the standard-
ized total effect c constant at .2 (top) and .8 (bottom).

A related index was suggested by Lindenberger and Pötter
(1998). Their shared over simple effects (SOS) index is the ratio of
the variance in Y explained by both X and M divided by the
variance in Y explained by X:

SOS �
1

rYX
2 �rYM

2 � 	1 � rYX
2 
rYM.X

2 �, (17)

where rYM.X
2 is the partial correlation of M and Y after partialling out

X. A simpler expression for SOS in terms of indices already
presented is

SOS �
R4.5

2

rYX
2

. (18)

The authors describe SOS as the proportion of X-related vari-
ance in Y that is shared with M. Positive values of SOS indicate
mediation, a value of 0 indicates no indirect effect, and negative

values indicate suppression. In the SPBY example, SOS �
.034/.036 � .934 (95% CI [.727, .999]). Because SOS can assume
values less than zero or greater than one, it is not strictly a
proportion, but it does tend to increase with ab.

To summarize the R2 indices suggested by MacKinnon (2008)
and Lindenberger and Pötter (1998), none can be interpreted as
proportions. On the other hand, R4.6

2 does fall between 0 and 1
inclusively, and its magnitude does correspond to that of ab (the
relationship is slightly concave up). All of the indices suggested by
MacKinnon (2008) are standardized and amenable to confidence
interval construction.

Despite the obvious appeal of R2 indices as effect size indices,
Fichman (1999) reviews several reasons why researchers may
wish to be cautious when using R2 indices to compare theories.
According to Fichman (1999), R2 indices are not always useful for
comparing rival theories, can easily be misapplied or used incon-
sistently, leading to overinterpretations or underinterpretations of
effect size, are context-dependent (Balluerka et al., 2005), and are
often less intuitive and more difficult to evaluate than one might
think. Researchers often focus on explained variance, but in so
doing they often neglect to understand the underlying process
itself. Furthermore, explained variance depends on how much
variance there is to explain (Fern & Monroe, 1996; Henson, 2006;
Nakagawa & Cuthill, 2007), and this quantity may differ between
studies, between populations, and between manipulated versus
observed versions of the same variable, precluding the use of R2

indices for meaningfully comparing effects. Ozer (1985) cautioned
that R2 may not be interpretable as a proportion of variance in
many circumstances, which undermines any effect size index that
depends on this interpretation. Further, Sechrest and Yeaton
(1982) pointed out that researchers often assume that the amount
of variance to be explained is 100%. However, this assumption is
rarely met in practice because few variables are measured without
error. The explainable variance in Y is often much less than 100%.
Sechrest and Yeaton (1982) also pointed out that it is often difficult
to decide on the appropriate effect size to use, and different
treatment strengths can result in very different effect sizes.

Finally, it could be argued that because population, rather than
sample, effect sizes are the true quantities of interest, then the
researcher ought to adjust these R2 indices for positive bias (re-
sulting from using sample values to estimate population quantities)
if they are to be used at all. For example, Ezekiel (1930) described

an adjusted R2 index R̃Y.X
2 � 1�(1�RY.X

2 )� n � 1

n � m�, where n is the

sample size, m is the number of regression parameters (intercept

5 In order for R4.6
2 to exactly equal 1, X and M would have to be perfectly

correlated, and the squared semipartial correlation of Y with M would have
to be exactly 1. Because this cannot occur without introducing perfect
collinearity, 1 is a limiting value and is not actually obtainable in practice.

6 Tatsuoka (1973, p. 281) reminded us that “the product of two propor-
tions is itself a meaningful proportion only when the second proportion is
based on that subset of the universe that is ‘earmarked’ by the first
proportion.”

7 Matrices were generated using a fast Markov chain neighborhood
sampling method that retains generated matrices meeting a positive mini-
mum eigenvalue criterion. For more information, see Preacher (2006). We
selected 15,000 matrices to visually convey the relative density of points in
different regions of the plots.
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and slopes), and X is a vector of regressors. The formula for R4.5
2

incorporating these adjustments would thus be

R̃4.5
2 � �1 � 	1 � rYM

2 

n � 1

n � 2� � ��1 � 	1 � RY,MX
2 


n � 1

n � 3�
� �1 � 	1 � rYX

2 

n � 1

n � 2��
� 1 � 	1 � RY,MX

2 

n � 1

n � 3
� 	rYX

2 � rYM
2 � 2


n � 1

n � 2
. (19)

Owing to the moderately large sample size of n � 432 in the
SPBY data, R̃4.5

2 � .0333—not very different from the unad-
justed value of R4.5

2 � .0338. In smaller samples, such adjust-
ments would be more noticeable. Bias adjusted versions of R4.6

2 and
R4.7

2 are

R̃4.6
2 � �1 � 	1 � rYM

2 

n � 1

n � 2��1 � �1 � RY,MX
2

1 � rYX
2 �n � 2

n � 3�,

(20)

and

R̃4.7
2 �

�1 � 	1 � rYM
2 


n � 1

n � 2��1 � �1 � RY,MX
2

1 � rYX
2 �n � 2

n � 3�
�1 � 	1 � RY,MX

2 

n � 1

n � 3�
,

(21)

respectively. See Wang and Thompson (2007) for an extended
discussion of Ezekiel’s (1930) and other potential adjustments to
r2 and R2.

Hansen and McNeal’s (1996) Effect Size Index for
Two Groups

Many applications of mediation analysis involve a binary X
(such as gender or experimental condition), where the purpose of
the analysis is to determine whether and to what extent the mean

Figure 4. Plots of R4.5
2 plotted against ab for 15,000 indirect effects,

holding the total effect c constant at .2 (top) and .8 (bottom).

