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Composite measures play an important role in psychology and related disciplines.
Composite measures almost always have error. Correspondingly, it is important to
understand the reliability of the scores from any particular composite measure. However,
the point estimates of the reliability of composite measures are fallible and thus all such
point estimates should be accompanied by a confidence interval. When confidence
intervals are wide, there is much uncertainty in the population value of the reliability
coefficient. Given the importance of reporting confidence intervals for estimates of
reliability, coupled with the undesirability of wide confidence intervals, we develop
methods that allow researchers to plan sample size in order to obtain narrow confidence
intervals for population reliability coefficients. We first discuss composite reliability
coefficients and then provide a discussion on confidence interval formation for the
corresponding population value. Using the accuracy in parameter estimation approach,
we develop two methods to obtain accurate estimates of reliability by planning sample
size. The first method provides a way to plan sample size so that the expected confidence
interval width for the population reliability coefficient is sufficiently narrow. The second
method ensures that the confidence interval width will be sufficiently narrow with some
desired degree of assurance (e.g., 99% assurance that the 95% confidence interval for
the population reliability coefficient will be less than W units wide). The effectiveness of
our methods was verified with Monte Carlo simulation studies. We demonstrate how
to easily implement the methods with easy-to-use and freely available software.

1. Introduction
In research and practice, the importance of understanding, reporting, and critically
evaluating issues of reliability in testing and measurement situations cannot be overstated.
Standards call for estimates of relevant reliabilities to be reported for all tests used in
research (e.g., Committee on Reviewing Evidence to Identify Highly Effective Clinical
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Services, 2008; Joint Committee on Standards for Educational and Psychological Testing
of the American Educational Research Association (AERA), the American Psychological
Association (APA), & the National Council on Measurement in Education (NCME), 1999;
Wilkinson & the APA Task Force on Statistical Inference, 1999). As Wilkinson and the
APA Task Force on Statistical Inference, 1999, p. 596) pointed out:

It is important to remember that a test is not reliable or unreliable. Reliability is a property
of the scores on a test for a particular population of examinees (Feldt & Brennan, 1989).
Thus, authors should provide reliability coefficients of the scores for the data being analyzed
even when the focus of their research is not psychometric. Interpreting the size of observed
effects requires an assessment of the reliability of the scores.

It is the test scores on a particular administration of a test, not the test itself, that are
reliable – this is a key point often overlooked. It is a widespread misconception that a test
itself is reliable. A test, when administered, say, 100 different times, will likely result in
100 different reliability coefficients (Thompson & Vacha-Haase, 2000). The differences
among estimated reliability coefficients could be due to different populations among
the 100 administrations, sampling error, or both. A meta-analytic method known as
reliability generalization was developed by Vacha-Haase (1998) to explore the error
variance across studies and helps to evaluate the different estimates from within the
same or across different populations. Thus, it is not sufficient to cite the reliability for
the scores from the sample from which the test was normed that is provided in the test
manual. All researchers should report an estimate of reliability for the scores obtained on
their particular administration(s) of the test(s). Indeed, even the passage of time within
the same population may lead to a different value of the population reliability coefficient
at different time points.

In addition to the recommendation that confidence intervals (CIs) be reported for
estimates of population quantities on a variety of parameters (AERA, 2006; APA, 2009;
Cohen, 1994; Kline, 2004; Meehl, 1997; Wilkinson & the APA Task Force on Statistical
Inference, 1999), calls have recently been made to report the CI specifically for the
population value of the reliability coefficient (Duhachek & Iacobucci, 2004; Fan &
Thompson, 2001; Zinbarg, Yovel, Revelle, & McDonald, 2006). Yet the question arises
why CIs are not often reported for the population value of a reliability coefficient.
One answer might lie in a problem plaguing the use of CIs in general: they can
be largely uninformative for gauging the population value. Cohen (1994, p. 1002)
suggested that the lack of CIs in the literature might be because their widths are often
‘embarrassingly large’. These wide CIs illustrate that the reliability estimates obtained
may not accurately reflect their corresponding population values. It is the population
values of a reliability coefficients that are ultimately of interest, not the value obtained
based on an idiosyncratic sample. Another reason why CIs for the population reliability
coefficient are not often reported is that they are not discussed much in texts that
deal with psychometric issues or general statistical issues in psychology and related
disciplines. Because of the importance of CIs and the undesirability of wide CIs, it would
be ideal if a method existed so that a researcher could plan an appropriate sample size
for a study, such that the CI for the population reliability coefficient were sufficiently
narrow.

Using the accuracy in parameter estimation (AIPE) approach to sample size planning
(see Maxwell, Kelley, & Rausch, 2008, for a review) this paper provides methods
to plan sample size so that: (a) the expected CI width for the population reliability
coefficient is sufficiently narrow; and (b) the CI width will be sufficiently narrow with
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some desired degree of assurance. The desired degree of assurance is the probability
of achieving a CI no wider than desired. An application of method (a) would provide
the sample size necessary so that the expected CI width for a reliability coefficient
would be no wider than specified by the researcher. However, due to the fact that
the CI width is a continuous random variable, essentially any computed interval will
be less than or greater than the expected width approximately half of the time. This
necessitates a method of planning sample size so the CI will be sufficiently narrow
with a desired degree of assurance. Method (b) would provide a modified sample size
that is larger so that the CI is no wider than specified with any desired degree of
assurance (e.g., 99% assurance that the 95% CI for the population reliability coefficient
will be sufficiently narrow). These methods are developed for two types of reliability
coefficients in the context of homogeneous (i.e., single-construct) tests: coefficient alpha,
which assumes true-score equivalence; and coefficient omega, which assumes only a
congeneric structure.

First, we review reliability for homogeneous tests and discuss coefficient alpha
and coefficient omega from a confirmatory factor-analytic perspective. Second, we
discuss CIs for coefficient alpha and coefficient omega. Third, we explain sample size
planning from the AIPE perspective and provide sample size tables which are useful
under specified conditions for planning studies where narrow CIs for the population
reliability coefficient are desired. Fourth, we discuss several possible applications
of this approach for reliability coefficients. Fifth, an example is illustrated with the
freely available MBESS package (Kelley, 2007a, 2007b; Kelley & Lai, 2011a) for use
in the open source program R (R Development Core Team, 2011).1 The MBESS R
package allows the methods discussed to be immediately and easily implemented by
researchers.

2. Homogeneous tests as a confirmatory factor model
Homogeneous tests are tests that measure only one attribute (e.g., McDonald, 1999).
From a classical test theory (CTT) perspective (e.g., Lord & Novick, 1968) there are
three common measurement models for homogeneous tests: (a) parallel; (b) true-
score equivalent; and (c) congeneric. McDonald (1999) reframed the classical true-score
theory in a confirmatory factor-analytic framework for homogeneous tests. McDonald
demonstrated how the confirmatory factor model can be used to represent each of the
three models in a ‘unified framework’. Following McDonald (1999), throughout this
paper the confirmatory factor-analytic approach will be used as a general approach for
to conceptualizing reliability. The reliability of a set of scores can be estimated for
each type of model, but there are assumptions governing the reliability coefficient
for each of the models. The appropriate estimate of reliability thus depends on the
assumptions specified and properties of the test as it applies to the population of
interest. Figure 1(a) shows a homogeneous factor model for a hypothetical five-item
test. As can be seen, the underlying construct (�) has been measured by five items (Xj ),

1For this paper, all statistical computations were conducted in R (R Core Development Team, 2011).
R is a statistics programming language that is open source and extremely flexible (Kelley, Lai, & Wu, 2008).
Because of this flexibility, researchers can perform many statistical procedures which are not possible in more
mainstream statistical packages. Using R, researchers are able to download more than 2,000 add-on packages
that implement advanced statistical techniques.
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Figure 1. (a) General factor model where � is the latent trait being measured, X is the observed
score, and ε is the error. (b) Parallel items model where test items (X) have common error variance
(� 2) and factor loadings (�). (c) True-score model where error variances are allowed to differ, but
factor loadings are the same across test items. (d) Congeneric model where factor loadings and
error variances are allowed to differ across test items.

with each score having a true component (��) and an error term (ε j ). In all the models
discussed, the errors for the test items are uncorrelated. Although the assumption of
uncorrelated errors can be relaxed, we do not consider such a model here. If the
errors are correlated, coefficient alpha may overestimate the value of the population
reliability (Green & Hershberger, 2000; Komaroff, 1997; Zimmerman, Zumbo, &
Lalonde, 1993).

The parallel items model (see Figure 1(b)) is the most restrictive model, which
assumes that the test item scores share a common error variance (� 2) and a common
factor loading (�), implying there are only two parameters, regardless of the number
of test items (see Hoyt, 1941; McDonald, 1999; Raykov, 1997; Spearman, 1910, for
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a discussion). Because all the test item scores have a common factor loading, this
means that no test item has more or less discriminating power than any other test
item (McDonald, 1999). Additionally, as the test items share a common error variance,
all the covariances among the test items are equal to one another. In practice, it is highly
unlikely that the assumptions of the parallel model are met in psychology and related
disciplines (e.g., Green & Yang, 2009). In most situations, we believe that it is likely
that the population factor loadings and the population error variances differ for the J
different test items. Correspondingly, we do not discuss the parallel model further in
this paper.

In the true-score equivalence model (also called essentially tau-equivalent; see
Figure 1(c)) the error variances are allowed to differ (noted with each error variance
having a corresponding subscript) but the factor loadings are restricted to be the same
(Lord & Novick, 1968; McDonald, 1999). Because the factor loadings do not vary, this
indicates that each test item measures the common factor with equal discriminating
power (McDonald, 1999).

The congeneric model (see Figure 1(d)) is the least restrictive, and we believe
generally most reasonable, model we discuss, in which the error variances and factor
loadings can be unique to each test item (depicted by the corresponding subscripts).
This implies that some test items measure the attribute of interest more sensitively
and discriminate more clearly between higher and lower values of the common factor
(McDonald, 1999).

