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Diagnosis for Covariance Structure
Models by Analyzing the Path

Ke-Hai Yuan, Chrystyna D. Kouros, and Ken Kelley
University of Notre Dame

When a covariance structure model is misspecified, parameter estimates will be
affected. It is important to know which estimates are systematically affected and

which are not. The approach of analyzing the path is both intuitive and informative

for such a purpose. Different from path analysis, analyzing the path uses path
tracing and elementary numerical analysis to identify affected parameters when a

1-way or 2-way arrow in a path diagram is omitted. It not only characterizes how a

misspecification affects model parameters but also facilitates a good understanding
of the relation among different parts of the model. This article introduces and

studies this technique and, for commonly used models, provides detailed analysis

to identify the directions of change for various model parameters. Examples based
on real data show that the technique of analyzing the path can reliably predict the

direction of change in parameter estimates even when the true model is unknown.

Conditions that interfere with the results are also discussed and advice is provided
for its proper application.

Structural equation modeling (SEM) plays an important role in understanding the
relations among multivariate data (Bollen, 1989; MacCallum & Austin, 2000).
In a typical application of SEM, one has a substantively justified model, which
is quite likely unacceptable when statistically tested. The model modification
index (Sörbom, 1989), Lagrange multiplier (LM) test (Chou & Bentler, 1990), or
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DIAGNOSIS FOR COVARIANCE STRUCTURE MODELS 565

automated specification search procedures (Marcoulides & Drezner, 2001, 2003)
can be used to locate paths1 that may contribute to substantial improvement in
model fit.2 However, model modification cannot guarantee that the resulting
model will reproduce the population. Of course, if a causal relationship exists, a
valuable model has to reflect the actual relationship among latent and manifest
variables. Such an issue involves both the substantive knowledge of the data and
statistical tools for model evaluation. In this paper, we will develop a tool to study
parameter biases in a substantially justified but misspecified model. A model
will be regarded as correctly specified if it reproduces the population covariance
matrix when the parameters are at a set of numbers called the population values.

Although a substantive model may barely fit the data, the model can still
be accepted based on a few of many fit indexes in standard software. After
accepting a model, the parameter estimates will be used for description or
inference. For example, researchers interested in a mediation model obtain
evidence about the strong mediation effect by testing whether the direct effect
(a parameter estimate) is significantly different from zero (Baron & Kenny,
1986; Cole & Maxwell, 2003). Similarly, in the standardized solution, error
variance estimates may be used to describe the reliabilities of the measurements.
However, when a model is misspecified, parameter estimates and their derived
statistics may be biased. Although for a given data set it might be difficult to
find a better model that is closer to the data, as measured by a discrepancy
function, and theoretically justified we still need to understand the effect of
model misspecification, especially the possible biases a misspecification might
bring. Only after a good understanding of the possible biases in the model can
we apply the SEM methodology more scientifically and reach valid conclusions.
In the applied literature many parameter estimates from grossly misspecified
models are unduly elaborated, not because better models do not exist but be-
cause the SEM literature lacks effective techniques for fully understanding the
consequence of a misspecified model. The goal of this article is to provide
intuitive and valuable tools for model diagnosis so that SEM can be a better
research methodology.

The effect of model misspecification has been studied by many authors
(Bentler & Chou, 1993; Bollen & Ting, 2000; Cole & Maxwell, 2003; Cragg,
1968; Farley & Reddy, 1987; Gallini, 1983; Hausman, 1978; Luijben, Boomsma,
& Molenaar, 1988; Raykov & Penev, 2002; Saris, Satorra, & Sörbom, 1987;

1We call any one-way or two-way arrow in a path diagram a path. A path represents either

a fixed or a free parameter in the model. A nonzero path corresponds to a nonzero value of the

parameter.
2Saris, Satorra, and Sörbom (1987), Luijben and Boomsma (1988), and Kaplan (1990) suggested

that the model modification index or LM test should be used in conjunction with expected parameter

change (EPC) or standardized EPC. Bentler (1990) and Bollen (1990) provided alternative views

about EPC/standardized EPC.
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566 YUAN, KOUROS, KELLEY

Silvia & MacCallum, 1988; Sörbom, 1975; Yuan & Bentler, 2004). For a
covariance structural model M.™/, Yuan, Marshall, and Bentler (2003) observed
that the set of parameter estimates O™ is a continuous function of the sample
covariance matrix S defined through an estimating equation. Let this function
be O™ D g.S/. As the sample size N increases, S and O™ converge in probability to
their population values † and ™!, respectively; consequently ™! D g.†/. The
model is correctly specified if † D M.™/ for certain ™, denote it as ™0, then
™0 D g.†0/, where †0 D M.™0/. Thus, the population value of O™ corresponding
to a correctly specified model is ™0 and to a misspecified model is ™!. The same
model can be misspecified when † is different from †0. Let ™ D g.†/ be a
component of g. When † is close to †0, by applying the mean value theorem
in calculus, we have

