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Delineates 5 questions regarding group differences that are likely to be of interest to
researchers within the framework of a randomized pretest, posttest, follow-up (PPF)
design. These 5 questions are examined from a methodological perspective by com-
paring and discussing analysis of variance (ANOVA) and analysis of covariance
(ANCOVA) methods and briefly discussing hierarchical linear modeling (HLM) for
these questions. This article demonstrates that the pretest should be utilized as a
covariate in the model rather than as a level of the time factor or as part of the de-
pendent variable within the analysis of group differences. It is also demonstrated that
how the posttest and the follow-up are utilized in the analysis of group differences is
determined by the specific question asked by the researcher.

The randomized pretest, posttest, follow-up (PPF)
design is a common experimental design for testing hy-
potheses about intervention effects in clinical child and
adolescent research. In PPF designs, some outcome
variable (e.g., depression, self-esteem) is measured on
three separate occasions: once prior to the initiation of
the treatment, once at the conclusion of the treatment,
and once a specified time period after the conclusion of
the treatment. For example, a researcher may record a
depression score before the treatment is implemented,
randomly assign participants to groups, record a second
depression score at the conclusion of the treatment, and
finally collect a third measurement 6 months after the
conclusion of the treatment. This design is generally im-
plemented for the purpose of determining if a treatment
effect exists at the conclusion of the treatment and per-
sists for some specified period of time after the treat-
ment has ended. The randomized PPF design can also be
utilized for answering a variety of questions about
change over time when making group comparisons.

Although the randomized PPF design is a relatively
common design in clinical research, confusion often
exists among researchers with respect to the questions
that can be asked and the appropriate methods for an-
swering these questions. A number of analytic meth-

ods are possible when testing hypotheses about treat-
ment effects within the context of a randomized PPF
design such as analysis of variance (ANOVA), analysis
of covariance (ANCOVA), and hierarchical linear
modeling (HLM). Depending on the question(s) of in-
terest, any of these and other analytic techniques may
be possible, oftentimes leaving researchers perplexed
when attempting to choose the most appropriate ana-
lytic technique for a specific question.

This article delineates the similarities and differ-
ences among various analytic techniques for the follow-
ing five questions in a randomized PPF design that are
likely to be of interest to researchers: (a) “Do the groups
differ in any way over time?” (b) “Do the groups differ in
change from the pretest to the posttest?” (c) “Do the
groups differ in change from the pretest to the fol-
low-up?” (d) “Do the groups differ in change from the
posttest to the follow-up?” and (e) “Do the groups differ
on the average of the posttest and the follow-up?” Al-
thoughseveralanalyticmethodsmayplausiblyanswera
particular question of interest, within the context of this
article the most appropriate method of analysis also pro-
vides an unbiased estimate of the parameter associated
with thequestionof interest.Further,of themethods that
provide an unbiased estimate, the most appropriate ana-
lyticmethodalsoprovides themost statisticalpowerand
precision.

We compare the relative statistical power and preci-
sion of ANOVA and ANCOVA for these five questions
about group differences over time in derivations found
in Appendixes A and B. We also provide an illustrative
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example along with significance tests and confidence
intervals that are used to demonstrate the conceptual
points for these five questions about group differences
over time developed throughout the article. Further, we
briefly discuss how HLM compares to ANCOVA when
answering these five questions of interest about group
differences within the context of a randomized PPF de-
sign.

Randomized Pre–Post Design

The discussion of analytic method comparisons be-
gins within the context of the randomized pre–post de-
sign because the PPF design is an extension of the
pre–post design. Questions asked within the PPF
framework that include the pretest and either the
posttest alone or the follow-up alone can be thought of
as pertaining solely to a pre–post design from a statisti-
cal perspective. Thus, analytic methods that answer the
question regarding group differences from the pretest
to the posttest within the context of a randomized
pre–post design can also be used when asking ques-
tions about group differences in change from the pre-
test to the posttest or the pretest to the follow-up within
a randomized PPF design.

This section covers the assumptions required for the
hypotheses tested within the randomized pre–post de-
sign to be valid and also reviews past methodological
work on this design. Analytic methods that have been
proposed for the randomized pre–post design are a
one-within, one-between ANOVA in which the
within-subjects factor is time and the between-subjects
factor is group status (i.e., experimental condition), an
ANOVA on the difference score, an ANCOVA on the
posttest utilizing the pretest as a covariate, and an
ANCOVA on the difference score utilizing the pretest
as a covariate.1

Assumptions Within the Context of a
Randomized Pre–Post Design

To facilitate proper interpretation and strengthen in-
ternal validity within a pre–post design, we assume
that participants are randomly assigned to groups
throughout the article. Although this is not literally an
assumption of the analytic methods compared here,

random assignment is necessary to equate the groups
on the covariate and all other concomitant variables in
the long run, allowing causal inferences to be made
about the treatment effect.

The following statistical assumptions underlie the
hypothesis tests and confidence intervals for the group
main effect and time by group interaction within the
one-within, one-between ANOVA, the ANOVA on the
difference score, and the ANCOVA on the posttest
covarying the pretest within the context of a random-
ized pre–post design. These three assumptions are as
follows: (a) the dependent variable (e.g., the posttest,
the difference score) is normally distributed in the pop-
ulation within each group (and conditional on the ob-
served pretest scores when using ANCOVA); (b) the
scores of different participants are statistically inde-
pendent of one another (e.g., at a particular time point,
observations are independent of one another); and (c)
the population variance of the dependent variable is
equal for all the groups (i.e., homogeneity of variance).

For ANCOVA on the posttest covarying the pretest,
we also assume homogeneity of regression slopes to
simplify our presentation. Still, there may be situations
where the homogeneity of regression assumption in
ANCOVA is not tenable. If one suspects that the regres-
sion slopes for the treatment and control groups differ in
the population, then it is necessary to explicitly add the
pertinent parameter(s) to the statistical model. A re-
searcher is then able to obtain a more complete under-
standing of the data by adding these parameters, which
specify an interaction between the pretest scores and the
treatment. Researchers interested in relaxing the homo-
geneity of regression assumption may consult Rogosa
(1980), who provided a discussion of analytic methods
dealing with nonparallel regression lines, and Huitema
(1980,chapter13),whoexplainedaprocedureknownas
the Johnson–Neyman technique to analyze nonparallel
regression lines.

When utilizing ANCOVA in randomized designs,
statistical power and precision depend on the popula-
tion correlation between the dependent variable and
the covariate (i.e., the pretest in the context of a ran-
domized pre–post design), ρDV,COV. The larger the
magnitude of ρDV,COV, the more statistical power and
statistical precision ANCOVA will yield. All other
things being equal, measurement error in the depend-
ent variable or the covariate or both and failing to ac-
count for a nonlinear relationship between the depend-
ent variable and the covariate both tend to decrease the
magnitude of ρDV,COV.2 However, when participants are
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1Maxwell, O’Callaghan, and Delaney (1993) provided an intro-
duction to ANCOVA that covers a variety of topics, some of which
are not addressed in this article due to space limitations. Throughout
this article, all covariance analyses utilize the pretest as the sole
covariate unless otherwise stated. Although it is possible to collect
and utilize more than one covariate within ANCOVA, we focus on
incorporating the pretest as the sole covariate to simplify our presen-
tation. For readers interested in ANCOVA with multiple covariates,
Huitema (1980, chapter 8) provided a thorough discussion of this
topic.

2The ANCOVA model typically utilized in practice only ac-
counts for the linear relationship between the dependent variable and
the covariate. Thus, not accounting for quadratic (cubic, quartic, and
so on) relationships tends to decrease power and precision when
compared to an analysis that does account for these relationships
when they truly exist in the population.



randomly assigned to groups and the covariate is col-
lected prior to the start of the treatment, the estimate of
the treatment effect is still unbiased when either mea-
surement error exists or one does not account for a non-
linear relationship. Thus, both these conditions tend to
decrease power and precision, but neither bias the esti-
mate of the treatment effect within the context of a ran-
domized design.3

Also, the covariate (i.e., the pretest within the con-
text of a randomized pre–post design) utilized within
an ANCOVA should be measured before the initiation
of the treatment to ensure statistical independence be-
tween the treatment and the covariate in the population
(Maxwell & Delaney, 1990, pp. 382–384, case 3). If
the covariate is measured after treatment has begun, the
design is confounded because it is not known if the rea-
son for any observed mean difference between the
groups on the covariate is due to the treatment or sam-
pling error. It is likely that this difference is due to
treatment to some extent, and if this is the case, one
will typically lose power by partialling some of the
treatment variance out of the treatment effect when us-
ing the covariate measured after the initiation of the
treatment. Thus, it is important to measure the
covariate before the treatment is initiated when per-
forming an ANCOVA for the purpose of increasing sta-
tistical power within a randomized study, allowing the
researcher to obtain a more efficient answer to the
question of interest.

Analysis of Data Collected From a
Randomized Pre–Post Design

Now that the necessary assumptions have been
stated, the analytic methods utilized within the context
of a randomized pre–post design can be compared to
determine which statistical method is the most appro-
priate. The first method we discuss conceptualizes the
data in terms of a one-within, one-between ANOVA, in
which time is a within-subjects factor and group status
is a between-subjects factor. There are three possible
omnibus tests that can be obtained from this frame-
work: a time main effect, a group main effect, and a
time by group interaction.