3. Reliability
In the CTT framework, each test item score on a particular test is composed of a true-
score component and an error component. In CTT, the score on the jth ( j = 1, . . . , J )
test item is given by

Xij = �i + εi j , (1)

where �i is the true-score for the ith individual and εi j the error for the ith individual on
the jth item (Lord & Novick, 1968; McDonald, 1999); throughout we assume centred
scores for simplicity (i.e., the mean of the item scores across the individuals is zero).
Within the CTT framework, the reliability of the scores on a homogeneous test is the
ratio of the true variance to the sum of the true variance and error variance, which is
given as

�2
�

�2
� + �2

ε
, (2)

where �2
� is the population true-score variance and �2

ε is the population error variance.
Given this, a low reliability estimate indicates that a relatively large proportion of the
variance is due to error.

3.1. Reliability coefficients
One of the most common measures of reliability is coefficient alpha (e.g., Cortina, 1993;
Cronbach, 1951; Guttman, 1945; Hogan, Benjamin, & Brezinski, 2000). Coefficient alpha
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is defined in the population as

�c ≡ J

J − 1

⎛
⎜⎜⎜⎜⎜⎝1 −

J∑
j=1

�2
j

�2
Y

⎞
⎟⎟⎟⎟⎟⎠ , (3)

where �c is coefficient alpha, J is the number of test items, �2
j is the variance of each

test item’s scores, and �2
Y is the variance of the total scores on the test. The common

estimate for alpha in a sample is

�̂c ≡ J

J − 1

⎛
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J∑
j=1

s2
j

s2
Y

⎞
⎟⎟⎟⎟⎟⎠ , (4)

where �̂c is the estimate of coefficient alpha, s2
j is the unbiased estimate of the variance

of the scores of each test item, and s2
Y is the unbiased estimate of the variance of

the entire test. The population value of coefficient alpha equals the true population
reliability only when the test items fulfil the requirements of the true-score equivalence
model; otherwise it is necessarily a lower bound on the population reliability (see
Green & Yang, 2009; Revelle & Zinbarg, 2009; and Sijtsma, 2009, for a review of
coefficient alpha). Despite the possibility of underestimating the population reliability
when true-score equivalence does not hold, coefficient alpha is the most widely used
statistic to report reliability for a set of scores. Its continued and widespread use is
probably due to several of its properties, namely, that it (a) often represents a lower
bound on reliability and is thus ‘conservative’ (Lord & Novick, 1968; McDonald, 1999),
(b) does not require more than one rater or multiple administrations of the test (Streiner,
2003), (c) is computationally easy to compute, (d) has a long history in psychology
and related disciplines, and (e) is included in widely available statistical software
packages.

Coefficient omega is a generalization of coefficient alpha in that it does not require
true-score equivalence, only a congeneric structure (i.e., a homogeneous factor structure
with potentially unique path coefficients and error variances). For a homogenous test,
coefficient omega is given by

� =

⎛
⎝ J∑

j=1

� j

⎞
⎠

2

⎛
⎝ J∑

j=1

� j

⎞
⎠

2

+
J∑

j=1

� 2
j

, (5)

where � j is the factor loading for the jth test item and � 2
j is the error variance for the jth

test item (McDonald, 1999). With a homogeneous measurement test (i.e., with a single
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common factor) this can be rewritten as

� = 1 −

J∑
j=1

� 2
j

�2
Y

, (6)

where �2
Y is the variance of the total test scores (McDonald, 1999, equation

(6.21)). Interested readers are referred to Graham (2006), Lucke (2005), and
McDonald (1999, Chapter 6), for a thorough discussion of coefficient omega,
and Zinbarg, Revelle, Yovel, and Li (2005) and Revelle and Zinbarg (2009) for
a discussion of �h, which is a generalization of omega to the hierarchical factor
model.

3.2. Confidence intervals for reliability coefficients
Many methodologists, professional societies, and scientific organizations emphasize the
importance of reporting and discussing CIs for population values. Correspondingly, CIs
for population reliability coefficients should always be reported. We provide an example
to highlight the importance of reporting CIs for the population reliability coefficients.
Suppose a researcher calculates coefficient alpha as .74 for a set of scores on one
administration of a test with a sample of 500 participants from some population of
interest. A second researcher calculates coefficient alpha of .74 for a set of scores, with
the same test, administered with a sample of 50 participants from a different population.2

When comparing these findings, one might assume at first that the population reliability
values in the two samples are the same. However, if the researchers reported CIs for the
corresponding population reliability estimates, a different picture emerges with regard
to the population values. The first estimated reliability coefficient has a corresponding
95% CI that ranged from .71 to .77. The second researcher might be surprised to find
a corresponding 95% CI from .63 to .85. Such a wide interval in the second population
illustrates that the range of plausible parameter values is large and demonstrates the un-
certainty in the estimate of the population value of alpha. Thus, although the point values
for the reliability coefficients were identical, the wide CIs reveal that the estimates were
estimated with different degrees of accuracy.3 Consequently, despite the point estimate
being identical, the reliability estimates should be interpreted and compared differently.
Holding everything else constant, a narrower CI yields a smaller range of plausible
parameter values, which corresponds to a more accurate estimate of the population value
(Kelley & Maxwell, 2003).

2A sample size of 50 falls within the range of median sample sizes found in the American Educational
Research Journal from 1988 to 1997 (which ranged from a median sample size of 43 to 169; Kieffer, Reese,
& Thompson, 2001). A sample size of 500 is more likely to be found in a test manual, rather than in published
research.
3In a statistical sense, accuracy is defined as the square root of the mean square error (RMSE), which is a function

of both precision and bias. RMSE is defined as
√

E[(	̂ − 	)2] =
√

E[(	̂ − E[	̂])2] + (E[	̂ − 	])2 =
√

�2
	̂

+ B2
	̂
,

where E[·] represents the expectation of the bracketed quantity, 	 is the parameter of interest, 	̂ is an estimate
of 	, �2

	̂
is the population variance of the estimator, and B2

	̂
is the squared bias of the estimator.
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3.2.1. True-score model
Advances in forming CIs for coefficient alpha and the true-score model were possible with
van Zyl, Neudecker and Nel’s (2000) derivation of the asymptotic normal distribution
of the maximum likelihood estimator (MLE) of coefficient alpha. Maydeu-Olivares,
Coffman and Hartmann (2007) compared asymptotically distribution-free (ADF) versus
normal-theory (NT) CI estimation (Maydeu-Olivares et al., 2007) and concluded that
ADF CIs performed better empirically than did NT CIs when coefficient alpha was
the appropriate measure of reliability. However, they pointed out that the methods
were impossible to differentiate when the sample size was smaller than 400 and
item skewness was less than 0.5 (Maydeu-Olivares et al., 2007). They concluded
that NT CIs can be safely used when test items are normally distributed and with
relatively small sample sizes (i.e., less than 100). Otherwise, ADF CIs should be used
when item scores are not normal or with larger sample sizes (Maydeu-Olivares et al.,
2007). The NT approach is used in this paper for coefficient alpha in the true-score
model.

Van Zyl et al. (2000) provided the asymptotic distribution of the MLE of coefficient
alpha, such that as n → ∞ the variance is

J 2

(J − 1)2

, (7)

where J is the number of responses, and 
 is defined as


 = 2

(g′ � g)3
[(g′ �g)(tr�2 + tr2�) − 2(tr�)(g′�2g)], (8)

in which g is a J × 1 column vector of ones, and � is the population covariance matrix
of the J responses (van Zyl et al., 2000; notation changed to reflect current usage). A
two-sided CI for coefficient alpha under true-score equivalent assumptions is given by

�c ± z1−�e/2

√(
J 2

/
(J − 1)2

)



N − 1
, (9)

where �e is the Type I error rate, z1−�e/.2 is the quantile from the standard normal
distribution, and N is the total sample size. Thus, the full width of the (1 − �e)100% CI
for coefficient alpha can be shown to equal

w = 2z1−�e/2

√(
J 2

/
(J − 1)2

)



N − 1
. (10)

3.2.2. Congeneric model
In addition, several methods exist for estimating CIs for the population value of
coefficient omega and the congeneric model, including an analytic formula from Raykov
(2002), which uses the delta method for multivariate normally distributed item scores.
The analytic version of forming a CI for the population value of coefficient omega used
in this paper utilizes Raykov’s (2002) approach (see also Kelley & Cheng, in press,
for a discussion of the approach and methods of implementation). Using the delta
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method, Raykov (2002) discussed an analytic CI for � that is asymptotically correct for
multivariate normally distributed test item scores, as sample size grows towards infinity.
The delta method is a way to obtain a standard error for a function of one or more
parameter estimates, which can then be used for CIs (e.g., Casella & Berger, 2002;
Oehlert, 1992). The method produces asymptotically correct CIs, where ‘asymptotically
correct’ refers to the CI procedure actually producing (1 − �e)100% CIs as sample
size approaches infinity. This implies that for infinite sample size the procedure is
‘approximately correct’. This issue, however, is not unique to CIs for the population
reliability coefficients, but rather is generally the case for CIs and null hypothesis
probability values in the context of structural equation modelling, which is based on
asymptotic estimation theory but implemented in situations of finite sample size (e.g.,
Bollen, 1989).

Raykov (2002) provided the technical details of the delta method as it applies to
CIs for the population reliability coefficients, but we give an overview and expla-
nation here. Using the parameters from the homogeneous congeneric factor model,
let

� =
J∑

j=1

� j (11)

and

� =
J∑

j=1

� 2
j . (12)

Coefficient omega (equation (5)) can be written as

� = � 2

� 2 + �
. (13)

Let

�1 = 2� �

(� 2 + �)2
(14)

and

�2 = − � 2

(� 2 + �)2
. (15)

The standard error of the reliability coefficient, Raykov’s (2002) equation 12, can be
written as

SE(̂(Y)) = [
�̂2

1Var(�̂ ) + �̂2
2Var(�̂) + 2�̂1�̂2Cov(�̂ �̂)

]1/2
, (16)

where �̂ , �̂, �̂1, and �̂2 are the estimates for � , �, �1, and �2, respectively. Thus, a
(1 – �e)100% CI for an estimate of coefficient omega is given by

p
[
�̂ − z1−�e/2SE(�̂) ≤ (Y) ≤ �̂ + z1−�e/2SE(�̂)

] = 1 − �e/2, (17)
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where SE(�̂) is obtained from equation (16) and is calculated using the estimates from the
homogeneous factor model. Although equation (17) seems straightforward, estimation
of Var(�̂ ), Var(�̂), and Cov(�̂ , �̂) is somewhat involved. Estimation details are provided
in Kelley and Cheng (in press). The CI methods have been implemented in the MBESS R
package (Kelley & Lai, 2011a) for calculating a CI for the population value of coefficient
omega. We later provide an example demonstrating the ease of implementing the CI
procedure with MBESS.

