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ABSTRACT
To draw valid inference about an indirect effect in a mediation model, there must be no omitted
confounders. No omitted confounders means that there are no common causes of hypothesized
causal relationships. When the no-omitted-confounder assumption is violated, inference about indi-
rect effects can be severely biased and the results potentiallymisleading. Despite the increasing atten-
tion to address confounder bias in single-level mediation, this topic has received little attention in
the growing area of multilevel mediation analysis. A formidable challenge is that the no-omitted-
confounder assumption is untestable. To address this challenge, we first analytically examined the
biasing effects of potential violations of this critical assumption in a two-level mediation model with
random intercepts and slopes, in which all the variables are measured at Level 1. Our analytic results
show that omitting a Level 1 confounder can yield misleading results about key quantities of interest,
such as Level 1 and Level 2 indirect effects. Second, we proposed a sensitivity analysis technique to
assess the extent to which potential violation of the no-omitted-confounder assumptionmight inval-
idate or alter the conclusions about the indirect effects observed. We illustrated the methods using
an empirical study and provided computer code so that researchers can implement the methods dis-
cussed.

Mediation analysis has become popular in identifying
and testing causal mechanisms underlying psychologi-
cal processes (Judd & Kenny, 1981; MacKinnon, 2008).
For example, one can test whether the effect of student
academic achievement (ACH; antecedent variable, X) on
student career aspirations for the future (FUT; outcome
variable, Y) is mediated (completely or partially) by stu-
dent academic self-concept (ASC;mediator,M). Figure 1a
depicts linear relationships between the variables in this
example, where a is the effect of X on M; b is the effect
of M on Y controlling for X; c′ is the (direct) effect of X
on Y controlling for M; and c is the total effect of X on Y
in Figure 1b. For this model, the indirect effect is equiva-
lently represented as the product of coefficients, ab, or the
difference in coefficients, c − c′ (Pearl, 2012).

Because many questions in psychology that involve
mediation processes are in the context of clustered data
(e.g., clients nested within therapists, employees nested
within supervisors, observations nested within person),
multilevel mediation is an extremely important tool that
is only recently becoming widely used because of the
advances in methodological explications and software
to implement these complicated models (e.g., Lanaj,
Johnson, & Barnes, 2014; Sturgeon, Zautra, & Arewasik-
porn, 2014; Tofighi & Thoemmes, 2014; Wang et al.,

CONTACT Davood Tofighi dtofighi@psych.gatech.edu School of Psychology J. S. Coon Bldg., Georgia Institute of Technology,  Cherry Street, Atlanta,
Georgia –.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/hmbr.

Supplemental data for this article can be accessed at tandfonline.com/hmbr.

2013). As an example, consider the study by Nagengast
and Marsh (2012), which examined the indirect effect
of student ACH on student FUT through student ASC
(self-perception of student academic skills). In this sce-
nario, students (Level 1 units) are clustered (nested)
within schools (Level 2 units). Because of the cluster-
ing, student data within schools tend to be correlated.
Because of the potential lack of independence among
student observations, traditional (single-level) techniques
such as ordinary least squares (OLS) regression would
produce invalid inference about the coefficients (e.g.,
underestimated standard errors; Raudenbush & Bryk,
2002; Snijders & Bosker, 2012). Instead, researchers
recommend multilevel mediation analysis because it
(a) correctly estimates the standard errors of the coeffi-
cients, yielding more accurate inference of the indirect
effects (Kenny, Korchmaros, & Bolger, 2003; Krull &
MacKinnon, 1999, 2001), (b) can estimate indirect effects
separately at the student level (Level 1) and school level
(Level 2; Preacher, 2011; Tofighi & Thoemmes, 2014), (c)
can test whether the Level 2 indirect effect differs from
the Level 1 indirect effect (Marsh, 1987; Marsh, Kuyper,
Morin, Parker, & Seaton, 2014; Marsh, Trautwein,
Lüdtke, Köller, & Baumert, 2005; Pituch & Stapleton,
2012), and (d) can test whether a Level 2 variable mod-
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Figure . A basic single-mediator model with an antecedent; X
= academic achievement (ACH), a mediator; M = academic self-
concept (ASC), and an outcome variable; Y = career aspirations
for the future (FUT); εs denote residual terms. Rectangles show
observed variables. An arrow between two variables indicates a
direct effect of the variable on the left on the other variable.

erates the Level 1 indirect effects (Bauer, Preacher, &
Gil, 2006).

Despite the increasing popularity of multilevel medi-
ation analysis, there remain key unresolved issues in the
specification and interpretation of important quantities.
A salient issue that has received little attention is a dis-
agreement about the proper way to estimate and inter-
pret an indirect effect. Unlike the single-level media-
tion model, the equality between ab or c − c′ does not
hold inmultilevelmediation analysis under certain condi-
tions (Tofighi, West, & MacKinnon, 2013). Some authors
argue that c − c′ is the proper estimate (Bauer et al.,
2006; Kenny et al., 2003; Muthén & Muthén, 1998–2012;
Preacher, 2011); other authors recommend ab as the cor-
rect estimate (Tofighi&Thoemmes, 2014; Zhang, Zyphur,
& Preacher, 2009).

We argue that such a discrepancy in defining an indi-
rect effect is because of the lack of development in the
area of specification assumptions necessary to define and
estimate a causal unbiased estimate of an indirect effect
in a multilevel mediation model. Whereas the specifi-
cation assumptions have garnered attention in single-
level mediation analysis (e.g., Imai, Keele, & Tingley,
2010; Judd & Kenny, 1981; Pearl, 2001; Valeri & Vander-
Weele, 2013; VanderWeele, 2010), extending the speci-
fication assumptions to the multilevel mediation mod-
els has received little attention (Tofighi et al., 2013). One
important part of the specification assumptions is the no-
omitted-confounder assumption (Valeri & VanderWeele,
2013; VanderWeele, 2010). The no-omitted-confounder
assumption states that there must be no omitted common
causes (i.e., confounders) of the observed variables in a

mediation model. The no-omitted-confounder assump-
tion is critical to estimate an unbiased estimate of the indi-
rect effect. Because the no-omitted-confounder assump-
tion is untestable, the indirect effect is potentially biased
(Holland, 1988). That is, we cannot rule out the biasing
effect of the potential confounders on the indirect effects.
It is unfortunate that ramifications of potential violation
of the no-omitted-confounder assumption have received
little attention in the multilevel mediation literature.

In this article, we explicate the specification assump-
tions necessary to define and estimate an unbiased causal
indirect effect in a 1 → 1 → 1 multilevel mediation
model. In the notation 1 → 1 → 1, the first, second, and
third number indicate that the antecedent, mediator, and
outcome variable, respectively, are measured at Level 1
(Krull &MacKinnon, 2001).1 We show that a violation of
the specification assumptions, especially the no-omitted-
confounder assumption, is a source of major disagree-
ment in defining and estimating an indirect effect. That
is, when the no-omitted-confounder assumption is vio-
lated, the two methods of defining and estimating indi-
rect effect are no longer equal. In addition, estimates of
coefficients would be biased, including the estimates of
indirect effects, because the indirect effects are functions
of the estimates of coefficients. Because the no-omitted-
confounder assumption is untestable, we propose a sen-
sitivity analysis technique to assess the extent to which
any potential violation of the no-omitted-confounder
assumption would change the conclusions about the indi-
rect effects.

Unresolved issues in multilevel mediation
analysis

The implications of violating the specification assump-
tions, including the no-omitted-confounder assumption,
have received little attention inmultilevel mediation anal-
ysis. An exception is the work by Tofighi et al. (2013),
which examined the biasing effects of omitting a Level 2
(school-level), not a Level 1 (student-level), confounder
in a 1 → 1 → 1 model. Tofighi et al. assumed that the
omitted Level 2 confounder was correlated with themedi-
ator and outcome variable, not the antecedent variable.
They found that the omitted Level 2 confounder would
bias the estimates of the indirect effect at Level 1 and bias
the variance–covariance estimates at Level 2. Tofighi et al.
concluded that the interpretation of indirect effects would
become ambiguous in the presence of the omitted con-
founder.

 We will also discuss additional types of multilevel mediation models such as
→ → model, in which X is measured at Level .
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88 D. TOFIGHI AND K. KELLEY

Several important issues remain unresolved. First,
Tofighi et al. (2013) considered the biasing effects of a
Level 2 (e.g., school-level), not a Level 1 (e.g., student-
level) omitted confounder. Second, Tofighi et al. studied
a simplified case in which the Level 2 omitted confounder
was assumed to influence themediator and outcome vari-
able but not the antecedent variable. Cases in which the
omitted confounder influences all of the observed vari-
ables at both levels of analysis were not considered. There-
fore, Tofighi et al.’s results are limited to randomized
experimental studies in which omitted confounders only
exist at Level 2.

We discuss three scenarios in which omitted con-
founders can arise in practice (Lash, Fox, & Fink, 2009):

1. Observational or experimental mediation studies
with a single unmeasured, but known, confounder
at Level 1. This scenario might occur when a the-
ory exists about the relevant Level 1 confounder
and yet the confounder is unmeasured. This is
likely to happen in archival data sets, in which
a researcher might not have had control of the
choice of variables being measured.

2. Observational or experimental mediation stud-
ies with an unknown confounder or confounders.
This scenario occurs when a researcher does not
have a theory about the nature of omitted vari-
ables. For example, theoretical development and
substantive theory have not progressed enough to
identify all of the possible omitted confounders.