The time main effect answers the question “Aver-
aging over the groups, are the pretest and the posttest
different from one another?” This effect is generally
not useful to researchers interested in group compari-
sons because this effect averages over the treatment
and control groups, disregarding any possible differ-
ences between them. One might also be interested in
the group main effect. The question that the group
main effect attempts to answer is “Are the groups dif-
ferent on the average of the pretest (Pre) and the
posttest (Post)?” This test does compare groups, and it
does so by averaging the outcome variable over time
for each group, making the sum, Post + Pre, the effec-
tive dependent variable for this test. Utilizing this de-
pendent variable, the full model for the test of the
group main effect can be expressed as

where denotes the population mean for
group j (j = 1, 2, …, a, where a is the total number of
groups) on the dependent variable, Post + Pre, and εij is
the error for individual i (i = 1, 2, …, nj, where nj is the
sample size in group j) in group j. Equation 1 can be
re-expressed in a more useful form for our purposes:

where µPre is the population grand mean on the pretest
and is the population mean on the posttest for
group j.

Equation 2 explicitly demonstrates that the test of
the group main effect restricts the regression slope pre-
dicting the posttest from the pretest to be –1. At the
very least, we would not expect this restriction to be
reasonable unless there is a negative correlation in the
population between the pretest and the posttest.4 Al-
though a negative correlation between the pretest and
the posttest is possible, in practice this situation is not
likely. Further, even if the correlation between the pre-
test and the posttest is negative, this does not necessar-
ily imply that we should restrict the regression slope
predicting the posttest from the pretest to be –1. Thus,
the test of the group main effect rarely provides the
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3Although measurement error in the covariate does bias the esti-
mate of the population regression coefficient predicting the depend-
ent variable from the covariate, it does not bias the estimate of the
treatment effect because group status is uncorrelated with the
covariate in the population due to random assignment to groups (as-
suming the measurement error in the dependent variable and the
covariate is uncorrelated along with other standard regression as-
sumptions). Random assignment to groups also ensures that failing
to account for a nonlinear relationship between the dependent vari-
able and the covariate does not bias the estimate of the treatment ef-
fect, as the nonlinear component is uncorrelated with group status in
the population.
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4The reasoning underlying this statement is shown through the
relationship

where βPost,Pre is the population regression slope predicting the
posttest from the pretest, σPost is the population standard deviation of
the posttest, σPre is the population standard deviation of the pretest,
and ρPost,Pre is the population correlation between the posttest and
the pretest. In practice, it is likely in most situations that the pretest
and the posttest will be positively correlated, leading to the conclu-
sion that the population regression coefficient predicting the posttest
from the pretest is typically positive.
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most powerful and precise answer to the researcher’s
question about group differences.

The final omnibus effect that can be tested within
the one-within, one-between ANOVA is the time by
group interaction. The test of this effect answers the
question “Do the groups change differently from the
pretest to the posttest?” or, equivalently within a ran-
domized pre–post design, “Are the groups different at
the posttest?” Although these questions are generally
conceptually different from one another, within a ran-
domized pre–post design, they are equivalent.

The reason for the equivalence between these two
questions is random assignment to groups, which en-
sures the groups are equal on the mean of the pretest
scores in the population, assuming the pretest is mea-
sured before the start of the treatment. Figure 1 helps to
illustrate the equivalence of these two questions for
two groups when there is a treatment effect in the popu-
lation (left panel) and when there is not a treatment ef-
fect in the population (right panel). Notice that the left
panel in Figure 1 illustrates that a treatment effect is
present in the population because Group 2 demon-
strates a mean change of 2 points from the pretest to the
posttest, whereas Group 1 demonstrates no mean
change from the pretest to the posttest. Thus, from the
perspective of groups changing differently from the
pretest to the posttest, the treatment effect is 2 points.
Also, notice there is a 2-point difference between the
groups at the posttest. Because the groups must be
equal on the mean of the pretest in the population

within the context of a randomized pre–post design,
these two population quantities will always be identi-
cal, demonstrating that these two approaches are at-
tempting to find the same population quantity.

Notice the graph on the right of Figure 1 may not
appear to represent Group 2. However, the reason that
this line is not visible is due to the mean trajectory for
Group 1 lying directly on top of the mean trajectory
representing Group 2. This situation represents a case
in which there is no treatment effect in the population.
Notice that in the right panel of Figure 1 we obtain a
treatment effect of zero from both the comparisons of
difference scores and the difference on the posttest per-
spectives. As in the left panel in Figure 1, the equiva-
lence of the mean group differences obtained from the
difference score and posttest score approaches is due to
the groups being equal on the pretest in the population,
and, within randomized studies, parallelism among the
population group mean trajectories (i.e., equal popula-
tion group mean difference scores) equates to no treat-
ment effect on the posttest. Although both the left and
right panels of Figure 1 depict a situation in which
Group 2 remains constant over time, the general princi-
ple illustrated here is also true when both the groups
change from the pretest to the posttest. Further, the
same principle applies in situations in which more than
two groups are included in the study.

Thus, the test of the time by group interaction
within the context of a randomized pre–post design an-
swers the questions “Do the groups change differently
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Figure 1. Plot of population group mean trajectories for two groups in which a treatment effect does (left panel) and does not (right
panel) exist in the population.



from the pretest to the posttest?” and “Do the groups
differ on the posttest?” As it has been shown these
questions are equivalent in randomized designs. This
statistical test utilizes Post – Pre as the effective de-
pendent variable in the analysis when attempting to de-
termine if the groups change differently from the pre-
test to the posttest. The full model for the test of the
time by group interaction can be expressed in a manner
similar to the test of the group main effect:

which can also be expressed as

Equation 4 illustrates that the population regression
slope predicting the posttest from the pretest is as-
sumed to be 1 when testing the time by group interac-
tion in a one-within, one-between ANOVA. This as-
sumption is likely more reasonable in practice than the
assumed slope of –1 for the test of the group main ef-
fect due to the positive correlation that is typically ex-
pected between the pretest and the posttest. Even
though a positive correlation between the pretest and
posttest implies the population regression slope pre-
dicting the posttest from the pretest will be positive,
there is usually no reason to expect it to equal 1. Thus,
restricting the population regression slope predicting
the posttest from the pretest to be 1 generally leads to
lower power and less precision than estimating this pa-
rameter from the data.

Another approach that has been popular in the liter-
ature is an ANOVA on the difference score, Post – Pre.
Although an ANOVA on the difference score may
seem to answer a different question than the time by
group interaction, this analysis is mathematically
equivalent to the interaction in the one-within, one-be-
tween ANOVA when analyzing data obtained from a
pre–post design (Huck & McLean, 1975). In fact, one
will receive identical observed F values and p values
for these analyses for any data set from a pre–post de-
sign. Because of this, the shortcomings of the ANOVA
on the difference score are the same as those encoun-
tered in the time by group interaction when testing for
group differences in change within the context of a ran-
domized pre–post design.

As Huck and McLean (1975) have shown,
ANCOVA is generally the most appropriate analytic
method when testing for group differences in change
from the pretest to the posttest in a randomized
pre–post design. It may seem that ANCOVA on the
posttest covarying the pretest is only answering the
question “Are the groups different on the posttest con-
trolling for the pretest scores?” However, because the
mean of the pretest scores for the different groups will

be equal in the long run due to random assignment and
the measurement of the pretest prior to the initiation of
the treatment, the ANCOVA on the posttest is also an-
swering the question “Do the groups change differ-
ently from the pretest to the posttest?” This result is
one of the reasons why ANCOVA is useful when at-
tempting to assess group differences in change within
the context of randomized studies.

The advantage of the ANCOVA on the posttest can
be seen from a more statistical perspective when com-
paring the following full model for ANCOVA to the
full models for the group main effect and the time by
group interaction within ANOVA that are illustrated in
Equations 2 and 4, respectively:

As illustrated in Equation 5, ANCOVA allows for the
data to estimate the population regression slope predict-
ing the posttest from the pretest, βPost,Pre, whereas the
group main effect and the time by group interaction
within the context of ANOVA implicitly constrain this
value tobe–1and1, respectively.AllowingβPost,Pre tobe
estimated from the data rather than restricting it to be –1
or 1 will generally reduce the population error variance
in the model (at the expense of one denominator degree
of freedom). Thus, the ANCOVA is generally a more
powerful and precise procedure when compared to
ANOVA when interest lies in group differences in
change from the pretest to the posttest within the context
of a randomized pre–post design. For example, suppose
weutilizea randomizedpre–postdesignfora two-group
study in which the standardized group mean difference
(i.e., δ, the population Cohen’s d) is .5, the population
correlation between the pretest and the posttest is .5, and
the sample size for each group is 50. For this situation,
assume that the population within-group variances of
the pretest and the posttest are equal. When this is the
case, the power for the ANCOVA on the posttest
covarying thepretest isapproximately .82, thepower for
both the ANOVA on the difference score and the
ANOVA on the posttest alone is approximately .70, and
the power for the group main effect in the one-within,
one-between ANOVA is .30.