4. AIPE for sample size planning
AIPE is an approach to sample size planning where the goal is to achieve parameter
estimates that are accurate, which is operationalized by obtaining CIs that are sufficiently
narrow (Kelley & Maxwell, 2003; Kelley & Rausch, 2006; Maxwell et al., 2008). Because
there is now an expectation that CIs be reported for empirical research, researchers
need methods to help plan the necessary sample size for sufficiently narrow CIs, where
the estimates of reliability will have a high degree of expected accuracy. In a statistical
sense, accuracy is defined as the square root of the mean square error, which is a
function of both precision and bias (see footnote 4 for its formal definition). Precision is
inversely related to the variance of the estimator, and bias is the systematic discrepancy
between an estimator and the parameter it estimates. For unbiased estimates, precision
and accuracy are equivalent concepts because the bias is zero. The expected accuracy
of the estimate improves (i.e., the square root of the mean square error is reduced)
as the CI width decreases and the estimate is contained within a narrower set of
plausible parameter values. Thus, holding everything else constant, when the width
of the (1 − �e)100% CI decreases, the expected accuracy of the estimate improves (see
Maxwell et al., 2008).

To decrease the width of the CI for the population value of coefficient alpha, test
developers can increase the number of items on the test or increase the correlations
among the test items (Duhachek & Iacobucci, 2004). However, an applied researcher
cannot control the number of test items or the correlations with established scales.
Further, it can become difficult to add more and more test items to a homogeneous scale
such that the scale remains homogeneous with the additional items (and reasonably
short so as not to overburden the test takers). To decrease the width of the CI for the
population coefficient alpha, researchers may increase the sample size on a particular
administration of a test. As sample size increases, the covariance among the item scores
becomes more stable and the expected width of the CI decreases (Iacobucci & Duhachek,
2003). However, there are contradictory recommendations regarding the number of
participants necessary for sufficiently accurate reliability estimates, with ranges from a
minimum of 30 (provided inter-item score reliability is high; Iacobucci & Duhachek,
2003) to 400 (Charter, 1999). Rules of thumb for planning sample size are not useful in
this case, because the sample size depends on several factors and specific goals that are
not considered in the rules of thumb. Thus, the best approach for an applied researcher
is to plan the size of the sample in a way that explicitly considers the width for the CI of
the population reliability coefficient.

Several authors have provided formulas to plan sample size for reliability studies
(Bonett, 2002; Iacobucci & Duhachek, 2003). Bonett (2002) provided formulas for
estimating coefficient alpha with a desired CI width as a function of sample size. Bonett’s
(2002) work is for tests that assume compound symmetry (i.e., have equal variances and
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equal covariances), or are under the parallel test items model. As shown in Figure 1(b),
this is the most restrictive model for reliability. Nevertheless, Bonett’s (2002) method
should be used in a situation where the assumptions of the parallel test items model fit the
test and a sufficiently narrow CI is desired. Iacobucci and Duhachek (2003) also provided
a method to solve for the necessary sample size to obtain an expected CI width (their
equation 6, p. 483) under the assumptions of multivariate normality and large sample
size. Their work is based on the assumptions discussed in van Zyl et al. (2000) and
applies to the true-score equivalent model. However, neither of these methods utilizes
an assurance parameter that allows sample size to be planned such that a sufficiently
narrow CI will be observed with a researcher-specified degree of assurance. Bonett’s
(2002) approach for the parallel model functionally incorporates a near 100% assurance
parameter. This may be too large for some instances, analogously to the way that sample
size for near 100% power may be too large for some purposes.

As of yet, no known sample size planning methods for narrow CIs have been devel-
oped for coefficient omega, despite the recommendations and findings that coefficient
omega is often more appropriate than coefficient alpha (Lucke, 2005; Zinbarg et al.,
2005). We address these existing limitations for both coefficient alpha and coefficient
omega by providing sample size planning methods from the AIPE perspective that apply
to true-score equivalence (when alpha is appropriate) and congeneric models (when
omega is appropriate). The methods we develop are for an expected CI width that is
sufficiently narrow as well as for the CI to be sufficiently narrow with some desired
degree of assurance. In line with the recommendation of Revelle and Zinbarg (2009) for
psychometric contributions to be available in open source software, we implement our
methods in the program R, which is detailed in the illustrative example at the end of
this paper. Additionally, the methods we develop can be implemented in other software
packages/programs.

5. Sample size planning for reliability coefficients
Two AIPE procedures have been developed for sample size planning for the true-score
and congeneric models. The goal of the first procedure for each type of reliability
coefficient is to plan a priori an appropriate sample size so that the expected CI width
is sufficiently narrow. In this procedure the researcher specifies a desired CI width (W )
and our methods provides the minimum sample size necessary so that the expected CI
width (E[w]) will be no larger than the desired CI width (W ).4

However, the mere fact that the expected CI width is sufficiently narrow does not
imply that the observed CI will be sufficiently narrow. In (hypothetical or actual) repeated
samplings, approximately half of the time the computed CI will be wider than desired
and approximately half of the time narrower than desired. This is the case because the
CI width, like the estimate of reliability itself, is a random variable and the expected
width is the mean width. We develop a second procedure so that there will be a desired
degree of assurance that the CI width is sufficiently narrow (e.g., 99% assurance that the

4However, because the theoretical sample size where E[w] = W is almost always a fractional value, E[w] is
almost always just less than W in order for the necessary sample size to be a whole number. This is the case
because sample size must increase following a step-function, whereas confidence interval width theoretically
increases following a continuous function.
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95% CI will be no wider than W). This second procedure uses an a priori Monte Carlo
method to plan the appropriate sample size.

5.1. True-score equivalence model
This section uses the AIPE approach to provide a method for sample size planning for
sufficiently narrow CIs for the population coefficient alpha under the true-score model.

5.1.1. Expected width
The full width of the CI for coefficient alpha is

w = 2z1−�e/2

√(
J 2

/
(J − 1)2

)

̂

N − 1
. (18)

This equation can be solved for N . Suppose we replace w in equation (18) with W , the
desired CI width, and also replace 
̂ with its population value, 
 . Solving that equation
for the sample size results in the necessary N so that, if that sample size were used in a
population as described (i.e., where 
 is the true value) the CI width would be expected
to be approximately W :

Nnec =
(
J 2

/
(J − 1)2

)

(

W
/

2z1−�e/2

)2 + 1. (19)

The result of solving equation (19) is Nnec – the procedure-implied (i.e., necessary)
sample size such that the CI for the population coefficient alpha will be expected to be
sufficiently narrow (i.e., have a width of approximately W ). As can be seen, the Type I
error rate, the desired CI width, the number of test items, and the covariance matrix (as
a function of the factor loadings and error variances) all influence the necessary sample
size for a desired CI width. Equation (19) can thus be used to determine the sample size
necessary so that the expected width of the CI for the population coefficient alpha is
sufficiently narrow.

5.1.2. Evaluation of the sample size method for the expected width procedure
A Monte Carlo simulation, commonly used in methodological works to assess the
robustness of a procedure, was conducted to ensure that equation (19) appropriately
and consistently yields accurate estimates of the necessary sample size to achieve the
desired width.

In the Monte Carlo simulation study, a total of 123 different conditions were evaluated
to assess the effectiveness of equation (19). Across the different conditions a variety of
factors were specified: the numbers of test items (J) were 3, 5, 7, 9, 11, 13, 15; the
estimated inter-item score correlation () ranged from .1 to .6 in increments of .1; and a
desired CI width (W ) of .05, .1, .15 and .2. These conditions were chosen because of their
reasonableness with what is used and anticipated to be used in the applied literature. Our
upper bound for the number of test items is slightly larger than has been recommended
in other studies. For instance, Iacobucci and Duhachek (2003) recommended using up
to 10 test items (due to the lack of longer scales in use and the difficulty creating a
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unidimensional measure with more test items). However, in order to simulate the full
range of potential number of test items that researchers might use, we decided to, if
anything, err on the side of using a greater number of conditions. Each condition in
the simulation was based on 10,000 replications. Conditions were not included in the
simulation if the determinant of the population covariance was less than 0.000001 or if
the necessary sample size was less than 30.5 This resulted in 45 conditions not being
applicable, leaving 123 conditions in the simulation from the original total for the fully
crossed design of 168.

Values for the population factor loading (�) and population error variances (� 2)
were needed to simulate covariance matrices fitting a specific true-score model that
conforms to our conditions. Recall Figure 1(c) in which the error variances could
differ across test item scores but the factor loadings were the same. To provide for
a common measurement unit, the variance among the test items was standardized to
equal one for the population quantities. Consequently, � 2

j was calculated as 1 − �2

for the jth test item, and then increased or decreased systematically for the remaining
J – 1 test items in the condition. For example, in the conditions with J = 15, the
population error variances were modified from the standardized variance (1 − �2) by
± .025, ± .05, ± .075, ± .1, ± .125, ± .15, and ± .20. The population error variances
in conditions with J > 5 did not extend beyond the ±.2 upper and lower bounds,
which were established in the conditions with fewer test items, so as not to have a
major discrepancy between population error variances across the number of test items.
Producing population covariance matrices in this way allowed us to generate sample
data where the true-score model assumptions were met.