3. Observational or experimental mediation stud-
ies with multiple unmeasured confounders, where
a theory identifies important unmeasured con-
founders and their relationships with the observed
variables. These confounders are neithermeasured
nor included in the study (e.g., an archival data
set).

In this article we present a framework that can examine
the biasing effect of omitted confounder(s) in Scenarios 1
and 2. We do not address Scenario 3 because it is beyond
the scope of this article.

Another unresolved issue is how to assess the extent
to which indirect effect estimates might be biased. For
this, we develop a method to assess sensitivity of indi-
rect effect estimates to the potential violations of the
no-omitted-confounder assumption. Because the no-
omitted-confounder assumption is not testable (Hol-
land, 1988), epidemiologists have recommended that
researchers probe the sensitivity of indirect effects to
potential violation of the no-unmeasured-confounder
assumption (Blakely, 2002; Hafeman, 2011). Sensitivity
analysis helps researchers determine how sensitive the
estimates of indirect effects are to the potential violations
of the no-omitted-confounder assumption.

Goals

We first study the multilevel biasing effects of an omit-
ted Level 1 confounder on the interpretation and estima-
tion of indirect effects at both Level 1 and Level 2 for
a two-level 1 → 1 → 1 mediation model with random
intercepts and slopes. A key goal is to assess the biasing
effects of an omitted Level 1 confounder that is correlated
at both Levels 1 and 2 with all the variables in a multi-
levelmodel.We extend the single-levelmediation analysis
framework (Cox, Kisbu-Sakarya, Miocević, & MacKin-
non, 2013) to analytically examine the multilevel biasing
effects by decomposing Level 1 confounder(s) into two
orthogonal components. We analytically derive expres-
sions quantifying the magnitudes of confounder bias on
the Level 1 and Level 2 coefficients and indirect effects as
well as the Level 2 variance of the random indirect effect.

The second goal is to assess the extent to which multi-
level omitted confounder bias would change conclusions
about Level 1 and Level 2 indirect effects, which we do
using a sensitivity analysis. The sensitivity analysis offers
estimates of the amount of bias in key estimates that help
bracket the likelymagnitude of the true indirect effect had
it been modeled with the confounders included. The sen-
sitivity analysis addresses the following questions:

1. How large is the relationship between the omitted
confounders andX,M, andY that would yield zero
(or nonsignificant) estimates of indirect effects at
Level 1 or 2?

2. What are the estimates of indirect
effects when omitted confounders are
(not/moderately/strongly) correlated with X,
M, and Y?

We will show how the sensitivity analysis can answer
these important research questions in the context of the
aforementioned empirical example.

In the single-level single-mediator model, there are
several techniques to address the potential violation of the
no-omitted-confounder assumption (see MacKinnon &
Pirlott, 2015; for a detailed discussion, see Cox et al.,
2013). We extend the sensitivity analysis method devel-
oped for the single-level single-mediator model (Cox
et al., 2013) to the 1 → 1 → 1 model to assess potential
bias for the two types of the omitted confounder(s) dis-
cussed in Scenarios 1 and 2. Cox et al.’s sensitivity analy-
sis is an extension of Mauro’s (1990) technique that used
the correlation of an omitted variable with the observed
variables in OLS regression to assess changes in the con-
clusions about regression coefficients. The advantage of
our method is that it extends the technique based on the
correlations of omitted confounder(s) with the observed
variables to both observational and experimental studies
(less X) in multilevel mediation studies.
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MULTIVARIATE BEHAVIORAL RESEARCH 89

Background: Multilevel mediationmodel

Before proceeding further, we present background and
necessary equations to specify a two-level, 1 → 1 → 1
model with random intercepts and slopes. The results
presented in our study are general, but for concreteness
we use the aforementioned education example through-
out the manuscript. Consider again the empirical exam-
ple by Nagengast and Marsh (2012). In this 1 → 1 →
1 model, the random slopes capture the heterogeneity of
Level 1 (Within) effects across schools; the random inter-
cepts model the Level 2 (Between) relationships. Other
two-levelmediationmodels such as 2→ 1→ 1 and 2→ 2
→ 1have also beenproposed (Krull&MacKinnon, 2001).
We focus on the 1→ 1→ 1modelwith random intercepts
and slopes because it is the most detailed and complex
model. It has the greatest number of both fixed (at least six
coefficients, three for each level of analysis) and random
effects (ten Level 2 covariances, five Level 2 variances,
and two Level 1 variances) compared to other similar
models.

For our educational example, we derive analytical
results using centering within cluster 2 (CWC2) with
latent cluster means for the following reasons, some of
which are outlined by Marsh et al. (2009); CWC2 cen-
ters variables within cluster (school) and adds the clus-
ter (school) means as covariates into the model at Level 2.
First, our research question guided the choice of cen-
tering strategy (Enders & Tofighi, 2007). In our exam-
ple, we are interested in whether a student ASC is a
positive function of student ACH and a negative func-
tion of school-average ACH score. Students with higher
ACH scores are expected to have higher ASC. However,
academically selective schools with high-ability students
might negatively influence student ASC. Such a differ-
ential effect in the school-level (Between) and student-
level (Within) ACH→ASC is a contextual effect known
as the big-fish-little-pond effect (BFLPE; Marsh, 1987).
In addition, we chose CWC2 to clearly show the effect
of an omitted confounder bias on Between, Within, and
cross-level effects in the model. Using CWC2 simplified
the analytical results because it allowed us to decom-
pose Between and Within effects for the observed vari-
ables as well as the confounder(s). We chose using latent
cluster means instead of observed cluster means to be
consistent with results in Marsh et al. (2009). Marsh
et al. recommended using latent mean centering for this
problem. In addition, using latent cluster means is likely
to produce less attenuated estimate of Between effects
(Lüdtke et al., 2008).2

 We provide a more extensive treatment of centering of the predictors in
→ → models in the supplemental materials.

Equations for the 1→ 1→ 1model

The first set of equations decompose Xij,Mij, and Yij into
the orthogonal Level 2 and Level 1 latent variables using
CWC2 with latent cluster means, where i denotes a stu-
dent and j denotes a school:

Xi j = ηX j + ηXi j (1)
Mij = ηMj + ηMi j (2)
Yi j = ηY j + ηYi j (3)

In Equation (1), ηXj is the Level 2 latent school (cluster)
mean on ACH; this is a random intercept that is school
specific. The within-school (Within) latent component,
ηXij, measures the deviation of each student’s ACH score
from his or her school’s latent mean. This score shows
the standing of each student relative to his or her school’s
level. For the mediator and outcome variables in (2) and
(3), respectively, the Between components, ηMj and ηYj,
represent latent school means on ASC and FUT, respec-
tively. For Mij and Yij, the Within components ηMij and
ηYij represent student i’s deviation score from his or her
school’s latent mean, respectively. For example, ηMij rep-
resents the standing of a particular student’s ASC relative
to his or her latent school mean on ASC.

A common practice in specifying a multilevel media-
tion model is to write equations for Level 1 (e.g., student)
and Level 2 (e.g., school). Separately, the Level 1 equations
for the population relationships at the student level are

Mij = ηMj + a jηXi j + εMi j (4)
Yi j = ηY j + c′jηXi j + b jηMi j + εYi j. (5)

The Level 2 equations for the relationships at the school
level are

ηMj = d0M + aBηX j + uMj (6)
ηY j = d0Y + c′BηX j + bBηMj + uY j (7)
a j = aW + ua j (8)
b j = bW + ubj (9)
c′j = c′W + uc′ j. (10)

One can also specify the following Level 1 and 2 equa-
tions to estimate the population total effect of ACH on
FUT:

Yi j = ηY j + c jηXi j + ε′
Yi j (11)

ηY j = d′
0Y + cBηX j + u′

Y j (12)
c j = cW + uc j. (13)

Equations (4), (5), and (11) describe population rela-
tionships between observed variables for each Level 1 unit
i (e.g., student). For example, Equation (4) shows that stu-
dent ACH predicts ASC. Coefficient aj is the latent effect
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90 D. TOFIGHI AND K. KELLEY

of ACH on ASC for Level 2 unit j (e.g., school). The sub-
script j indicates that this effect can vary across schools.
Because aj is unobserved and varies across schools, it is
also called a random effect (coefficient); bj is the random
effect of ASC on FUT, while controlling for ACH; c′j is the
random effect of ACH on FUT, while controlling for ASC;
cj is the total random effect of ACHonFUT. The εs denote
the Level 1 residuals.

Because we used CWC2, Level 2 Equations (6), (7),
and (12) describe the Level 2 (Between) population coef-
ficients. The Between coefficients are denoted by the sub-
script “B”: aB is the Between effect of ACH on ASC; bB is
the Between effect of ASC on FUT, while controlling for
ACH; c′B is the Between effect of ACH on FUT, while con-
trolling for ASC; and cB is the Between total effect of ACH
on FUT.

Finally, the Level 2 Equations (8)–(10) and (13)
describe the relationships between random coefficients
and population-average coefficients (i.e., the expected val-
ues of the random coefficients) for each Level 2 unit j. The
population-average coefficients are the Level 1 (Within)
coefficients denoted by the subscript “W”. For example,
Equation (8) shows that aj equals the population-average
Within coefficient, aW, which is the expected value of
all ajs across all the schools, plus a deviation from the
population-average coefficient for school j, denoted byuaj.
Henceforth, we call the population-averageWithin coeffi-
cients simplyWithin coefficients. TheWithin coefficients,
bW, c′W , and cW, have similar interpretation as the popula-
tion average for their respective random coefficients. The
u terms, which denote deviations from the Within coeffi-
cients, are also referred to as Level 2 residuals.