ANCOVA also controls for “unhappy randomiza-
tion” (Kenny, 1979, p. 217), whereas the one-within,
one-between ANOVA generally does not. Unhappy
randomization occurs when random assignment pro-
duces groups that are significantly different on the pre-
test within a randomized pre–post design. Although
this situation will not occur often (i.e., 100α% of the
time, where α is the [unconditional] Type I error rate),
inferences resulting from unhappy randomization can
be flawed if one considers the conditional Type I error
rate. The conditional Type I error rate is defined as the
probability of falsely rejecting the null hypothesis of
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group differences on the posttest given the observed
values at the pretest. Within a randomized pre–post de-
sign, interest in the conditional Type I error rate corre-
sponds with the question “Once pretest differences
have been observed between the groups, can any dif-
ferences at the posttest be trusted to reflect the treat-
ment effect instead of the continuing influence of the
difference at the pretest?” When random assignment is
utilized and the pretest is measured before the start of
the treatment, ANCOVA controls for these observed
group differences on the mean of the pretest, control-
ling the conditional Type I error rate and allowing for
valid inferences from this perspective.

Another analytic method that may seem reasonable
is an ANCOVA on the difference score, Post – Pre,
covarying the pretest because utilizing the difference
score as the dependent variable explicitly answers the
question of change, and utilizing the pretest as a
covariate controls for any group differences on the
mean of the pretest within the sample along with con-
sistent individual differences from the pretest to the
posttest. Although there is nothing necessarily wrong
with this approach, this analysis is not necessary when
testing for group differences in change from the pretest
to the posttest within the context of a randomized
pre–post design. The ANCOVA on the difference score
covarying the pretest will yield the same F statistic and
p value for the test of group differences as the
ANCOVA on the posttest covarying the pretest for any
particular data set. Thus, the only plausible reason for
utilizing the ANCOVA on the difference score rather
than the ANCOVA on the posttest is to facilitate the in-
terpretation of change within each group (Hendrix,
Carter, & Hintze, 1979).

Statistical Power Comparisons of
ANOVA and ANCOVA Within the

Context of a Randomized PPF Design

Now that we have determined that ANCOVA on the
posttest covarying the pretest is the most appropriate
analysis in a randomized pre–post design when interest
lies in group differences in change from the pretest to
the posttest or, equivalently, in group differences on the
posttest, we demonstrate some general relations be-
tween ANOVA and ANCOVA. These relations will
prove useful in determining which analytic method is
the most appropriate in subsequent discussions about
questions within randomized PPF designs. As in the
randomized pre–post design, we assume the pretest is
measured prior to the initiation of the treatment and
participants have been randomly assigned to groups.
Appendix A presents derivations of relevant standard-
ized effect sizes for two or more groups. Appendix B
shows how these standardized effect sizes compare to
one another for various data analytic strategies. If two

methods are identical and thus equivalent with respect
to statistical power, they are also equivalent with re-
spect to statistical precision. Similarly, if one method
considered here is more statistically powerful than an-
other method, it is also more precise. In this sense, the
comparisons made in this section are for both statisti-
cal power and statistical precision.

Comparison of ANOVA and ANCOVA

When a researcher is contemplating the decision of
analyzing data from a randomized PPF design with ei-
ther ANOVA or ANCOVA, the results of Appendixes
A and B will determine what analysis is the most ap-
propriate choice. In particular, Appendix B demon-
strates that regardless of the dependent variable that is
analyzed from a randomized PPF design (e.g., Post,
Follow-up [Follow], Follow – Post, Post – Pre, Follow –
Pre), the pretest should almost always be used as a
covariate. An ANCOVA that uses the pretest as a
covariate will virtually always be more powerful than
an ANOVA that utilizes the same dependent variable
but ignores the pretest or an ANOVA that incorporates
the pretest as a linear component of the dependent vari-
able (e.g., an ANOVA on the difference score, Follow –
Pre). Thus, whenever an ANOVA is performed when
participants have been randomly assigned to groups
and a pretest has been collected prior to treatment, it is
virtually always a suboptimal analysis that will result
in a loss of statistical power and precision when com-
pared to the corresponding ANCOVA using the pretest
as the covariate. For example, as stated within the pre-
vious section on the randomized pre–post design, one
can think of the time by group interaction in the
one-within, one-between ANOVA as utilizing Post –
Pre as the dependent variable. Appendix B demon-
strates that this analysis (as well as the group main ef-
fect) is suboptimal with respect to statistical power and
precision when compared to ANCOVA on the posttest
alone covarying the pretest.

Comparison of ANCOVAs

Although the previous section compared ANOVA to
ANCOVA, it is also possible to compare different
ANCOVAs to one another because the pretest is some-
times included as a linear component of the dependent
variable. For example, one researcher might choose to
utilize ANCOVA on the posttest alone using the pretest
as the covariate, whereas another researcher might de-
cide to use ANCOVA on the difference score, Post – Pre,
using the pretest as the covariate. Appendix A demon-
strates that the power and precision for ANCOVA on the
difference score and ANCOVA on the posttest (both
covarying the pretest) are equivalent. Further, the ob-
served F values, p values, and confidence intervals for
group mean comparisons will be equal for both of these
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analyses for any given data set. Thus, not only are power
and precision unaffected by utilizing the pretest as a
component of the dependent variable in ANCOVA, but
thestatistical results in thesampleassociatedwithgroup
mean comparisons are also unaffected.

We may also be interested in comparing ANCOVA
on the posttest to ANCOVA on the dependent variable,
Post + Pre. The fundamental message of this section is
that these analyses will yield the same statistical
power, and all ANCOVAs that covary the pretest and
add (or subtract) some multiple of the pretest to the
same dependent variable will not only yield the same
statistical power and precision, but will also yield the
same F value and p value for the test of the treatment
effect along with the same confidence intervals for
group mean comparisons for a particular data set.
Thus, the only plausible reason for incorporating the
pretest as part of the dependent variable and as a
covariate in an ANCOVA is to facilitate the interpreta-
tion of the dependent variable within each group as was
the case in the randomized pre–post design.

Randomized PPF Design

Realizing that ANCOVA using the pretest as a
covariate generally provides more statistical power to
detect treatment effects and more statistically precise
confidence intervals around population group mean dif-
ferences thanANOVAwithin thecontextof randomized
designs, we utilize this methodological thinking within
the context of the randomized PPF design. Because
there are more questions of potential interest in a PPF
design than in a pre–post design, there are also more
methods that can potentially be chosen to analyze data
from a randomized PPF design. We compare some plau-
sible analytic methods for the five questions we believe
are likely to be of the most interest to researchers work-
ing within the randomized PPF framework. It is impor-
tant to remember theassumptions thatweremadefor the
randomized pre–post design because these same as-
sumptions are also utilized for the randomized PPF de-
sign.Theonlydifference is theanalyzeddependentvari-
able (e.g., Follow – Post, Follow) will change depending
on the particular question to be answered.

Illustrative Example

To better illustrate the analytic perspectives de-
scribed in the remainder of the article, a hypothetical
data set is provided.5 Suppose a researcher is interested
in the effects of different forms of therapy intervention
on childhood depression and plans to examine the ef-
fects of two therapies, Treatment A and Treatment B,

and also includes a control group to eliminate alterna-
tive rival hypotheses (Campbell & Stanley, 1963). We
will suppose that higher depression scores indicate a
more depressed child.

After a pretest measure is collected from each child,
25 children are randomly assigned to each of the three
groups without regard to their pretest scores.6 After the
therapy sessions have concluded, a posttest measure of
depression is collected for each child. Six months after
the collection of the posttest, a follow-up measure of
depression is collected for each child to assess the last-
ing effects of therapy. Thus, each of the 25 children in
the three groups has been assessed at three time points:
before treatment, immediately following the conclu-
sion of treatment, and 6 months after the conclusion of
treatment. A graphical display of the mean trajectory
for each group is provided in Figure 2, whereas Table 1
shows some relevant descriptive statistics for this hy-
pothetical data set. Although other descriptive and in-
ferential statistics, as well as a variety of other figures,
may be of interest for a given research setting, the pur-
pose of Figure 2 and Table 1 is to provide a context for
the analytic results we discuss momentarily.

Figure 2 and Table 1 show that all three of the group
means on the pretest are similar to one another. When
randomly assigning to groups, this will typically be the
case, and the group means on the pretest must be equal
in the population. Within these sample data, the mean
trajectory for the control group generally maintains its
initial elevation over the three occasions of measure-
ment, indicating no appreciable change in depression
scores. The mean depression scores in Treatment A
and Treatment B both decline from the pretest to the
posttest, yet Treatment B appears to show a steeper de-
cline within this time interval. From posttest to fol-
low-up, the mean trend of Treatment A generally main-
tains the same level of depression. The mean trend of
Treatment B declines to some extent from the posttest
depression measure to the follow-up, illustrating Treat-
ment A and Treatment B apparently differ in change
within this time interval. Of course, inferential statisti-
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5The data set along with the S-Plus or SPSS code used to gener-
ate the results is available by contacting the first author.

6Rather than simple random assignment to condition, another al-
ternative is to form b blocks (the number of participants in each
block is equal to N divided by b, where b is an arbitrary number cho-
sen for the number of blocks and N is the total sample size) and ran-
domly assign participants to groups within each block. The blocks
are formed by placing participants with similar values on the pretest
into a particular block. Although random assignment is guaranteed
to equate the groups on the mean of the pretest in the long run, for
any given study the groups will generally differ on their mean pretest
scores. When random assignment to condition after blocking on the
pretest is employed, the groups are generally more equivalent on the
pretest measure than if the pretest is ignored within the random as-
signment procedure, increasing power while still maintaining inter-
nal validity. It is important to emphasize that blocking specifies an
assignment procedure here and not a method of data analysis (see
Matthews [2000] and Friedman, Furber, & DeMets [1998] for infor-
mation on methods of randomly assigning participants to groups).



cal methods (e.g., hypothesis tests, confidence inter-
vals) are needed to assess which, if any, of the apparent
effects in Figure 2 may simply reflect sampling error.