Figure 5. Plots of R4.6
2 plotted against ab for 15,000 indirect effects,

holding the total effect c constant at .2 (top) and .8 (bottom).
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difference in Y can be attributed to X indirectly through a mediator
M. Hansen and McNeal (1996) suggested an effect size index for
mediation that can be obtained by applying a sample size adjust-
ment to Sobel’s (1982) test statistic in such two-group designs.
When X is a binary variable,

ES �
ab

�a2sb
2 � b2sa

2�1

n1
�

1

n2

, (22)

where n1 and n2 are the sample sizes of Group 1 and Group 2,
respectively, and sa and sb are the standard errors of the regression
coefficients a and b, respectively. Sample values are substituted for
their population counterparts. Note that sample size is introduced
in the denominator of Sobel’s statistic by including the s2 terms.
The intent of the multiplier added by Hansen and McNeal is to
remove that influence of sample size, rendering an index that does
not depend on n. ES (effect size) is, in fact, relatively robust to
large shifts in sample size. However, use of the ES index is limited
to settings in which X is binary. In addition, because the statistic is
not bounded, standardized, or robust to changes in scale, it is
unclear how to interpret it.

New Methods of Expressing Effect Size for
Mediation Effects

Two alternative approaches avoid some of the problems inher-
ent in informal descriptors and ratio measures. These effect sizes
conform more closely to the definition and desiderata of good

effect size measures identified earlier than do the measures de-
scribed in the previous section.

A Residual-Based Index

The first new effect size we consider elaborates on a method
proposed by Berry and Mielke (2002) for effect size computation
in univariate or multivariate regression models. Their original
method involves computing functions of residuals for models
conforming to a null and alternative hypothesis, obtaining their
ratio, and subtracting the result from 1. We propose an index that
combines information about the variance in M explained by X and
the variance in Y explained by both X and M.

Berry and Mielke consider regression models conforming to
null and alternative hypotheses. In the univariate case where M is
regressed on a number of X variables, the null and alternative
models are, respectively (for case i’s data),

Mi � �
j�1

m0

Xij�0j � e0i and Mi � �
j�1

m1

Xij�1j � e1i
,

(23, 24)

where m0 is the number of regressors under the null hypothesis,
m1 is the number of regressors under the alternative hypothesis
(m1�m0), i indexes cases, �0j and �1j are coefficients for the Xij

regressors in the null and alternative models, respectively,
and all variables are mean-centered so that intercepts can
be omitted. Residuals for the null and alternative models are
given by

e0i � Mi � �
j�1

m0

Xij�0j and e1i � Mi � �
j�1

m1

Xij�1j
,

(25, 26)

respectively. The effect size is then computed as 1 �

�
i�1

n

�e1i
2 / �

i�1

n

�e0i
2 � 1 � �

i�1

n

�e1i�/ �
i�1

n

�e0i�. Because the denominator

sum will always exceed the numerator sum, Berry and Mielke’s
(2002) effect size necessarily lies between 0 and 1.

Mediation analysis, on the other hand, involves residuals for the
M equation and the Y equation. Researchers often expect that X
will explain a large amount of variance in both M and Y and that
M will explain the same variance in Y that X explains. Therefore,
the null scenario in mediation analysis is one in which there is no
explanation of variance in M or Y. The limiting alternative sce-
nario, on the other hand, is one in which X explains all of the
variance in M, while X and M each explain all of the variance in
Y. The observed effect size will lie between these two extremes (0
and 1). These extreme values suggest a basis for defining the
residuals to be used in a modification of Berry and Mielke’s (2002)
index appropriate for mediation analysis.

First, we define the null model residuals for the M and Y
equations (in which no variance is explained in either) as

e0Mi � Mi � M (27)

Figure 6. Plots of R4.7
2 plotted against ab for 15,000 indirect effects,

holding the total effect c constant at .2 (top) and .8 (bottom).
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and

e0Yi � Yi � Y, (28)

respectively, where M and Y are the means of M and Y. Second, we
define alternative model residuals for the M and Y equations
(conforming to the estimated model) as

e1Mi � eM.Xi

� Mi � dM.X � aXi (29)

and

e1Yi � eY.Xi � eY.Mi � eY.XMi

� 	Yi � dY.X � cXi
 � 	Yi � dY.M � dMi
 � 	Yi � dY.XM

� bMi � c�Xi


� Yi � dY.X � cXi � dY.M � dMi � dY.XM � bMi � c�Xi,

(30)

respectively, where a, b, and c� are as defined earlier and d is the
slope relating M to Y with no other regressors in the model. The
residuals e1Yi correspond to that part of Y not explained jointly by
X and M. Therefore, e1Yi is the part of Y not explained by X, plus
the part of Y not explained by M, minus the part these two
quantities share (so that it is not counted twice). Equation 30 is
analogous to the way in which a joint probability is determined,
where two probabilities are added and their intersection removed
[i.e., P(A or B) � P(A) � P(B) – P(A and B)]. Ideally, the e1Yis will
be as small as possible. These residuals are then combined to
produce �, a residual-based effect size index:

� � 1 �

�
i�1

n ��e1Mi

2 � �e1Yi

2 �
�
i�1

n ��e0Mi

2 � �e0Yi

2 �
�

�
i�1

n

	 �e1Mi � � �e1Yi � 


�
i�1

n

	 �e0Mi � � �e0Yi � 


(31)

� can be interpreted as a measure of the extent to which variance
in M is explained by X, and variance in Y is explained jointly by
X and M. It has the advantages of being directly interpretable and
lying on a meaningfully scaled metric; � is bounded above by 1
and is very rarely less than 0 when mediation is in evidence. G, the
sample estimate of �, is also independent of sample size. Whereas
confidence intervals may be constructed for � using bootstrap
methods, as of yet, no exact analytic confidence interval formula-
tion procedure is known to us. In the SPBY example, G � �̂ �
.049 (95% CI [.024, .081]).