Distributional assumptions

In a 1 → 1 → 1 model, distributional assumptions about
the residuals are critical in obtaining unbiased estimates
of indirect effects (Bauer et al., 2006; Tofighi et al., 2013).
Here, we provide a general description of the distribu-
tional assumptions.

The vector of Level 1 (Within) residuals is denoted by
ε = (εMi j, εYi j)

T, where T denotes vector transpose. The
vector of residuals is assumed to have a bivariate normal
distribution with the means of zero and a 2×2Within the
variance–covariance matrix denoted by !W :

!W =
(

σ 2
εMi j

σεMi j,εYi j σ 2
εYi j

)

, (14)

where the terms σ 2
εMi j

and σ 2
εYi j

are variances and σεMi j,εYi j

is the covariance between Level 1 residuals across the
equations associated withM and Y.

The vector of Level 2 residual terms, u =
(uMj, uaj , uYj , ubj , uc′j )

T , contains five residual terms
associated with M and Y in Equations (6)–(10), two
for the random intercepts and three for random slopes.
The vector is assumed to have a multivariate normal
distribution with the means of zero and a 5×5 Between
variance–covariance matrix, !B, as follows:

!B =

⎛

⎜⎜⎜⎜⎜⎜⎝

σ 2
uMj

σua j ,uMj σ 2
ua j

σuYj ,uMj σuYj ,ua j σ 2
uYj

σub j ,uMj σub j ,ua j σub j ,uYj σ 2
ub j

σuc′j ,uMj σuc′j ,ua j
σuc′j ,uYj

σuc′j ,ub j
σ 2
uc′j

⎞

⎟⎟⎟⎟⎟⎟⎠
(15)

The off-diagonal elements are the covariances between
pairs of the residual terms (or, equivalently, random
effects). Considering !B, we delineate subtle, but impor-
tant, differences between two types of covariances
between residuals in a 1 → 1 → 1 model (Bauer et al.,
2006). The 1 → 1 → 1 model is a bivariate model that
consists of two Level 1 equations with two dependent
variables (i.e., M and Y). The covariances in the 1 → 1
→ 1 model contain both within-equation and between-
equation covariances. Interpretation of within-equation
covariances in a 1 → 1 → 1 model is similar to that in a
conventional univariate multilevel model (Raudenbush &
Bryk, 2002). For example, uaj and uMj both appear in the
Level 2 equations for the mediator M. When an appro-
priate centering strategy is applied, Snijders and Bosker
(2012, Chapter 5) recommend estimating and interpret-
ing thewithin-equation covariances. For example, within-
equation covariance σua j ,uMj is the covariance between the
random intercept and slope predicting the same depen-
dent variable, M. A negative value for this covariance
could indicate that the higher the school-average ACH,
the smaller the relationship between student ACH and
ASC. Between-equation covariances, however, are spe-
cific to amultivariatemodel such as the 1→ 1→ 1model.
In a conventional multilevel model, there are no between-
equation covariances. Unlike within-equation covariance,
a nonzero between-equation covariance might not have a
substantive interpretation (Tofighi et al., 2013).

Level 1 and Level 2 indirect effects

In multilevel analysis, indirect effects can be defined at
each level. First, we discuss the random indirect effect
that is the product of two random coefficients: ajbj. Using
CWC2, we define the random indirect effect as a school-
specific, Within indirect effect for school j that varies
randomly around the population-averageWithin indirect
effect, aWbW, or, simply, Within indirect effect.
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A point of contention is whether the expected value
of the random indirect effect equals the (Within) indirect
effect. Several authors broadly define indirect effect as the
expected value of the random indirect effect (Bauer et al.,
2006; Kenny et al., 2003; Preacher, 2015; Preacher, Zyphur,
& Zhang, 2010). When CWC2 is applied, these authors
define the Within indirect effect as follows:

E[a jb j] = aWbW + σa j,b j , (16)

where σa j,b j is the covariance between the random
effects aj and bj, or equivalently, between the respective
Level 2 residuals (Tofighi et al., 2013). However, Tofighi
et al. showed that when there is an omitted confounder
at Level 2, the expression does not estimate an unbiased
estimate of the Within indirect effect. Next, we provide a
set of specification assumptions necessary to compute an
unbiased estimate of an indirect effect.

Specification assumptions

We extend the specification assumptions from the single-
level mediation literature in different methodological tra-
ditions (e.g., path analysis and counter-factual frame-
work) to the multilevel mediation analysis (James, 1980;
James & Brett, 1984; Judd & Kenny, 1981; McDonald,
1997; Pearl, 2001; Valeri & VanderWeele, 2013; Van-
derWeele, 2010). Investigating the correct specification
assumptions inmediation analysis ismore challenging for
a 1 → 1 → 1 model than for a single-level model. The
challenges result from the complex nature of the multi-
level data. For example, in a 1 → 1 → 1 model (a) the
relationships might exist at two levels of analysis; (b) the
interaction effects might occur at either level or across the
levels; or (c) each variablemight bemeasured at Level 1 or
2, resulting inmodels with distinct interpretations of indi-
rect effects (e.g., e.g., 2→ 1→ 1 model; Krull &MacKin-
non, 1999, 2001; Pituch & Stapleton, 2012). As discussed,
scaling predictors plays an important role in estimation
and interpretation of the model parameters (Enders &
Tofighi, 2007; Lüdtke et al., 2008; Preacher, 2011; Zhang
et al., 2009). Finally, distributional assumptions about the
residuals are more complicated in a multilevel model. For
the 1 → 1 → 1 model, as shown previously, one needs
to make distributional assumptions about seven residuals
instead of two residuals in the single-mediator model in
Figure 1.

A correctly specifiedmodel

For a correctly specified 1 → 1 → 1 model, the following
set of specification assumptions is necessary to have an
unbiased estimate of indirect effects:

1. Correct functional forms: The functional relation-
ships as well as the causal order of the relationships
between X,M, and Y are correctly specified.

2. Validity and reliability: The observed variables X,
M, and Y are perfectly valid and perfectly reliable
measures of the respective constructs.

3. No method bias: Method bias might occur when
two or more variables in a study are measured
using the same method of measurement (Camp-
bell & Fiske, 1959; Podsakoff, MacKenzie, Lee, &
Podsakoff, 2003; Richardson, Simmering, & Stur-
man, 2009). For example, if the observed vari-
ables in a mediation study are collected using a
self-report questionnaire, a researcher might sus-
pect that “at least some of the observed covaria-
tion between themmay be due to the fact that they
share the same method of measurement” (Pod-
sakoff, MacKenzie, & Podsakoff, 2012, p. 540). The
no method bias assumption states that there exists
no shared method variance biasing the relation-
ships between X,M, and Y at either level.

4. No omitted confounder: There is no omitted con-
founder of the X, M, and Y relationships at either
level of analysis. More formally, this assump-
tion states that there must be no omitted con-
founders of the relationships between X, M, and
Y that are posited in the 1 → 1 → 1 model in
Equations (1)–(10). The no-omitted-confounder
assumption has also been termed the “no omit-
ted variables” assumption (MacKinnon & Pir-
lott, 2015), “orthogonality of residuals” assump-
tion (McDonald, 1997), and “sequential ignorabil-
ity” assumption (Imai et al., 2010).

5. No interaction: No interaction effect exists
between the observed variables as well as between
the observed and omitted variables at each level
and across levels. This assumption is also referred
to as the “no-interaction,” “linearity,” or “constant-
effect” assumption (Pearl, 2012).

Finally, as we discussed previously, the distributional
assumptions aboutmultilevelmodelsmust also bemet for
proper statistical inference (e.g., confidence interval [CI]
and p values; Raudenbush & Bryk, 2002).

Assumption 1 emphasizes the longitudinal nature of
a mediation model in that X is measured before M and
M is measured before Y (Davis, 1985; MacKinnon, 2008).
Cross-sectionalmediation studies in which this condition
is not met can lead to invalid results (Maxwell & Cole,
2007; Maxwell, Cole, & Mitchell, 2011). When the above
assumptions hold, Tofighi et al. (2013) showed that

aBbB = cB − c′B (17)
aWbW = cW − c′W . (18)
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92 D. TOFIGHI AND K. KELLEY

This result indicates that both methods of calculat-
ing Level 1 and Level 2 indirect effects are equivalent.
It also implies that both the product-of-coefficient and
difference-in-coefficients methods will produce an unbi-
ased estimate of indirect effects at the respective levels
of analysis. Assumptions 2, 3, and 5, which are not dis-
cussed by Tofighi et al. (2013), are also critical in obtain-
ing equivalent unbiased estimates of the indirect effects
using either method. When these assumptions hold, an
unbiased, causal estimate of the Within indirect effect
is E[a jb j] = aWbW = cW − c′W . In addition, covariance
between aj and bj will be zero: σa j,b j = 0. That is, when
these assumptions hold, we can define and estimate a
causal estimate of the Within indirect effect. However, as
will be shown later, if Assumptions 3 and 5 are violated,
the relationships in Equations (17) and (18) do not hold.
More important, Equation (16) does not provide a causal,
unbiased estimate of Within indirect effect.

Amisspecifiedmodel

To investigate the implications of violation of the no-
omitted-confounder assumption, we consider a “misspec-
ified” 1 → 1 → 1 model in which the omitted con-
founder(s) of X, M and Y relationships may exist at both
levels. We consider the types of omitted confounder(s)
in Scenarios 1 and 2: single unmeasured confounder and
unknown confounder(s). In terms of the specification
assumptions, we assume that Assumptions 4 and 5 are
violated, whereas Assumptions 1–3 hold. For this mis-
specifiedmodel, estimating biasing effects of omitted con-
founder(s) poses the following challenges.