Five Questions of Interest Within the
Context of a Randomized PPF Design

As stated in the introductory section, there are five
substantive questions that may be of interest to re-
searchers working within the context of randomized
PPF designs. Each of these questions is delineated in
the following subsections, along with the results from
the hypothetical data set. Although there may be other
potentially interesting questions that can be asked from
PPF designs, the five questions we discuss are presum-
ably the most useful for many research settings.

Group Differences in Any Way Over
Time

The first question “Is there any evidence that the
groups differ in any way over time?” is answered by

comparing groups across time to probabilistically infer
whether the groups differ on the outcome variable at
any measured time point. We begin with this question
because it subsumes all other patterns of group differ-
ences. Thus, its strength comes from its generality.
However, it is so general that oftentimes researchers
may decide to skip this question and proceed immedi-
ately to more specific questions and accompanying
analyses. Nevertheless, we begin with this question
largely because it establishes a conceptual framework
for the remaining questions.

Analytic methods corresponding to the question of
group differences in any way over time can simulta-
neously incorporate the posttest and the follow-up
scores as dependent variables yielding a multivariate
analysis. As was the case in univariate statistical tests
delineated in previous sections of this article, the ap-
propriate usage of the pretest measure is to treat it as a
covariate. Thus, a multivariate analysis of covariance
(MANCOVA) that uses the pretest as a covariate is
generally more statistically powerful when testing for
treatment effects than a multivariate analysis of vari-
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Figure 2. Plot of mean group trajectories for the illustrative data set.

Table 1. Descriptive Statistics for Illustrative Data Set

Pooled within-group correlation coefficients

Within-group means and standard deviations for each measurement occasion

Pretest Posttest Follow-Up

M SD M SD M SD

Control 14.394 3.771 14.679 3.234 14.756 3.516
Treatment A 14.682 4.527 13.975 4.189 14.172 5.254
Treatment B 14.045 3.246 12.208 3.367 11.849 3.173

Pretest 1

Posttest .4573 1

Follow-up .3872 .4164 1

� �
� 	
� 	
� 	
� 	
 �



ance (MANOVA) that ignores the pretest entirely or
utilizes the pretest as a linear component of one or both
of the dependent variables. Because of this, we recom-
mend the MANCOVA approach when using a
multivariate technique to answer the question regard-
ing whether groups differ in any way over time.7

We delineate two potential approaches from the
MANCOVA perspective. The first MANCOVA ap-
proach utilizes the posttest and the follow-up simulta-
neously as dependent variables and the pretest as a
covariate. The second conceptualization of the
MANCOVA approach assumes that a researcher might
want to consider group differences from a different
perspective. For example, a researcher might want to
test whether groups differ in terms of an average of the
posttest and the follow-up and a difference between
follow-up and posttest. To answer these questions, one
can utilize what we will define as M and D variables as
the two dependent variables analyzed simultaneously
while the pretest is used as a covariate. The average of
posttest and follow-up, M, and the difference between
follow-up and posttest, D, are defined in Equations 6
and 7, respectively:

Mij = (Postij + Followij)/2 (6)

and

Dij = Followij – Postij (7)

Although the MANCOVA using Post and Follow as
dependent variables and the MANCOVA using M and
D as dependent variables may appear to be asking dif-
ferent questions, they actually answer the same ques-
tion “Is there any evidence that the groups differ in any
way over time?” and will always provide exactly the
same result for the group main effect for a particular
data set. Thus, whether the dependent variables used in

the MANCOVA are posttest and follow-up or M and D,
the same F statistic and p value will be obtained when
this multivariate test is performed for a given data set.

Table 2 illustrates the conceptual points of this sec-
tion in the results for our numerical example. Through-
out the article, the Type I error rate is set at .05, whereas
the confidence interval coverage is set at .95. As ex-
pected, the MANCOVA yields the same result, F(2,
140) = 2.538, p = .043, which is statistically signifi-
cant, whether Follow and Post or D and M are utilized
as the dependent variables. Also notice that utilizing
the pretest as a linear component of the dependent vari-
ables does not change the F statistic or p value obtained
from the MANCOVA when using the pretest as a
covariate. Further, none of the MANOVA results yield
statistical significance, whereas the MANCOVA does
for this hypothetical data set. In the long run, this will
typically be the case when comparing MANOVA to
MANCOVA because, as mentioned earlier in this sec-
tion, MANCOVA is generally more powerful than
MANOVA when answering the question “Is there evi-
dence that the groups differ in any way over time?”
within the context of a randomized PPF design. Even
though the MANCOVA approach yields a statistically
significant result, allowing us to infer “there is evi-
dence that the groups differ in some way over time,”
the MANCOVA does not necessarily provide a clear
description of where the differences are located. Thus,
because the MANCOVA approach does not generally
yield a precise determination of where group differ-
ences may exist, it is likely that further analyses are
needed.

Answering More Specific Questions
Within the Context of a Randomized
PPF Design

Given the ambiguity of the question answered with
MANCOVA, the suggestion here is to usually perform
some or all of four different ANCOVAs on the posttest,
the follow-up, the D variable, and the M variable.
These four separate analyses have substantively mean-
ingful interpretations as they examine specific types of
group differences over time. When any of these four
analyses are found to be statistically significant, one is
able to conclude that the groups do indeed change dif-
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7Another plausible analytic method for researchers interested in
group differences in any way over time within the context of random-
ized PPF designs is the omnibus test of the group by time interaction
using the repeated measures MANOVA approach. Although this
analysis does answer the question “Do the groups differ in any way
over time?” it incorporates the pretest as a level of the time factor
rather than as a covariate in the model. Because of this, we generally
recommend that the MANCOVA be performed when utilizing a
multivariate procedure to answer this question within the context of a
randomized PPF design.

Table 2. MANOVA and MANCOVA Omnibus Tests for Various Sets of Dependent Variables

Post and Follow D and M Post – Pre and Follow – Pre

Omnibus Test MANCOVA MANOVA MANCOVA MANOVA MANCOVA MANOVA

Observed F value F(4, 140) = 2.538 F(4, 142) = 2.250 F(4, 140) = 2.538 F(4, 142) = 2.250 F(4, 140) = 2.538 F(4, 142) = 1.311
P value p = .043 p = .067 p =.043 p = .067 p =.043 p = .269

Note: MANOVA = multivariate analysis of variance; MANCOVA = multivariate analysis of covariance. All F statistics and p values are based on
the Wilks’s lambda criterion.



ferently over time, that is, that there is some group ef-
fect on a specific dependent variable.

Although there are four different dependent vari-
ables, and thus four different ANCOVAs, that we con-
tend are substantively meaningful, a researcher is not
limited to these ANCOVAs nor do all four of these
ANCOVAs have to be performed when analyzing data
from a randomized PPF design. Rather than simply
performing a wide variety of statistical tests, it is best
to let theory guide the statistical tests that are per-
formed. By following the suggestions provided here,
however, an argument can be made that the recom-
mended approach leads to an increase in the experi-
ment-wise Type I error rate, because four tests are be-
ing performed rather than the one test performed in the
MANCOVA approach. However, we believe that the
four questions can each be thought of as their own dis-
tinct family, due to the fact that they all answer qualita-
tively different questions. Using this recommended ap-
proach does not increase the family-wise Type I error
rate beyond the nominal α level and does not compro-
mise statistical power by correcting for the change in
the experiment-wise Type I error rate. In conclusion,
we believe that a researcher will find more substan-
tively meaningful results and less confusion by choos-
ing the ANCOVA(s) that satisfy a researcher’s ques-
tion(s) when analyzing data obtained from a
randomized PPF design and using the nominal α level
(e.g., an α of .05) for each ANCOVA that is performed.

Group Differences in Change From
Pretest to Posttest

Recall that the second question of possible interest
is “Do the groups change differently from the pretest to
the posttest?” As mentioned in our discussion of the
randomized pre–post design, this question is equiva-
lent to “Do the groups differ on the posttest?” when
participants are randomly assigned to groups and the
pretest is measured prior to the initiation of the treat-
ment. The appropriate analysis for these questions has
already been delineated by our discussion of the ran-
domized pre–post design, because the question in-
volves a pretest and one other measurement occasion
obtained after the start of the treatment. Thus,
ANCOVA on the posttest covarying the pretest is the
most appropriate analytic method for answering these
questions, whereas the time by group interaction and
the group main effect in a one-within, one-between
ANOVA, an ANOVA on the difference score, and an
ANOVA on the posttest alone are all generally
suboptimal analyses in this situation.

