
Classification is of broad interest in science because it 
“permeates many scientific studies and also arises in the 
contexts of many applications” (Panel on Discriminant 
Analysis, Classification, and Clustering, 1989, p. 34). 
Examples in the educational, social, and behavioral sci-
ences include identifying children in kindergarten at risk 
for future reading difficulties (Catts, Fey, Zhang, & Tom-
blin, 2001), identifying individuals at risk for addiction 
(Flowers & Robinson, 2002), and predicting the crimes 
that male juvenile offenders may commit according to 
their personality characteristics (Glaser, Calhoun, & Pet-
rocelli, 2002). In the biological and medical sciences, ap-
plications of classification procedures include identifying 
patients with chronic heart failure (Udris et al., 2001), 
detecting lung cancer (Phillips et al., 2003), and deter-
mining whether certain breast masses are malignant or 
benign (Sahiner et al., 2004). In the management sciences, 
methods for classification have been used for such pur-
poses as predicting bankruptcy (Jo, Han, & Lee, 1997) 
and investigating the product deletion process (Avlonitis, 
Hart, & Tzokas, 2000).

The primary goal of classification is to correctly sort 
objects into two or more mutually exclusive groups. 
Classification is often categorized into two subtypes— 
supervised and unsupervised (Hastie, Tibshirani, & Fried-
man, 2001; Panel, 1989). Supervised classification, also 
known as discriminant analysis (or, perhaps more appro-
priately, as predictive discriminant analysis; see Huberty, 
1984, 1994), is used to correctly assign future objects to 

groups that are already known to exist (Johnson & Wich-
ern, 2002). Unsupervised classification, also known as 
cluster analysis (Panel on Discriminant Analysis, Clas-
sification, and Clustering, 1989), is used to assign objects 
to groups that are not known a priori.

We focus on methods for discriminant analysis in the 
present work—specifically, procedures based on linear 
and mixture models. With regard to linear methods, we 
investigate linear discriminant analysis (LDA) and linear 
logistic discrimination (LLD; Fan & Wang, 1999), along 
with an extension of LDA based on ranks (LDR; see, e.g., 
Conover & Iman, 1980). Furthermore, we investigate a 
lesser known method for discriminant analysis based on 
mixture models, which can be viewed as an extension 
of LDA (Fraley & Raftery, 2002). Mixture models are 
often used to model probability density functions through 
mixtures of normal distributions (Everitt & Hand, 1981; 
McLachlan & Basford, 1988; McLachlan & Peel, 2000; 
Titterington, Smith, & Makov, 1985). We use this ap-
proach to model the within-group multivariate densities 
for the predictors within a method known as mixture dis-
criminant analysis (MDA; Fraley & Raftery, 2002; Hastie 
& Tibshirani, 1996; Taxt, Hjort, & Eikvil, 1991).

Previous research has been unclear concerning which 
of these four methods provides the highest rates of clas-
sification accuracy and under what conditions. For ex-
ample, some comparisons of LLD and LDA have shown 
that these methods tend to provide similar results (Fan & 
Wang, 1999; Lim, Loh, & Shih, 2000; Press & Wilson, 
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rable to the double exponential distribution, which exhibits 
skewness of 2.00. Consequently, it appears not only that 
nonnormality is common in applied research, but also that 
appreciable deviations from normality are not rare occur-
rences. Therefore, in the present study, we compared meth-
ods for discriminant analysis in these circumstances.

Previous research on the robustness of the classification 
accuracy of LDA given nonnormality has varied, depending 
on the type of nonnormal distributions investigated and the 
degree of nonnormality present (Ashikaga & Chang, 1981; 
Balakrishnan & Kocherlakota, 1985; Barón, 1991; Chin-
ganda & Subrahmaniam, 1979; Lachenbruch, Sneeringer, 
& Revo, 1973; Nakanishi & Sato, 1985; Rawlings, Faden, 
Graubard, & Eckardt, 1986; Silva, Stam, & Neter, 2002; 
Subrahmaniam & Chinganda, 1978; see also McLachlan, 
1992, chap. 5, who provides a review on the effects of non-
normality on LDA). LDA has generally been found to be 
less robust to more extreme deviations from normality with 
respect to skewness and kurtosis. Furthermore, skewness 
has been suggested to be “a more important factor than 
kurtosis in terms of misclassification of data” for LDA 
(Barón, 1991, p. 764). The results of Ashikaga and Chang 
suggested “that a more important issue than nonnormality 
is whether the distributions of the two populations are simi-
lar in shape” (p. 680). Finally, Nakanishi and Sato indicated 
that, for fixed levels of skewness, “[LDA] perform[s] best 
when the kurtoses are large” (p. 1190).

The robustness of LLD to nonnormality has typically 
been compared with that of LDA; LLD has generally been 
found to be more accurate, particularly when the distribu-
tions are highly skewed (Barón, 1991; Kiang, 2003; Silva 
et al., 2002). LDR, LLD, and LDA have been compared 
in a limited number of situations under nonnormality, 
and LDR has been shown to be potentially advantageous 
when the predictors are highly skewed in the same direc-
tion across groups (Barón, 1991). More research is needed, 
however, to fully explicate the utility of LDR relative to 
LDA and LLD in these situations. Given the lack of rel-
evant research, MDA also needs to be compared with other 
classification methods for populations with nonnormal 
predictors.

Consequently, the primary aim of the present study was 
to systematically investigate the effects of nonnormal pre-
dictors on the proportions of classification accuracy for 
discriminant analysis methods based on linear and mix-
ture models. Namely, we compared four methods for dis-
criminant analysis through Monte Carlo simulation: LDA, 
LDR, LLD, and MDA. We manipulated three factors in the 
Monte Carlo study: group sample size relative to the num-
ber of predictors, group separation via the correlations 
among the predictors, and the type of nonnormality for 
the predictors. We will describe the exact specifications of 
the conditions within the Monte Carlo study momentarily, 
but first we will detail the four methods for discriminant 
analysis in the next section.