!™ D ™! ! ™0 "
X

ij

aij .¢ij ! ¢ij 0/; (1)

where aij is the partial derivative of g with respect to the ij th element of
† D .¢ij /. Equation 1 implies that when the ij th element of † is perturbed or
slightly changed, the magnitude and sign of aij decide how ™! is going to differ

from ™0. Let the bias in a parameter estimate O™ be defined as ™! ! ™0. When

aij > 0, a positive perturbation on ¢ij will cause a positive bias in O™; when

aij D 0, changes in ¢ij will have no effect on ™! or lead to a zero bias in O™. The
formula in Equation 1 is rigorous but does not permit a thorough understanding
of the relation of all the model parameters. Yuan et al. (2003) also briefly
introduced the idea of analyzing the path, which provides similar information
as Equation 1 but enables better comprehension of the relation of parameters
within a model. Unfortunately, the authors only studied a single case when
an error covariance is excluded from a confirmatory factor model. This article
thoroughly studies the approach of analyzing the path and extends it to other
types of models as well as to excluding paths other than error covariances. We
also show that analyzing the path can equally apply when variables are excluded
from a model. We hope that, unlike Equation 1, the technique developed here
will be accessible to psychometricians as well as applied researchers.

Analyzing the path to identify the effect of model misspecification on param-
eter estimates is different from path analysis, where certain rules are necessary
to identify causal effects among a set of related variables (see Boker & McArdle,
2005; Li, 1975; Loehlin, 2004; Wright, 1920). Analyzing the path studies how
parameters change in response to a misspecification in the model by applying
elementary numerical analysis to model-implied covariances. It only requires
a basic knowledge of covariance algebra or path tracing (see Bollen, 1989,
pp. 21–22; Loehlin, 2004, pp. 26–27). When a nonzero path between two
variables is excluded, the model is not adequate in explaining the covariances
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DIAGNOSIS FOR COVARIANCE STRUCTURE MODELS 567

of the corresponding indicators. Existing paths connecting the manifest or latent
variables need to explain this ignored covariance. Typically, the shortest path
connecting the two responds strongly. Other paths may also be affected due to
their sharing parameters. Suppose a path with a positive loading between x1 and
x2 is ignored and the model-implied covariance by the existing path is ™1™2™3.
Then, to properly explain Cov.x1; x2/, at least one of ™1, ™2, and ™3 has to be
greater than its population value corresponding to the correctly specified model.
Typically, the parameters ™1, ™2, and ™3 will also appear in the model-implied
variances and covariances of the other variables in the model. In such a case, it is
possible that one of ™1, ™2, and ™3 becomes much greater, whereas the other two
become slightly greater or even smaller to adjust the other parts of the model. In
short, if a direct path between two variables is excluded, the other paths in the
model indirectly connecting these two variables will need to “make up” for the
ignored covariance, resulting in potential biases in parameter estimates of other
paths in the model. The technique of analyzing the path is useful in determining
how the different paths in the model may be affected.

Example 1

The data set of Wheaton, Muthén, Alwin, and Summers (1977) contains two
indicators of alienation, anomie, and powerlessness, which were measured at
both 1967 and 1971. The measured background variables are education and
occupational status index. This data set has been used as an example in SEM
software manuals and textbooks (e.g., Bentler, 1995; Bollen, 1989; Jöreskog
& Sörbom, 1993). The full model for the six variables as presented in the
literature is represented by Figure 1. The substantive interest is the stability of
alienation across time as represented by the path coefficient ”3. Notice that, in
Figure 1, e3 and e5 are correlated and so are e4 and e6, which are justified by
the nature of longitudinal data. However, correlated errors are not encouraged
in general (see MacCallum, Roznowski, & Necowitz, 1992). It is interesting to
know the effect of excluding the error covariances on ”3. Of course, one may
fit the models with and without the correlated errors to Wheaton et al.’s (1977)
data and compare the parameter estimates. Due to sampling error however, the
change in parameter estimates may not give us a clear picture of the population
value. Also, comparing the estimates does not facilitate a good understanding
of the interrelation of all the paths in Figure 1. The technique of analyzing the
path will allow us to predict the direction of parameter change before actually
running the model. It also allows us to thoroughly understand the interrelation
among all the model parameters. We return to this example after presenting the
technique of analyzing the path.