Table 3 presents the results for the omnibus tests
performed on the posttest and the difference score, Post
– Pre, using both ANOVA and ANCOVA. As expected,
both the ANCOVA on the posttest and the ANCOVA
on Post – Pre (both analyses using the pretest as a

covariate) yield identical results, F(2, 71) = 3.286, p =
.043.8 All subsequent analyses will report only the re-
sults for the ANCOVA on the dependent variable
covarying the pretest, as these results pertain to any
ANCOVA that covaries the pretest and utilizes the pre-
test as a linear component of the dependent variable.
Also, notice that the ANCOVA yields statistically sig-
nificant results allowing us to infer that the groups do
differ in their change from the pretest to the posttest
and, equivalently, the groups are different on the
posttest. However, neither ANOVA yields statistical
significance in this situation, whereas the ANOVA on
the posttest does come close to obtaining statistical sig-
nificance, F(2, 72) = 3.090, p = .052. ANCOVA will
typically yield a significant result more often than
ANOVA when testing for group differences within the
context of a randomized design because, as mentioned
in the discussion of the randomized pre–post design
and shown in Appendixes A and B, ANCOVA is gener-
ally a more statistically powerful analytic method than
ANOVA within the context of randomized studies.

Although the omnibus tests for both the ANOVA
and ANCOVA are illustrated, what is typically of most
interest is examining pairwise mean differences be-
tween groups (or some other more specific compari-
sons among groups). In fact, if a researcher is inter-
ested in pairwise comparisons, these tests should
generally be performed regardless of the results of the
omnibus significance test for group differences on the
population means, although an appropriate multiple
comparison procedure should also be utilized. Using
the illustrative example, Table 3 illustrates the confi-
dence intervals9 for the ANOVA and ANCOVA
pairwise comparisons corresponding to group differ-
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8It is generally not the case that the p values for MANCOVA and
any of the four ANCOVAs are equal to one another. In this sense, the
fact that a p value of .043 was obtained for both the MANCOVA and
the ANCOVA on the posttest is purely a coincidence.

9Recall that each of the four ANCOVAs has been conceptualized
as its own family. To control the family-wise Type I error rate, the
confidence intervals that are reported throughout the article were cal-
culated by using the Tukey honestly significant difference (HSD)
criterion. The Bryant–Paulson procedure is generally more appropri-
ate for pairwise comparisons performed within ANCOVA because
the covariate is typically a random variable in practice (see chapter 5
of Maxwell & Delaney [1990] for the details of Tukey’s HSD
method and Bryant & Paulson [1976] for a discussion of the
Bryant–Paulson procedure). Still, for large denominator degrees of
freedom and one covariate, the difference between the confidence
intervals for the Tukey HSD and the Bryant–Paulson procedure are
very small, reflecting no practical difference, as was the case for our
illustrative example. Also, as noted by Levin, Serlin, and Seaman
(1994), Fisher’s least significant difference is generally a more pow-
erful approach than the Tukey HSD when only three groups are of in-
terest. However, because Fisher’s least significant difference does
not control the family-wise Type I error rate for situations with more
than three groups, the Tukey HSD method was chosen as the illus-
trated method, because it (or some modification of it) generally does
control the family-wise Type I error rate for any number of groups
when analyzing a complete set of pairwise comparisons.



ences in change from the pretest to the posttest. Notice
that, in each case, the width of the ANCOVA confi-
dence interval is smaller than the corresponding
ANOVA interval representing a more precise estimate
of the mean difference between the groups. Thus, as
we have asserted in this article, the ANCOVA approach
is generally the more precise of the two methods.

Focusing on the specific results for ANCOVA
from Table 3, there is a statistically significant differ-
ence between the Control group and Treatment B be-
cause zero (the value corresponding to the null hy-
pothesis of no group mean differences) is not
contained in this confidence interval. Because the
confidence intervals comparing the Control group to
Treatment A and Treatment A to Treatment B both
contain zero, neither of these differences is statisti-
cally significant. Thus, it has been shown that the
Control group and Treatment B differ on their popu-
lation mean posttest scores and their mean change
from the pretest to the posttest, demonstrating Treat-
ment B significantly lowered depression scores when
compared to the Control group. It is plausible, how-
ever, that the population mean differences between
the Control group and Treatment A, as well as the
population mean differences between Treatment A
and Treatment B, are zero.

Group Differences in Change From
Pretest to Follow-Up

The third question that can potentially be answered
through a randomized PPF design is “Do the groups
change differently from the pretest to the follow-up?”
This question is equivalent to “Do the groups differ on
the follow-up?” when random assignment to groups is
employed and the pretest is measured prior to the initi-
ation of the treatment. The method used to answer this
question is identical to the method used to answer the
main question of interest in a randomized pre–post de-
sign. From a statistical perspective, it does not matter
whether the dependent variable is labeled as a posttest
or as a follow-up. Thus, the most powerful analysis
once again uses the pretest as a covariate in the model
and determines whether the groups are significantly

different on the follow-up controlling for the pretest. If
they are significantly different, one can infer that the
groups are different on the follow-up or, equivalently,
that the groups do differ in their change from the pre-
test to the follow-up.

The results for the ANOVA and ANCOVA omnibus
tests for group differences on the follow-up are illus-
trated in Table 4. ANCOVA on the follow-up covarying
the pretest yields a statistically significant result, F(2,
71) = 3.581, p = .033, as does ANOVA on the fol-
low-up, F(2, 72) = 3.544, p = .034. Again, the ANOVA
on the difference score, Follow – Pre, fails to reach sta-
tistical significance. Thus, in this situation, both
ANOVA and ANCOVA on the follow-up reach statisti-
cal significance, whereas the ANCOVA has a slightly
smaller p value.

The corresponding confidence intervals for the
ANCOVA and ANOVA perspectives regarding change
from the pretest to the follow-up are also given in Table
4. Notice that for both the ANCOVA and ANOVA on
the posttest, it can be inferred that Treatment B has a
lower mean than the Control group, whereas all other
confidence intervals contain zero, illustrating the cor-
responding mean differences are not statistically sig-
nificant. Again notice that all of the ANCOVA confi-
dence intervals are more precise (i.e., more narrow)
than the ANOVA confidence intervals for either Follow
or Follow – Post. Focusing on the ANCOVA approach,
we can infer that Treatment B lowers depression scores
below the Control group’s depression scores at the fol-
low-up or, equivalently, Treatment B and the Control
group change differently from the pretest to the fol-
low-up (where Treatment B exhibits a greater mean de-
crease).

Group Differences in Change From
Posttest to Follow-Up

The fourth question of interest is “Do the groups
change differently from the posttest to the follow-up?”
The purpose of this question is ideally to identify group
effects during the time period from the posttest to fol-
low-up. Researchers generally are interested in treat-
ment effects for groups that are equivalent in order to
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Table 3. ANOVA and ANCOVA Omnibus Tests and Pairwise Comparison Confidence Intervals for Posttest (Post) and Posttest Minus
Pretest (Post – Pre)

Post Post – Pre

ANCOVA Covarying
Pretest ANOVA

ANCOVA Covarying
Pretest ANOVA

Effect Lower Upper Width Lower Upper Width Lower Upper Width Lower Upper Width

Treatment A to Control –3.024 1.370 4.394 –3.155 1.747 4.902 –3.024 1.370 4.394 –3.643 1.659 5.301
Treatment B to Control –4.519 –0.125 4.395 –4.922 –0.020 4.902 –4.519 –0.125 4.395 –4.772 0.529 5.301
Treatment A to Treatment B –0.706 3.696 4.402 –0.684 4.218 4.902 –0.706 3.696 4.402 –1.521 3.780 5.301
Omnibus Test F(2, 71) = 3.286, p = .043 F(2, 72) = 3.090, p = .052 F( 2, 71) = 3.286, p = .043 F(2, 72) = 1.837, p = .167

Note: ANOVA = analysis of variance; ANCOVA = analysis of covariance.



make causal inferences about the differences between
the groups after some treatment has been implemented.
However, a typical goal in intervention research is to
produce groups that are different at posttest due to the
treatment that was administered. Therefore, examining
group differences in change from posttest to follow-up
is a qualitatively different question than examining dif-
ferences between groups at either the posttest or the
follow-up individually. The reason this question is
qualitatively different is because the design now poten-
tially compares nonequivalent groups, which creates a
longstanding methodological conundrum often re-
ferred to as Lord’s paradox (Lord, 1967). Because
groups are likely to differ at posttest, comparing
groups from posttest to follow-up is fraught with com-
plications even though the groups are initially equiva-
lent at pretest. Shadish, Cook, and Campbell (2002)
provided a thorough discussion of these complications.

In particular, because the groups may differ at
posttest, there are two different methods that we ex-
plore to answer this question. The two methods we dis-
cuss in the following two subsections answer the ques-
tion regarding group differences from posttest to
follow-up in different manners. Because the two mod-
els we present may lead to very different conclusions
regarding change from posttest to follow-up, it is im-
portant for researchers to pay close attention to the rec-
ommendations of each of the two methods when exam-
ining group change from posttest to follow-up.

Group differences in change from posttest to fol-
low-up: Model I. When the question of interest in a
PPF design relates to the differences between scores at

posttest and follow-up, one alternative is to use D (see
Equation 7) as the dependent variable. The section on
statistical power comparisons in randomized PPF de-
signs within this article indicates that the most appro-
priate analytic method for this question utilizes the pre-
test as a covariate in an ANCOVA, rather than an
ANOVA that ignores the pretest or utilizes the pretest
as a linear component of the dependent variable. Thus,
the full model that this approach follows is given as fol-
lows:

where is the population mean on D for group j, βD,

Pre is the population regression slope predicting D from
the pretest, and εij is the error for individual i in group j.
This model must be interpreted with the understanding
that it is likely that there are differences between the
groups at posttest on some concomitant variable(s), the
outcome variable being measured, or both. Differences
between the groups at the posttest on the outcome vari-
able are taken into consideration by subtracting the
posttest from the follow-up within the D variable, a
method that restricts the value of the regression slope
predicting the follow-up from the posttest to be 1.