METHODS FOR DISCRIMINANT ANALYSIS

Classification via discriminant analysis can be con-
ceptualized through maximum posterior probability prin-

1978; also see the remarks of Hastie et al., 2001, sec-
tion 4.4.4), whereas others have demonstrated an advan-
tage for one of these methods. Efron (1975), using asymp-
totic expansions, illustrated that LLD can be substantially 
less efficient than LDA when the assumptions of LDA are 
satisfied. McLachlan and Byth (1979) have shown, how-
ever, that in such situations, LLD and LDA provide similar 
classification accuracy when sample size is large relative 
to the number of predictors. Kiang (2003) demonstrated 
that LLD can yield more accurate classification rates 
than LDA can when the LDA assumptions of multivariate 
normality, linear relationships among the predictors, and 
equal covariance matrices do not hold. Furthermore, Lei 
and Koehly (2003) found that LDA and LLD can yield 
different rates of classification accuracy, depending on the 
assumed prior probabilities and the cut points for classify-
ing objects, among other factors. Consequently, although 
LLD and LDA may often provide similar results with re-
spect to classification accuracy, this is not necessarily true 
in a given research setting.

Even less information is available concerning the oper-
ating characteristics of LDR, although Barón (1991) com-
pared this approach with LDA and LLD in a limited num-
ber of conditions. In particular, Barón demonstrated that 
LDR can provide more accurate classification than can 
LDA or LLD when the predictors are highly skewed in the 
same direction across groups. More research is needed, 
however, to thoroughly compare the accuracy of these 
methods under a wider variety of research scenarios.

Little work has been conducted comparing MDA with 
the more established classification procedures. Lim et al. 
(2000) investigated MDA in the context of a total of 33 
methods for classification on 32 data sets. These authors 
found that MDA yielded proportions of classification ac-
curacy comparable to those of LLD and LDA when aver-
aging across data sets (all 3 methods were in the top 5 of 
the 33 methods and had average proportions of classifica-
tion accuracy within .004 of one another), suggesting that 
MDA is comparable to these more popular approaches. 
Because the classification methods were primarily applied 
to real data by Lim et al., the characteristics of the underly-
ing populations were generally unknown. Consequently, 
in the present study, we compared MDA with other dis-
criminant analysis methods in conditions with prespecified 
population characteristics to fill this gap in the literature.

In particular, we were primarily concerned with com-
paring discriminant analysis methods for populations with 
nonnormal predictors, which represent realistic scenar-
ios often encountered in applied research. For example, 
 Micceri (1989) found that only 15% of the 440 distribu-
tions studied from the social and behavioral sciences had 
tail weights that approximated that of the normal distribu-
tion, and only approximately 28% of the distributions were 
relatively symmetric. With respect to skewness, Ostrander, 
Weinfurt, Yarnold, and August (1998) noted that, particu-
larly in clinical research settings, “skewed variables [are] 
often encountered” (p. 661). Furthermore, Micceri found 
that more than half of the 125 psychometric measures stud-
ied had at least extreme asymmetry as defined by Micceri’s 
criteria, and approximately 18% had asymmetry compa-
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g  . Given these assumptions, the posterior probability 
for membership in Group 1 for LDA is

 1
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where x is a vector of values for the q predictors, (x | g, ) 
is the multivariate normal density function for x given g 
and , and p1 and p2 are the population group propor-
tions for Groups 1 and 2, respectively (i.e., the prior prob-
abilities; Johnson & Wichern, 2002). In practice, g and  
in Equation 1 are generally not known and are estimated 
from the training data using ordinary least squares. Note 
that the posterior probability for membership in Group 2 
is 1  1. Consequently, the maximum posterior prob-
ability approach in the case of two groups corresponds to 
classifying an object into Group 1 if Equation 1 is greater 
than .5, or into Group 2 otherwise. 

A modification of LDA has also been developed to pro-
vide a robust version of this method. This robust method 
is a linear discriminant analysis on rank scores, rather 
than on the original scores for the predictors (Conover & 
Iman, 1980). That is, LDR is implemented in the manner 
described above for LDA, except that all the calculations 
are based on the predictors’ rank scores. The impetus for 
developing LDR is to provide more accurate classification 
in situations with nonnormal predictors by relaxing the as-
sumption of multivariate normality within the parametric 
version of LDA.

LLD
Logistic regression, a statistical procedure subsumed 

by the generalized linear model, is similar to linear regres-
sion, except that the outcome variable is categorical rather 
than continuous (for a thorough discussion of logistic re-
gression, see, e.g., Agresti, 2002). In logistic regression, 
the outcome variable is assumed to follow a binomial dis-
tribution, and the log odds (i.e., logit) is assumed to be 
appropriately described by a linear function of the logistic 
regression coefficients. When logistic regression is used 
for discriminant analysis, as is the case here, it is often 
referred to as logistic discrimination (Anderson, 1975; 
McLachlan, 1992, chap. 8).

LLD is a special case of logistic discrimination in which 
the logit is assumed to be appropriately characterized by a 
linear function of the predictors. The general formulation 
for LLD is

 log ,1

1
01

x  (2)

where 0 is the intercept,  is a vector of logistic regres-
sion coefficients of length q, 1 is the posterior probability 
for membership in Group 1 ( 2  1  1), and log [ 1 / 
(1  1)] is the logit [in which log( ) is the logarithm with 
base e]—that is, the link function for logistic regression 
within the generalized linear model (Agresti, 2002). 

Some further points regarding LLD are necessary. First, 
no explicit assumptions are made regarding the distribu-
tional forms of the predictors entered into the LLD model. 

ciples (Huberty, 1994; Johnson & Wichern, 2002). That 
is, an object is classified into the group with the largest 
posterior probability, given the object’s scores on the pre-
dictors and the prior probabilities. Although approaches 
to statistical classification have also been developed to 
account for the varying costs of classification errors (see, 
e.g., Huberty, 1994; Johnson & Wichern, 2002), we did 
not focus on this aspect of classification. If researchers 
have accurate information regarding classification error 
costs, it is wise to incorporate this information into the 
discriminant analysis (see, e.g., Huberty, 1994; Rudolph 
& Karson, 1988); however, such costs are often difficult 
to quantify (Huberty, 1994).