Although there exist many methods for parameter estimation (Yuan & Bentler,
2007b), the normal distribution-based maximum likelihood (ML) is the default
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568 YUAN, KOUROS, KELLEY

FIGURE 1 The path diagram for modeling the stability of alienation.

procedure in essentially all SEM programs (Amos, EQS, LISREL, Mplus, Mx,
SAS Calis, sem) and also the most commonly used procedure in practice. We
mainly consider biases in the ML estimates. Throughout the text we denote
S D .sij / as the unbiased sample counterparts of † and M D .mij / as the model-
implied covariance matrix. For covariances involving latent variables, we use
subscripts to distinguish them from the covariances between manifest variables
as in mx1f1 and ¢e1e2 . We use œ, ¥, §, ”, and ® for the parameter of factor
loadings, factor variances and covariances, error variances and covariances,
path coefficients between latent variables, and the variances of disturbances,

respectively. Their estimates will be Oœ, O¥, O§, O”, and O®. The population value of
the parameter ™ corresponding to model M.™/ will be denoted as ™! in general
and as ™0 when † D M.™0/. For example, œ10 is the value for factor loading
œ1 in a correctly specified model and œ1! is the value of œ1 in a misspecified
model. When the model is misspecified, O™ will approach ™! as the sample size N

increases. For a parameter ™, its estimate O™ will be different from ™0 in general,
the systematic difference or bias is ™! ! ™0, and the difference due to sampling

errors or a finite sample size is O™!™!. Because O™ always contains sampling error,
even for a correctly specified model, we discuss the change in ™! when a model
is misspecified. We always compare ™! to ™0. A greater ™! means ™! ! ™0 > 0

and a smaller one means ™! ! ™0 < 0. Thus, a greater ™! implies O™ contains

a positive bias, whereas a smaller ™! implies O™ contains a negative bias. The
biases in Om D m. O™/ will be m! ! ¢; for example, m12! ! ¢12 is the bias in Om12.
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DIAGNOSIS FOR COVARIANCE STRUCTURE MODELS 569

An intact parameter, variance, or covariance means the value of the parameter,
variance, or covariance remains the same when the model changes.

Our aim is to illustrate the technique of analyzing the path using simple
confirmatory factor models and SEM models so that readers will master the
technique and effectively apply it in model diagnosis. The next section studies the
effect of model misspecification on parameter biases in two confirmatory factor
models where analyzing the path is straightforward. After that, we study the same
effect in two structural equation models where the model may involve direct and
indirect effects. Then, the analysis becomes relatively more complicated and we
also use basic covariance algebra to facilitate the analysis. Finally, we apply the
developed technique to study the change in ”3 in Figure 1 and two other models
based on real data that have been previously reported in the literature. Because
the commonly used path diagrams and models being estimated correspond
to unstandardized parameters, we mainly study the biases in unstandardized
parameter estimates. Biases in standardized coefficients as well as conditions
that may interfere with the results predicted by analyzing the path are discussed
in the concluding section. The analysis is closely related to path diagrams, but
only a limited number of them are presented to save space. Readers may draw
additional path diagrams, using dashed one-way or two-way arrows to represent
omitted paths, which will facilitate the understanding of the analysis.

CONFIRMATORY FACTOR MODELS

We consider a one-factor model and a three-factor model. The same analysis
can be applied to other factor models. We only explicitly discuss cases when the
excluded path bears a positive loading. With a negative loading, parameters will
change in the opposite direction of those corresponding to a positive loading, as
implied by Equation 1.

A One-Factor Model

In a one-factor model, excluded paths can only occur between errors.3 Suppose
two errors are correlated and the model is correctly specified when the error
covariance is explicitly modeled. Due to the ideal for unidimensional measure-
ments (see Anderson & Gerbing, 1988), the model is set without any correlated
errors. We study the effect of such a misspecification by first considering the

3Paths between indicators and errors may also exist (see Bentler, 1995, p. 103). These are seldom

employed in practice and we do not consider them here.
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570 YUAN, KOUROS, KELLEY

case where the factor variance is set to 1 (i.e., ¥11 D mf1f1 D 1), and then
considering setting a path loading to 1 (i.e., œ1 D 1). Both specifications are
commonly used for model identification.

In Figure 2, the variance of the factor is set equal to 1 (¥11 D 1) and the
errors e1 and e2 are positively correlated in the population (¢e1e2 > 0); however
the path e1 $ e2 is excluded. The model needs to explain the extra association
between x1 and x2. The only path for such an association is x1  f1 ! x2

with the model-implied covariance given by m12 D œ1œ2. Thus, œ1!œ2! has to
be greater than the population counterpart œ10œ20 corresponding to the correctly
specified model. Due to the parallel positions of œ1 and œ2 in Figure 2, we
must have œ1! > œ10 and œ2! > œ20. In the estimation of the factor model
represented by Figure 2, the distance between all the pairs of .s; m/ is minimized
simultaneously. In estimating œ1 and œ2, the system of equations also estimates
œ3, œ4, and §11 to §44. With the greater œ1! and œ2!, it is necessary to have
œ3! < œ30 to explain ¢13 and ¢23. Similarly, œ4! < œ40 needs to hold to explain
¢14 and ¢24. Ideally, it needs œ3!œ4! D œ30œ40 to fully explain ¢34, which is
unlikely due to the misspecification. Because the unique variances in Figure
2 are free parameters, they can take any values to explain the variances ¢i i ,
i D 1 to 4. Because œ1! > œ10, œ2! > œ20, œ3! < œ30, and œ4! < œ40, we
have §11! < §110, §22! < §220, §33! > §330 and §44! > §440. Actually, in
the ML procedure, œi! and §i i! satisfy œ2

i!C§i i! D ¢i i . A greater œi! implies

FIGURE 2 The path diagram for a one-factor model with ¥11 D 1.
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DIAGNOSIS FOR COVARIANCE STRUCTURE MODELS 571

a smaller §i i! and vice versa.4 The results of the analysis for Figure 2 are
summarized by

œ1! œ2! œ3! œ4! §11! §22! §33! §44!