One complicating factor should be noted with respect to G: The
value of G is influenced by the scales of M and Y. If these scales
differ, then G will be unduly influenced by either the residuals
associated with M or those associated with Y. Therefore, we
suggest a standardized version, � (g in samples), that has the same
formula but draws residuals from standardized regressions rather
than unstandardized regressions (i.e., replaces the errors in Equa-

tion 31 with those obtained from using standardized scores instead
of raw scores in the regression model). That is, � (or g) is Equation
31 applied to the residuals of regression models in which all of the
variables have been standardized. In the SPBY example, g � �̂ �
.044 (95% CI [.023, .072]).

A second complicating factor associated with � and � is that
they can be nonzero in situations where the indirect effect is
absent (i.e., ab � 0 but � and � are nonzero). Nevertheless, we
do not consider nonzero residual-based effect sizes (� or �)
necessarily problematic. If one considers the theoretically ideal
mediation effect as one in which X explains all the variance in
M and both X and M explain all the variance in Y, then it is
sensible to quantify how close to that ideal we have come. The
effect sizes � and � quantify this idea. This is one case in which
the effect size measure does not coincide with the way in which
the effect itself is commonly operationalized—it is a measure of
total variance explained rather than a product of regression
coefficients. Therefore, we suggest that � and � can serve as
useful supplementary measures to report along with the indirect
effect and other effect sizes, such as the unstandardized and
standardized maximum possible indirect effect, which we now
discuss.

Maximum Possible Indirect Effect and Its
Standardized Version

The second effect size we propose, and ultimately recommend, is
the magnitude of the indirect effect relative to the maximum possible
indirect effect. In general, an effect that may seem trivial in absolute
size may in fact be relatively large when one considers the range of
potential values the effect could have assumed, given characteristics
of the design or distributional characteristics of the variables. Even
under ideal distributional conditions and linear relationships, there are
real limits on the values that regression weights (and thus indirect
effects) can take on, given certain characteristics of the data.

For example, consider a multiple regression model that accounts
for “only” .125 (raw) units of variance in the dependent variable.
Initially, accounting for only .125 units of variance may seem
trivial. However, if the variance of the dependent variable were
only .15 units to begin with, the model accounts for 83.33%
(.125/.15 � .8333) of the variance that it could have possibly
accounted for. Thus, looking at the raw value of the amount of
variance accounted for does not necessarily give an accurate
portrayal of the effectiveness of a regressor.

As another example, this time in the context of mediation,
consider the hypothetical situation in which sX

2 � sM
2 � sY

2 � 1.0
and the total effect c � .6. Given these constraints, ab is not
bounded because b is not bounded. However, consider the case in
which we hold a fixed to some conditional value, like .3. When this
is true, b is bounded (in fact, b must lie between �.84), and
therefore ab is also bounded (here, to �.25). Similarly, for a given
value of b under the above constraints, the absolute value of a must
lie within a certain range, and therefore ab is again bounded. The
range of possible standardized indirect effects is presented graph-
ically on the vertical axis of Figure 7 for c � �.19 (the standard-
ized c coefficient from the SPBY example). From Figure 7 it can
be seen that in the neighborhood of a � 0, the possible range of ab
is restricted to the neighborhood of ab � 0. As a departs from 0 in
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either direction, larger values of b become possible, in turn per-
mitting a greater potential range for values of ab.

A logical question, then, is how can these bounds on a, b, and ab
be determined? Hubert (1972) demonstrated how to obtain lower and
upper boundaries for elements of a covariance matrix. Consider the
3 � 3 symmetric matrix S (which in the present case may be
considered the covariance matrix of X, M, and Y), partitioned as

S � �A G
G� var(Y)� � � �X

2 �MX �YX

�MX �M
2 �YM

�YX �YM �Y
2
�. (32)

S is nonnegative definite if and only if G�A�1G � var	Y
. This
restriction implies the following permissible range for the a coef-
ficient of a mediation model if b and c are held fixed:

a � ��YM�YX � ��M
2 �Y

2 � �YM
2 ��X

2�Y
2 � �YX

2

�X
2�Y

2 	 (33)

(where � here means “is contained in”) and the following per-
missible range for the b coefficient if a and c are held fixed:

b � ��
��X

2�Y
2 � �YX

2

��X
2�M

2 � �MX
2 	. (34)

Given these restrictions, it is possible to derive boundaries for
the indirect effect ab given a fixed a and c or a fixed b and c. First,
let 	·
 be an operator that returns the most extreme possible
observable value of the argument parameter with the same sign as
the corresponding sample parameter estimate. For example, if b̂ �
�.10 and the bounds identified for b in Equation 34 are �.21 and
.21, (b) � �.21. (b) would not be .21 because b̂ is negative,
necessitating that 	b
 also be negative. Holding b and c constant,
the bounds on ab can be derived by beginning with the bounds
implied for a and multiplying by the 	b
 identified in Equation

34 by the most extreme possible value with the same sign as ab.
This yields (after a few algebraic steps)

ab � � 	b

�YM�YX � ��M

2 �Y
2 � �YM

2 ��X
2�Y

2 � �YX
2

�X
2�Y

2 	. (35)