Methods for discriminant analysis are generally imple-
mented through the following framework. A set of obser-
vations for which the group status of each object is as-
sumed to be known, often referred to as the training data, 
is used to estimate the classification rule for allocating 
objects to groups. The classification rule obtained in this 
manner can be implemented on the training data to deter-
mine the proportion of observations that would be cor-
rectly classified; yet, such an approach is known to be too 
optimistic (e.g., Johnson & Wichern, 2002). Ideally, data 
not used to estimate the classification rule, often referred 
to as test data, should be used to provide a more realis-
tic estimate of the accuracy of the discriminant analysis 
method. If test data are not available, other approaches are 
possible (see, e.g., Lachenbruch, 1967, for one such op-
tion), although the training–test data combination is ideal 
for investigating the classification accuracy of discrimi-
nant analysis methods.

Two restrictions were made to sufficiently limit the 
scope of the present work: continuous predictors and two-
group classification settings. Neither of these restrictions 
is particularly problematic, because continuous predictor 
scenarios can be generalized to a mixture of continuous 
and categorical predictors through the described methods, 
and multiple-group classification settings can be concep-
tualized as multiple two-group classification settings. We 
describe the four discriminant analysis methods in the fol-
lowing subsections.

LDA and LDR
LDA is one of the most popular methods of supervised 

classification. This procedure can be conceptualized as 
a nonparametric method (i.e., distributional assumptions 
are not explicitly made) because it maximizes between-
group variability relative to within-group variability 
(Fisher, 1936). However, it can also be conceptualized as 
a parametric procedure for classification. In particular, 
Welch (1939) illustrated that LDA is optimal (i.e., it maxi-
mizes classification accuracy) under the assumptions that 
the within-group predictors follow multivariate normal 
distributions and that the population covariance matrices 
are equal across groups. On the basis of the latter frame-
work, we assumed that the predictors follow multivariate 
normal distributions within Groups 1 and 2, in which the 
population mean vector for group g is g (g  1, 2), and 
the group covariance matrices for the predictors are equal, 
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fied into Group 2 otherwise. The population parameters in 
Equation 5 are typically estimated using MLE (McLachlan 
& Peel, 2000), where the EM algorithm is implemented for 
MLE in the present work (Fraley & Raftery, 2002, 2006).

The particular implementation of MDA used here is 
that of Fraley and Raftery (Banfield & Raftery, 1993; 
Fraley & Raftery, 1999, 2002, 2003, 2006) through the 
mclustDAtrain() and mclustDAtest() functions from the 
MCLUST library in the program R (R Development Core 
Team, 2007). This approach uses information criteria to si-
multaneously select (1) the number of within-group com-
ponents, which can vary from 1 to the specified maximum 
value [the default maximum value in  mclustDAtrain() 
is 9]; and (2) the best model from a set of models that 
constrains or varies different features of the within-group 
component covariance matrix in Equation 5, cg, across 
within-group components. Both the number of within-
group components and the within-group model for the 
component covariance matrices can vary across groups 
in mclustDAtrain(). The information criterion used in 
mclustDAtrain() is the Bayesian information criterion 
(Schwarz, 1978), because it has been shown to perform 
well in the MDA framework used by Fraley and Raftery 
(Biernacki & Govaert, 1999).

The MDA framework used by Fraley and Raftery’s 
(1999, 2002, 2003, 2006) MCLUST software relies on 
three features of the within-group component covariance 
matrices: volume, shape, and orientation. These features 
are controlled through different parts of the eigenvalue 
decomposition of the component covariance matrices, an 
approach for model-based clustering proposed by Ban-
field and Raftery (1993):

 cg cg cg cg cgD A D , (6)

where cg is a constant for component c in group g that con-
trols the volume of the covariance matrix, Dcg is the matrix 
of eigenvectors that controls the orientation of the covari-
ance matrix, and Acg is a diagonal matrix with elements 
proportional to the eigenvalues of the covariance matrix 
that controls the shape of the covariance matrix. Varying or 
constraining these features across within-group components 
yields 14 models (Celeux & Govaert, 1995), 10 of which are 
used in mclustDAtrain() when two or more predictors are 
used. Table 1 presents these 10 models.

The model notation used in Table 1 is the same as that 
used in mclustDAtrain(); the three letters in the first col-
umn represent information corresponding to the volume, 
shape, and orientation, respectively, of the within-group 
component covariance matrices: (1) “E” represents a 
particular feature that is equal across the within-group 
component covariance matrices, (2) “V” represents a par-
ticular feature that varies across the within-group com-
ponent covariance matrices, and (3) “I” represents that 
the identity matrix is used instead of the A or D matrix 
within the eigenvalue decomposition. Model choice and 
the number of parameters estimated for the within-group 
component covariance matrices range from the EII model, 
in which one parameter (i.e., ) is estimated, to the VVV 
model, in which Cg[q(q  1)/2] parameters are estimated 

This is in contrast to the parametric version of LDA, 
which assumes multivariate normal within-group popu-
lations, since LLD estimates the marginal densities of 
the predictors “in a fully nonparametric and unrestricted 
fashion, using the empirical distribution function which 
places mass 1/N at each observation” (Hastie et al., 2001, 
p. 104). Second, no explicit assumption of equal covari-
ance matrices is made in LLD. Third, the intercept in LLD 
is a function of the log of the ratio of the prior probabilities 
(see, e.g., McLachlan, 1992, chap. 8):
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where 0
*
 
is the part of 0 that does not depend on the prior 

probabilities.
LLD classifies an object into the group with the largest 

posterior probability of group membership (see, e.g., Fan 
& Wang, 1999), where the posterior probability for mem-
bership in Group 1 is

 1

0
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e
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x
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As is the case with LDA, an object is classified into 
Group 1 if Equation 4 is greater than .5, or is classified 
into Group 2 otherwise. Because they are generally not 
known, the population parameters in Equation 4 must be 
estimated, which is typically done with maximum likeli-
hood estimation (MLE) procedures.