C C ! ! ! ! C C

where C means greater and ! means smaller. In summary, when two errors
in Figure 2 are positively correlated in the population, the factor loadings
corresponding to the variables will be positively biased, and the error variances
will be negatively biased. The other factor loadings will be negatively biased
and error variances will be positively biased.

When œ1 D 1 is used for model identification as in Figure 3, the œi0 or œi!

will be generally different from those in Figure 2 for the given ¢’s, but they
are still uniquely defined (see Steiger, 2002). When ¢e1e2 > 0 and e1 $ e2

is not included, the path x1  f1 ! x2 has to explain the extra association
using m12 D œ2¥11. Thus, œ2!¥11! > œ20¥110. Notice that m23 D œ2œ3¥11 and
m24 D œ2œ4¥11. The greater œ2!¥11! leads to œ3! < œ30 and œ4! < œ40. Due
to m13 D œ3¥11, m14 D œ4¥11 and smaller œ3! and œ4!, ¥11! and ¥110 satisfy
¥11! > ¥110. It might seem that œ2! can be greater or smaller. Comparing
m34 D œ3œ4¥11 with m23 D œ2œ3¥11 and m24 D œ2œ4¥11, where the positions
of œ2, œ3, and œ4 are parallel in modeling the intact ¢34, ¢23, and ¢24, œ2! will
most likely be smaller. Because m12! will increase more than m13! and m14!,
œ2! ! œ20 may not be as small as œ3! ! œ30 or œ4! ! œ40. It is mainly ¥11! that
will take the greater association between x1 and x2. Because ¥11! > ¥110, §11!

will be smaller. Our analysis cannot predict the directions of change in §22!,
§33!, and §44!.

When ¢e2e3 > 0 and e2 $ e3 is excluded in Figure 3, the path x2  f1 ! x3

has to explain the extra association using m23 D œ2œ3¥11, at least one of œ2!,
œ3!, and ¥11! should be greater. Notice that ¥11 is involved in every model-
implied covariance, hence a greater ¥!

11 will not solve the problem. Due to their
parallel position, œ2! and œ3! will both be greater. Greater œ2! and œ3! need
a smaller ¥11! to explain ¢12 by m12! D œ2!¥11! and ¢13 by m13! D œ3!¥11!.
The parameter œ4 is involved in the model-implied covariances m14, m24, and
m34, which require œ4! be greater, smaller, and smaller, respectively. So œ4! will
most likely become smaller. Smaller ¥11! and œ4! imply greater §11! and §44!.
Notice that œ2!œ3!¥11! is greater and the positions of œ2 and œ3 are parallel
in reacting to the misspecification, hence œ2

2!
¥11! and œ2

3!
¥11! should both be

4For commonly used models, the diagonal elements of the residual covariance matrix are all

zero (Shapiro & Browne, 1990). When the diagonal elements of the residual covariance matrix are

not zero, a greater factor loading may not imply a smaller error variance.
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572 YUAN, KOUROS, KELLEY

FIGURE 3 The path diagram for a one-factor model with ¥11 being a free parameter.

greater and §22! and §33! should become smaller. The analysis for Figure 3 is
summarized as

™! ¥11! œ2! œ3! œ4! §11! §22! §33! §44!

¢e1e2 > 0 C ! ! ! ! ? ? ?
¢e2e3 > 0 ! C C ! C ! ! C

where ? implies our analysis cannot determine the direction of the change.
For the simple case of a one-factor model, analyzing the path clearly shows

the effect of excluding error covariances on other parameters in the model. The
parameter estimates corresponding to C will have positive biases and those
corresponding to ! will have negative biases.

A Confirmatory Three-Factor Model

There are two kinds of misspecifications for a three-factor model. One is when
error covariances are excluded, and the other is when factor loadings are ex-
cluded. We analyze the effect of excluding correlated errors first and then the
effect of excluding factor loadings. We only consider the case when all the factor
variances are set at 1.0 (¥jj D 1) in analyzing the model. Cases when one, two,
or three œis are fixed for identification can be analyzed similarly. The indicators
for a factor are called a cluster.
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DIAGNOSIS FOR COVARIANCE STRUCTURE MODELS 573

Figure 4 is a path diagram for a confirmatory factor model with three factors
and nine indicators. Yuan et al. (2003) analyzed the effect of ¢e1e2 > 0 on
parameter estimates in this model. The analysis is similar to the one-factor
model in Figure 2. We summarize their results without repeating the analysis.
When ¢e1e2 > 0 in Figure 4, œ1! and œ2! will be greater; œ3! will be smaller;
§11! and §22! will be smaller; §33! will be greater; and ¥12! and ¥13! tend to
be smaller. The parameters œ4! to œ9!, ¥23!, and §44! to §99! will equal their
counterparts in a correctly specified model. Due to the parallel positions of the
variables, the effect of any ¢ei ej > 0 within a cluster in Figure 4 can be obtained
similarly (see Yuan et al., 2003, pp. 247–248).