It is important to note that this model does not an-
swer the question “If the groups were equal on the out-
come variable and all other concomitant variables at
the posttest, would their D variables differ from one an-
other?” Thus, if the investigator is interested in answer-
ing this question, the method provided here is not use-
ful. Rather the question that is answered by Model I is
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Table 4. ANOVA and ANCOVA Omnibus Tests and Pairwise Comparison Confidence Intervals for Questions Regarding
Change From the Pretest to the Follow-Up, Change From the Posttest to the Follow-Up, and Group Differences on the
Average of the Posttest and the Follow-Up

Follow Follow – Pre

ANCOVA Covarying Pretest ANOVA ANOVA

Effect Lower Upper Width Lower Upper Width Lower Upper Width

Treatment A to Control –3.270 1.867 5.137 –3.349 2.180 5.529 –3.860 2.115 5.975
Treatment B to Control –5.334 –0.195 5.138 –5.671 –0.143 5.529 –5.545 0.431 5.975
Treatment A to Treatment B –0.510 4.636 5.147 –0.442 5.087 5.529 –1.303 4.672 5.975
Omnibus Test F(2, 71) = 3.581, p = .033 F(2, 72) = 3.544, p = .034 F(2, 72) = 2.168, p = .122

D D – Pre

Treatment A to Control –2.726 2.977 5.702 –2.710 2.950 5.659 –4.065 3.729 7.794
Treatment B to Control –3.294 2.409 5.704 –3.265 2.394 5.659 –3.983 3.811 7.794
Treatment A to Treatment B –2.289 3.424 5.713 –2.274 3.385 5.659 –3.979 3.815 7.794
Omnibus Test F(2, 71) = 0.125, p = .883 F(2, 72) = 0.122, p = .885 F(2, 72) = 0.005, p = .995

M M – Pre

Treatment A to Control –2.682 1.154 3.836 –2.84 1.552 4.392 –3.376 1.512 4.888
Treatment B to Control –4.462 –0.625 3.837 –4.885 –0.493 4.392 –4.783 0.105 4.888
Treatment A to Treatment B –0.143 3.701 3.843 –0.151 4.241 4.392 –1.037 3.851 4.888
Omnibus Test F(2, 71) = 5.296, p = .007 F(2, 72) = 4.682, p = .012 F(2, 72) = 2.659, p = .077

Note: ANOVA = analysis of variance; ANCOVA = analysis of covariance.
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“Do the groups change differently from the posttest to
the follow-up?” Notice this question does not make a
statement about attempting to equalize the groups at
the posttest.

Another question that is answered when performing
an ANCOVA on the D variable covarying the pretest is
“Are the magnitudes of the treatment effects the same
at the posttest and the follow-up?” Finding a statisti-
cally significant omnibus test for the ANCOVA on D
allows the researcher to infer that the magnitudes of the
treatment effects are not the same at the posttest and
the follow-up. Further, when forming ANCOVA based
confidence intervals for pairwise comparisons on the D
variable, an inference about the plausible values for the
change in magnitude of the treatment effect can be
made. Also, an inference about the directionality of the
change in the treatment effect’s magnitude can be
made if the confidence interval does not contain zero.
If the confidence interval for the pairwise comparison
does contain zero, then it is at least plausible that the
magnitude of the treatment effect does maintain itself
from the posttest to the follow-up, although it is also
plausible that a more statistically powerful study could
have detected that the magnitude of the treatment ef-
fect is different at these two time points.

The results for the numerical example related to the
question of group differences in change from the
posttest to the follow-up are show in Table 4. None of
the analytic methods come close to reaching statistical
significance for this hypothetical data set, whereas the
ANCOVA on D covarying the pretest provides the low-
est p value, F(2, 71) = 0.125, p = .883. The results for
the ANOVA on D and the ANOVA on D – Pre are, re-
spectively, F(2, 72) = 0.122, p = .885, and F(2, 72) =
0.005, p = .995. This analysis was unable to show that
nonparallelism exists between the groups from posttest
to follow-up, and the null hypothesis that groups
change equally from posttest to follow-up cannot be re-
jected.

The corresponding confidence intervals for the
ANCOVA and ANOVA on D and D – Pre perspectives
are given in Table 4. Each of the six confidence inter-
vals contain zero, illustrating there is not enough evi-
dence to determine if any of the population mean dif-
ferences for the groups are statistically significant.
Interestingly, the confidence intervals corresponding
to the ANOVA on D are more precise than the
ANCOVA confidence intervals. These results illustrate
that the ANCOVA results are not always more precise
in the sample, but rather the ANCOVA confidence in-
tervals are generally more precise in the long run.10

Group differences in change from posttest to fol-
low-up: Model II. Another alternative for answer-
ing the question about group differences from posttest
to follow-up utilizes the posttest and the pretest as
covariates in the model. The following is the full model
for this approach:

where is the population mean score on the fol-
low-up for group j, βFollow, Pre and βFollow, Post are the
population partial regression slopes for the pretest and
the posttest respectively, εij is the error for individual i
in group j, and µPost is the population grand mean on
the posttest. The specific question that is associated
with this model is “Would the mean group change from
posttest to follow-up be different had groups been
equal on the outcome variable at the posttest?” Notice
that this is the only method we discuss in which two
time points are covariates in the statistical model. The-
oretically, a potential advantage of this model over
Model I is that the regression slope predicting the fol-
low-up from the posttest is estimated from the data
rather than being restricted to the value of 1. Neverthe-
less, this analysis fails to provide an answer for the
“true” treatment effect, that is, the difference between
the groups on the follow-up if the groups had been
equal on the outcome variable and all other concomi-
tant variables at the posttest.

A complication arises when Model II is utilized in
practice. Because typically the outcome variable at
the posttest will be measured with some degree of
measurement error, utilizing Model II will generally
yield biased estimates of the treatment effect corre-
sponding to Model II (see Huitema, 1980, pp.
111–115, case 3, for the details of this problem). The
amount and direction of the bias in the treatment ef-
fect obtained from Model II will depend on the
amount of measurement error that is present in the
posttest measure, typically yielding an estimate of the
treatment effect that cannot be trusted to reflect the
treatment effect that should be obtained from Model
II in practice. Although Model II may be a plausible
option in situations in which the outcome variable is
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10In any given sample, the ANOVA can be statistically signifi-
cant even though the ANCOVA is not, or the ANOVA-based confi-
dence interval can be narrower than the ANCOVA-based confidence
interval, but in the long run the ANCOVA will virtually always be
more powerful and precise. Both the ANCOVA and ANOVA ap-

proaches are reported in this article for pedagogical reasons. It is not
recommended that researchers perform both approaches in practice
to see which yields more favorable results (e.g., smaller p value, nar-
rower confidence interval). If both approaches are performed in
practice and the researcher takes advantage of the more favorable re-
sult, the Type I error rate is inflated through performing multiple sta-
tistical tests and the empirical confidence interval coverage will be
smaller than the nominal level for the set of statistical tests. Re-
searchers should decide a priori which method to use and report the
obtained F and p values as well as confidence intervals from this cho-
sen method only.



measured without error (or measured with a relatively
small amount of error), it is not as useful within psy-
chology due to the potentially misleading results that
can be obtained because measurement error is typi-
cally present in the outcome variable. Thus, we gen-
erally do not recommend Model II when answering
questions regarding group differences in change from
the posttest to the follow-up within the context of a
randomized PPF design and do not report results cor-
responding with the numerical example for this ana-
lytic technique.

Group Differences on the Average of
Posttest and Follow-Up

The fifth and final question that may be of interest to
researchers within the context of a randomized PPF de-
sign is “Are the groups different on the average of the
posttest and the follow-up?”Thisquestioncompares the
M variables (see Equation 6) of the different groups to
infer whether group differences are present on the aver-
age of the population mean posttest and follow-up
scores. From a practical standpoint, researchers might
be interested in whether this average score over the final
two time points differs as a function of group member-
ship in the population because the test of the average
score can sometimes be more powerful than the test of
either posttest or follow-up alone. This is more likely to
occurwhen thepopulationgroupmean trajectories from
the posttest to the follow-up are relatively close to being
parallel to one another (i.e., the groups’ population D
variables are similar), all other things being equal.

For the hypothetical data set, ANCOVA and
ANOVA demonstrate that indeed there were group dif-
ferences on the M variable in Table 4. The ANCOVA
yields an F(2, 71) = 5.296, p = .007, whereas the
ANOVA on M yields an F(2, 72) = 4.682, p = .012. The
ANOVA on the difference score, M – Pre, fails to reach
statistical significance. We can conclude that there is a
difference between groups on the average of the
posttest and follow-up scores in the population with
ANCOVA and ANOVA on the M variable in this situa-
tion, although the ANCOVA yields a smaller p value.