The factor loading was calculated from the estimated mean population inter-item
score correlation, such that � = √

 . The range of inter-item score correlations varies
across tests. Osburn (2000) identified tests such as cognitive ability subtests, supervisor
ratings, and personality dimensions as types of tests that have relatively large correlations
(e.g., .5). Tests that have lower correlations (e.g., .25) include those measuring
personality facets, perception, organizational commitment, and role ambiguity. Thus,
in our study a range of inter-item score correlations were included to be consistent with
the variety of tests commonly used in psychology and related disciplines.

In the Monte Carlo simulation study, a population covariance matrix was formed
for each of the conditions. Using the known population values as input parameters
for the sample size planning procedure, the necessary sample size was calculated from
equation (19). Random multivariate normal data were generated that conformed to the
specific conditions with the number of cases generated based on the method-implied
sample size. The mvrnorm( ) function from the R package MASS (Venables & Ripley,
2002) was used to generate the multivariate normal data. The CI was calculated using
equation (9) by way of the ci.reliability( ) function from the R package MBESS
(Kelley & Lai, 2011a) on the simulated data. This process, generating multivariate
normal data meeting the specific conditions, was repeated 10,000 times for each of
123 conditions we examined. This then enabled us to calculate the mean and median of
the observed widths, and other descriptive statistics, to compare them with the desired

5Covariance matrices with a permissible structure have a determinant that is greater than zero. This implies
that one row/column cannot be written as a linear function of other rows/columns. Because we are working
with arbitrary matrices that are square and symmetric, it is possible to define one such that it represents a
non-full-rank matrix.
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width (W ) to evaluate if equation (19) appropriately and consistently yields accurate
estimates of the necessary sample size to achieve the desired width.

The results of the simulation indicate that the sample size formula worked very well.
Table 1 gives the necessary sample size, mean, and median observed CI width from each
condition of the analytic process verifying equation (19). The percentage of error in
each condition was calculated to demonstrate the effectiveness of the procedure. The
percentage of error is the difference between the observed mean w for each condition
and W, divided by W and then multiplied by 100. Across all conditions, the mean
percentage of error was 1.00%, the median was 0.55%, and the standard deviation of the
percentage of error was 1.12%. The condition with W = .1,  = .5, J = 9, and Nnec = 34
performed the worst (as calculated by the condition with the largest percentage of error),
with a percentage of error of 4.61%. This comes from the difference between the desired
width (W = .1) and the mean of the observed widths (w = .1046) of .0046. The relative
lack of success of the method in this condition is due to the small sample size resulting
from the procedure.

5.1.3. Incorporating an assurance parameter through an a priori Monte Carlo simulation procedure
To provide a desired degree of assurance that the observed CI for the population
coefficient alpha will be no wider than desired, a modified sample size planning
procedure is developed here using an a priori Monte Carlo simulation.6 An a priori
Monte Carlo study uses the simulation-based approach of a traditional Monte Carlo
simulation, as in the previous section, but can be used to assess the effects of sample
size on properties of statistical outcomes. That is, it generates conditions believed to be
true and evaluates various statistical properties in those conditions, which differs from
using analytic methods on those same supposed conditions.

As Maxwell et al. (2008, p. 553) stated as a general rule, ‘sample size can be planned
for any research goal, on any statistical technique, in any situation with an a priori Monte
Carlo simulation study’ (see Muthén & Muthén, 2002, for an application of this method
in the context of structural equation models). The basic steps in this process include:
(a) generating random data with the appropriate assumptions satisfied at a particular
sample size; (b) performing a statistical technique of interest (CIs for reliability
coefficients under the true-score equivalence assumptions in this case); (c) repeating
it a large number of times (e.g., 10,000); (d) evaluating whether the outcome of interest
has been satisfied to determine if a particular value of sample size is appropriate; and (e)
systematically adjusting the sample size of the randomly generated data. Steps (a)–(e)
are repeated until the specified goal has been reached (Maxwell et al., 2008). The idea is
to perform a simulation study to discern empirical properties of the statistic of interest
under the specified conditions.

Using a simulation study in this way allows us to develop a method to incorporate a
desired degree of assurance (�), as no formal analytic method is known to exist or reason-
ably developed. Using this method, the CI obtained will be no wider than Wwith no less
than �100% assurance. This assurance parameter provides a probabilistic component to
the sample size planning procedure that satisfies the following inequality:p(w ≤ W) ≥ � .
For example, a researcher may want to have 85% assurance that the obtained 95% CI for

6An analytic based approach was tested, but it was not effective across the spectrum of possible conditions.
Thus, a computer-intensive simulation approach was used.
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Table 1. Sample sizes necessary for a specified width for 95% CIs for coefficient alpha in the
true-score model simulation with mean and median observed CI widths

J

 3 5 7 9 11 13 15
W = 0.05

0.1 Mean 0.0500 0.0500 0.0500 0.0500 0.0501 0.0500 0.0500
Median 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
NNecessary 10275 6280 4491 3411 2705 2202 1828

0.2 Mean 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
Median 0.0500 0.0500 0.0500 0.0501 0.0500 0.0501 0.0501
NNecessary 5913 2977 1864 1282 945 725 574

0.3 Mean 0.0500 0.0501 0.0501 0.0501 0.0501 0.0502 0.0503
Median 0.0500 0.0500 0.0500 0.0500 0.0500 0.0499 0.0500
NNecessary 3436 1514 876 571 405 303 234

0.4 Mean 0.0500 0.0501 0.0502 0.0502 0.0504 0.0503 0.0505
Median 0.0500 0.0500 0.0500 0.0499 0.0500 0.0499 0.0499
NNecessary 1976 790 434 273 190 140 107

0.5 Mean 0.0501 0.0501 0.0504 0.0505 0.0504 0.0510 0.0513
Median 0.0500 0.0499 0.0500 0.0500 0.0496 0.0499 0.0498
NNecessary 1100 409 217 133 92 67 51

0.6 Mean 0.0501 0.0503 0.0503 0.0510 0.0515 0.0518 –
Median 0.0500 0.0499 0.0496 0.0499 0.0498 0.0494 –
NNecessary 575 202 105 63 43 32 –

W = 0.10
0.1 Mean 0.1001 0.1000 0.1001 0.1002 0.1002 0.1003 0.1003

Median 0.1000 0.0999 0.1000 0.1000 0.0999 0.1000 0.1000
NNecessary 2570 1571 1124 854 677 552 458

0.2 Mean 0.1001 0.1003 0.1003 0.1004 0.1005 0.1006 0.1006
Median 0.1000 0.1002 0.1000 0.1000 0.0999 0.0998 0.0996
NNecessary 1479 745 467 322 237 182 145

0.3 Mean 0.1002 0.1004 0.1006 0.1010 0.1017 0.1018 0.1023
Median 0.1000 0.0999 0.0999 0.0999 0.1002 0.0997 0.0998
NNecessary 860 380 220 144 102 77 60

0.4 Mean 0.1002 0.1004 0.1011 0.1020 0.1025 0.1041 –
Median 0.0998 0.0996 0.0999 0.0998 0.0997 0.1001 –
NNecessary 495 199 110 69 49 36 –

0.5 Mean 0.1004 0.1010 0.1024 0.1046 – – –
Median 0.0998 0.0998 0.0996 0.1001 – – –
NNecessary 276 103 55 34 – – –

0.6 Mean 0.1005 0.1020 – – – – –
Median 0.0993 0.0989 – – – – –
NNecessary 145 52 – – – – –

W = 0.15
0.1 Mean 0.1499 0.1504 0.1505 0.1505 0.1503 0.1506 0.1511

Median 0.1498 0.1501 0.1502 0.1499 0.1496 0.1498 0.1501
NNecessary 1143 699 500 380 302 246 204

0.2 Mean 0.1500 0.1504 0.1510 0.1515 0.1520 0.1521 0.1535
Median 0.1496 0.1496 0.1499 0.1496 0.1500 0.1493 0.1500
NNecessary 658 332 208 144 106 82 65

(continued)
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Table 1. Continued

J

 3 5 7 9 11 13 15

W = 0.15
0.3 Mean 0.1505 0.1508 0.1519 0.1528 0.1550 0.1562 –

Median 0.1499 0.1492 0.1500 0.1494 0.1500 0.1497 –
NNecessary 383 170 99 65 46 35 –

0.4 Mean 0.1506 0.1520 0.1534 0.1554 – – –
Median 0.1494 0.1494 0.1492 0.1481 – – –
NNecessary 221 89 50 32 – – –

0.5 Mean 0.1509 0.1531 – – – – –
Median 0.1490 0.1481 – – – – –
NNecessary 124 47 – – – – –

0.6 Mean 0.1530 – – – – – –
Median 0.1488 – – – – – –
NNecessary 65 – – – – – –

W = 0.20
0.1 Mean 0.2004 0.2007 0.2011 0.2008 0.2014 0.2019 0.2012

Median 0.1997 0.2002 0.2001 0.1996 0.1998 0.2002 0.1989
NNecessary 644 394 282 215 170 139 116

0.2 Mean 0.2006 0.2017 0.2025 0.2021 0.2047 0.2043 0.2083
Median 0.1997 0.2001 0.2001 0.1986 0.1994 0.1980 0.2002
NNecessary 371 187 118 82 60 47 37

0.3 Mean 0.2014 0.2027 0.2056 0.2090 – – –
Median 0.1999 0.1988 0.2001 0.2008 – – –
NNecessary 216 96 56 37 – – –

0.4 Mean 0.2011 0.2048 – – – – –
Median 0.1984 0.1989 – – – – –
NNecessary 125 51 – – – – –

0.5 Mean 0.2038 – – – – – –
Median 0.1990 – – – – – –
NNecessary 70 – – – – – –

0.6 Mean 0.2058 – – – – – –
Median 0.1960 – – – – – –
NNecessary 37 – – – – – –

Note. J is the number of items on the test,  is the estimated inter-item correlation, W is the desired
CI width, the means and medians refer to the observed CI widths from the 10,000 simulations in
each condition, NNecessary is the necessary sample size calculated from equation (19), and – indicates
the conditions did not meet the necessary criteria. Multiple error variances were simulated to obtain
these results – see the text for how the variances were calculated.

the population coefficient alpha will be no wider than .10. Thus, � is .85, and W is .10.
The idea is that the observed CI width will be wider than .10 no more than 15% of the
time.