MDA
MDA can be viewed as an extension of LDA that mod-

els the within-group multivariate density of the predictors 
through a mixture (i.e., a weighted sum) of multivariate 
normal distributions (Fraley & Raftery, 2002). In prin-
ciple, this approach is useful for one of two purposes: 
(1) to model multivariate nonnormality or nonlinear re-
lationships among variables within each group, allow-
ing for more accurate classification; or (2) to determine 
whether latent/underlying subclasses may be present in 
each group. In the present work, we aimed to use MDA to 
improve classification accuracy.

For MDA, the posterior probability of membership in 
Group 1 is
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where cg is the mixing proportion for the cth component 
in group g (0  cg  1; Cg

c 1 gc  1 for a fixed value 
of g; c  1, 2, . . . , Cg; Cg is the number of components 
in group g), a component is defined as a multivariate nor-
mal distribution used to model the within-group density of 
the predictors, and (x | cg, cg) is the multivariate nor-
mal density function for x given the mean vector, cg, and 
the covariance matrix, cg. Note that, in contrast to LDA, 
there is no assumption of equal covariance matrices across 
groups for MDA in Equation 5. An object is classified into 
Group 1 if 1 in Equation 5 is greater than .5, or is classi-
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that values greater than 0 for the PCC can be attained by simple al-
location procedures, such as randomly allocating objects to groups 
according to the prior probabilities; consequently, PCC values for 
the discriminant analysis methods should generally be compared—
at a minimum—with PCC values for simple allocation rules to as-
certain their practical value. We assumed that the prior probabilities 
for the groups were equal to the group probabilities in the training 
sample, as is common in practice. We focused on the PCC as the 
primary outcome of the Monte Carlo study because it is commonly 
used to investigate the efficacy of discriminant analysis methods for 
classification, as can be seen in the studies cited in the introduction. 
In situations in which nonconvergence occurred when obtaining the 
classification rule for a particular method of discriminant analy-
sis, new data sets were not generated; thus, the actual number of 
training–test data set combinations used for calculation of the mean 
PCC in a particular condition is less than or equal to 10,000. The 
nonconvergence rates are reported in the next section.

The four methods for discriminant analysis were implemented in 
R to estimate the classification rules from the training data. Three 
variations of MDA, implemented via mclustDAtrain(), were included 
in the Monte Carlo study. The default value of 9 for the maximum 
number of within-group components was used for one variation of 
MDA (denoted MD9), although it could be argued that this value is 
too large for use in the social and behavioral sciences. Consequently, 
values of 2 and 4 (denoted MD2 and MD4, respectively) were also 
used for the maximum number of within-group components in MDA 
to determine their utility. The lda() function from the MASS library 
in R was used to implement LDA (Venables & Ripley, 2002). Also, 
the method of transforming raw scores to ranks based on linear inter-
polation for the test data (Conover & Iman, 1980; Huberty, 1994) was 
coded in R and used in combination with lda() to obtain the PCC for 
LDR. Furthermore, the glm() function was used to carry out LLD, in 
which the number of iterations was increased from a default of 25 to 
1,000 to increase the likelihood of algorithmic convergence.

for the within-group component covariance matrices. 
Consequently, the models for the component covariance 
matrices tend to range from more simple to more complex 
from the top to the bottom of Table 1.

The last four columns in Table 1 illustrate the models for 
the component covariance matrices for two components 
and two predictors. Different letters within a given model 
denote parameter estimates that are freely estimated, 
whereas the same letter within a given model denotes pa-
rameters that are constrained to be equal. Furthermore, 
note that some models require additional constraints, as is 
stated in the note to Table 1. In general, on the basis of the 
models in Table 1, MDA is used to attain relatively high 
rates of classification accuracy by balancing parsimony 
and flexibility when selecting models for the within-group 
predictor densities within discriminant analysis.

METHOD

We used Monte Carlo simulation in R 2.6.0 (R Development Core 
Team, 2007) to systematically evaluate the four methods of discrimi-
nant analysis. Training data sets (10,000) with two groups and speci-
fied group sample sizes (these will be detailed momentarily) were 
generated in each condition to calculate a sample classification rule 
for each of the discriminant analysis methods within each training 
data set. A test data set with a sample size of 10,000 was also gen-
erated for each training data set, in which the test data had group 
sample sizes proportional to the training data. The test data were 
used to estimate the proportions of correct classifications (PCCs) 
across groups for each of the discriminant analysis methods. The 
PCC is bounded by 0 and 1, where larger PCCs are desirable. Note 

Table 1 
Within-Group Models for Component Covariance Matrices in  

Mixture Discriminant Analysis Using mclustDAtrain()

c Structure

Component 1 Component 2

Model  c  Volume  Shape  Orientation  Predictor 1  Predictor 2  Predictor 1  Predictor 2

EII I equal identity identity a a
0 a 0 a

VII cI varies identity identity a b
0 a 0 b

EEI A equal equal identity a a
0 b 0 b

VEI cA varies equal identity a ca
0 b 0 cb

EVI Ac equal varies identity a c
0 b 0 d

VVI cAc varies varies identity a c
0 b 0 d

EEE DAD equal equal equal a a
b c b c

EEV DcAD c equal equal varies a d
b c e f

VEV cDcAD c varies equal varies a d
b c e f

VVV cDcAcD c varies varies varies a d
b c e f

Note— c Structure, covariance structure for the particular model with two components and two predictors in which the 
lower diagonal is illustrated for the covariance matrices. For the EVI model, there is an additional constraint of ab  cd; 
for the EEV model, there is an additional constraint of equal eigenvalues across within-group components; and for the 
VEV model, there is an additional constraint of proportional (ordered) eigenvalues across within-group components. See 
the text for further explanation.
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1.25, 2  1.5 for Groups 1 and 2 with small kurtosis; 1  
1.25, 2  3.75 for Groups 1 and 2 with large kurtosis).