For correlated errors corresponding to indicators for different factors, we only
consider ¢e1e4 > 0 in Figure 4 due to the parallel positions of the variables. The
only path that can explain the greater ¢14 in Figure 4 is x1  f1 $ f2 ! x4.
The œis need to account for the within-cluster associations, so ¥12! has to be
greater. Because m14! D œ1!œ4!¥12! needs to be greater, m25!, m26!, m35!,
and m36! do not need to be; œ1! and œ4! will be greater. Because the pairwise

FIGURE 4 The path diagram for a three-factor model with ¥jj D 1.
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574 YUAN, KOUROS, KELLEY

population covariances within clusters .x1; x2; x3/ and .x4; x5; x6/ remain the
same, factor loadings œ2!, œ3!, œ5!, and œ6! have to be smaller to adjust for
the greater œ1! and œ4!. The parameter §i i needs to adjust for the difference
between the model-implied variance; ¢i i , §11!, and §44! have to be smaller;
and §22!, §33!, §55!, and §66! have to be greater. Being responsible for the
between-cluster covariances of .x1; x2; x3/ and .x4; x5; x6/ with .x7; x8; x9/,
¥13! and ¥23! will be affected due to the changes of factor loadings within
.x1; x2; x3/ and .x4; x5; x6/, but we are unable to determine the direction of
their changes. The parameters œ7 to œ9 explain the within-cluster associations
among x7 to x9, and their values will not affect the between-cluster covariances
of .x1; x2; x3/ and .x4; x5; x6/. The effect of the misspecification is accounted
for by ¥13! and ¥23! before reaching .x7; x8; x9/, thus, œ7! to œ9! and §77! to
§99! will equal their population values corresponding to the correctly specified
model.

TABLE 1
The Directions of Change in Parameters When a
Positive Error Covariance or Extra Factor Loading

Exists in the Population and the Model is
Represented by Figure 4

™! ¢e1e2 ¢e1e4 œ320

œ1! C C "

œ2! C " "

œ3! " " C

œ4! 0 C 0

œ5! 0 " 0

œ6! 0 " 0

œ7! 0 0 0

œ8! 0 0 0

œ9! 0 0 0

¥12! " C C

¥13! " ? ?

¥23! 0 ? 0

§11! " " C

§22! " C C

§33! C C ?

§44! 0 " 0

§55! 0 C 0

§66! 0 C 0

§77! 0 0 0

§88! 0 0 0

§99! 0 0 0
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Notice that x3 does not load on f2 in Figure 4. When the correct model needs
x3 to load on f2 with a positive loading5 œ320, all the covariances between x3

and the other variables (¢3is) are positively perturbed. The relation of x3 with
.x4; x5; x6/ and .x7; x8; x9/ needs to pass f1 $ f2 and f1 $ f3, which will be
accounted for by ¥12 and ¥13, respectively. The between-cluster covariances of
.x4; x5; x6/ with .x7; x8; x9/ are intact. To explain the intact covariances, we have
œ4! D œ40; : : : , œ9! D œ90, ¥23! D ¥230, and §44! D §440; : : : , §99! D §990.
The model needs to mainly explain the perturbed ¢3i by x3  f1 $ f2 with
the model-implied covariance mx3f2 D œ3¥12. So there must exist œ3!¥12! >
œ30¥120. Notice that it is x3 that has a greater covariance with f2, not x1 or
x2, so œ3! must be greater. When ¥120 and ¥130 are comparable, ¢x3f2 D œ3¥12

is positively perturbed more by the additional œ320 > 0 than ¢x3f3 D œ3¥13,
¥12! also needs to be greater to explain the greater perturbation. With a greater
¥12!, œ1! and œ2! need to be smaller to explain the intact covariances between
.x1; x2/ and .x4; x5; x6/; consequently, §11! and §22! will be greater. Because
œ320 > 0 also makes ¢33 greater, we cannot determine the direction of change in
§33!. The parameter ¥13 is responsible for the covariance between the clusters
.x1; x2; x3/ and .x7; x8; x9/. Due to the change in œ1! to œ3!, and the greater
¢3i , i D 7 to 9, we cannot determine the direction of change in ¥13!. The results
of the analysis for Figure 4 are summarized in Table 1.

STRUCTURAL EQUATION MODELS

We consider structural equation models with two and three factors. Similarities
and differences between the two models allow us to understand the functions
of similar parameters under different constraints. Compared to the previous
section, the analysis for structural equation models is more complex. However,
we employ the same technique as was used for the confirmatory factor models.
That is, when excluding a path with a nonzero loading between two variables,
the existing paths indirectly connecting these two variables in the model need
to compensate. Loading estimates of the paths may have positive or negative
biases. The technique of analyzing the path allows us to determine the directions
of bias in many of these estimates.