Challenge 
One key challenge that arises when a potential con-
founder is correlated with the observed variables at
both levels of analysis is that the resulting compounded,
multilevel biasing effects can be comprised of Level 1,
Level 2, and cross–level effects. That is, a confounder may
not only bias the relationships at Level 1 and Level 2, but
may also serve as a potential moderator of the Level 1
relationships. This result implies that the no-interaction
assumption can also be violated. This violation occurs
because the Level 1 omitted variable that varies at both
Levels 1 and 2 can also moderate the Within coefficients
that substantially vary across Level 2 units (e.g., across
schools). In this case, the Within indirect effect would be
moderated by omitted confounders at Level 2 (e.g., school
characteristics). Thus, we can have an omitted cross-level
interaction effect. In addition, omitted confounders at
the individual level (e.g., student characteristics) can also
moderate the Level 1 indirect effect. In this case, we can
have an omitted Level 1 interaction effect.

We investigate the important case of the omitted con-
founder effect on cross-level interaction.3 A cross-level
effect is of substantive importance in various areas of
psychological research and related fields (Raudenbush
& Bryk, 2002; Snijders & Bosker, 2012). Omitted cross-
level interaction effects are of substantive interest in
school settings; for example, educational researchers are
often interested in estimating environmental factors (e.g.,
school-district characteristics) affecting student perfor-
mance and what school-level characteristics would mod-
erate student-level indirect effects.

Challenge 
A second challenge is finding a mathematical framework
that computes and estimates the biasing effects of omit-
ted confounder(s). Themathematical framework needs to
consider that potential biasing effects of an omitted con-
founder are likely to be a weighted composite of unob-
served Level 1 and Level 2 correlations (Kreft, de Leeuw,
&Aiken, 1995). To estimate the weighted composite effect
of the omitted variable, values for three unobserved quan-
tities are needed: (a) Level 2 correlations of an omitted
confounder with the observed variables, (b) Level 1 corre-
lations of an omitted confounder with the observed vari-
ables, and (c) the weights for the composite effect.

Method

Assessing omitted confounder bias

Mauro (1990) described techniques to assess the poten-
tial biasing effect of an omitted variable in OLS regres-
sion. Cox et al. (2013) extended these techniques to assess
omitted confounder bias in a single-level single-mediator
model. We extend this framework for 1→ 1→ 1 models.
We describe three critical stages in the extended frame-
work: First, we introduce the concept of a latent proxy
variable to model confounder bias in Scenarios 1 and 2.
Second, we discuss the concept of “augmented” model.
Third, we describe the necessity of reexpressing relation-
ships between the latent proxy variable and observed vari-
ables to derive analytic results.

Latent proxy variable
To address Challenge 1, we introduce a single latent vari-
able, Zij, that serves as a proxy for omitted confounder(s)
that may exist at both Levels 1 and 2. First, we assume
that the latent proxy variable, Zij, is potentially corre-
lated with all of the observed variables (i.e., the no-
omitted-confounder assumption is violated); the sign and

 Deriving analytic results for both omitted cross-level and Level  interaction
effects is beyond the scope of this manuscript.
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MULTIVARIATE BEHAVIORAL RESEARCH 93

the magnitude of the correlations may vary. Second, we
assume that the latent proxy variable linearly influences
the observed variables in the model. That means that
potential nonlinear relationship (e.g., quadratic relation-
ship) between the omitted and observed variables are not
modeled.

The use of Zij as a proxy for the potential omitted
confounder(s) is justified because a single latent variable
is sufficient to account for spurious correlations (covari-
ances) between (residuals of) three observed variables
(Brewer, Campbell, & Crano, 1970). By spurious we mean
extraneous correlation not accounted for by the posited
mediation model. When the no-omitted-confounder
assumption is violated, between-equation covariances in
$W in (14) and $B in (15) will be nonzero;4 otherwise,
the between-equation covariances will be zero if speci-
fication assumptions 1–5 hold. Introducing Zij accounts
for the spurious correlations between observed vari-
ables, thereby rendering the between-equation covari-
ances zero. In addition, because the potential omitted con-
founders are likely to explain heterogeneity of indirect
effects across Level 2 units, we investigate whether Zij
moderates the Level 1 indirect effect, violating the no-
interaction assumption. It should be noted that Zij serves
as a proxy for both Level 1 and Level 2 confounders.

The latent proxy variable is suitable to address
confounder-bias in Scenarios 1 and 2. In Scenario 1, for
a single known unmeasured confounder, a researcher is
more likely to find plausible values for the correlations of
the unmeasured confounder with the observed variables
from the literature or experts. A researcher can use this
latent proxy variable along with the range of the correla-
tion values to evaluate the potential biasing effect on the
conclusions about the indirect effect.

For the unknown confounders in Scenario 2, the latent
proxy variable assumes that the effect of all unknown con-
founders can be represented by a single latent variable.
Making this assumption is reasonable because researchers
have made similar types of assumptions about unknown
causes when specifying disturbances in single-level struc-
tural equation models (SSEM). Disturbance is “the set of
unspecified causes of the effect variable. Analogous to an
error or residual in a prediction equation ... The distur-
bance is treated as a latent variable” (Kenny, 2011).

Augmentedmodel
Challenge 2 was to find a mathematical framework that
models correlational structure at Levels 1 and 2 as well as
the composite weights for multilevel effects of Zij on the
model parameters. We begin by treating the correlational

 Except, in a rare situation that other sources of spurious between-equation
correlations exist (e.g., common method effect) such that the sum of the
spurious correlations would become zero.

structure as known.We propose the followingmathemat-
ical framework. First, we augment the misspecified 1 →
1 → 1 model by adding the latent proxy variable Zij. We
term this new model the “augmented” model. To address
the challenge of estimating composite weights, we use the
concept of partitioning a Level 1 variable into Level 1 and
Level 2 components from the multilevel centering litera-
ture (Enders & Tofighi, 2007). That is, we decompose Zij
into two orthogonal components and then study the bias-
ing effects of each component on the level-specific and
cross-level effects:

Zi j = ηZ j + ηZi j, (19)

where ηZij and ηZj are the Level 1 and Level 2 com-
ponents of the latent proxy variable, respectively. This
approach permits the biasing effects of the unmeasured
confounder(s) to be examined at different levels of anal-
ysis. The final augmented 1 → 1 → 1 model with the
orthogonal components of Zij is shown in Figure 2.

We specify the Level 1 and 2 equations for the aug-
mented model. The Level 1 equations for the augmented
model with the random intercepts and slopes are

Zi j = ηZ j + lZXηXi j + ϵZi j (20)
Mij = ηMj + a jηXi j + lMZηZi j + ϵMi j (21)
Yi j = ηY j + c′jηXi j + b jηMi j + lYZηZi j + ϵYi j. (22)

The Level 2 equations are

ηZ j = d0X + dZX ηX j + uZ j (23)
ηY j = d0Y + c′BηX j + bBηMj + dYZηZ j + uY j (24)
ηMj = d0M + aBηX j + dMZηZ j + uMj (25)
a j = aW + daZηZ j + ua j (26)
b j = bW + dbZηZ j + ubj (27)
c′j = c′W + dc′ZηZ j + uc′ j, (28)

where lZX and dZX denote the Within and Between effect
of ACH on Zij, respectively; lMZ and dMZ show theWithin
and Between effect of Zij on ASC, while controlling for
ACH; lYZ and dYZ represent theWithin andBetween effect
of Zij on FUT, while controlling for ACH and ASC; daZ,
dbZ, and dc′Z denote the moderating (cross-level) effects
of ηZj on the Within relationships. We now are in a posi-
tion to study the multilevel biasing effects of omitted con-
founder(s) using the augmented model.

Reexpressing equations for the latent proxy variable
An important part of the analytic derivation was to reex-
press the relations between the latent proxy variable and
the antecedent andmediator variables, such that the latent
proxy variable is the dependent variable and the observed
variables are predictors. More specifically, we reexpressed
theWithin and Between linear relationships ofXij andMij
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94 D. TOFIGHI AND K. KELLEY

Figure . The augmented model with random intercepts and
slopes. ACH = academic achievement; ASC = academic self-
concept; FUT = career aspirations for the future; Zij, a latent
proxy variable for omitted confounder (e.g., academic interest), is
decomposed into the Within (ηZij) and Between (ηZj) latent vari-
ables. At the Within part of the graph, filled circles lying in the
middle of the arrows represent random slopes. Filled circles at
the end of arrows represent random intercepts, whose relation-
ships are further depicted in the Between part of the graph. Note
that within-equation correlation (e.g., intercept–slope correlation,
σua j

,uM j
) forM and Y are not shown. The between-equation covari-

ances (e.g., σua j ,ubj
) are zero.

to Zij as follows:

ηZi j = qZX ηXi j + qZMηMi j + ϵ′
Zi j (29)

ηZ j = s0 + sZX ηX j + sZMηMj + u′
Z j, (30)

where ss and qs are regression coefficients, and ϵ′
Zi j and

u′
Z j are the residual terms. We detail the interpretation

of these coefficients in the next section. We use the coef-
ficients in the aforementioned equations in the analytic
results. Before proceeding, it is important to compare the
relationships of the coefficients qZM and sZM in Equa-
tions (29) and (30) to the coefficients lMZ and dMZ in Equa-
tions (21) and (25). These four equations model the lin-
ear correlation between Xij, Mij, and Zij at Level 1 or 2,
and thus are related. For example, in Equation (30), the
coefficient sZM is proportional to the partial correlation
between ηZj and ηMj, while controlling for ηXj. In Equa-
tion (25), the coefficient dMZ is also proportional to the

partial correlation between ηZj and ηMj, while controlling
for ηXj. As a result, the coefficients sZM and dMZ are pro-
portional to one another. Similarly, qZM and lMZ are pro-
portional to the partial correlation between ηZij and ηMij,
while controlling for ηXij.