of positively skewed marginal distributions in Group 1 ( 1  
1.25, 2  1.5 with small kurtosis; 1  1.25, 2  3.75 
with large kurtosis) and normal marginal distributions in 
Group 2.

of normal marginal distributions in Group 1 and positively 
skewed marginal distributions in Group 2 ( 1  1.25, 2  1.5 
with small kurtosis; 1  1.25, 2  3.75 with large kurtosis).

of positively skewed marginal distributions in Group 1 ( 1  
1.25, 2  1.5 with small kurtosis; 1  1.25, 2  3.75 with 
large kurtosis) and negatively skewed marginal distributions 
in Group 2 ( 1  1.25, 2  1.5 with small kurtosis; 1  

1.25, 2  3.75 with large kurtosis).

of negatively skewed marginal distributions in Group 1 ( 1  
1.25, 2  1.5 with small kurtosis; 1  1.25, 2  3.75 

with large kurtosis) and positively skewed marginal distribu-
tions in Group 2 ( 1  1.25, 2  1.5 with small kurtosis; 

1  1.25, 2  3.75 with large kurtosis).

Although positive skewness was predominantly used in the simu-
lation study, the results of these conditions are also indicative of sim-
ilar conditions with negative skewness. Furthermore, the skewness 
value of 1.25 was chosen in order to represent realistic scenarios 
in applied research on the basis of Micceri’s (1989) findings. The 
kurtosis value of 3.75 was chosen because it was the maximum value 
in Fleishman’s (1978) table, and a kurtosis value of 1.5 was chosen 
because it was the minimum value for kurtosis in Fleishman’s table, 
given a skewness value of 1.25.

RESULTS

The primary aim of the Monte Carlo study was to sys-
tematically compare the methods for discriminant analysis 
with respect to the mean PCC in scenarios with nonnormal 
predictors. In particular, we aimed to determine when the 
commonly used methods of LDA and LLD were subopti-
mal and under what conditions, if any, MDA or LDR were 
optimal relative to the other methods investigated.

With respect to algorithmic convergence, none of the 
methods exhibited serious issues. The only methods that 
failed to converge were those based on MDA. That is, 
MD9 failed to converge more often than MD4, which 
failed to converge more often than MD2. Still, the lowest 
proportion of convergence for MD9 in a particular condi-
tion was .992. Furthermore, MD2 failed to converge only 
for three of the training data sets within the entire simula-
tion study. In general, nonconvergence was rare and posed 
no problems for our purposes.

The mean PCC for each of the discriminant analysis 
methods within each condition is illustrated in Figures 3–6. 
These figures distinguish equal versus unequal group sam-
ple size conditions and small versus large kurtosis non-
normality conditions. In principle, a line with a slope of 
0 in a particular condition in Figures 3–6 corresponds to 
equal mean PCCs across discriminant analysis methods. 
Furthermore, larger deviations from such a line tend to 
correspond to larger differences between methods.

LDA and LLD yielded similar results across all con-
ditions in the Monte Carlo study. Note that differences 

The factors manipulated in the Monte Carlo study were (1) group 
sample sizes relative to the number of predictors (4 levels), (2) group 
separation via the correlation among the predictors (2 levels), and 
(3) the type of nonnormality for the predictors (12 levels). A total of 
4  2  12  96 conditions were investigated in the present study, in 
which six methods of discriminant analysis (including the two modifi-
cations of MDA) were compared with respect to the mean PCC within 
each condition. The levels of the variables used in the Monte Carlo 
study are described in more detail in the following subsections.

Group Sample Size Relative to the Number of Predictors
The number of predictors was set to 8, and four sets of group sam-

ple sizes were used for each of Groups 1 and 2—32,32; 64,64; 24,72; 
and 72,24—which yielded ratios for the group sample sizes relative 
to the number of predictors of 4,4; 8,8; 3,9; and 9,3. Unequal group 
sample sizes were investigated in order to evaluate their effect on the 
mean PCC, along with the corresponding unequal prior probabili-
ties. The values for the number of predictors and the group sample 
sizes were chosen to represent realistic applied research scenarios.

Group Separation Through Predictor Correlations
Group separation was chosen as a design factor for this study 

because of its direct relation to the PCC. Group separation can be 
quantified through the Mahalanobis distance (Mahalanobis, 1936):

 1 2
1

1 2 ,  (7)

where  is a population distance measure for multivariate scenarios 
that takes into account different variances for the predictors along 
with bivariate covariation among the predictors. All other things 
being equal, larger s yield greater group separation, making it 
more likely that objects are correctly classified into groups.

The population standardized mean differences were equal across 
predictors, set at a value of .65, where Group 1 always had the high-
est means on the predictors. A value of .65 for the standardized mean 
difference corresponds to an effect halfway between medium and 
large using Cohen’s (1988) standards. The population variances of 
the predictors were all set to 1, whereas the population correlations 
among the predictors were the same for a given covariance matrix 
and were either .1 or .5, corresponding to small or large correlations 
using Cohen’s standards. The manipulation of the correlation among 
the predictors yielded s of approximately 1.41 and 0.87 for predic-
tor intercorrelations of .1 and .5, respectively.

Nonnormal Predictors
Multivariate nonnormal distributions for the predictors were gener-

ated using the Vale and Maurelli (1983) procedure, which is a multi-
variate extension of Fleishman’s (1978) method. The Vale and Mau-
relli procedure was coded into R by the authors. Using standardized 
measures of skewness and (excess) kurtosis— 1 and 2, respectively, 
as defined in Stuart and Ord (1994, p. 109; note that, for a normal dis-
tribution, both measures are equal to 0)—the marginal distributions 
corresponding to the multivariate distribution for a particular group 
are described below. Illustrations of the specified marginal distribu-
tions in each condition are shown in Figures 1 and 2 for conditions 
with small and large values for kurtosis, respectively.