The same 123 conditions that were used in the study evaluating the expected width
were used in the simulation to plan sample size for coefficient alpha in the true-score
model, providing assurance that the CI will be no wider than desired a certain percentage
of the time. For an example of this procedure, if the parameters entered in one condition
are (W = .15,  = .16, J = 5, � = .85) with population error variances of .20, .25, .30,



Sample size planning for reliability coefficients 387

.35, and .40, then equation (19) is used to provide an initial sample size estimate and
results in an Nnec of 123. Then multivariate normal data for this condition is generated
10,000 times based on these parameters entered (from the population data and the initial
sample size of 123). Suppose that, out of 10,000 replications, in 4,890 of the replications
the CI was no wider than .15. As seen, 48.9% of the time the CI was appropriately
narrow, which we define as the empirical assurance. However, because the desired
degree of assurance was .85 the sample size of 123 did not lead to enough of the
CIs being appropriately narrow (as only 48.9% were appropriately narrow), and the
process is repeated by increasing the sample size by 1.7 Then, 10,000 more replications
are evaluated at the increased sample size. This iterative process continues until the
modified sample size, N mod is found where the observed CI width is no wider than
desired �100% of the time. In this example, N mod was computed as 162, which leads
to an empirical assurance of .863. A sample size of 161 was too small, as it led to
an empirical assurance of .8454, and thus the process was repeated after increasing the
sample size by 1 so that the smallest sample size that satisfied the assurance parameter was
satisfied.8

In this context, the a priori Monte Carlo simulation study actually determines the
modified sample size; whereas the previously discussed Monte Carlo simulation study,
which was not a priori, conveyed how effective our formula-based method was. To
within sample error, which is minimized in our study due to the 10,000 replications
used, the sample size determined from the a priori Monte Carlo procedure provides the
modified sample size.

Table 2 presents the modified sample size (N mod ) from the a priori Monte Carlo
procedure for each condition in the true-score equivalence model that incorporates a
desired degree of assurance of 85%. An examination of the empirical values demonstrates
that this method also worked very well. All of the empirical values were .85 or
greater. An examination of the empirical assurance values across all the conditions, with
mean .857, median .856, and standard deviation .006, reveals that the simulation provides
an excellent method to plan sample size for true score models that incorporate a specific
assurance parameter.

With the assumptions of the true-score model and sample size planning for coefficient
alpha, in many cases, a relatively small increase from the necessary sample size provides
an 85% assurance that the observed CI will be no wider than desired. For instance, in
the true-score model condition where W = .1,  = .4, with J = 7, the necessary sample
size is 110. To have 85% assurance the observed CI width will be no wider than .1, the
modified sample size is 144.

7A sandwich-type algorithm could be used, where low and high values are used and the distance is halved until
the appropriate sample size is found. However, we found this improved algorithm was unnecessary, given
the speed of modern computing facilities. Although a ‘plus 1’ approach may not be optimal from a computer
science perspective of algorithm development, that is not the emphasis of the current method. Our current
method may take slightly longer, but ultimately arrives at the same solution. The correctness of the solution,
of course, is what is of importance here.
8Setting � to .85 in our study allows us to examine whether the procedure returns a sample size that is
consistently too small (e.g., 60% of the CIs were appropriately narrow) or too large (e.g., 99% of the CIs were
appropriately narrow). If � is .99 then we would not be able to know if the procedure returns the optimal
sample size, or one that overestimates it by a large amount, as both situations could have 99% or more of the
CIs be appropriately narrow. We want the empirical assurance to be just slightly larger than specified so that
the conditions are met.



388 Leann Terry and Ken Kelley

Table 2. Sample sizes necessary for a specified width for 95% CIs for coefficient alpha in the
true-score model a priori Monte Carlo simulation with 85% desired assurance

J

 3 5 7 9 11 13 15

W = 0.05
0.1 Population �c 0.250 0.357 0.438 0.500 0.550 0.591 0.625

NModified 10620 6532 4692 3582 2864 2343 1951
�E 0.862 0.854 0.85 0.851 0.86 0.86 0.858

0.2 Population �c 0.429 0.556 0.636 0.692 0.733 0.765 0.789
NModified 6174 3144 1990 1391 1041 801 647
�E 0.854 0.85 0.85 0.857 0.876 0.858 0.856

0.3 Population �c 0.563 0.682 0.750 0.794 0.825 0.848 0.865
NModified 3635 1632 968 644 467 356 281
�E 0.853 0.864 0.852 0.852 0.864 0.853 0.865

0.4 Population �c 0.667 0.769 0.824 0.857 0.880 0.897 0.909
NModified 2131 874 500 325 231 176 139
�E 0.851 0.852 0.851 0.859 0.85 0.864 0.862

0.5 Population �c 0.750 0.833 0.875 0.900 0.917 0.929 0.938
NModified 1211 474 264 168 121 91 73
�E 0.859 0.851 0.85 0.852 0.85 0.856 0.857

0.6 Population �c 0.818 0.882 0.913 0.931 0.943 0.951 –
NModified 1211 474 264 168 121 91 –
�E 0.859 0.851 0.85 0.852 0.85 0.856 –

W = 0.10
0.1 NModified 2739 1694 1227 942 755 623 520

�E 0.851 0.856 0.863 0.856 0.852 0.851 0.852
0.2 NModified 1606 833 534 378 286 225 182

�E 0.85 0.855 0.859 0.863 0.852 0.867 0.85
0.3 NModified 964 441 268 179 134 104 85

�E 0.85 0.853 0.853 0.864 0.85 0.85 0.852
0.4 NModified 570 247 143 98 70 55 –

�E 0.851 0.855 0.863 0.86 0.855 0.854 –
0.5 NModified 337 139 78 55 – – –

�E 0.853 0.865 0.851 0.878 – – –
0.6 NModified 186 76 – – – – –

�E 0.856 0.86 – – – – –
W = 0.15

0.1 NModified 1254 784 570 443 351 296 249
�E 0.851 0.85 0.85 0.863 0.853 0.86 0.857

0.2 NModified 749 390 252 181 137 110 91
�E 0.85 0.853 0.857 0.859 0.864 0.856 0.858

0.3 NModified 452 213 131 91 67 54 –
�E 0.864 0.853 0.86 0.86 0.851 0.855 –

0.4 NModified 274 122 71 50 – – –
�E 0.851 0.855 0.854 0.853 – – –

0.5 NModified 163 69 – – – – –
�E 0.856 0.858 – – – – –

0.6 NModified 94 – – – – – –
�E 0.856 – – – – – –

(continued)



Sample size planning for reliability coefficients 389

Table 2. Continued

J

 3 5 7 9 11 13 15

W = 0.20
0.1 NModified 732 457 336 261 210 175 148

�E 0.858 0.862 0.864 0.85 0.851 0.862 0.861
0.2 NModified 437 230 154 110 85 70 56

�E 0.862 0.851 0.862 0.866 0.855 0.87 0.86
0.3 NModified 267 130 81 58 – – –

�E 0.852 0.863 0.86 0.855 – – –
0.4 NModified 166 74 – – – – –

�E 0.873 0.863 – – – – –
0.5 NModified 101 – – – – – –

�E 0.86 – – – – – –
0.6 NModified 59 – – – – – –

�E 0.858 – – – – – –

Note. J is the number of items on the test,  is the estimated inter-item correlation, W is the desired
CI width, Population�c is the population coefficient alpha, NModified is the modified sample size
using an 85% assurance parameter in an a priori Monte Carlo simulation, � E is the empirical
assurance or the percentage of CIs which were no wider than desired with a specified assurance
level set at .85, and – indicates the conditions did not meet the necessary criteria. Across all
conditions the desired degree of assurance was .85. Multiple error variances were simulated to
obtain these results; see the text for how the variances were calculated. Note that the population
alpha coefficients do not vary across the multiple CI widths, thus they are only reported for the
first W .

The MBESS package for the R program contains a function that automates this
computationally intense procedure and is easy for researchers to use. An example will
be given later, which demonstrates this procedure in the R software program.

5.2. Congeneric model

5.2.1. Expected width
The techniques in the true-score model were not appropriate for use with the congeneric
model with coefficient omega. Unlike the true-score model, sample size planning for
the congeneric model and coefficient omega cannot be calculated with a closed-
form solution due to the iterative maximum likelihood estimation procedure used to
obtain the necessary estimates (e.g., Kelley & Change, in press). More specifically,
iteration is required because the variance of �̂ , �̂, and the covariance of the two
must be estimated using the Fisher information matrix from a maximum likelihood
context. Because the CI for the population coefficient omega requires an estimation
of the standard error, a formula like equation (19) cannot be developed for the
congeneric case. Thus, the necessary sample size cannot be solved in the coefficient
omega case as it was for the expected width case for coefficient alpha. Another
a priori Monte Carlo simulation provides a sample size at which the expected width
of the CI for the population coefficient omega is appropriately narrow. Such a priori
Monte Carlo simulation studies are useful when closed-form analytic expressions are
unavailable.
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The same conditions used in the true-score model Monte Carlo simulations were used
again for this a priori simulation. However, the factor structure of a congeneric model,
rather than a true-score equivalent model, needed to be simulated. Recall from Figure 1(d)
that in the congeneric model the population error variances and the factor loadings can
differ.9 In each condition the error variance (� 2) was calculated the same as it was in
the true-score simulation. For instance, in the conditions with J = 15, the population
error variances were modified from the standardized variance, 1 − �2, by ± .025, ± .05,
± .075, ± .1, ± .125, ± .15, and ± .20. Additionally, the factor loadings needed to be
calculated. As before, the first factor loading (�) was calculated as

√
 , however, the

values of  were not constant. In the conditions with J = 3, the factor loadings were√
 and

√
 ± .1. The conditions with J = 5 included the same factor loadings as J = 3,

and two additional ones,
√

 ± .2. Each subsequent set of factor loadings included the
previous ones, plus an additional two:

√
 ± .05 (for J = 7),

√
 ± .15 (for J = 9),√

 ± .025 (for J = 11),
√

 ± .075 (for J = 13), and
√

 ± .125 (for J = 15). Thus, the
factor loadings for the conditions with J = 15 were:

√
 ± .025,

√
 ± .05,

√
 ± .075,√

 ± .1,
√

 ± .125,
√

 ± .15 and
√

 ± .2. The same conditions as in the previous
simulations were used for  (.1 to .6, in steps of .1), J (3–15; increasing by 2), and
W (.05, .1, .15, and .2). After eliminating the conditions where the determinant of the
covariance matrix was less than 0.000001 or if the necessary sample size was less than
30, 123 conditions remained.