A Model With Two Factors

Figure 5 is a path diagram of a simple structural equation model with six
indicators and two factors, where mf1f1 D ¥11, md2d2 D ®22, and mei ei D §i i .

5When œ has double nonzero subscripts, the first indicates the order of the variable and the

second indicates the order of the factor.
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FIGURE 5 The path diagram for a structural equation model with two factors.

The model does not contain any error covariances and all the indicators are
unidimensional. We consider the existence of positive covariances ¢e1e2 , ¢e2e3 ,
¢e4e5 , ¢e5e6 , ¢e1e4 , ¢e1e5 , ¢e2e4 , and ¢e2e5 and double loadings represented by
x1  f2, x2  f2, x4 f1, x5  f1 in the population. The loading parameters
will be denoted by œ12, œ22, œ41, and œ51, respectively. For the same reason as
with the three-factor model in the previous section, when a pair of errors within a
cluster are correlated and the correlation is excluded from the model, the relation
within the other cluster is still correctly evaluated. Similarly, when œi20 > 0,
i D 1, 2, 3, the relation within the cluster .x4; x5; x6/ is not affected; when
œi10 > 0, i D 4, 5, 6, the relation within the cluster .x1; x2; x3/ is not affected
either. The results are summarized in Table 2. Now readers may analyze Figure 5
and compare their results with those in Table 2. To avoid repetition, we only

TABLE 2
The Directions of Change in Parameters When a Positive Error Covariance or Extra
Factor Loading Exists in the Population and the Model is Represented by Figure 5

™! ¢e1e2 ¢e2e3 ¢e4e5 ¢e5e6 ¢e1e4 ¢e1e5 ¢e2e4 ¢e2e5 œ120 œ220 œ410 œ510

œ2! " C 0 0 " " C C " C 0 0

œ3! " C 0 0 " " " " " ? 0 0

œ5! 0 0 " C " C " C 0 0 " C

œ6! 0 0 " C " " " " 0 0 " "

¥11! C " 0 0 C C " " C " 0 0

”1! " " C " ? ? C C " C C C

®22! ? C C ? " " " " " " ? ?

§11! " C 0 0 " " C C ? C 0 0

§22! ? ? 0 0 ? ? " " ? ? 0 0

§33! ? ? 0 0 ? ? ? ? ? ? 0 0

§44! 0 0 " C " ? ? ? 0 0 ? ?

§55! 0 0 ? ? ? " ? " 0 0 ? ?

§66! 0 0 ? ? ? ? ? ? 0 0 ? ?
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discuss parameters that are affected and provide the outline for the analyses that
lead to the results.

When ¢e1e2 > 0 in Figure 5, m12! D œ2!¥11! has to be greater to account for
the extra association between x1 and x2. Because m23 D œ3m12, œ3! has to be
smaller to account for the greater m12!. A smaller œ3! needs a greater ¥11! to
explain the intact ¢31. Greater ¥11! and .mx1f1! Cmx2f1! Cmx3f1!/=3 D .1C
œ2!C œ3!/¥11!=3 need a smaller ”1! for the intact between-cluster covariances.
It might seem that œ2! can be smaller or greater. However, due to a greater
¥11!, similar to œ3!, œ2! should be smaller to explain the intact between-cluster
covariances. A greater ¥11! leads to a smaller §11!. We are unable to predict the
directions of change in ®22!, §22!, and §33!. When a parameter ™1 is closely
related to two other parameters ™2 and ™3, if ™2! needs a smaller ™1! and ™3!

needs a greater ™1!, we will not be able to predict the direction of change in ™1!

in general.
When ¢e2e3 > 0, the path x2  f1 ! x3 is responsible for explaining the

greater ¢23 with m23 D œ2œ3¥11. Due to the parallel positions of œ2 and œ3

in the model, both of them have to be either greater or smaller. Notice that
œ2 D m23=m13, œ3 D m23=m12, and ¢13 and ¢12 are intact, œ2! and œ3! have to
be greater. Due to greater œ2! and œ3!, ¥11! has to be smaller, which leads to a
greater §11!. Similarly, the .mx1f1! Cmx2f1! Cmx3f1!/=3 is greater due to the
stronger within-cluster associations, which leads to a smaller ”1! for the intact
between-cluster associations. A smaller ”1! together with a smaller ¥11! needs
a greater ®22! for the intact mf2f2 . We are unable to predict the directions of
change in §22! and §33!.