Twelve conditions constituted the nonnormal predictor factor, in 
which the condition names correspond to the marginal distributions 
in Group 1, a comma, and the marginal distributions in Group 2:

condition with multivariate normality within both groups.
-

kurtic marginal distributions ( 1  0, 2  3.75) in Group 1 
(i.e., the group with the higher means on the predictors) and 
normal marginal distributions in Group 2; this condition was 
used for comparison with the Norm,Norm condition.

positively skewed marginal distributions in both groups ( 1  
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to correspond to larger mean PCCs, everything else being 
equal. Furthermore, for some conditions with   .5, the 
mean PCCs are near .60 and are thus relatively close to a 
mean PCC of .50 attained from randomly classifying ob-
jects to groups on the basis of the prior probabilities. Given 
that the parameter values for the Monte Carlo study were 
selected to be representative of applied research settings, 
the mean PCCs illustrated in Figure 3 should not necessar-
ily be considered unusual. Moreover, it can be argued that a 
.10 increase over random classification can be considered 
large enough that discriminant analysis methods are indeed 
useful relative to this simple approach.

In Figure 3, LDA provided an advantage over MD2 and 
MD4 in the Norm,Norm conditions with   .5, whereas 
LDR and LDA had similar mean PCCs in these same 
conditions. These conditions were the only situations in 
Figure 3, however, in which LDA provided more classifi-
cation accuracy than did both MD2 and MD4. LDR pro-
vided the largest mean PCCs within the NgSk,PsSk and 
Norm,PsSk conditions with   .1 in Figure 3. The dif-
ferences between LDR and the other discriminant analysis 
methods, however, were small in these conditions, practi-

between methods on the mean PCC near .05 or larger were 
considered to be practically important in the present study. 
Given this criterion, the largest difference between LDA 
and LLD on the mean PCC of .009 was not considered 
practically important, and the majority of the differences 
between LDA and LLD were much smaller than this max-
imum value. Consequently, we focus only on the results of 
LDA in this section, since they are also representative of 
LLD. For the three versions of MDA, MD9 was generally 
no better than—and, at times, was substantially less accu-
rate than—MD4. MD2 and MD4 tended to yield similar 
results across all conditions, although each of these meth-
ods yielded higher rates of classification accuracy than 
did the other in certain conditions. Consequently, we focus 
on the results of MDA based on maxima of both two and 
four within-group components.

Equal Group Sample Sizes
For equal group sample sizes and nonnormality condi-

tions with small kurtosis, Figure 3 illustrates that, as is typ-
ically the case, larger sample sizes and larger s (through 
a smaller value of , the predictor intercorrelation) tend 
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Figure 1. Illustrations of marginal distributions for predictors in nonnormal conditions with small values for kurtosis. The group 
with the higher means—Group 1—is represented by a solid line, whereas Group 2 is represented by a dotted line. For all distribu-
tions, SD  1. Condition names consist of the marginal distributions in Group 1 followed by a comma and the marginal distribution 
in Group 2. NgSk, negative skew; PsSk, positive skew; Norm, normality.
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the highest, or near the highest, rates of classification accu-
racy. In general, Figure 3 provides evidence that MDA can 
be used to substantially increase classification accuracy in 
a number of conditions with nonnormal predictors.

The results in Figure 4 for scenarios with equal group 
sample sizes and nonnormal conditions with large values 
of kurtosis were generally consistent with the results in 
Figure 3, with one primary exception. Namely, for scenar-
ios in Figure 4 in which MD2 or MD4 yielded an appre-
ciable advantage over competing methods, this advantage 
was generally smaller compared with Figure 3. Moreover, 
the differences among methods observed in Figure 4 were 
rarely practically significant, with the possible exception 
of the advantage for MD4 over competing methods in the 
NgSk,PsSk condition with n1  64, n2  64, and   .5. 
Thus, larger values of kurtosis for skewed predictors 
tended to attenuate the advantage gained by using meth-
ods other than linear methods for discriminant analysis, 
everything else being equal.

Unequal Group Sample Sizes
Figures 5 and 6 contain the results from the Monte 

Carlo study for the conditions with unequal group sample 

cally speaking. Consequently, LDR was of limited utility 
in Figure 3.

MD2 or MD4 provided substantially larger mean PCCs 
than did LDA, LLD, and LDR in a number of scenarios in 
Figure 3. Specifically, either MD2 or MD4 yielded the larg-
est mean PCCs in the NgSk,PsSk conditions with   .5; 
in the PsSk,Norm conditions; in the PsSk,PsSk conditions, 
with the exception of the n1  32, n2  32,   .1 condi-
tion, in which MD2 was slightly less accurate than LDR; 
and in the PsSk,NgSk conditions with   .5. For example, 
MD4 yielded a mean PCC just over .75, compared with a 
mean PCC just under .65 for LDA, in the PsSk,PsSk con-
dition with n1  64, n2  64,   .5. A similar difference 
in mean PCCs was obtained when comparing MD4 and 
LDA with n1  64, n2  64, and   .5 in the PsSk,Norm 
and NgSk,PsSk conditions. Thus, MD4 provided a clear 
advantage over linear methods for discriminant analysis 
in these scenarios within Figure 3, especially in scenarios 
with   .5. In general, MD4 tended to perform nearly as 
well as MD2 in conditions in which MD2 was optimal, 
whereas MD4, at times, provided substantially larger mean 
PCCs than did MD2 in Figure 3. Thus, within the different 
modifications of MDA investigated, MD4 often yielded 
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Figure 2. Illustrations of marginal distributions for predictors in nonnormal conditions with large values for kurtosis. The group 
with the higher means—Group 1—is represented by a solid line, whereas Group 2 is represented by a dotted line. For all distributions, 
SD  1. Kurt, leptokurtic marginal distributions. All other abbreviations are as in Figure 1.
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basis of prior probabilities. That is, given the prior prob-
ability of .75 for the larger group in Figures 5 and 6, a 
PCC of .75 could be obtained by this simple classification 
method. Consequently, results for the mean PCC in these 
figures of .75 or less should be treated with caution. Given 
that the selected parameter values are indeed represen-
tative of research scenarios in applied research, in some 
scenarios in Figures 5 and 6, methods for discriminant 
analysis appear to be of little use over random classifica-
tion. Other scenarios in Figures 5 and 6 do yield values for 
the PCC appreciably above .75, however, and we focus on 
these situations in the rest of this section.