The population covariance matrix for the congeneric model was used in equa-
tion (19) as if true-score equivalence held so as to obtain a starting value for
the sample size procedure. Use of equation (19) for a congeneric structure does
not provide the correct sample size; however, it provides a useful starting point
for the necessary sample size that ultimately will be found with the use of the
a priori Monte Carlo simulation. The simulation for calculating the necessary sample
size for the congeneric model uses the same steps as describe before in the a priori
Monte Carlo simulation that provided true-score sample sizes with specified assurance.
Randomly generated multivariate normal data are obtained, as discussed before, that
are consistent with the congeneric model so that the properties of the procedures
in the condition at the particular sample size can be obtained. The corresponding CI
for the population coefficient omega is calculated from this data across the 10,000
replications at each condition. The a priori Monte Carlo simulation increments the
sample size of the generated data until it finds the minimum necessary sample size such
that the mean CI width (i.e., the expected width) is less than or equal to the desired
width.

The necessary sample size for the expected width for coefficient omega is not
reported in tables for brevity’s sake, as in general it is ideal to incorporate a high degree
of assurance that the CI will be sufficiently narrow.

5.2.2. Incorporating an assurance parameter
As was the case for the incorporation of the assurance parameter in the true-score model,
an a priori Monte Carlo simulation provides a given degree of assurance that the observed

9Should a distribution other than multivariate normal be presumed (e.g., positively skewed items, Likert-type
items, or items with floor and/or ceiling effects), the a priori Monte Carlo simulation study we implemented
could be reimplemented under the presumed item distributions.



Sample size planning for reliability coefficients 391

CI for coefficient omega will be no wider than desired. This simulation procedure follows
the same procedure as was used in the true-score model for incorporating the assurance
parameter. However, the CIs were calculated using equation (17), and the standard
error was calculated using equation (16). The population covariance matrices (with
multiple factor loadings and multiple error variances) were specified as described above
in Section 5.2.1. Across all conditions, � was set to .85. However, � can be set to any
value without affecting the implementation of the a priori simulation procedure. Of
course, the necessary sample size would be different if, for example, � was set to .99,
but the implementation is exactly the same.

Table 3 gives the modified sample size for each condition of the simulation that
incorporates a desired degree of assurance for the congeneric model with coefficient
omega. Table 3 also reports the empirical assurance that was observed across the 10,000
conditions at the modified sample size. Examination of the empirical assurance values
across all the conditions shows that the procedure worked very well, having a mean of
.855 (standard deviation .004) and a median of .854. The closeness of the mean and the
median to the desired assurance parameter illustrates the successfulness of the method.
None of the empirical assurance values were less than the desired .85 level of assurance,
and the biggest discrepancy was when the empirical assurance parameter was .878.
Thus, in the worst case across all conditions, the empirical assurance was only .028 too
large. Although this appears to be a large discrepancy, any sample size smaller would
have resulted in a less than desired assurance parameter. Thus, this result is the correct
one that is the smallest to satisfy the goal of achieving an assurance no less than .85.

6. Applications of AIPE for reliability coefficients
Sample size planning methods for appropriately narrow CIs for population reliability
coefficients can be used by both test developers and test users. Test developers have a
number of factors to consider when planning sample size for narrow CIs of population
reliability coefficients. To decrease the width of the CI, developers can increase the
number of test items or the correlations among the items on a test, in addition to
increasing the sample size of the norming sample. However, one risk when increasing
the number of test items is that the measure may no longer be unidimensional. Eventually,
the correlations between the item scores chosen to be included are no longer increasing
substantially upon modifications, and the test becomes too long to be ‘user friendly’. Our
methods allow the developer to also consider sample size to achieve an appropriately
narrow CI. We recommend that these procedures be used in an iterative process which
allows the test developer to control the width of the CI from a variety of perspectives;
each refining the others in an ongoing process during test development, pilot testing,
obtaining norms, etc. Depending on the resources and needs of the test developer, each
method may be feasible and appropriate at different stages of the process. We encourage
test developers to use the AIPE approach as one consideration for controlling the width
of the CI on the population reliability coefficient in an effort to home in on the population
value with a high degree of confidence.

Users of established tests do not have the opportunity of modifying the number of test
items or increasing the correlations among the test items as a way to reduce the width
of the CI. When considering sample size, test users need to consider both the need for
accurate parameter estimates for a variety of point estimates, as well as how to achieve
adequate statistical power. We advocate using both AIPE and power-analytic methods for
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Table 3. Sample sizes necessary for a specified width for 95% CIs for coefficient omega in the
congeneric model a priori Monte Carlo simulation with 85% desired assurance

J

 3 5 7 9 11 13 15

W = 0.05
0.1 Population � 0.257 0.364 0.443 0.506 0.555 0.595 0.629

NModified 10644 6375 4617 3535 2827 2318 1932
�E 0.851 0.852 0.854 0.85 0.851 0.851 0.852

0.2 Population � 0.437 0.562 0.641 0.697 0.737 0.767 0.792
NModified 6063 3098 1976 1380 1032 803 642
�E 0.854 0.856 0.851 0.855 0.864 0.857 0.857

0.3 Population � 0.571 0.687 0.753 0.797 0.827 0.850 0.867
NModified 3552 1619 965 641 466 355 280
�E 0.8527 0.854 0.853 0.853 0.857 0.853 0.857

0.4 Population � 0.674 0.774 0.826 0.860 0.882 0.898 0.910
NModified 2074 872 500 325 232 175 139
�E 0.859 0.855 0.851 0.854 0.852 0.852 0.86

0.5 Population � 0.757 0.837 0.877 0.902 0.918 0.930 0.939
NModified 1178 473 265 170 122 92 73
�E 0.851 0.85 0.85 0.855 0.858 0.852 0.853

0.6 Population � 0.825 0.886 0.915 0.933 0.944 0.952 0.958
NModified 636 250 138 90 64 49 –
�E 0.852 0.858 0.852 0.868 0.854 0.86 –

W = 0.10
0.1 NModified 2873 1646 1202 928 747 614 516

�E 0.851 0.85 0.852 0.86 0.854 0.852 0.85
0.2 NModified 1589 814 528 373 282 222 180

�E 0.851 0.852 0.856 0.852 0.857 0.861 0.857
0.3 NModified 940 436 264 180 132 104 83

�E 0.857 0.853 0.851 0.851 0.85 0.866 0.859
0.4 NModified 556 241 141 94 70 54 –

�E 0.854 0.854 0.854 0.851 0.855 0.859 –
0.5 NModified 321 136 78 54 – – –

�E 0.855 0.858 0.851 0.876 – – –
0.6 NModified 180 75 – – – – –

�E 0.854 0.858 – – – – –
W = 0.15

0.1 NModified 1483 751 554 431 348 289 245
�E 0.854 0.852 0.852 0.854 0.856 0.852 0.853

0.2 NModified 744 379 250 178 136 108 89
�E 0.854 0.851 0.854 0.858 0.854 0.855 0.854

0.3 NModified 440 208 129 90 67 53 –
�E 0.856 0.858 0.86 0.87 0.854 0.861 –

0.4 NModified 263 117 72 49 – – –

(continued)
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Table 3. Continued

J

 3 5 7 9 11 13 15

W = 0.15
�E 0.854 0.855 0.861 0.859 – – –

0.5 NModified 155 67 – – – – –
�E 0.853 0.852 – – – – –

0.6 NModified 88 – – – – – –
�E 0.863 – – – – – –

W = .20
0.1 NModified 1046 433 324 255 207 173 147

�E 0.851 0.858 0.858 0.854 0.85 0.852 0.858
0.2 NModified 450 224 149 108 83 68 55

�E 0.855 0.865 0.86 0.858 0.852 0.866 0.853
0.3 NModified 261 124 78 55 – – –

�E 0.85 0.857 0.854 0.851 – – –
0.4 NModified 158 72 – – – – –

�E 0.861 0.856 – – – – –
0.5 NModified 94 – – – – – –

�E .853 – – – – – –
0.6 NModified 55 – – – – – –

�E .859 – – – – – –

Note. J is the number of items on the test,  is the estimated inter-item correlation, W is thedesired
confidence interval width, Population� is the population coefficient omega, NModified is the
necessary sample size using an 85% assurance parameter in an a priori Monte Carlo simulation,
�E is the empirical assurance or the percentage of confidence intervals which were no wider than
desired with a specified assurance level set at .85, and – indicates the conditions did not meet
the necessary criteria. Multiple error variances and factor loadings were simulated to obtain these
results; see the text for how the variances were calculated. Note that the population reliability
coefficients do not vary across the multiple confidence interval widths, thus they are only reported
for the first W .

sample size planning when research questions are based on having an accurate estimate
that is also statistically significant. AIPE and power analyses should not be regarded as
being independent. In fact, increasing the sample size will improve both the accuracy
of an estimate as well as the statistical power of a null hypothesis statistical test that
tests a false null hypothesis, but not necessarily equally. Thus, both power analysis and
AIPE analysis should be conducted according to the needs and goals of the researcher.
If the power analysis yields the larger sample size, then that sample size should be used.
Conversely, if the AIPE analysis yields the larger size for an appropriately narrow CI for
a reliability coefficient, then that should be the sample size goal. Ideally, an adequate
sample size from both perspectives would be used (e.g., Jiroutek, Muller, Kupper, &
Stewart, 2003). However, these a priori sample sizes may be quite different. Given the
researcher’s goals, resources, and needs, the researcher should decide which method
yields the most appropriate sample size. At times, a researcher may find a sample size to
be unreasonably large and impractical, given the available resources. As Maxwell et al.
(2008) described, meta-analyses can provide one method to help address the wide CIs
in individual studies when researchers may have limited resources. Another approach
is to consider multisite studies, with the idea being to ‘spread the burden but reap the
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benefits of estimates that are accurate and/or statistically significant’ (Kelley & Rausch,
2006, p. 375). Regardless of which sample size is chosen, the researcher has further
information regarding levels of accuracy for the reliability coefficient and power for the
desired key effects and can anticipate findings for after the study has been completed.