The next step to derive analytic results is to omit the
latent proxy variable from the augmentedmodel and then
compute the bias in the resulting misspecified model.
The coefficients in the resulting misspecified model are
denoted using an asterisk and are termed “biased” (unad-
justed). The coefficients in the augmentedmodel (e.g., aB)
are termed “bias corrected” (adjusted). The full analytic
derivation can be found in the Appendix.

Analytic results

To make the analytic results more concrete, we present
a summary of the analytical results and interpret them
using our educational example. Because the values of
ACH are not randomized, as is often the case with inde-
pendent variables in psychology and related fields, the
estimates of indirect effects at Levels 1 and 2 can be biased
because of the unobserved confounders. For our exam-
ple, there is evidence that student academic interest is
correlated with both ACH and ASC (Marsh et al., 2005).
For simplicity, we assume that student academic inter-
est is the only unmeasured confounder as in Scenario 1,
which is potentially correlatedwith the observed variables
at Levels 1 and 2. Thus, Zij denotes academic interest;
ηZj denotes Between (school-average, or simply school)
academic interest; and ηZij denotes Within (student) aca-
demic interest. School academic interest, ηZj, is indicative
of the general academic interest at the school level. Stu-
dent academic interest, ηZij, indicates each student’s aca-
demic interest relative to the school latent mean academic
interest.

Biased between coefficients

Biased (unadjusted) Between coefficients a∗
B, b∗

B, and c′∗B
are as follows:

a∗
B = aB + dMZ dZX , (31)
b∗
B = bB + dYZ sZM , (32)

c′∗B = c′B + dYZ sZX . (33)

For the coefficient a∗
b , which represents the effect of school

ACH on school ASC, the biasing effect of the omitted
variable equals dMZdZX. The size of dMZ depends on the
magnitude of the partial correlation between school aca-
demic interest (ηZj) and school ASC, while controlling for
school ACH (see Equation [25]); the size of dZX depends
on the correlation between school academic interest and
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MULTIVARIATE BEHAVIORAL RESEARCH 95

school ACH (see Equation [23]). As the absolute val-
ues of the correlation coefficients increase, the amount
of bias will also increase. If the correlation coefficients
have the same sign, the bias (E[â∗

B] − ab) is positive; oth-
erwise, the bias is negative. In our hypothetical example,
one can expect the correlation coefficients between aca-
demic interest and ACH and ASC to be positive at school
level. As school ACH increases, school academic interest
level also increases, which, in turn, would elevate the level
of ASC at the school level.

For b∗
B, the biasing effect of the omitted variable equals

dYZ sZM. In Equation (30), sZM is proportional to the corre-
lation between academic interest and ASC, while control-
ling for ACH at school level. In Equation (24), dYZ rep-
resents the Between effect of academic interest on FUT,
while controlling for ACH and ASC. Again, as the magni-
tudes of the correlation coefficients increase, the amount
of bias also increases. The direction of the bias depends on
the sign of the correlation coefficients. Finally, the amount
of bias in the coefficient c′∗B depends on the product of
two quantities: dYZ (mentioned already) and sZX. In Equa-
tion (30), sZX is proportional to the correlation between
academic interest and ACH, while controlling for ASC at
school level.

Biasedwithin coefficients

Biased (unadjusted) Within coefficients a∗
W , b∗

W , and c′∗W
are as follows:

a∗
W = aW + daZ

(
d0Z + dZXµηX j

)
+ lMZ lZX , (34)

b∗
W = bW + dbZ

(
s0 + sZXµηX j + sZMµηMj

)

+lYZqZM, (35)
c′∗W = c′W + dc′Z

(
s0 + sZXµηX j + sZMµηMj

)

+lYZqZX , (36)

where µηX j and µηMj are the expected values of ηXj and
ηZj, respectively. As can be seen in (34), there exist two
sources to potentially bias the estimate of coefficient a∗

W
when academic interest, Zij, varies at both school and stu-
dent level. The first source of bias is the second term on
the right-hand side of Equation (34), daZ(d0Z + dZXµηX j ),
whose magnitude depends in part on (a) daZ (see Equa-
tion [26]), which is a cross-level effect of school academic
interest on the Within effect of student ACH on ASC,
and (b) d0Z + dZXµηX j , which is the (conditional)mean of
school academic interest, predicted by school ACH. The
conditionalmean value can be interpreted as the expected
(“typical”) score of academic interest for a school with
an average (typical) ACH score (i.e., µηX j ). The second
source of bias is quantified by the term lMZlZX, which rep-
resents the effect of the Within part of the omitted con-
founder, ηZij, on aW. The coefficient lMZ is proportional to

the partial correlation between student ASC and student
academic interest, while controlling for student ACH (see
Equation [21]). The coefficient lZX is proportional to the
correlation between student academic interest and stu-
dent ACH (see Equation [20]).

Similarly, twopotential sources of bias for b∗
W , as shown

in Equation (35), are as follows. Note that the second
term, dbZ(s0 + sZXµηX j + sZMµηMj ), consists of dbZ and
(s0 + sZXµηX j + sZMµηMj ); dbZ (see Equation [27]) is a
cross-level effect of school academic interest on the effect
of student ASC on student FUT controlling for student
ACH and academic interest; (s0 + sZXµηX j + sZMµηMj ) is
the (conditional) mean of school academic interest pre-
dicted by school ACH and ASC in Equation (30). The
third term, lYZqZM, is a result of omitting the within part
of student academic interest. The coefficient lYZ is pro-
portional to the partial correlation between student FUT
and academic interest, while controlling for student ACH
and ASC (see Equation [22]); the coefficient qZM is pro-
portional to the partial correlation between student aca-
demic interest and ASC, while controlling for ACH (see
Equation [29]).

Finally, as shown in Equation (36), two sources of bias
influence c′∗W when academic interest is omitted from the
model. The first source is dc′Z(s0 + sZXµηX j + sZMµηMj );
dc′Z is the cross-level effect of school academic interest
on the effect of student ACH on FUT, while controlling
for student ASC and academic interest; (s0 + sZXµηX j +
sZMµηMj ) is the (conditional) mean of school academic
interest predicted by school ACH and ASC (see Equa-
tion [30]). The second source of bias is the term lYZqZX,
which quantifies the effect of omitting student academic
interest on c′W . The coefficient lYZ is the partial correla-
tion between student FUT and academic interest control-
ling for student ACH and ASC (see Equation [22]); the
coefficient qZX is the partial correlation between student
academic interest and ACH, while controlling for student
ASC (see Equation [29]) .

Biased indirect effects

Of special importance in estimating a multilevel medi-
ation model is to obtain estimates of the Within and
Between indirect effects. The biasedWithin indirect effect
equals the expected value of the biased random indirect
effect (see the Appendix):

E[a∗
j b

∗
j] = aWbW + (aWlYZqZX + bW lZX lMZ

+lMZlZX lYZqZM)

+k1µηZ j + daZdbZ(µ2
ηZ j

+ σ 2
ηZ j

) , (37)

where

k1 = aWdbZ + bW daZ + daZlYZqZM + dbZlMZlZX .
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96 D. TOFIGHI AND K. KELLEY

In Equation (37), µηZ j and σ 2
ηZ j

are the mean and vari-
ance of ηZj, respectively, of Z. Equation (37) shows that
the expected value of a∗

j b∗
j is biased. The amount of bias(

E[a∗
j b∗

j] − aWbW
)
consists of the three following terms.

First, the term aWlYZqZX + bWlZXlMZ + lMZ lZX lYZ qZM
quantifies the product of biases of aW and bW. It can be
shown that the quantity aWbW + (aWlYZqZX + bWlZXlMZ
+ lMZlZXlYZqZM) equals the product of a∗

W and b∗
W , which

are the expected values of a∗
j and b∗

j , respectively. The
second term, k1µηX j , is the expected value of the linear
moderated effect of the between part of the omitted con-
founder (ηZj) on the Within indirect effect. The term lin-
ear refers to the fact that the cross-level bias term, k1µηX j ,
is a function of the first-order power of expected value
of ηZj. Finally, the term daZ dbZ (µ2

ηX j
+ σ 2

ηX j
) shows the

average quadratic moderated effect of the omitted con-
founder on theWithin indirect effect. The quadraticmod-
erated effect is a function of the second-order power of
the expected value of ηXj. This quadratic effect is a result
of the omitted variable that affects both the mediator and
outcome variable.

Another result of omitting a Level 1 variable is that ran-
dom coefficients a∗

j and b∗
j will be correlated in the mis-

specified model. The covariance between a∗
j and b∗

j is as
follows:

σa∗
j ,b∗

j
= daZdbZ σ 2

ηZ j
. (38)

The values daZ and dbZ represent themoderating effects of
the Between part of the omitted confounder on the medi-
ator and outcome variable, respectively. As themagnitude
of the moderating effects becomes larger, so too does the
covariance between the random coefficients a∗

j and b∗
j .