When ¢e4e5 > 0, m45! D œ5!mf2f2! has to be greater. Because m56 D œ6m45,
œ6! has to be smaller. Parallel to œ6!, œ5! needs to be smaller for the intact
between-cluster covariances. Smaller œ5! and œ6! need a greater mf2f2!. The
only function of ®22! is to adjust for mf2f2!; a greater mf2f2! needs a greater
®22!. Notice that only ¥11 and ”1, not ®22!, contribute to the between-cluster
covariances, hence smaller œ5! and œ6! need a greater ”1!. A greater mf2f2!

leads to a smaller §44!. We are unable to predict the directions of change in
§55! and §66!.

When ¢e5e6 > 0, m56! D œ5!œ6!mf2f2! has to be greater. Due to their parallel
positions, both œ5! and œ6! have to be greater. Greater œ5! and œ6! need a smaller
”1! to explain the intact between-cluster covariances and a smaller mf2f2! to
explain ¢45 and ¢46. A smaller mf2f2! leads to a greater §44!. We are unable to
predict the directions of change in ®22!, §55!, and §66!.

When ¢e1e4 > 0, m14! D mf1f2! D ¥11!”1! has to be greater. There are three
possibilities: (a) ”1! is much greater and ¥11! is slightly smaller or greater; (b)
¥11! is much greater and ”1! is slightly smaller or greater; and (c) both ¥11!

and ”1! are greater. Because the only function of ®22! is to adjust for mf2f2!,
the values of ¥11! and ”1! will not affect the associations within the cluster
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.x4; x5; x6/. Under (a), œ2! and œ3! need to be much smaller to explain the
between-cluster covariances and they need to remain approximately the same to
explain the covariances within .x1; x2; x3/, so (a) is unlikely to happen. Under
(c), œ2! and œ3! only need to adjust for the effect of a greater ¥11! for the
intact covariances within .x1; x2; x3/ and they need to adjust for both the effect
of a greater ¥11! and a greater ”1! in modeling the intact ¢24, ¢25, ¢26, and ¢34,
¢35, ¢36, so (c) is unlikely to happen either. Notice that all the model-implied
covariances contain ¥11. Except for m14, all also contain at least a œi . The most
likely scenario is therefore (b). Thus, ¥11! should be greater, œ2!, œ3!, œ5! and
œ6! will be smaller; §11! will be smaller. Smaller œ5! and œ6! lead to a greater
mf2f2! and thus, a smaller §44!. A greater ¥11!”1! also leads to a smaller ®22!.
We are unable to determine the directions of change in ”1!, §22!, §33!, §55!,
and §66!.

When ¢e1e5 > 0, m15! D œ5!¥11!”1! has to be greater. Because ¥11!”1!

is shared by all the between-cluster covariances, œ5! should be much greater.
A smaller ¥11!”1! is not supported by any of the between-cluster covariances
either. A greater m15! needs smaller œ2! and œ3! for the intact between-cluster
covariances of .x2; x3/ with .x4; x5; x6/. Smaller œ2! and œ3! lead to a greater
¥11!, which further leads to a smaller §11!. Smaller œ2! and œ3! also support
a greater ¥11!”1!. A smaller œ6! is necessary to explain the intact ¢16 and ¢56.
A greater œ5! most likely leads to a smaller §55!. A greater ¥11!”1! also needs
a smaller ®22! for the intact covariances within .x4; x5; x6/. We are unable to
determine the directions of change in ”1!, §22!, §33!, §44!, and §66!.

When ¢e2e4 > 0, parallel to ¢e1e5 > 0, œ2! is much greater and ¥11!”1! is also
greater; œ3!, œ5!, and œ6! are smaller. A much greater œ2! needs a smaller ¥11!

for the intact covariances within .x1; x2; x3/. A smaller ¥11! needs a greater
”1! and a greater §11!. A much greater œ2! also most likely leads to a smaller
§22!. A greater ¥11!”1! needs a smaller ®22! for the intact covariances within
.x4; x5; x6/. We are unable to determine the directions of change in §33!, §44!,
to §66!.

When ¢e2e5 > 0, m25! D œ2!œ5!¥11!”1! has to be greater. Because ¥11!”1!

is responsible for all the between-cluster covariances, œ2! and œ5! have to be
greater. There is no reason for ¥11!”1! to be smaller either. A greater œ2! needs
a smaller ¥11! for the intact covariances within .x1; x2; x3/. Smaller œ3! and œ6!

are also necessary for explaining the between-cluster associations. Greater œ2!

and œ5! also most likely lead to smaller §22! and §55!. A smaller ¥11! needs
a greater ”1! and a greater §11!. We are unable to determine the directions of
change in §33!, §44!, and §66!.

In Figure 5, x1 does not load on f2. If the correct model needs an extra path
x1  f2 with loading œ120 > 0, the stronger association between x1 and f2

has to be explained by mx1f2 D ”1¥11, thus ”1!¥11! will be greater. Notice that
mx2f2 D œ2mx1f2 and mx3f2 D œ3mx1f2 , hence œ2! and œ3! have to be smaller
to explain the associations of x2 and x3 with the cluster .x4; x5; x6/. Due to
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smaller œ2! and œ3!, ¥11! has to be much greater to explain the intact ¢23 and
the extra associations of x1 with x2 and x3. Notice that mf2f2! is not affected
by the misspecification, and ”1 is the path coefficient of f1 ! f2. A much
greater ¥11! needs a smaller ”1! to explain the intact covariances of .x2; x3/
with .x4; x5; x6/. A greater ¥11!”1! also leads to a smaller ®22! for the intact
mf2f2!. Notice that ¢11 is positively perturbed by the additional œ120 > 0. We
are unable to predict the directions of change in §11! to §33!.