Taking the most extreme limit of the two limits from Equation
35 that is of the same sign as ab provides the maximum possible
indirect effect. Holding a and c constant, the equivalent bounds on
ab can be derived by beginning with the bounds implied for b and
multiplying by 	a
 obtained from Equation 33, yielding

ab � �� (a)
��X

2�Y
2 � �YX

2

��X
2�M

2 � �MX
2 	. (36)

As above, taking the most extreme of the two limits from
Equation 36 that is of the same sign as ab provides the maximum
possible indirect effect. Rather than determining the possible range
of ab, the maximum possible indirect effect is obtained by the
product of 	a
 and 	b
:

	ab
 � (a) 	b
. (37)

Full derivations of these results can be found in Appendix A.
The obtained indirect effect âb̂ can be interpreted in light of this
range. 	ab
 will be identical for both of these methods. Notice
also that 	ab
 can itself be used as an effect size, even though we
primarily suggest that it be used as the standardizer in the calcu-
lation of another effect size we present below.

In sum, if the research question involves the effect size of an
indirect effect, it is sensible to ask what the maximum attainable
value of the indirect effect (in the direction of the observed indirect
effect) could have been, conditional on the sample variances and
on the magnitudes of relationships among some of the variables.8

Reporting that an indirect effect is ab � .57 tells us little in
isolation (much like the amount of variance accounted for in the
previous example), but when it is considered that the most extreme
value ab could possibly have attained (given the observed c and
conditioning on either a or b) is .62, the effect size may be
considered larger than if (ab) were .86.9

As an example of computing 	ab
 in the SPBY data, first note
that the covariance matrix of VAC, ATD, and DVB is

S � � 2.2683 0.6615 �0.0869
0.6615 2.2764 �0.2259

�0.0869 �0.2259 0.0922
�. (38)

The permissible ranges of a and b are thus

8 In addition to restrictions imposed by the magnitudes of certain vari-
ances and coefficients, there is a further restriction on the possible size of
an indirect effect. Carroll (1961) and Breaugh (2003) pointed out that,
unless the two variables have equivalent distributions (e.g., both normal),
their correlation cannot equal 1.0. Because variables are rarely perfectly
normally (or even equally) distributed in real applications, the maximum
possible effect usually will be lower in practice than in theory.

9 If only c is held to be known (rather than either {a and c} or {b and c}),
these results imply a bounded region for ab.

Figure 7. Plot of the indirect effect ab versus a and b when X, M, and Y
are standardized and c � –0.19.
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a � �sYMsYX � �sM
2 sY

2 � sYM
2 �sX

2sY
2 � sYX

2

sX
2sY

2 	

� 
��.2259 � �.0869 � �	2.2764
	.0922
 � 	�.2259
2

� �	2.2683
	.0922
 � 	�.0869
2�
	2.2683
	.0922


�
� ��.762, .950�, (39)

making 	a
 � .950, and

b � �� �sX
2sY

2 � sYX
2

�sX
2sM

2 � sMX
2 	

� ���	2.2683
	.0922
 � 	�.0869
2

�	2.2683
	2.2764
 � 	.6615
2 	
� ��.207, .207�, (40)

making 	b
 � �.207. The sample bounds for ab are obtained
using Equation 35 and the outer bound for b:

ab � � 	b
�sYMsYX � �sM
2 sY

2 � sYM
2 �sX

2sY
2 � sYX

2

sX
2sY

2 �	
� ��.2065	�.7618, .9495
�

� ��.196, .157�, (41)

making (ab) � �.196. Instead, using Equation 36 and the outer
bound for a, the sample bounds are

ab � �� 	a

��X

2�Y
2 � �YX

2

��X
2�M

2 � �MX
2 	

� ��.9495
�	2.2683
	.0922
 � 	�.0869
2

�	2.2683
	2.2764
 � 	.6615
2 	
� ��.196, .196�, (42)

making (ab) � �.196, which was already known from Equation
41. Regardless of whether 	ab
 is calculated directly based on
Equation 37 or indirectly based on Equation 35 or Equation 36, the
value will always be the same.

Given that (ab) � �.196, the observed âb̂ of �.028 implies
that even though the indirect effect is statistically significant, it is
much smaller than it could have been. This is a key point: Bound-
ing values of parameters often are not appreciated when interpret-
ing the magnitude and importance of effect sizes.

Rather than considering the maximum value of the indirect
effect as an effect size, per se, we use (ab) to define a
standardized effect size that compares the value of ab to (ab).
That is, we define the standardized effect size, which we de-
note �2,

�2 �
ab

	ab

. (43)

�2 is interpreted as the proportion of the maximum possible
indirect effect that could have occurred, had the constituent effects
been as large as the design and data permitted. �2 � 0 implies
that there is no linear indirect effect, and �2 � 1 implies that the
indirect effect is as large as it potentially could have been. We use
the notation kappa-squared (i.e., �2) to denote that like the squared
multiple correlation coefficient, it (a) cannot be negative, (b) is
bounded (inclusively) between 0 and 1, and (c) represents the
proportion of the value of a quantity to the maximum value it could
have been. Otherwise, �2 and the population squared multiple
correlation coefficient have generally different properties. In order
to estimate �2, we suggest that sample values of the variances and
covariances replace their population counterparts. �2 is a standard-
ized value, as it is not wedded to the original scale of the variables,
allows (at least) bootstrap confidence intervals to be formed, and is
independent of sample size. We find these qualities to be advan-
tageous. For the SPBY example, the proportion of the maximum
observed indirect effect that was observed is

k2 � �̂2 �
âb̂

	âb̂

�

�.0281

�.1961
� .143, (44)

with bootstrap 95% CI [.100, .190].