To plan sample size for appropriately narrow CIs for population reliability coeffi-
cients, test users and developers need any one of the following sets of information to
enter into our function in MBESS (Kelley & Lai, 2011a): (a) a covariance matrix; (b) the
number of test items, estimated or observed inter-item score correlations, and a vector
of observed or estimated error variances; or (c) the number of test items, factor loadings,
and a vector of observed or estimated error variances.

6.1. Specifying input values
Lai and Kelley (2011) propose several methods to aid in the specification of input values
for a covariance matrix in the context of AIPE for targeted effects in structure equation
models, which are applicable in the present context (see also Kelley & Lai, 2011b). First
and foremost, these input values should be based on the existing literature. A thorough
literature review provides the foundation for specifying the relationships between the
variables. Existing data sets, previous analyses, and similar constructs should be evaluated
and reasonable estimates can be extracted from these.

Lai and Kelley (2011) discuss how a covariance matrix can be estimated based on
the relationship between the correlation matrix and the covariance matrix of relevant
variables. The correlation coefficient of each pair of variables can be estimated and
arranged into a matrix. Specifying the correlations between the variables can be aided
by Cohen’s (1988) widely used suggestions of ‘small’ (.10), ‘medium’ (.30), and ‘large’
(.50) correlation coefficients. Lai and Kelley (2011) also outline how specifying the
covariance matrix can be made easier by using coefficient H, proposed by Hancock and
Mueller (2001). For further details on this process, and description of a function in MBESS
that creates a model-implied covariance matrix given a model and model parameters,
see Lai and Kelley (2011).

7. Illustrative example
Suppose a researcher wants to use some of the test items from the Americans’ Changing
Lives study (House, 2002). The Americans’ Changing Lives study is a longitudinal
study investigating multiple facets of Americans’ lives, including: how people are
‘productive’; how they adapt to stressors that impact their health and functioning;
and the consequences of their activities and relationships (House, 2002). The study
specifically focused on differences between White and Black Americans who were in
their middle and later life phases. The 2002 data consist of three waves of data collection,
from 1986, 1989, and 1994, with over 3,000 participants. One of the indices used in
the 2002 report is a marital satisfaction and harmony index, consisting of eight test
items. Using only the 1,555 complete cases from the 1994 wave of data collection, the
reliability estimate using coefficient omega and the congeneric model is .821, with 95% CI
[.807, .834].

Suppose a researcher wants to use the marital satisfaction and harmony index in a
different study, include only Black and White Americans in their third marriage. This new
study will have a smaller number of participants. Consequently, the researcher knows
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that with a smaller sample size, all other things being equal, the width of the CI will
increase. Thus, the researcher wants to plan an appropriate sample size in advance so
the CI for the population value of the reliability for the marital satisfaction and harmony
index is sufficiently narrow. It would be undesirable to report the results with a reliability
coefficient that is accompanied by a wide CI.

The MBESS (Kelley, 2007a, 2007b; Kelley & Lai, 2011a) package for R can be used to
plan sample size for an appropriately narrow CI with a desired degree of assurance by
implementing the methods we have developed here. To use the computationally intense
a priori Monte Carlo method in MBESS, the researcher would substitute the necessary
information into the ss.aipe.reliability() function:

ss.aipe.reliability(model = "Congeneric", width = W, S = S, conf.level =
1 − �e, assurance = �, initial.iter = 500, final.iter = 5000)

where model is used to identify the model of interest, either true-score equivalent
or congeneric; S is the supposed population covariance matrix of the item scores
measuring a particular factor; and initial.iter and final.iter represent the number
of initial iterations and final iterations the simulation performs.10 Instead of using a
covariance matrix, users can also enter more specific data, such as a data set from a pilot
test, or the inter-item score correlations, estimated factor loadings, and population error
variances. More details on the options for using the ss.aipe.reliability() function
are available in the MBESS help files.

If the researcher had the covariance matrix for the eight test items in the marital
satisfaction and harmony index, from the Americans’ Changing Lives data set, the
ss.aipe.reliability() function would be implemented as follows:

ss.aipe.reliability(model = "Congeneric", width = .10,
S = Cov.Marit.Satisfaction, conf.level = .95,
assurance = .85, initial.iter = 500, final.iter = 5000)

where Cov.Marit.Satisfaction is the covariance matrix of the six test items used to
measure the index in the original data set.

After submitting the code above, the ss.aipe.reliability() function returns the
following:

$Required.Sample.Size

[1] 110

$width

[1] 0.1

$specified.assurance

[1] 0.85

10The number of iterations indicates how many times in the a priori simulation the data are generated and
the CIs are calculated. This is a computationally intense procedure, thus the option of entering the initial
iterations (e.g., 100 or 200 times) allows the user to specify a smaller number of iterations that can be used
to arrive at an approximate sample size. Once the percentage of CIs reaches the desired degree of assurance
(e.g., 85% of the CIs are appropriately narrow), then the simulation uses the number of final iterations. The
final number of iterations homes in on the true sample size value due to the large number of replications (e.g.,
10,000 times) and the correspondingly small degree of sample error in the a priori Monte Carlo simulation
results. The process continues to modify the sample size until the desired accuracy is reached.
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$empirical.assurance

[1] 0.856

$final.iter

[1] 5000

As can be seen, the sample size that is necessary for the researcher to have a CI not
wider than .1 more than 85% of the time for the population value of coefficient omega
is 110. The output also gives the observed empirical assurance across the 5,000 final
iterations of the simulation. Recall that the empirical assurance will tend to be slightly
more than the desired assurance so the sample size is required to be a whole number.
Although this is a computationally intense approach to sample size planning, it is easy
to do with the MBESS ss.aipe.reliability() function.

Suppose the researcher conducts a study with 110 participants. Now the researcher
wants to calculate a CI along with a point estimate for the population coefficient omega.
The ci.reliability() function in MBESS can easily calculate this, with the code

ci.reliability(model = "Congeneric", S = Cov.Mat, N = 110)
where Cov.Mat is the covariance matrix from the researcher’s sample with 110 partici-
pants. The options for model and type are the same as for the ss.aipe.reliability()
option, with the additional required field of the observed sample size (N).

This code returns the following:

$CI.lower

[1] 0.7923504

$CI.upper

[1] 0.8864628

$Estimated.reliability

[1] 0.8394066

$SE.reliability

[1] 0.02400871

$Conf.Level

[1] 0.95

The lower and upper limits of the CI are .792 and .886, respectively, with a point
estimate of coefficient omega of .839. The function also returns the standard error and a
reminder of the CI coverage that was used. Although the width of the CI was specified to
be .10 in the sample size planning procedure, the researcher found with this particular
sample that the CI was smaller, .094. This slight decrease is not unexpected, as the
sample size planning procedure returns a value that is not wider than specified (and the
desired width was .10).

8. Discussion
This paper has covered several key areas. First, the foundation was provided with a
brief description of homogeneous tests and three common measurement models. This
was followed by a review of reliability with a specific focus on coefficient alpha and
coefficient omega. Second, methods were given for forming CIs for the population
reliability coefficients in the true-score and congeneric models. Third, methods were
provided for sample size planning for accurate estimation of coefficient alpha and
coefficient omega via narrow CIs. A modification to these methods provided a level
of certainty such that the CIs will be sufficiently narrow with no less than the desired
degree of assurance. Descriptions of the Monte Carlo simulation studies that were used
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to evaluate and plan sample size were provided, and the results from these studies given.
Applications of the AIPE approach were provided for test users and test developers.
Finally, an example was given that illustrates how the easy-to-use and freely available
program, R, can be used with the MBESS package to implement the procedures described
in this paper.

Reporting reliability coefficients for a set of scores coming from each administration
of an instrument is crucial (Wilkinson & APA Task Force on Statistical Inference,
1999). In general, reporting CIs is seen as a ‘best reporting strategy’ (APA, 2001,
p. 22) and is endorsed by APA (2009, p. 34), AERA (2006) and Wilkinson and the
APA Task Force on Statistical Inference (1999). Support for reporting CIs for population
reliability coefficients comes from a variety of factors: it allows for the comparison of
estimates across studies (e.g., Thompson, 2002), assists and encourages meta-analytic
thinking (e.g., Hunter & Schmidt, 2004; Rodriguez & Maeda, 2006), and allows for the
assessment of the uncertainty in the population value estimate (e.g., Hahn & Meeker,
1991). Substantial information is lost if only the reliability point estimate is reported
instead of also reporting the CI. The AIPE approach depicted here provides an approach
to planning sample size to achieve reliability coefficient estimates that are sufficiently
accurate. We encourage test developers and test users to plan sample size for CIs for the
population value of coefficient omega rather than coefficient alpha in almost all cases of
a homogeneous test.