The corresponding confidence intervals for the
ANCOVA and ANOVA perspectives for the fifth ques-
tion are contained in Table 4. The confidence interval
around the difference between the population means of
the Control group and Treatment B does not contain
zero when approached from the ANCOVA and
ANOVA on M perspective. Thus, we conclude that
there is a difference between the average of the posttest
and follow-up scores between the Control group and
Treatment B, with the Control group having a larger
mean than Treatment B. Again, as was the case in the
results of previous questions, whereas both ANOVA
and ANCOVA on M yield statistical significance for
the difference between the Control group and Treat-

ment B, the ANCOVA yields a more precise confi-
dence interval. In general, this will be the case because
ANCOVA is more likely to yield statistical signifi-
cance when a treatment effect truly exists and narrower
confidence intervals when attempting to answer ques-
tions about group comparisons within a randomized
PPF design.

Results That Appear Contradictory
When Analyzing Data From a
Randomized PPF Design

In some situations, the results obtained from the
analytic methods proposed in this article may appear
to be contradictory. For example, suppose a re-
searcher performed a two-group study and also de-
cided to perform the ANCOVAs on the posttest, the
follow-up, and the M variable. Further suppose a
mean difference of 5 was obtained at the posttest cor-
responding to a p value of .10, a mean difference of 5
was obtained at the follow-up corresponding to a p
value of .12, and a mean difference of 5 was found on
the M variable corresponding to a p value of .04. The
researcher might be confused by the fact that the sta-
tistical results imply that there is a statistically signif-
icant difference on the M variable (the average of the
posttest and the follow-up) and not on the posttest or
the follow-up alone, yet the observed mean differ-
ences for all these approaches are equal to one an-
other in this example.

In fact, there is no reason to consider these results to
be contradictory, primarily because some statistical
tests will be more powerful than other statistical tests
depending on the configurations of the population pa-
rameters associated with the pretest, the posttest, and
the follow-up. Thus, the researcher in this example
may be in a situation in which the population group
mean trajectories are parallel to one another (thus, the
groups are equal on the D variable in the population),
and when this is the case, it is likely that the ANCOVA
on the M variable is more statistically powerful than ei-
ther the ANCOVA on the posttest or the follow-up
alone. This same principle applies to other situations,
including the comparison of the MANCOVA to the
four ANCOVAs when attempting to determine if the
groups differ in any way over time. There may be situa-
tions in which the MANCOVA yields statistical signif-
icance whereas the four-ANCOVA approach does not
and vice versa, because the population parameters as-
sociated with the measured time points may yield dif-
ferent levels of statistical power for these two proce-
dures. Thus, it is important to remember that these
“apparent” contradictions when analyzing data ob-
tained from a randomized PPF design generally repre-
sent the fact that the statistical tests being used have
different levels of statistical power and are actually not
contradictory at all.
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Time Effects Within Condition

Conspicuously absent from our presentation is any
mention of how to assess changes over time within an
individual treatment condition. We have chosen to con-
centrate on effects that compare groups to one another
because causal inferences can be made about the ma-
jority of these effects due to random assignment. How-
ever, even with random assignment, effects within a
group may be difficult to interpret, because these ef-
fects are necessarily assessed from the perspective of a
single-group design. Campbell and Stanley (1963) de-
scribed numerous threats to internal validity in such a
single-group design. Nevertheless, we acknowledge
that understanding effects within a group can some-
times provide a valuable context for interpreting differ-
ences between groups. In such cases, the PPF design
reduces to a single-factor within-subjects design with
either two levels or three levels of the time factor. In
particular, comparisons of scores at two specific time
points reduce to a design with two levels of the time
factor whereas questions involving all three time points
require three levels of the time factor. Standard
within-subjects analyses are appropriate to address
questions of mean differences over time within a
group, although researchers must be sensitive to the
likely violation of the sphericity assumption required
by the standard mixed-model ANOVA approach for
three or more levels. Due to the likely violation of the
sphericity assumption, the MANOVA approach to re-
peated measures (see, e.g., chapter 13 of Maxwell &
Delaney, 1990) or HLM is recommended (see, e.g.,
Raudenbush & Bryk, 2002).

Missing Data

An unfortunate complication in much clinical inter-
vention research is the problem of missing data. The
methods we have presented do not directly address
problems of missing data. Nevertheless, with random
assignment these methods will produce unbiased esti-
mates of the treatment effect as long as the treatments
themselves do not affect the presence or absence of ob-
taining data at pretest, posttest, or follow-up. Unfortu-
nately, in some situations, this may be a strong assump-
tion. Not only does covarying the pretest typically
increase power and precision, it also offers increased
protection against biased estimates of treatment effects
under certain missing data mechanisms, where
missingness depends on the pretest score itself. How-
ever, in more complicated situations, covarying the
pretest does not guarantee obtaining unbiased esti-
mates of the treatment effect. Readers interested in
learning more about various methods for estimating
treatment effects with missing data are referred to

Delucchi and Bostrom (1999), Schafer and Graham
(2002), and Sinharay and Russell (2001).

Using HLM to Assess Group
Differences Within the Context of a

Randomized PPF Design

Our presentation has primarily focused on compar-
ing ANOVA methods to ANCOVA methods with re-
spect to statistical power and precision in the context of
a randomized PPF design. However, another plausible
option for analyzing data from a randomized longitudi-
nal design is HLM (also known as random coefficients
modeling, multilevel modeling, and mixed-effects
modeling; Raudenbush & Bryk, 2002). We now briefly
explain how this method compares to the methods that
have been presented in this article.

An advantage of HLM when analyzing longitudinal
data is that this method allows for the specification of
individual growth curves over time, whereas tradi-
tional ANOVA and ANCOVA methods do not explic-
itly allow for this specification. Some methodologists
argue that understanding group change over time re-
quires understanding individual change over time
(Bryk & Raudenbush, 1987; Rogosa, Brandt, &
Zimowski, 1982). From this standpoint, the specifica-
tion of individual growth curves can theoretically lead
to a more precise understanding of change over time
and also increased power and precision for the test of
group differences in certain situations. However, one
practical problem that occurs when applying HLM to a
randomized PPF design is that the PPF design implies
that only three waves of data are collected. Given this
restriction, HLM from an individual growth curve per-
spective is limited in that this method only allows for a
straight-line growth model over time.

If the individuals truly do follow a straight-line
growth model in the population, there can be a gain in
statisticalpowerandprecisionwhencomparingHLMto
traditionalANOVAandANCOVAmethods.11 Thispos-
sible gain in statistical power, however, will be negligi-
ble inmanypractical situationseven if theassumptionof
straight-line growth is met when employing a random-
ized PPF design. Unfortunately, it is not likely that this
assumption will be even approximately true in many sit-
uations in the context of a randomized PPF design. This
is because the treatment is typically not implemented

481

RANDOMIZED PRETEST, POSTTEST, FOLLOW-UP DESIGN

11This statement assumes that either the measurement occasions
are unequally spaced or the HLM analysis utilizes the latent pretest
(assuming straight-line growth) as a covariate in the level-2 equation
where the slope is the dependent variable (Rausch & Maxwell, 2003;
this analysis can currently be carried out in the computer program,
HLM5). If neither of these conditions is true, then HLM offers no
power advantage over ANCOVA as long as the observed data are bal-
anced (Raudenbush & Bryk, 2002, p. 188; i.e., all participants are
measured at each and every time point).



from the posttest to the follow-up for any of the groups
within the study. When this is the case, it is likely that the
effect of the treatment will diminish to some degree dur-
ing this time interval resulting in some type of
curvilinear trend over time within the treatment groups.
In these situations, the HLM analysis utilizing a
straight-line growth model generally will yield biased
estimates of the treatment effects.12 Such biased treat-
ment effect estimates can be misleading when attempt-
ing to assess group differences in change within the con-
text of a randomized PPF design.

Another option when utilizing HLM within the con-
text of a randomized PPF design is to allow for a satu-
rated fixed effects model and to vary the specifications
for the covariances among the time points. This option
may be useful for researchers if there is prior knowl-
edge about this covariance matrix that would lead the
researcher to believe the model being chosen is correct.
However, if the model chosen is incorrect, some bias in
the estimate of the treatment effect may be present.
Thus, unless the researcher has sufficient confidence
that the model being chosen within HLM is correct, the
consequences of choosing the wrong model typically
outweigh the generally minimal gain in power ob-
tained by specifying the correct model through HLM
within the context of a randomized PPF design. This
brings us back to our previous recommendation that,
unless there are missing data and the missing data
mechanism cannot be handled appropriately by stan-
dard ANCOVA methods, data obtained from a ran-
domized PPF design should be analyzed using stan-
dard ANCOVA methods when interest lies solely in
examining group differences.

Summary

We have considered a variety of possible analyses for
the randomized PPF design. Arguably our most impor-
tant point is that the most appropriate analysis or set of
analyses depends on the research question(s) of interest.
In particular, the research questions should drive the
analyses, not vice versa. We have delineated five spe-
cific questions likely to be of particular interest in the
randomized PPF design and have described the most ap-

propriate analysis for each of these questions. Of these,
the three questions that may be of most interest to clini-
cal child and adolescent researchers are (a) “Do the
groups differ in change from the pretest to the posttest?”
(b) “Do the groups differ in change from the pretest to
the follow-up?” and (c) “Do the groups differ in change
from the posttest to the follow-up?” ANCOVAs covary-
ing the pretest where the posttest, the follow-up, and the
D variable are the dependent variables are the analytic
methods that should be used when attempting to answer
these questions respectively.