R Tools

To encourage and facilitate the application of the methods we
have advocated for communicating the effect size of mediation
effects, we have developed a set of easy to use R functions, which
are contained in the MBESS (Kelley & Lai, 2010; Kelley, 2007a,
2007b) R (R Development Core Team, 2010) package. The
specific MBESS functions are mediation(), mediation
.effect.bar.plot(), and mediation.effect.plot(),
which implement the mediation model and all of the mediation
effect sizes we have discussed, with or without bootstrap confi-
dence intervals. The functions mediation.effect.bar
.plot() and mediation.effect.plot() can be used to
create effect bar plots and effect plots, respectively—two graphical
methods of communicating mediation effects (discussed on the
website). The mediation() function accepts either raw data or
summary statistics (i.e., means and variances/covariances) for sim-
ple mediation models, as we have described. The mediation()
function reports the results of the three separate regression models
and all of the effect sizes, optionally with percentile and/or bias
corrected accelerated bootstrap confidence intervals. Documenta-
tion for the functions is contained within the MBESS package.

Discussion

Researchers should consider not only the statistical significance
of indirect effects but also the effect size of a given effect. We
reemphasize the growing consensus that reporting effect size is
crucial to the advancement of psychological science. As Cumming
et al. (2007) wrote,

It is important and urgent that psychology change its emphasis from the
dichotomous decision making of NHST to estimation of effect size . . .
Effect sizes must always be reported—in an appropriate measure, and
wherever possible with CIs—and then interpreted. To achieve this goal,
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researchers need further detailed guidance, examples of good practice,
and editorial or institutional leadership. (pp. 231–232)

It is hoped that this discussion has been a step in the right
direction in the context of reporting and interpreting mediation
effects. This is an especially important type of statistical model in
which to apply effect sizes, as mediation models are so widely
used in research.

We have discussed many effect sizes with potential application
in mediation analysis. The researcher may be at somewhat of a loss
when choosing an appropriate effect size measure, given that there
are so many choices. We offer two suggestions that may render the
choice easier. First, there is no reason to report only one effect size.
If circumstances permit, reporting multiple effect sizes can yield
greater understanding of a given effect, with the added benefit that
more effect size measures are available for possible use in meta-
analysis. As an analogy, regression results are often reported in a
table containing unstandardized regression coefficients, standard-
ized regression coefficients, and �R2 for each regressor, R2, and
RAdj.

2 —five different types of effect sizes, with the first three effect
size measures being repeated for each regressor in the model. Each
of these effect sizes measures communicates different information
in different units. Additionally, a researcher desiring to communi-
cate the meaning of an indirect effect in a mediation analysis might
also report the unstandardized indirect effect (ab) and the residual-
based index �, or some other combination of effect sizes.

Second, earlier we presented three desiderata for good effect
size measurement: A good effect size should be scaled on a
meaningful, but not necessarily standardized, metric; it should be
amenable to the construction of confidence intervals; and it should
be independent, or nearly so, of sample size. The researcher should
remain cognizant of these desiderata when selecting an appropriate

effect size. We suggest that if the researcher wishes to use an effect
size that does not fulfill all the desiderata we have outlined, it
should be supplemented with additional effect sizes.

We encourage researchers to think about the most important
aspects of the effects they wish to report and seek effect size
measures that address those aspects. To aid researchers in deciding
which effect size measure(s) to report, in Table 3 we note, for each
effect size measure, whether it fulfills the three desiderata. More
concretely, we recommend researchers report, at a minimum, the
estimated value of �2, the ratio of the obtained indirect effect to the
maximum possible indirect effect. The benefits of using �2 are that
it is standardized, in the sense that its value is not wedded to the
particular scale used in the mediation analysis; it is on an inter-
pretable metric (0 to 1); it is insensitive to sample size; and with
bootstrap methods, it allows for the construction of confidence
intervals. We do not rule out an analytic method of confidence
interval formation for �2, but for practical purposes, the bootstrap
confidence interval is advantageous.

An obvious question regarding �2 is “what constitutes a large
value?” As we have previously noted, a “large” value need not
constitute an important value, and an important value need not be
a “large” value. We also are very hesitant to put any qualitative
descriptors on a quantitative value. However, if one were forced to
attach such labels to �2, we believe it makes sense to interpret them
in the same light as squared correlation coefficients are often
interpreted, that is, with Cohen’s (1988) guidelines. In particular,
after some hesitation on the part of Cohen to define benchmarks
for various effect sizes (1988, section 1.4), he ultimately concludes
that such benchmarks can be beneficial. For the proportion of
variance accounted for in one variable by another (i.e., rxy

2 ), Cohen
defines small, medium, and large effect sizes as .01, .09, and .25

Table 3
Characteristics of 16 Effect Size Measures for Mediation Analysis

Effect size Standardized? Bounded?
Desideratum 1: Interpretable

scaling?
Desideratum 2: Confidence

interval available?
Desideratum 3: Independent

of sample size?

Verbal descriptors

PM ✓ ✓ ✓

RM ✓ ✓ ✓

SM ✓ ✓

ab ✓ ✓ ✓

abps Partially ✓ ✓ ✓

abcs ✓ ✓ ✓ ✓

R4.5
2 ✓ ✓ ✓

R4.6
2 ✓ ✓ ✓ ✓

R4.7
2 ✓ ✓ ✓

SOS ✓ ✓ ✓

ES ✓ ✓ ✓

� Partially ✓ ✓ ✓

� ✓ Partially ✓ ✓ ✓

(ab) ✓ ✓ ✓

�2 ✓ ✓ ✓ ✓ ✓

Note. SOS � shared over simple effects; ES � effect size.
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(pp. 79–81). Because of the similar properties of rxy
2 and �2, we

believe that the benchmarks for rxy
2 are similarly applicable for �2.