In addition, we can rewrite the expected value of the
biased random indirect effect in the misspecified model.
Based on Equations (37) and (38), the expected value of
the biased random indirect effect is

E[a∗
j b

∗
j] = a∗

W b∗
W + σa∗

j ,b∗
j
. (39)

Equation (39) shows that the expected value of the biased
random indirect effect equals the product of the expected
values of a∗

j and b∗
j plus the covariance between the

biased random coefficients. This covariance quantifies the
amount of between-cluster bias induced by omitting ηZj,
the between-cluster component of the omitted variable.
This covariance is a spurious covariance, which biases the
mean of the random indirect effect as a result of omitting
ηZj. More important, we can estimate this particular bias
from the covariance between a∗

j and b∗
j . That is, a multi-

level data structure provides enough information to esti-
mate σa∗

j ,b∗
j
, which is part of the bias in (39). As a result,

we can obtain a less biased estimate of theWithin indirect

effect by subtracting σa∗
j ,b∗

j
from the estimate of E[a∗

j b∗
j]:

E[a∗
j b∗

j] − σa∗
j ,b∗

j
.

Finally, the biased Between indirect effect is

a∗
Bb

∗
B (40)

where a∗
B and b∗

B are the biased Between coefficients in
Equations (31) and (32), respectively.

Sensitivity analysis

The analytical results presented above are general in that
they were not derived according to a specific distribu-
tional assumption about the latent proxy variable. To
identify the bias calculation formula andmake the numer-
ical results tractable, we first assume that both Level 1
and Level 2 latent proxy variables have been scaled to
have a mean of zero and standard deviation of one. This
assumption also simplifies deriving formulas for bias-
corrected (adjusted) coefficients. The resulting simplified
formulas are shown in the Appendix. Second, we assume
that a plausible range of values for the correlation coef-
ficients between Z and the variables X, M, and Y, rZ =
(rZX , rZM, rZY )T are available at both Level 1 and Level 2.

Obtaining a plausible range of values is not trivial.
Although, the alternative of considering the correlations
is itself problematic because the assumption is that there
is no omitted confounder. For Scenario 1, where the the
single omitted confounder is known, but unmeasured, we
believe the best strategy for obtaining plausible values is
to use values reported in the relevant literature if they are
available. If such values are not available, a second best
strategy is to use the substantive knowledge of experts in
the area. ABayesian approach has been developed for elic-
iting plausible values of parameters from experts (see, e.g.,
Gill, 2015, Chapter 5). If no prior research is available, or
the omitted confounders are unknown as in Scenario 2, a
third strategy is to use general suggestions in the research
area for “small,” “medium,” and “large” correlation val-
ues, r = ±.1,± .3, and ± .5, respectively (Cohen, 1978).
The permutations of the plausible values of the correla-
tion coefficients would result in several rZs. For example,
rZX, rZM, and rZY could be set to ±.1,± .3, or ± .5, which
would yield eight permutations of correlation values in rZ.

Given the range of the plausible values of correlations
between the latent proxy variable and the observed val-
ues, we wrote computer code in R software (see the sup-
plemental materials) that yields a range of bias-corrected
estimates of Level 1 and Level 2 indirect effects. The range
of the plausible values for the indirect effects is condi-
tional on the hypothetical, but plausible, correlation val-
ues between the latent proxy variable and the observed
variables. We use the bias-corrected estimates to answer
the questions posed earlier. “At what values, if any, of rZ
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Table . Within- and between-sample correlation matrices for the
hypothetical empirical example.

SD  

Within
 ACH .
 ASC . .
 FUT . . .

Between
 ACH .
 ASC . -.
 FUT . -. .

Note. SD= standarddeviation; ACH= academic achievement; ASC= academic
self-concept; FUT= career aspirations for the future. Total number of schools
was N = ;  students were sampled from each school resulting in a total
sample size of n=  students.

would the conclusions about the estimates of the Level 1
and Level 2 indirect effects change in a meaningful way?”
Another potential questionmight be “What is the effect of
small to moderate values of the correlation of the omitted
confounder with the observed values on the estimates of
indirect effects?” The point of a sensitivity analysis in this
context is to assess whether the conclusions drawn might
be highly sensitive or robust to various combinations of
the range of plausible values for the correlations.

Empirical example

We use a hypothetical empirical example to conduct a
sensitivity analysis and to show the practical implica-
tions of the analytical results. Consider the 1 → 1 → 1
model for the hypothetical example used throughout the
manuscript. Data for the empirical example were simu-
lated using the results from Nagengast and Marsh (2012).
The Between and Within sample correlations as well as
the standard deviation (SD) are shown in Table 1. In gen-
eral, it is expected that the school-level and student-level
relationships between ACH and ASC differ (Marsh et al.,
2014). As previously mentioned, this contrast is termed
BFLPE (Marsh, 1987).

A 1→ 1→ 1model with random intercepts and slopes
according to Equations (1)–(10) was estimated using
Mplus (Muthén & Muthén, 1998–2012)5 . The results are
shown in Table 2. First, we assume that the model is cor-
rectly specified in that Assumptions 1–5, especially the
no-interaction and no-omitted-confounder assumptions,
aremet. The RMediation package (Tofighi &MacKinnon,
2011) was used to calculate the confidence intervals (CIs)
using the analytical solution to the distribution-of-the-
product method as this method takes into account the
potential skewness and high kurtosis in the sampling dis-
tribution of the indirect effect (MacKinnon, Lockwood,
Hoffman, West, & Sheets, 2002). In this case, the Level 2

 Data file as well as Mplus input and output files are available in the
supplemental materials.

Table . Results for empirical example when the  →  →  is
assumed to be correctly specified (N= , n= , ).

Estimate SE p

aW . . <.
bW . . <.
c′W . . <.
aB . . .
bB . . <.
c′B . . .
aBbB . . .
aWbW . . <.
σ 2
ua j

. . <.

σ 2
ubj

. . <.

σ 2
uc′ j

. . <.

σa j ,c
′
j

. . .

σa j ,b j
. . .

σb j ,c
′
j

-. . .

σ 2
uY j

. . <.

σ 2
uM j

. . <.

σ 2
ϵYi j

. <. <.

σ 2
ϵMi j

. <. <.

Note. SE= standard error; CI= confidence interval; X= academic achievement
(ACH);M= academic self-concept (ASC); Y= career aspirations for the future
(FUT); N= number of schools; n = total number of students; subscripts “W,”
“B,”and “j”denote “Within,” “Between,”and “Student j,” respectively.

indirect effect was not significant, 0.019 (SE= 0.086), 95%
CI = [−0.150, 0.188], whereas the Level 1 indirect effect,
0.037 (SE = 0.012), 95% CI = [0.014, 0.062], was signifi-
cant at α = .05.

However, because the values of ACH and ASC were
not randomized, other confounders could potentially bias
the estimates of the indirect effects at Levels 1 and 2.
For example, there is some evidence that student aca-
demic interest is correlated with both ACH and ASC
(Marsh et al., 2005). We then conducted a sensitivity
analysis to assess the robustness of the estimated indi-
rect effects to the potential violation of the no-omitted-
confounder assumption. For simplicity in this illustration,
we assume that student academic interest is the single
unmeasured, but known, confounder, as in Scenario 1.We
also assume that this confounder could potentially influ-
ence the observed variables at both levels, thus biasing the
relationships at each level and across levels. As a result, we
can use a single latent proxy variable,Z, tomodel the effect
of the confounder on the indirect effect estimates.

In assessing confounder bias, we first look at the poten-
tial cross-level bias. Given that σa j,b j = 0.004, p = .8, we
assumed for simplicity in this illustration that the cross-
level moderating effect of the Between part of the con-
founder on the Level 1 indirect effect is zero in the popu-
lation. The assumption of no-cross-level bias is based on
the analytical result in Equation (38). In Equation (38),
we showed that nonzero σa j,b j represents the moderat-
ing effects of ηZj on the Level 1 indirect effect. When the
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98 D. TOFIGHI AND K. KELLEY

Figure . Between indirect effect sensitivity contour plot. The bias-corrected (adjusted) indirect effects are shown as label values on the
contour curves. Z is the latent proxy variable for omitted confounder(s); the observed variables, X,M, and Y, are ACH, ASC, and FUT, respec-
tively. Correlations, rs, denote the plausible correlation values between Z and the observed variables. Each panel shows a value of rZX
while x–axis and y–axis are the range of plausible values of rZM and rZY, respectively. For comparison purposes, when the specification
assumptions hold, the estimate of Between indirect effect is . (SE= .), % CI= [−., .] (see Table ).

covariance is zero, however, we can conclude that poten-
tial Level 2 omitted confounder does not moderate the
Level 1 indirect effect.

Next, we calculate the bias-corrected (adjusted) esti-
mates of Level 1 and Level 2 indirect effects using the ana-
lytic results. As previously discussed, the bias correction is
a function of the correlation between the latent variable (a
proxy for confounders) and X,M, and Y at Levels 1 and 2.
As the correlation values take ondifferent plausible values,
we calculate a range of bias-corrected estimates for the
indirect effects. For illustrative purposes, we choose the
following plausible range of values for rZX = 0, .1, and .3.
One may also choose additional values, but for this illus-
tration, these three values revealed enough information as
will be discussed; rZM and rZY ranged between−.5 and .5.
We did not display the negative values of rZX, whichwould
produce the same range of values for the bias-corrected
indirect effects.