The common thread for all the analyses that are uti-
lized to answer questions within the context of a ran-
domized PPF design is that the pretest should be utilized
as a covariate in the model, whereas the utilization of the
posttest and the follow-up depends on the particular
question asked by the researcher. We believe that the
threequestions justmentionedwill generallybe thecen-
tral questions of interest to researchers, whereas the
other two questions mentioned in this article will likely
cover all remaining questions involving group differ-
ences. We also believe that the principles we establish
here can be useful to researchers whose specific ques-
tions happen to diverge or expand on the specific exam-
ples we have demonstrated.
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Appendix A
Effect Size Derivations for ANOVA and

ANCOVA

The effect size derivations presented in this appen-
dix assume that participants are randomly assigned to
groups and that the pretest is measured prior to the ini-
tiation of the treatment. Following Cohen (1988, p.
275; see also Maxwell & Delaney, 1990, p. 101), the
population standardized effect size, f, for a one-way
ANOVA on the dependent variable (DV), is defined as

where is the population standard devia-
tion of the model error (i.e., the square root of the mean
square within) for ANOVA on the DV assuming homo-
geneity of variance and is defined as

where , j = 1, 2,…, a, is the population mean on
the DV for group j, µDV is the population grand mean on
the DV, and a is the number of groups. When ANOVA
is performed on a newly defined dependent variable
equal to the initial DV plus some weight, A (positive or
negative), multiplied by the pretest (Pre),

where is the population mean on the pretest for
group j. Because participants are randomly assigned to
groups and the pretest is measured prior to the initia-
tion of the treatment, the group population means on
the Pre are equal to one another and thus the population
grand mean on the Pre:

Equation A4 allows Equation A3 to reduce to Equa-
tion A2:

demonstrating that adding a multiple of the pretest to
the dependent variable does not affect the numerator of
the f for ANOVA.

The σm for ANCOVA (assuming homogeneity of
regression slopes) on the DV + A*Pre is equal to the σm

for ANOVA on the DV + A*Pre because the adjusted
mean on the DV + A*Pre is equal to the unadjusted
mean on the DV + A*Pre in the population. This can be
seen through analyzing the equation for a population
adjusted group mean on the DV + A*Pre, following
Maxwell and Delaney (1990, p. 373, equation 27):

where βDV + A*Pre,Pre is the population regression slope
predicting DV + A*Pre from Pre.

Because of random assignment to groups and the
measurement of the pretest before the initiation of the
treatment, Equation A4 holds so that Equation A6 re-
duces to

The σm for an ANCOVA on the DV + A*Pre is equiva-
lent to the σm for an ANOVA on the population ad-
justed means in Equation A7. Further, the σm for an
ANOVA on the population adjusted means is equiva-
lent to the σm shown in Equation A3, which was shown
to reduce to Equation A2:

Because the σm for ANCOVA on the DV + A*Pre does
not depend on the choice of A, the equality in Equation
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A8 also refers to ANCOVA on the DV covarying the
pretest when A is set equal to zero:

which demonstrates that all potential ANOVA and
ANCOVA analyses that add some multiple (including
the situation where A is equal to zero) of the pretest to
the dependent variable have the same value for σm for
randomized designs.

The standard deviation of the model error also must
be derived for each analytic method in order to form
their respective standardized effect sizes. In ANOVA,
the model error variance is the variance of the analyzed
dependent variable. Thus, σε for ANOVA on the DV +
A*Pre becomes

or the square root of the variance of DV + A*Pre, where
is the population variance of the initial dependent

variable, is the population variance of the pretest,
and σDV, Pre is the population covariance between the
initial dependent variable and the pretest. The f for
ANOVA on the DV + A*Pre is found by replacing the
terms in Equation A1 by Equations A9 and A10,

Following the same logic as Equation A10, σε for
ANCOVA on the DV can be expressed as the square
root of the variance of the DV unaccounted for by Pre:

where ρDV, Pre is the population correlation between the
initial dependent variable and the pretest. Replacing
the terms in Equation A1 with Equations A9 and A12,
the f for ANCOVA on the DV can be expressed as

σε for ANCOVA on the DV +A*Pre can be expressed
as the square root of the population variance of the DV
+ A*Pre unaccounted for by Pre (i.e., the square root of
the population partial variance of the dependent vari-
able after controlling for the pretest),

A general equation for the population partial vari-
ance of some random variable, B, controlling for an-
other random variable, C, is

where is the population variance of B, is the
square of the population covariance between B and C,
and is the population variance of C. Then, the pop-
ulation partial variance for DV + A*Pre controlling for
Pre can be expressed as

By canceling like terms within Equation A16,

which reduces to

Placing Equation A18 within Equation A14 yields

Thus, the f for ANCOVA on the DV + A*Pre can be
found by replacing the values in Equation A1 with
Equations A9 and A19,

which is equivalent to the f for ANCOVA on the DV
found in Equation A13. Thus,

Equation A21 shows that as long as the pretest is a
covariate in the model, the effect size is not altered by
adding (or subtracting) some multiple of the pretest to
the dependent variable. Notice the dependent variable
could be a posttest score, a follow-up score, an average
of posttest and follow-up (i.e., the M variable, Equation
6), or the difference between the follow-up and the
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posttest (i.e., the D variable, Equation 7). Also, although
not demonstrated within the previous proof, both analy-
ses illustrated in Equation A21 will yield the same re-
sults for significances tests and confidence intervals
whencomparinggroupmeansforaparticulardataset.

Appendix B
Effect Size Comparison for ANOVA on
the DV + A*Pre and ANCOVA on the

DV

For a fixed sample size, the ANCOVA on the DV
will be more powerful than the ANOVA on the DV +
A*Pre when

This inequality for the subsequent comparison of the
ANOVA and ANCOVA standardized effect sizes
technically relies on the theoretical assumption that
the pretest is fixed across theoretical replications of
the study. In practice, it is typically the case that the
pretest is actually random over theoretical replica-
tions. However, Gatsonis and Sampson (1989) stated
that the distribution of the power function for the
multiple correlation for random predictors can be ap-
proximated well by the power function for the multi-
ple correlation for fixed predictors. In the situation
we are interested in, there is only one random predic-
tor and, in the context of regression, the regression
coefficient(s) of interest correspond to dummy vari-
ables for group status, which are fixed predictors.
Therefore, it is likely that the power for testing group
mean differences in ANCOVA when the covariate is
random is even more closely approximated by the
ANCOVA analytic expression used to calculate
power that assumes the covariate is fixed than the sit-
uation referred to by Gatsonis and Sampson.

Another technical issue with the comparison made
in Equation B1 is the loss of one denominator degree of
freedom for the ANCOVA effect size due to the estima-
tion of the population regression coefficient predicting
the dependent variable from the pretest. However, un-
less the ANCOVA denominator degrees of freedom are
fairly small, this 1 df difference is negligible, and the
effect size comparison made here is again an accurate
approximation.

For example, Maxwell, Delaney, and Dill (1984)
noted that the power for the one random covariate case
is generally different than the power for the one fixed
covariate case. Yet the empirical power values reported
in Table 3 of Maxwell et al. (1984, p. 142) for the one
random covariate case can be shown to be approxi-
mated well by the fixed covariate method of finding the
power of ANCOVA that also disregards the loss of 1 df

in the denominator of the ANCOVA.13 Thus, although
the subsequent derived comparisons are technically
approximations that disregard the loss of one denomi-
nator degree of freedom in ANCOVA and are derived
under the assumption of a fixed covariate, they are ac-
curate approximations of the power comparisons that
would likely occur in practice.

Substituting Equations A11 and A13 into Equation
B1 yields

Squaring both sides of Equation B2 yields

Multiplying both sides of Equation B3 by

dividing both sides of Equation B3 by , and cancel-
ing like terms yields

Subtracting the right-hand side of Equation B4 from
both sides of the equation and further reduction
yields

Realizing that

and
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13The empirical power values for ANCOVA reported in Maxwell
et al. (1984, p. 142) are .697, .564, and .480 for population correla-
tions between the dependent variable and covariate of .67, .50, and
.28, respectively, where two groups each with a sample size of 12 and
a δ = 0.8 (Cohen’s definition of a large effect size) were used to ob-
tain these simulated values. The respective analytic power values for
ANCOVA that assume a fixed covariate and disregard the loss of 1 df
are approximately .713, .581, and .497. All of these values are within
.017 of the empirical power values reported by Maxwell et al., dem-
onstrating the relative accuracy of the approximation that assumes a
fixed covariate and disregards the loss of 1 df in the denominator of
ANCOVA even for relatively small per group sample sizes.
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dividing both sides of Equation B5 by σ2Pre yields

Factoring Equation B8 yields

Equation B9 illustrates that

resulting in more statistical power for the ANCOVA on
DV than the ANOVA on DV + A*Pre unless A equals
–βDV, Pre, the negative value of the population regres-
sion slope predicting the DV from Pre. In this special
case, the respective values of statistical power for
ANOVA and ANCOVA are (approximately) equal to
one another, all other factors being equal. From a prac-
tical perspective, this derivation proves that ANCOVA
on some dependent variable covarying the pretest is al-
most always more powerful than an ANOVA on the
difference score (DV – Pre), an ANOVA on an aver-
aged score (DV + Pre), or an ANOVA on the dependent
variable alone (DV) in practical research settings.
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