Recalling that in the SPBY data �2 � .143 with 95% CI [.100,
.190], one could argue that the mediation effect in the SPBY data
is at least medium (because the 95% confidence interval excludes
.09) but smaller than large (because the confidence interval ex-
cludes .25). Thus, the size of the mediation effect in the SPBY data
may be appropriately labeled as lying in the medium range. How-
ever, we emphasize that the best way to describe �2 is with its
quantitative value, estimated to be .143 for the SPBY data.

To truly understand the value of �2 in a given context, compre-
hensive studies describing the typical values of �2 in well-defined
research areas would be very useful. Further, such effect sizes
could be treated as dependent variables with various regressors/
explanatory variables in a meta-analytic context, where an expla-
nation of various values of effect sizes is attempted.

Limitations and Cautions

It is appropriate at this point to identify several limitations
and cautions in the application of effect sizes for mediation
effects. First, as is the case with virtually any effect size,
relatively small effect sizes may be substantively important,
whereas relatively large ones may be trivial, depending on the
research context. An objectively small effect in high-stakes
research may be deemed very important by the scientific com-
munity, whereas an objectively large effect in other fields may
not reach a noteworthy level. Because of this, we caution
researchers to not rigidly interpret effect size measures against
arbitrary benchmarks. Snyder and Lawson (1993) emphasized
that using benchmarks to judge effect size estimates ignores
judgments regarding clinical significance, the researcher’s per-
sonal value system, the research questions posed, societal con-
cerns, and the design of a particular study. Although we do not
argue against setting benchmarks, it is important that the field of
application to which the benchmarks apply should be clearly
delineated. Further, a strong rationale should be given for why
a particular value is given for a benchmark. Probably the safest
route is to simply report the effect size without providing
unnecessary and possibly misleading commentary about its size
(Robinson, Whittaker, Williams, & Beretvas, 2003).

Second, we caution that it is a mistake to equate effect size with
practical importance or clinical significance (Thompson, 2002).
Certainly some values of some effect sizes can convey practical
importance, but depending on the particular situation, what is and
what is not practically important will vary. Fern and Monroe
(1996, pp. 103–104) cautioned that importance or substantive
significance should not be inferred solely on the basis of the
magnitude of an effect size. Several features of the research
context should be considered as well. Ultimately, the practical
importance of an effect depends on the research context, the cost
of data collection, the importance of the outcome variable, and the
likely impact of the results. Consequently, researchers are cau-
tioned to avoid generalizing beyond the particular research design
employed. Effect sizes should serve only as guides to practical
importance, not as replacements for it, and are at best imperfect
shadows of the true practical importance of an effect.

Third, outliers and violations of assumptions of statistical meth-
ods compromise effect size estimates, p-values, and confidence

intervals. Correspondingly, it is vitally important that researchers
perform diagnostic checks to ensure that the assumptions of their
inferential techniques are not obviously violated. It is well known
that outliers can spuriously inflate or deflate statistical significance,
Type II error rates (Wilcox, 2005), and confidence interval cover-
ages, but they can also inflate or deflate estimates of effect size.
Consequently, it is wise to determine the extent to which assump-
tions are met and to examine one’s data for outliers. If problems
are detected, remedial steps should be taken, or appropriate caveats
should be included with the reported results.

Fourth, all of the effect sizes we have discussed have limita-
tions. It is important to keep those limitations in mind when using
them. For example, the effect sizes discussed have not yet been
extended for use in models involving multiple mediators. No effect
size is universally applicable or meaningful in all contexts. Cor-
respondingly, researchers will need to decide which effect size
most appropriately conveys the meaning of the results in the
particular context.

Fifth, effect sizes can depend on variability. Brandstätter (1999)
pointed out that the “degree of manipulation” can affect the value
of the effect size. Cortina and Dunlap (1997) and Dooling and
Danks (1975) made similar points. This realization is important for
effect sizes in the context of mediation because X frequently is
manipulated, yet the strength of the manipulation often is made
arbitrarily large to maximize power for detecting an effect. The
effect size for such effects does not imply that a “large” effect
would be similarly astounding had X merely been observed rather
than manipulated. In fact, McClelland (1997) and McClelland and
Judd (1993) advocated an “extreme groups” approach for detecting
effects, such that extremes are oversampled at the expense of
central scores. Oversampling extreme groups is a worthwhile
approach when the goal is to maximize power in order to infer that
differences exist. However, trustworthy and generalizable esti-
mates of standardized effect size require (a) random sampling or
(b) manipulation strength that matches what one would expect to
find in nature (see Cortina & DeShon, 1998, for a summary of
some of these points).

Future Directions

The methods we have discussed here are hardly definitive. For
example, results here are limited to the simple mediation model.
Extension to more complex mediation models, such as those for
panel data (Cole & Maxwell, 2003), moderated indirect effects
(Edwards & Lambert, 2007; Preacher, Rucker, & Hayes, 2007), or
multiple mediators (MacKinnon, 2000; Preacher & Hayes, 2008b)
should be devised and investigated. As Maxwell and Cole (2007)
pointed out, P̂M is a biased estimate of effect size if one uses
cross-sectional data when the effect of interest is one that takes
time to unfold. They go on to show that when X has greater
longitudinal stability than M, P̂M will be biased downward relative
to the corresponding longitudinal index. Conversely, when M is
more stable than X, P̂M will be biased upward. This criticism is
valid, and similar criticisms apply to any effect size measure based
on the analysis of cross-sectional data when the process under
study is a longitudinal one. The lesson here is that any effect size
estimate must be interpreted in the context of the specific research
design used. The specific lags chosen to separate the measurement
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of X, M, and Y are part of that context, so generalizing results
beyond that context should be done with extreme caution.