To facilitate the interpretation of the results of
the sensitivity analysis, we created sensitivity contour

plots.6 A sensitivity contour plot depicts the values of the
bias-corrected (adjusted) indirect effect across the range
of the plausible values of the correlation between latent
proxy variable (Z) and ASC (M) and correlation between
latent proxy variable and FUT (Y) at each level of cor-
relation between the latent proxy variable and ACH (X).
The ranges of the x–axis and y–axis demonstrate the range
of plausible values for rZM and rZY, respectively. Contour
lines on each plot show different values of bias-corrected
(adjusted) indirect effects. Each contour line connects
all of the points with the same magnitude of the bias-
corrected indirect effect. That is, each line contains all of
the combinations of rZM and rZY values that produce the
same bias-corrected indirect effect. Each contour line is
also labeled with a numerical value of the bias-corrected
indirect effect. Two adjacent contour lines display distinct
values of bias-corrected indirect effects. Note that not all

 We wrote R code to create sensitivity contour plots and produce numeric
ranges of adjusted indirect effects in the supplemental materials.
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MULTIVARIATE BEHAVIORAL RESEARCH 99

Figure . Within indirect effect sensitivity contour plot. The bias-corrected (adjusted) indirect effects are shown as label values on the con-
tour curves. Z is the latent proxy variable for omitted confounder(s); the observed variables, X,M, and Y, are ACH, ASC, and FUT, respectively.
Correlations, rs, denote the plausible correlation values between Z and the observed variables. Each panel shows a value of rZX while x–axis
and y–axis are the range of plausible values of rZM and rZY, respectively. For comparison purposes, when the specification assumptions hold
(i.e., rZX = rZM = rZY = ), the estimate of Within indirect effect is . (SE= .), % CI= [., .] (see Table ).

the values of the bias-corrected indirect effects are shown.
Instead, to show the values of the bias-corrected indi-
rect effect between adjacent contour lines, each region is
filled with a color. There is a legend to the right of each
plot showing a correspondence between the greyscale gra-
dation (or spectrum of colors) and the range of bias-
corrected indirect effect values.

In interpreting the contour plots, one may be
interested in the range of the bias-corrected indirect
effects in the areas located in the middle and cor-
ners of each plot. The middle area contains the bias-
corrected values corresponding to zero to “small”
values of rZM and rZY. One might conclude that
the contour lines in the middle area represent the
bias-corrected values when the magnitude of correlation
between the confounder and M and Y ranges from zero
to small. The corners, on the other hand, contain the
bias-corrected values for a combination of the larger
correlation values (e.g., .4 to .5) for rZM and rZY. Contour

lines in these areas might represent the bias-corrected
indirect effect values when the magnitude of correla-
tion between the confounder and M and Y ranges from
“medium” to “large.”

Figure 3 shows three sensitivity contour plots cor-
responding to three plausible values for the correlation
between the latent proxy variable and ACH: rZX = 0, .1,
and .3. The value labels on the contour lines of the plot
for rZX = 0 show that the bias-corrected indirect effect
ranges from approximately 0.015 to 0.035. For rZX = .1
and .3, we can see both positive and negative values of
the bias-corrected indirect effects. The R code also pro-
vides a more precise range of the bias-corrected indirect
effect values for each plot; the bias-corrected values of the
Between indirect effect ranged from 0.017 to 0.032 for rZX
= 0,−0.087 to 0.152 for rZX = .1, and−0.372 to 0.447 for
rZX = .3 given the range of the plausible values considered.
Recall that the estimate of the indirect effect of school
ACH on school FUT was 0.019, 95% CI [−0.150, 0.188]),
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100 D. TOFIGHI AND K. KELLEY

when we assumed the no-omitted-confounder assump-
tion held. Comparing these (potentially biased) values of
the indirect effect to the potential range of the values of
the bias-corrected indirect effect produced in the sensi-
tivity analysis, it is unlikely that the conclusion about the
nonsignificant Level 2 indirect effect would have changed
had we included the omitted confounder.

For the Level 1 indirect effect, the sensitivity contour
plots are presented in Figure 4. The value labels on con-
tour lines of the plots for rZX = 0 and .1 show that the
biased-corrected indirect effects are above 0. For rZX =
.3, however, the labels of the contour plot show the val-
ues ranging from 0 to .20. Recall that the contour plot
itself shows only select values of the bias-corrected indi-
rect effect. Again, we used the R code to get a more pre-
cise range of the bias-corrected indirect effect. The bias-
corrected estimates of the indirect effect ranged from
0.017 to 0.085 for rZX = 0, .011 to .121 for rZX = .1, and
−0.016 to 0.226 for rZX = .3. Recall that whenwe assumed
that the no-omitted-confounder assumption held, the
(potentially biased) estimate of the indirect effect was
0.037, 95% CI [0.014, 0.062]). Given the bias-corrected
estimates from the sensitivity analysis were above 0, the
significant result for the Level 1 indirect effect of ACH on
FUT appears to be robust when the correlation between
Z (a proxy for confounders) and X ranges from 0 to .1
(small) and correlations between Z and M and Z and Y
range from 0 to .5 (large); that is, given the plausible range
of values for the correlation with the confounder, the val-
ues of the Level 1 indirect effect would have been positive
and statistically significant had the potential confounder
been included in the model.

However, when the correlation between Z and ACH is
.3 (medium), the range of the values for the bias-corrected
indirect effect appears to contain both positive and nega-
tive values. Upon further investigation, the ranges of rZM
and rZY that caused zero or negative values of the bias-
corrected indirect effect were .43 to .50 and −.5 to .5,
respectively. This indicates that if one were to assume that
Z is “moderately” correlated with ACH and “strongly”
correlated with ASC, then the conclusion about posi-
tive indirect effect would likely be invalid. Otherwise, the
conclusion about the Level 1 indirect effect appears to
be robust against the biasing effect of the potential con-
founder. In the present case, the likelihood that such rela-
tionships might exist is a substantive judgment based on
prior research.

Conclusion

With the growing popularity of multilevel mediation
analysis in applied research, it is critical to probe the

effects of underlying assumptions. To draw valid infer-
ence about an indirect effect in a mediation model, a
set of specifications must be met. The first contribution
of our manuscript is that we extended the specification
assumptions from the single-level mediation literature
to the multilevel mediation analysis of a 1 → 1 → 1
model. One of the specification assumptions is the no-
omitted-confounder assumption, which means that there
are no common causes of hypothesized causal relation-
ships in the mediation model. When the specification
assumptions 1–5 hold, one can compute an unbiased esti-
mate of each of the indirect effects. On the other hand,
when the no-omitted-confounder assumption is vio-
lated, inference about the indirect effects can be severely
biased; thus, the results are misleading. A formidable
challenge is that the no-omitted-confounder assump-
tion is not testable. Thus, previous research recommends
assessing the extent to which potential violation of the
no-omitted-confounder assumption might invalidate or
alter the conclusions about the indirect effects actually
observed.

To this aim, we proposed a framework to analyti-
cally examine the potential biasing effects of omitted
Level 1 confounder(s) that were correlated with all of the
observed variables at both Level 1 and Level 2 in a two-
level 1→ 1→ 1mediationmodel with random intercepts
and slopes. We discussed two scenarios about the types of
the omitted confounder(s) at Level 1 that might arise in
practice: (a) a single unmeasured, but known, confounder,
and (b) one or multiple unknown confounders. We used
a single latent proxy variable to model these two types of
confounders.

Our analytic results show that omitting Level 1 con-
founder(s) can yield misleading results about key quanti-
ties of interest such as Level 1 and Level 2 indirect effects.
One key finding was that omitting Level 1 confounder(s)
can exert compounded, biasing effects on the estimation
and interpretation of the indirect effects. In addition, we
showed that potential biasing effects of the omitted con-
founder(s) on the Level 1 estimates can be further decom-
posed into (a) a biasing effect due to the Within part and
(b) a biasing cross-level effect due to the Between part of
the omitted confounder(s). A second key result was that
we presented formulas that quantified the potential bias-
ing effects of the omitted confounder(s) in terms of the
(partial) correlation between the omitted and observed
variables in the model. The analytic result shows that the
bias-corrected indirect effects, the estimates of the true
indirect effects had the confounder(s) been included in
the model, are a function of correlations between latent
proxy variable and the observed variables.

Our results indicate that when the no-omitted-
confounder assumption is violated, the covariance
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MULTIVARIATE BEHAVIORAL RESEARCH 101

between aj and bj, σa j,b j becomes nonzero. As a result,
the equality between two methods of calculating Level 1
indirect effect does not hold: cW − c′W ̸= aWbW . On the
other hand, when the specification assumptions hold,
the equality holds: cW − c′W = aWbW . In addition, a
nonzero covariance term σa j,b j might signal the presence
of an omitted confounder. The reason we cannot make
this a sufficient condition claim is that there might exist
sources other than an omitted confounder that might
cause a nonzero (spurious) covariance between aj and
bj. By spurious, we mean an extraneous covariance not
accounted for by the posited 1 → 1 → 1 model. In the
specification assumption section, we have identified three
sources that might cause nonzero spurious covariance:
(a) measurement error, (b) common method effects, and
(c) omitted confounders. If we assume that the three
general categories cover all possible sources of spurious
covariance, we can make a more definitive statement
about potential sources of nonzero covariance between aj
and bj. More specifically, if we can reasonably rule out the
existence of the method andmeasurement error effects in
a study, then nonzero covariance can signal the influence
of an omitted confounder at Level 2. Note that only
the Between part of Level 1 confounder causes nonzero
covariance between aj and bj. An omitted confounder
may exist solely at the Within level. Zero covariance
between aj and bj cannot rule out the existence of the
Within part of omitted confounder(s).