Note that, in Figure 5, the n1  24, n2  72 condition 
for each value of  appears to be absent from the plots 
for the following conditions: NgSk,PsSk; PsSk,NgSk; and 
Norm,Norm. In fact, the n1  24, n2  72 conditions are 
present in Figure 5, but are overlapping with their cor-
responding n1  72, n2  24 conditions. Thus, whether 
Group 1 or 2 had the smaller sample size had no effect 
on the mean PCC in these scenarios. The general pattern 

sizes in scenarios with small and large values of kurto-
sis, respectively. In Figure 5, the mean PCCs are gener-
ally larger when compared with the corresponding results 
in Figure 3. Recall that in the simulation conditions in 
Figure 5, the prior probabilities are assumed equal to the 
sample proportions, and this information is capitalized on 
to yield larger mean PCCs for the conditions in Figure 5 
relative to those in Figure 3. That is, because one group is 
known to be more likely a priori within the conditions in 
Figure 5, this information can be used to generally attain 
higher PCCs relative to those in Figure 3. Also, the dif-
ferences on the mean PCC are not as large for different 
values of  when compared with the equal-sample-size 
conditions in Figures 3 and 4. Thus, Figures 5 and 6 pro-
vide evidence that different predictor intercorrelations are 
not as consequential with respect to the PCC when sample 
sizes and prior probabilities are more discrepant.

In Figures 5 and 6, a number of scenarios, especially in 
the conditions in which   .5, yield PCCs that are near 
that attained by random classification to groups on the 
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Figure 3. Mean proportions of correct classifications (PCCs) in nonnormality conditions with small values of kurtosis as a function of 
equal sample sizes across Groups 1 and 2 (n1 and n2, respectively), predictor intercorrelations ( ), and methods for discriminant analy-
sis. LLD, linear logistic discrimination; LDA, linear discriminant analysis; LDR, linear discriminant analysis based on ranks; MD2, 
mixture discriminant analysis (MDA) with maximum of two within-group components; MD4, MDA with maximum of four within-
group components; MD9, MDA with maximum of nine within-group components. Condition abbreviations are as in Figure 1. 
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ods. That is, larger values of kurtosis tended to decrease 
any differences between the investigated methods with 
respect to classification accuracy. Consequently, all the 
methods for discriminant analysis yielded similar results 
in Figure 6, at least from a practical perspective, with the 
possible exception of the advantage for MD4 over compet-
ing methods in the NgSk,PsSk conditions with   .5.

Summary
In general, the results in Figures 3–6 illustrate that, many 

times, LDA and LLD are not optimal in research scenarios 
with nonnormal predictors, especially for skewed predic-
tors with relatively small values for kurtosis. LDR can 
provide an advantage over competing methods in a limited 
number of conditions with smaller predictor intercorrela-
tions, although any advantage exhibited by LDR in the 
present study was not practically important. MDA, via 
MD2 or MD4, was demonstrated to be a useful alternative 
to LDA, LDR, and LLD for obtaining high mean PCCs in 
a number of conditions with skewed predictors, especially 
when kurtosis was relatively small.

of results in Figure 5 is similar to the pattern of results 
for equal group sample sizes in Figure 3, with the excep-
tion that the differences among methods on the mean PCC 
are generally smaller across conditions. LDA and LLD 
again yielded higher mean PCCs in the Norm,Norm con-
dition with   .5 relative to MD2 and MD4. Although 
LDR yielded the highest mean PCC in some conditions 
in which   .1, its advantage over competing methods 
for discriminant analysis was again not important from 
a practical perspective. As was the case in Figure 3, an 
appreciable advantage for MD2 or MD4 over linear meth-
ods for discriminant analysis was observed for   .5 in 
the NgSk,PsSk conditions, PsSk,PsSk conditions, and 
PsSk,NgSk conditions, and for   .1 in the PsSk,Norm 
conditions. Consequently, MDA still provides an advan-
tage over competing methods for some scenarios with non-
normal predictors when group sample sizes are unequal.

The results in Figure 6 are generally consistent with 
those in Figure 5, except that the differences between 
methods tended to be smaller for scenarios in which MDA 
provided an appreciable advantage over competing meth-
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Figure 4. Mean proportions of correct classifications (PCCs) in nonnormality conditions with large values of kurtosis as a function 
of equal sample size across Groups 1 and 2 (n1 and n2, respectively), predictor intercorrelations ( ), and methods for discriminant 
analysis. Kurt, leptokurtic marginal distributions. All other abbreviations are as in Figure 3.
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when the group sample sizes are small relative to the 
number of predictors. Consequently, researchers should 
provide clear evidence for choosing a large number of 
within-group components when using mixture models for 
prediction in discriminant analysis.

The results of previous research on the optimality of 
LDA in situations with nonnormal predictors were gener-
ally consistent with the results in the present study. That 
is, greater deviations from normality tended to be more 
problematic for this method, at least with respect to skew-
ness, and, given fixed values of skewness, larger kurtoses 
tended to yield situations in which LDA was more ro-
bust, because such distributions become increasingly less 
asymmetric for larger values of kurtosis. Other results in 
the present study were not necessarily consistent with pre-
vious research and conclusions. First, the results for LDA 
and LLD did not differ, for all practical purposes, in the 
present study. Some, although not all, previous research 
has suggested that LLD is more robust than LDA with re-
spect to nonnormality, particularly in the presence of sub-
stantial skewness. Although the nonnormality simulated 
in the present study may not have been extreme enough 