Particularly useful would be studies conducted to establish
defensible benchmarks for different effect size measures denot-
ing small, medium, and large effects in particular research
contexts. For example, a study could be conducted to establish
what values of abcs or �2 should be considered small, medium,
and large for alcoholism treatment studies to help determine
what mechanisms are primarily responsible for explaining the
effectiveness of intervention programs. The establishment of
generally accepted benchmarks based on published research for
different effect sizes in a variety of research contexts would
facilitate meta-analysis. We believe �2, in addition to other
effect sizes, will be a useful measure in meta-analyses of
mediation effects when the proportion of the maximum possible
indirect effect obtainable across different samples is an inter-
esting research question. �2 fulfills the desiderata for good
effect size estimates, and it is standardized (and therefore
independent of the scaling of variables) and bounded.

We have not discussed sample size planning methods for
mediation models, but it is an important issue. The power
analytic (e.g., Cohen, 1988) and the accuracy in parameter
estimation (AIPE) approaches to sample size planning (e.g.,
Kelley & Maxwell, 2003, 2008) should be considered. Theo-
retically, for any effect of interest, sample size can be planned
so that there is a sufficiently high probability to reject a false
null hypothesis (i.e., power analysis) and/or sample size can be
planned so that the confidence interval is sufficiently narrow
(i.e., accuracy in parameter estimation; see Maxwell, Kelley, &
Rausch, 2008, for a review). “Whenever an estimate is of
interest, so too should the corresponding confidence interval for
the population quantity” (Kelley, 2008, p. 553). The goal of
AIPE is to obtain a sufficiently narrow confidence interval that
conveys the accuracy with which the population value has been
estimated by the point estimate of the effect size. If that
confidence interval is wide for an effect size of interest, less is
known about the value of the population parameter than would
be desirable. Moving forward, the power and AIPE approaches
to sample size planning should be fully developed for effect
sizes used in a mediation context.

Prescriptions for Research

Research on effect size for mediation effects is relatively new
and thus not fully developed. We nevertheless end by offering
some concrete recommendations for researchers wanting to report
effect size for mediation effects. We reiterate the “Three Reporting
Rules” suggested by Vacha-Haase and Thompson (2004) for re-
porting effect size estimates; these rules are just as applicable in
the mediation context as in many other contexts:

1. Be explicit about what effect size is being reported. Of-
ten we see “effect size” reported with no indication as to whether
the reported index is a correlation coefficient, mean difference,
Cohen’s d, �2, and so on, or why one measure was chosen over
competing measures. The particular effect size cannot always be
accurately inferred from the context in which it was reported.

2. Interpret effect sizes considering both their assumptions
and limitations. All of the effect sizes discussed here require
certain assumptions to be satisfied in order to obtain trustworthy

confidence intervals. Specifically, observations should be inde-
pendent and identically distributed, or the researcher risks ob-
taining confidence intervals with incorrect coverage. In addi-
tion, we have discussed limitations associated with each of the
effect sizes we presented. It is important to explicitly consider
the assumptions and limitations when reporting and interpreting
effect size.

3. Report confidence intervals for population effect sizes.
Confidence intervals are necessary to communicate the degree of
sampling uncertainty associated with estimates of effect size and
are a valuable adjunct to any point estimate effect size measure.

Our most emphatic recommendation, however, is that meth-
odologists undertake more research to establish meaningful,
trustworthy methods of communicating effect size and practical
importance for mediation effects. Tests of mediation have pro-
liferated at an unprecedented rate in recent years, with a heavy
emphasis on establishing statistical significance and very little
attention devoted to quantifying effect size and/or practical
importance. We fear that this lack of balance has led to a
proliferation of nonchance but trivially important mediation
effects being reported in the literature. In addition, the lack of
effect size reporting for mediation analyses has seriously lim-
ited the accumulation of knowledge in some fields. Conse-
quently, we strongly urge researchers to consider not only
whether their effects are due to chance (i.e., is statistical sig-
nificance reached?) but also how large the effect sizes are and
how relevant they are to theory or practice.
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Appendix A

Derivation of Boundaries for Maximum Possible Indirect Effect

Correlations within a correlation matrix set limits on the ranges of the remaining correlations because of the
necessity to maintain positive definiteness. These range restrictions, in turn, imply range restrictions on
unstandardized regression weights subject to the variables’ variances. Beginning with correlations in a 3�3
matrix,

�21�32 � �1 � �21
2 �1 � �32

2 � �31 � �21�32 � �1 � �21
2 �1 � �32

2 , (A1)

�31�32 � �1 � �31
2 �1 � �32

2 � �21 � �31�32 � �1 � �31
2 �1 � �32

2 , (A2)

�21�31 � �1 � �21
2 �1 � �31

2 � �32 � �21�31 � �1 � �21
2 �1 � �31

2 . (A3)

For the simple mediation model considered in this article, in which X, M, and Y are variables 1, 2, and 3,
the corresponding standardized regression weights are

a � �21
, (A4)

b �
�32 � �21�31

1 � �21
2

, (A5)

c� �
�31 � �21�32

1 � �21
2

. (A6)