A common ‘urban legend’ is that a reliability estimate should be no less than .70
(Lance, Butts, & Michels, 2006). This guideline seems to have grown out of a passage
from Nunnally (1978) and is widely referenced (Peterson, 1994). However, as Lance
et al. (2006) described, this is an overly simplistic representation of the original source,
as Nunnally did not recommend a lower limit for reliability estimates as universally
being .70; rather he stressed that ‘what a satisfactory level of reliability is depends on
how a measure is being used’ (Nunnally, 1978, p. 245). The lower limit of .70 was for tests
in the ‘early stages of research’ (Nunnally, 1978, p. 245). However, for basic research, he
endorsed a reliability estimate of .80; for settings where ‘important decisions’ are made,
the minimum should be .90 (Nunnally, 1978). We argue that, if such a rule of thumb is
to be used, the lower limit of a CI is the value that should be compared to Nunnally’s
benchmarks, rather than the point estimate itself. A point estimate does not demonstrate
the range of plausible parameter values. We propose that researchers use a lower limit
of a CI of .70 for early stages of research, .80 for basic research, and .90 for applied
settings with decisions based on the results. We advocate that the lower limit of the CI
should be the focus for guidelines for ‘acceptable’ reliability estimates, rather than the
point estimate itself. We hope these methods will allow researchers to plan sample size
as a way to avoid potentially ‘embarrassingly large’ CIs.

When planning sample size for reliability coefficients we recommend incorporating a
large (e.g., .99) assurance parameter. Such an assurance parameter provides probabilistic
assurance that the CIs that will be computed will be no wider than desired with a
specified degree of assurance. Some may argue that it unnecessarily increases the sample
size without enough ‘gains’. We argue that the benefit of a probabilistic assurance that
the CIs will be no wider than specified is an important reason to increase sample size.
An examination of the increase in sample sizes from the necessary sample size (with
no assurance parameter) to the modified sample size (with an assurance parameter)
demonstrates that the increase in necessary sample size tends to be quite small relative
to the necessary size in order for the expected CI width to be sufficiently narrow.
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It is the test scores on a particular administration of a test that are reliable, not
the test itself. Thus, given the need for researchers to report an estimate of reliability
for the scores obtained on their particular administration of a test, we hope that this
paper helps researchers gain a better understanding of reliability and CIs for population
reliability coefficients, facilitates sample size planning when interest is in the value of
the population reliability coefficient, and makes easy-to-use functions available so that
researchers can easily apply the methods we discussed to facilitate their research.
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Software International.

Hogan, T. P., Benjamin, A., & Brezinski, K. L. (2000). Reliability methods: A note on the frequency
of use of various types. Educational and Psychological Measurement, 60(4), 523–531.

House, J. S. (2002). Americans’ changing lives: Waves I, II, and III 1986, 1989, and 1994 [Data
file and code book]. Ann Arbor: University of Michigan, Institute for Social Research, Survey
Research Center [producer], Inter-university Consortium for Political and Social Research
[distributor].

Hoyt, C. (1941). Test reliability estimated by analysis of variance. Psychometrika, 6(3), 153–160.
Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in

research findings (2nd ed.). Thousand Oaks, CA: Sage.
Iacobucci, D., & Duhachek, A. (2003). Advancing alpha: Measuring reliability with confidence.

Journal of Consumer Psychology, 13(4), 478–487.
Jiroutek, M. R., Muller, K. E., Kupper, L. L., & Stewart, P.W. (2003). A new method for choosing

sample size for confidence interval-based inferences. Biometrics, 59, 580–590.
Joint Committee on Standards for Educational and Psychological Testing of the American

Educational Research Association (AERA), the American Psychological Association (APA), & the
National Council on Measurement in Education (NCME). (1999). Standards for educational
and psychological testing. Washington, DC: AERA.

Kelley, K. (2007a). Confidence intervals for standardized effect sizes: Theory, application, and
implementation. Journal of Statistical Software, 20(8), 1–24.

Kelley, K. (2007b). Methods for the Behavioral, Educational, and Social Sciences: An R package.
Behavior Research Methods, 39(4), 979–984.

Kelley, K., & Cheng, Y. (in press). Estimation and confidence interval formation for reliability
coefficients of homogeneous measurement instruments. Methodology.

Kelley, K., & Lai, K. (2011a). MBESS: Methods for the Behavioral, Educational, and Social Sciences,
Version 3.0.0 or higher. [Computer software and manual]. Retrieved from http://www.cran.
r-project.org/

Kelley, K., & Lai, K. (2011b). Accuracy in parameter estimation for the root mean square error of
approximation: Sample size planning for narrow confidence intervals. Multivariate Behavioral
Research, 46 , 1–32.

Kelley, K., Lai, K., & Wu, P. (2008). Using R for data analysis: A best practice for research. In J.
Osbourne (Ed.), Best practices in quantitative methods (pp. 535–572). Newbury Park, CA:
Sage.

Kelley, K., & Maxwell, S. E. (2003). Sample size for multiple regression: Obtaining regression
coefficients that are accurate, not simply significant. Psychological Methods, 8(3), 305–321.

Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference:
Accuracy in parameter estimation via narrow confidence intervals. Psychological Methods,
11(4), 363–385.

Kieffer, K. M., Reese, R. J., & Thompson, B. (2001). Statistical techniques employed in “AERJ”
and “JCP” articles from 1988 to 1997: A methodological review. The Journal of Experimental
Education, 69(3), 280–309.

Kline, R. B. (2004). Beyond significance testing: Reforming data analysis methods in behavioral
research. Washington, DC: American Psychological Association.

Kline, R. B. (2005). Principles and practices of structural equation modeling (2nd ed.).
New York: Guilford Press.

Komaroff, E. (1997). Effect of simultaneous violations of essential � -equivalence and uncorrelated
error on coefficient �. Applied Psychological Measurement, 21(4), 337–348.

Lai, K., & Kelley, K. (2011). Accuracy in parameter estimation for targeted effects in structural
equation modeling: Sample size planning for narrow confidence intervals. Psychological
Methods, 16 , 127–148.

Lance, C. E., Butts, M. M., & Michels, L. C. (2006). The sources of four commonly reported cutoff
criteria: What did they really say? Organizational Research Methods, 9(2), 202–220.



400 Leann Terry and Ken Kelley

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA:
Addison-Wesley.

Lucke, J. F. (2005). The � and the � of congeneric test theory: An extension of reliability and
internal consistency to heterogeneous tests. Applied Psychological Measurement, 29(1),
65–81.

Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power and
accuracy in parameter estimation. Annual Review of Psychology, 59, 537–563.

Maydeu-Olivares, A., Coffman, D. L., & Hartmann, W. M. (2007). Asymptotically distribution-free
(ADF) interval estimation of coefficient alpha. Psychological Methods, 12(2), 157–176.

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Lawrence Erlbaum
Associates.

Meehl, P. E. (1997). The problem is epistemology, not statistics: Replace significance tests by
confidence intervals and quantify accuracy of risky numerical predictions. In L. L. Harlow,
S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no significance tests? (pp. 393–426).
Mahwah, NJ: Lawrence Erlbaum Associates.

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size
and determine power. Structural Equation Modeling, 4, 599–620.

Nunnally, J. C. (1978). Psychometric theory, (2nd ed.) New York: McGraw-Hill.
Oehlert, G. W. (1992). A note on the delta method. American Statistician, 46 , 27–29.
Osburn, H. G. (2000). Coefficient alpha and related internal consistency reliability coefficients.

Psychological Methods, 5(3), 343–355.
Peterson, R. A. (1994). A meta-analysis of Cronbach’s coefficient alpha. Journal of Consumer

Research, 21, 381–391.
R Development Core Team (2011). R: A language and environment for statistical computing.

Vienna: R Foundation for Statistical Computing.
Raykov, T. (1997). Scale reliability, Cronbach’s coefficient alpha, and violations of essentially tau-

equivalence with fixed congeneric components. Multivariate Behavioral Research, 32(4),
329–353.

Raykov, T. (2002). Analytic estimation of standard error and confidence interval for scale reliability.
Multivariate Behavioral Research, 37(1), 89–103.

Revelle, W., & Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the GLB: Comments on
Sijtsma. Psychometrika, 74(1), 145–154.

Rodriguez, M. C., & Maeda, Y. (2006). Meta-analysis of coefficient alpha. Psychological Methods,
11(3), 306–322.

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha.
Psychometrika, 74, 107–120.

Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 3,
271–295.

Streiner, D. L. (2003). Starting at the beginning: An introduction to coefficient alpha and internal
consistency. Journal of Personality Assessment, 80(1), 99–103.

Thompson, B. (2002). What future quantitative social science research could look like: Confidence
intervals for effect sizes. Educational Researcher, 31(3), 25–32.

Thompson, B., & Vacha-Haase, T. (2000). Psychometrics is datametrics: The test is not reliable.
Educational and Psychological Measurement, 60, 174–195.

Vacha-Haase, T. (1998). Reliablity generalization: Exploring variance in measurement error
affecting score reliability across studies. Educational and Psychological Measurement, 58,
6–20.

van Zyl, J. M., Neudecker, H., & Nel, D. G. (2000). On the distribution of the maximum likelihood
estimator of Cronbach’s alpha. Psychometrika, 65(3), 271–280.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. (4th ed.). New York:
Springer.



Sample size planning for reliability coefficients 401

Wilkinson, L. & the American Psychological Association (APA) Task Force on Statistical Inference
(1999). Statistical methods in psychology journals: Guidelines and explanations. American
Psychologist, 54(8), 594–604.

Zimmerman, D. W., Zumbo, B. D., & Lalonde, C. (1993). Coefficient alpha as an estimate of test
reliability under violations of two assumptions. Educational and Psychological Measurement,
53, 33–49.

Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s �, Revelle’s �, and McDonald’s
�H : Their relations with each other and two alternative conceptualizations of reliability.
Psychometrika, 70(1), 123–133.

Zinbarg, R. E., Yovel, I., Revelle, W., & McDonald, R. P. (2006). Estimating generalizability to a
latent variable common to all of a scale’s indicators: A comparison of estimators for �h. Applied
Psychological Measurement, 30(2), 121–144.

Received 18 October 2010; revised version received 30 July 2011


	1. Introduction
	2. Homogeneous tests as a confirmatory factor model
	3. Reliability
	4. AIPE for sample size planning
	5. Sample size planning for reliability coefficients
	6. Applications of AIPE for reliability coefficients
	7. Illustrative example
	8. Discussion
	References