DISCUSSION

In the present study, we compared linear and mixture 
models for discriminant analysis with respect to classi-
fication accuracy under nonnormality. It was generally 
shown that LDA and LLD are not optimal procedures for 
discriminant analysis in the presence of skewed predictors, 
particularly when kurtosis is relatively small. Although 
LDR may be useful in a limited number of situations, our 
results indicate that MDA is generally a more viable ap-
proach for discriminant analysis in scenarios with non-
normal predictors, given that the number of within-group 
components is relatively small. That is, if the default max-
imum value of 9 for the number of within-group compo-
nents is used in mclustDAtrain(), problems of classifica-
tion inaccuracy can occur, whereas maximum values of 2 
or 4 yielded more accurate results in the scenarios inves-
tigated here. Interestingly, it appears that relying solely on 
the Bayesian information criterion for the selection of the 
number of within-group components without specifying 
an appropriate maximum for the number of within-group 
components can yield inaccurate predictions, particularly 
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Figure 5. Mean proportions of correct classifications (PCCs) in nonnormality conditions with small values of kurtosis as a function 
of unequal sample sizes across Groups 1 and 2 (n1 and n2, respectively), predictor intercorrelations ( ), and methods for discriminant 
analysis. All abbreviations are as in Figure 3.
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there is little evidence to recommend LDR over LDA, 
LLD, or MDA, depending on the underlying character-
istics of the populations of interest, for the conditions 
investigated here.

As mentioned previously, the results of Ashikaga and 
Chang (1981) suggested “that a more important issue than 
nonnormality is whether the distributions of the two popu-
lations are similar in shape” (p. 680) when assessing the 
robustness of LDA with respect to classification accuracy. 
The results of the present study suggest that this statement 
is true within the Norm,Norm and Kurt,Norm conditions, 
because little change in the mean PCCs for LDA occurred 
across these conditions (see, e.g., Figures 3 and 4). The 
results of the present study also suggest that, for example, 
this is true for the NgSk,PsSk conditions with   .5, which 
had distributions skewed in opposite directions when 
comparing LDA on the mean PCC with the correspond-
ing Norm,Norm condition. The difference between the 
mean PCCs for LDA in the NgSk,PsSk and Norm,Norm 
conditions was not as substantial, however, for   .1. 
Also, when distributions were both highly skewed in the 
same manner, as in the PsSk,PsSk conditions, the mean 

to observe such differences between LDA and LLD, the 
skewness simulated was reasonable, given the results of 
Micceri (1989). Furthermore, the sample sizes used in the 
Monte Carlo study may not have been large enough for 
LLD to yield an advantage in classification accuracy over 
LDA. The sample sizes used were reasonable, however, 
for studies based on supervised classification in many ap-
plied research settings. Consequently, the results of the 
present study suggest that LLD and LDA may often pro-
vide comparable results in applied research in the pres-
ence of nonnormal predictors.

The results for LDR were especially interesting, given 
the scarce body of empirical results on the utility of this 
method. Our results indicated that LDR was most advan-
tageous, relative to LDA and LLD, for situations with 
small predictor intercorrelations in which the predictors 
were either skewed in the same direction across groups, 
consistent with the study of Barón (1991), or skewed in 
opposite directions across groups, with the negatively 
skewed population having the higher mean. Even in these 
situations, however, LDR yielded only modest gains over 
MDA. Consequently, the present study indicated that 
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Figure 6. Mean proportions of correct classifications (PCCs) in nonnormality conditions with large values of kurtosis as a function 
of unequal sample sizes across Groups 1 and 2 (n1 and n2, respectively), predictor intercorrelations ( ), and methods for discriminant 
analysis. All abbreviations are as in Figure 4.
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PCC for LDA changed little relative to the Norm,Norm 
condition. However, LDA can still be substantially subop-
timal in the NgSk,PsSk and PsSk,PsSk conditions, at least 
when compared with MDA. That is, the conclusions of 
Ashikaga and Chang held true in the present study when 
comparing LDA across nonnormal conditions; yet, this 
did not necessarily lead to LDA being the optimal method 
in such situations. Rather, other methods, such as MDA, 
can provide more accurate classification for nonnormal 
predictors, even across conditions in which the mean PCC 
for LDA does not change appreciably.

Another alternative for dealing with nonnormal pre-
dictors was not investigated in the present study—that is, 
transforming predictors to normality or near normality 
(see, e.g., Beauchamp, Folkert, & Robson, 1980). Trans-
formation to normality may be a reasonable option if the 
researcher knows the appropriate transformation (see, e.g., 
Beauchamp et al., 1980), but it is also important to heed the 
question posed by Chinganda and Subrahmaniam (1979): 
“Is it preferable not to transform at all to normality or should 
one resort to transformation with the hope that it is the cor-
rect one?” (p. 76). Furthermore, in the present study, situ-
ations that yielded the largest advantage for MDA over the 
other  methods—such as the NgSk,PsSk; PsSk,NgSk; and 
PsSk,Norm conditions—are not amenable to a single trans-
formation. Rather, in these conditions, different transforma-
tions would be needed depending on the group of interest, 
raising an important practical issue for prediction, because 
the group that an individual is in is not known a priori. In 
our opinion, these issues related to predictor transformation 
make this approach less than optimal, at least when the goal 
is to improve classification accuracy.

Future research using mixture models in the context 
of discriminant analysis could include an approach that 
allows for nonlinear relationships among the predictors. 
Although another viable method for modeling nonlinear 
relationships consists of classification and regression trees 
(Breiman, Friedman, Olshen, & Stone, 1984), MDA could 
be a useful approach to this problem, given the ability of 
mixture models to approximate nonlinear relationships 
among variables (see Bauer & Curran, 2004, for a recent 
example of this). Further study of this problem could be es-
pecially interesting in the context of classification issues.

It is clear that classification is an important procedure, 
given the need to correctly sort objects into groups in vari-
ous scientific domains. Consequently, the methods used 
for this problem should be efficient and robust as different 
substantive questions arise. We have shown that nonnor-
mality can appreciably affect the optimality of popular 
methods for discriminant analysis, such as LDA and LLD, 
with respect to classification accuracy. Moreover, we have 
provided evidence that MDA, with a relatively small num-
ber of within-group components, can achieve relatively 
high rates of classification accuracy in the presence of 
nonnormal predictors, particularly when the predictors 
are skewed with kurtoses that are relatively small. Con-
sequently, in such situations, applied researchers should 
seriously consider MDA with a relatively small number 
of within-group components as a method for increasing 
classification accuracy.
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