The unstandardized regression weights are

a � �21

�M

�X

, (A7)

b �
�32 � �21�31

1 � �21
2

�Y

�M
, (A8)
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The unstandardized indirect effect is therefore
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Now, consider the partitioned matrix:

� � �A G
G� var(Y)�. (A11)

� is nonnegative definite if and only if G�A�1G � var(Y). Hubert (1972) showed the special case where
��P, a correlation matrix:

P � �A G
G� var(Y)� � � 1 �21 �31

�21 1 �32

�31 �32 1
�. (A12)

In this special case, the theorem implies

1
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2

[�31 �32]� 1 ��21
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1
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which can be solved algebraically (by completing the square) to obtain any of the three ranges from above
(Equations A1, A2, and A3). In the more general case of �, we can obtain bounds for, say, �MX:
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implying
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with � meaning “is contained in.” Ranges for the other two covariances are of similar form. The correlation
case is a special case of this more general treatment for covariances.

The bounds implied for regression coefficient a can be derived from the above result by simply isolating
a using its expression in covariance metric:

�MX � ��YM�YX � ��M
2 �Y

2 � �YM
2 ��X

2�Y
2 � �YX

2

�Y
2 	,

�MX

�X
2 � ��YM�YX � ��M

2 �Y
2 � �YM

2 ��X
2�Y

2 � �YX
2

�X
2�Y

2 	,

a � ��YM�YX � ��M
2 �Y

2 � �YM
2 ��X

2�Y
2 � �YX

2

�X
2�Y

2 	. (A16)

Another method for obtaining the bounds for a, using its correlation metric expression and altering the central
term until it equals the formula for a and simplifying, is

�31�32 � �1 � �31
2 �1 � �32

2 � �21 � �31�32 � �1 � �31
2 �1 � �32

2 ,

�31�32

�M

�X
� �1 � �31

2 �1 � �32
2

�M

�X
� �21

�M

�X
� �31�32

�M

�X
� �1 � �31

2 �1 � �32
2

�M

�X
,

�YX�YM

�X
2�Y

2 � �1 � � �YX

�X�Y
�2�1 � � �YM

�M�Y
�2 �M�X�Y

2

�X
2�Y

2 � a �
�YX�YM

�X
2�Y

2 � �1 � � �YX

�X�Y
�2�1 � � �YM

�M�Y
�2 �M�X�Y

2

�X
2�Y

2 ,

�YX�YM

�X
2�Y

2 � �1 �
�YX

2

�X
2�Y

2 �1 �
�YM

2

�M
2 �Y

2

�M�X�Y
2

�X
2�Y

2 � a �
�YX�YM

�X
2�Y

2 � �1 �
�YX

2

�X
2�Y
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�YM

2
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2 �Y

2
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2

�X
2�Y

2 ,
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2�X
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2 ��M

2 �Y
2 � �YM

2

�X
2�Y

2 � a �
�YX�YM � ��Y

2�X
2 � �YX

2 ��M
2 �Y

2 � �YM
2

�X
2�Y

2 ,

a � ��YX�YM � ��Y
2�X

2 � �YX
2 ��M

2 �Y
2 � �YM

2

�X
2�Y

2 	. (A17)

For b, a similar procedure could be followed:

�21�31 � �1 � �21
2 �1 � �31

2 � �32 � �21�31 � �1 � �21
2 �1 � �31

2 ,
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2 ,

�
�1 � �21

2 �1 � �31
2

1 � �21
2 �

�32 � �21�31

1 � �21
2 �

�1 � �21
2 �1 � �31

2

1 � �21
2 ,

�
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2

�M�1 � �21
2 � b �

�Y�1 � �31
2

�M�1 � �21
2

, (A18)
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b � 
�

�Y�1 �
�YX

2

�Y
2�X

2

�M�1 �
�MX

2

�M
2 �X

2
�,

b � ��
��X

2�Y
2 � �YX

2

��X
2�M

2 � �MX
2 	.

Now that bounds are known for b (given a and c) and for a (given b and c), the bounds for ab can be
determined. For given a and c, the bounds on ab can be derived by beginning with the bounds implied for b
and multiplying all terms by the conditional value 	a
, the most extreme possible observable value of a with
the same sign as â (from Equation A16 or A17):

�
��X

2�Y
2 � �YX

2

��X
2�M

2 � �MX
2 � b �

��X
2�Y

2 � �YX
2

��X
2�M
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� (a)
��X

2�Y
2 � �YX

2

��X
2�M

2 � �MX
2 � b 	a
 � 	a


��X
2�Y

2 � �YX
2

��X
2�M

2 � �MX
2 ,

ab � �� (a)
��X

2�Y
2 � �YX

2

��X
2�M

2 � �MX
2 	. (A19)

For given b and c, the bounds on ab can be derived by beginning with the bounds implied for a and
multiplying all terms by the conditional value 	b
:

�YX�YM � ��Y
2�X

2 � �YX
2 ��M

2 �Y
2 � �YM

2

�X
2�Y

2 � a �
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2 � �YX

2 ��M
2 �Y

2 � �YM
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2 ,

	b
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2 � �YM
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�X
2�Y

2 � a 	b
 � 	b

�YX�YM � ��Y

2�X
2 � �YX

2 ��M
2 �Y

2 � �YM
2

�X
2�Y

2 ,

ab � � 	b

�YX�YM � ��Y

2�X
2 � �YX

2 ��M
2 �Y

2 � �YM
2

�X
2�Y

2 	. (A20)

The maximum possible indirect effect is obtained by the product of 	a
 and 	b
:

(ab) � 	a
 	b
. (A21)
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