Then, for applied researchers, we developed a sensi-
tivity analysis that assesses the robustness of the indi-
rect effects to the violation of the no-omitted-confounder
assumption. This approach integrates the investigation of
the potential biasing effects of Level 1 omitted variables
into the existing framework of multilevel mediation anal-
ysis including the multilevel structural equation model-
ing (MSEM). The initial estimate of the model parame-
ters can be performed using any available software pack-
age capable of fitting a 1 → 1 → 1 model (e.g., Mplus).
We also wrote computer code in R that conducts sen-
sitivity analysis using the initial estimates and produces
the sensitivity contour plots given the range of the plausi-
ble values for the correlation between a latent proxy vari-
able and observed values provided by the researcher. The
sensitivity contour plot illustrates potential bias-corrected
(adjusted) estimates of the indirect effect across a range
of plausible values for the correlations. In some cases,
the plot may clearly indicate that the indirect effect is
robust to plausible magnitudes of violation of the no-
omitted-confounder assumption. In other cases, the plot
may clearly indicate that the indirect effect is not robust—
it will no longer be significant, even given small values of
rZX, rZM, and rZY correlations. Finally, in some cases, as

in the present illustration, indirect effect estimates will be
robust over a wide range of, but not all, potential values
of confounding. In such cases, the likelihood that such
relationships might exist will be a substantive judgment
based on prior research.

The results of our study do not depend on a specific
centering strategy for the predictors. However, we recom-
mend centering the predictors according to the results of
Enders and Tofighi (2007). Indeed, the choice of centering
depends on research questions (Enders, 2013; Enders &
Tofighi, 2007). Second, it is important to note that one can
also use centering at the grandmean 2 (CGM2) strategy to
conduct sensitivity analysis; CGM2 centers a Level 1 pre-
dictor at the grand mean while adding the cluster means
on the predictor to themodel at Level 2. The results of our
study hold because these two centering strategies, CWC2
and CGM2, are “equivalent” in that we are (essentially)
estimating the same model, only shifted, which would
result in the same sample likelihood function (Kreft et al.,
1995). That is, the coefficient estimates in CGM2 are a lin-
ear transformation of the coefficient estimates in CWC2
and vice versa. In CGM2, the coefficient associated with
the cluster mean predictor is the contextual effect, an
estimate of the differential effect of Between and Within
effects (Blalock, 1984); however, in CWC2 the coefficient
is an estimate of the Between effect. In both CWC2 and
CGM2, the coefficient associated with the centered Level
1 predictor is an estimate of the Within effect. Because
of the equivalence between the two centering strate-
gies, the results of our study hold using either centering
strategy.

Although the present work focused on the 1 → 1 →
1 model, the present analysis can be extended to other
mediation models in which at least one of the variables is
measured at Level 2. Examples of themodels that can befit
using available software are the 1 → 1 → 2 and 2→ 1 →
1 mediation models. These additional mediation models
are simpler, in terms of the number of fixed and random
effects thatmust be considered, than the 1→ 1→ 1model
considered here. One complication may occur because
one of the variables is measured at Level 2 in these mod-
els: the researcher may not be able to obtain separate esti-
mates of the Level 1 and Level 2 effects (Pituch & Staple-
ton, 2012). For such models, the current analytic results
may be used to examine the biasing effects of the con-
founder on the indirect effect. Finally, the present results
can be specialized to 1→ 1→ 1models inwhich random-
ization ofX occurs at Level 1. Randomization greatly sim-
plifies the sensitivity analysis because rZX can be assumed
to be zero.

Additional topics remain for future study. One exten-
sion of the current analytical results would be to include
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102 D. TOFIGHI AND K. KELLEY

additional covariates that (incompletely) control for con-
founders in the model. The addition of covariates that
are theoretically related to X, M, and Y can enhance the
causal interpretation of themodel. The sensitivity analysis
procedure may still be applied by extending the method
suggested by Mauro (1990). One limitation of the current
study is that we only considered the analysis of two-level
data that is commonly found in applied settings. How-
ever, the present analysis can be extended to consider
multilevel mediation models with data structures involv-
ing three levels of nesting. Another limitation is that we
assumed the omitted confounder(s) are linearly correlated
to the observed variable in the 1→ 1→ 1model. In addi-
tion, we did not consider a case in which theremight exist
multiple known, but unmeasured, confounders, as in Sce-
nario 3. Extending the present analysis to address these
cases remains a topic for future study.
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Appendix

Analytical results

We start by considering the effects of omitting Zij on the
Between coefficients. Next, we discuss the Within coeffi-
cients that are affected by omitted confounder(s). In addi-
tion, we discuss the effects of omitted confounder(s) on
the conditional indirect effects. Finally, we present sim-
plified analytic results for sensitivity analysis.

Between effects
We first derive the effect of removing Zij on the Level 2
equations:

E[ηMj|ηX j] = E
[
E[ηMj|ηX j, ηZ j]

]

= d0Y + dMZd0Z
+(aB + dMZ dZX ) ηX j. (A1)

Isolating the coefficient for ηXj in (A1), we derive the
expression in (31) as follows: a∗

B = aB + dMZ dZX . Next,
we derive the conditional expected value of ηYj. Accord-
ing to Equations (24) and (30), we have

E[ηY j|ηX j, ηMj] = E
[
E[ηY j|ηX j, ηMj, ηZ j]

]

= d0Y + dYZs0 + (c′B + dYZsZX ) ηX j

+(bB + dYZsZM)ηMj. (A2)

Isolating the coefficients corresponding to ηMj and ηXj in
(A2), we arrive at the expressions in (32) and (33) as fol-
lows: b∗

B = bB + dYZ sZM and c′∗B = c′B + dYZ sZX .

Within effects
Based on Equations (21) and (25), the expression for ηMij
can be written as follows:

ηMi j = a jηXi j + lMZηZi j + ua j. (A3)

Drawing on Equations (20), (26), and (A3), we derive an
expression for a∗

j conditional on ηZj:

a∗
j = aW + daZηZ j + lZX lMZ + ua j. (A4)

To obtain the expected value of a∗
j , we first use Equa-

tions (23) and (A4) to derive the following expression for
ηMij:

=
(
aW + daZ(d0Z + dZX ηX j) + lZX lMZ

)
ηXi j

+ηXi jdaZ uZ j + ηXi jua j + lMZϵZi j + ϵMi j. (A5)

Next, we obtain the conditional expected value of (A5) as
follows:

E[ηMi j|ηXi j] =
(
aW + daZ (d0Z + dZX µB j)

+lZX lMZ
)
ηXi j. (A6)

Isolating the coefficient for ηXij in (A6), we derive the
expression in (34).

To obtain expressions for b∗
j and c′∗j , we first derive the

following expression for ηYij based Equations (22), (27),
and (28):

ηYi j = c′WηXi j + dc′ZηZ jηXi j + bWηMi j

+dbZηZ jηMi j + lYZηZi j + uc′ jηXi j
+ubjηMi j + ϵYi j. (A7)

Substituting (29) and (30) into Equation (A7) and
isolating expressions corresponding to ηXij and ηMij, we
arrive at the expressions for c′∗j and b∗

j in (36) and (35),
respectively.

Conditional indirect effect
First, we derive the conditional expected value of a∗

j b∗
j as

follows:

E[a∗
j b

∗
j |ηZ j] = (aWbW + aW lYZqZX + bW lZX lMZ

+lZX lMZlYZqZX )

+(aWdbZ + bWdaZ + daZlYZqZX
+dbZlZX lMZ)ηZ j + dbZdaZη2

Z j. (A8)

Without loss of generality, we consider the centering at the
grand mean (CGM) transformation of Zij so that µZi j =
0. Using Equation (A8), we next derive the conditional
expected value of the Within indirect effect at the grand
mean of the omitted variable:

E[a∗
j b

∗
j |ηZ j = 0] = aWbW + aW lYZqZX + bW lZX lMZ

+lZX lMZlYZqZX . (A9)
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The expression in Equation (A9) provides an estimate
of the Within indirect effect at the grand mean of Zij. It
should be noted that µZi j = µηZ j = 0. This result holds
because of the orthogonal decomposition of Zij into
latent variables in (19); µηXi j = 0 and Zij is a CGM
score. Thus, we can use the grand mean of Zij and ηZj
interchangeably.

Simplified analytic results for sensitivity analysis
To identify the bias calculation formula and make the
numerical results tractable, we first assume that both
Level 1 and Level 2 latent proxy variables have been
scaled to have a mean of zero and standard deviation of
one. This assumption also simplifies deriving formulas for
the bias-corrected (adjusted) coefficients. The simplified
results for the analytical results for the Between coeffi-
cients remain unchanged:

a∗
B = aB + dMZ dZX , (A10)
b∗
B = bB + dYZ sZM , (A11)

c′∗B = c′B + dYZ sZX . (A12)

The expected values of the randomcoefficients are sim-
plified as follows:

a∗
W = aW + lMZ lZX (A13)

c′∗W = c′W + lYZ qZX (A14)

b∗
W = bW + lYZ qZM (A15)

In addition, the covariance between a∗
j and b∗

j is sim-
plified as follows:

cov(a∗
j , b

∗
j ) = daZdbZ (A16)

Finally, we can calculate the simplified bias-corrected
(adjusted) results by isolating the desired quanti-
ties on the right side of Equations (A10)–(A15). For
example,

aB = a∗
B − dMZ dZX , (A17)

bW = b∗
W − lYZ qZM. (A18)
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