When x2 needs to load on f2 with œ220 > 0, mx2f2! D œ2!¥11!”1! has
to be greater. Because mf1f2! D ¥11!”1! is shared by all the between-cluster
covariances, œ2! has to be greater. There is no reason for ¥11!”1! to become
smaller. A greater œ2! needs a smaller ¥11! to explain the covariances within
.x1; x2; x3/. A smaller ¥11! leads to a greater §11!. A smaller ¥11! also needs a
greater ”1! for not a smaller ¥11!”1!. Because ¥11!”1! cannot be smaller, ®22!

is most likely smaller. We are unable to predict the directions of change in œ3!,
§22!, and §33!.

When x4 needs to load on f1 with œ410 > 0, mx4f1! D ¥110”1! has to be
greater, thus ”1! has to be greater. A greater ”1! needs smaller œ5! and œ6! to
explain the intact ¢x5f1 and ¢x6f1 . Smaller œ5! and œ6! need a greater mf2f2!

to interpret the intact ¢56. Because ¢44, ¢45, and ¢46 are positively perturbed by
œ410 > 0, we are unable to predict the directions of change in ®22! and §44! to
§66!.

When x5 needs to load on f1 with œ510 > 0, mx5f1! D œ5!¥11!”1! has
to be greater. Because mf1f2! D ¥11!”1! is shared by all the between-cluster
covariances, œ5! has to be much greater. There is no reason for ¥11!”1! to
become smaller and ”1! also needs to be greater. A greater ¥11!”1! needs a
smaller œ6! for the intact between-cluster covariances ¢16, ¢26, and ¢36. We are
unable to predict the directions of change in ®22! and §44! to §66!.

A Model With Three Factors

Figure 6 is a path diagram for a structural equation model with nine indicators
and three factors, where mf1f1 D ¥11, mdj dj D ®jj , j D 2, 3; mei ei D §i i ,
i D 1 to 9. In this model, œ2, œ3, and ¥11 are responsible for explaining
the covariances within the cluster .x1; x2; x3/. They are also involved in the
between-cluster covariances among the indicators. Similarly, œ5, œ6, and mf2f2

are mainly responsible for explaining the covariances within .x4; x5; x6/; œ8,
œ9, and mf3f3 are mainly responsible for explaining the covariances within
.x7; x8; x9/. The parameters ”1 to ”3 need to explain the relation between the
clusters. The §i i s are mainly responsible for explaining the marginal variances
of the observed variables. Due to the three predicted relations among the latent
factors in Figure 6, analyzing the path is relatively more complicated than that
for the one predicted relation in Figure 5. We need to use covariance algebra to
facilitate the analysis. Let f D .f1; f2; f3/0. The Appendix provides the detail
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FIGURE 6 The path diagram for a structural equation model with three factors.

leading to the model-implied covariance matrix

Cov.f/ D

0

B

B

@

¥11 ”1¥11

”1¥11 ”2
1¥11 C ®22

¥11.”2 C ”1”3/ ”1¥11.”2 C ”1”3/C ”3®22

¥11.”2 C ”1”3/

”1¥11.”2 C ”1”3/C ”3®22

¥11.”2 C ”1”3/2 C ”2
3®22 C ®33

1

C

C

A

: (2)

The model-implied covariance between any two indicators is the two factor
loadings times the corresponding element in this matrix. Due to f1 ! f3  f2,
some of the parameters in Figure 6 need to play different roles from the parallel
ones in Figure 5. For example, the only duty of ®22! in Figure 5 is to adjust
for mf2f2!; any changes in ¥11! and ”1! do not need to consider mf2f2!. In
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Figure 6, ®22 is also involved in mf2f3 and mf3f3 . When a parameter is involved
in more model-implied variances and covariances, it will be subjected to more
restraints, but the principle of the analysis will remain the same. With a greater
population covariance between two variables, the direct or shortest path between
the two will mainly respond to the misspecification. Other paths will also be
affected, but to a lesser degree. We first discuss the directions of change for
the model parameters when errors are correlated, followed by the effect of
double factor loadings in the population but not in the model, and then that
of excluding the ”s. When considering double factor loadings represented by
paths x1  f2, x1  f3, x2  f2, x2  f3, x4  f1, x4  f3, x5  f1,
x5  f3, x7  f1, x7  f2, x8  f1, x8  f2 we will use, respectively,
œ12, œ13, œ22, œ23, œ41, œ43, œ51, œ53, œ71, œ72, œ81, and œ82 to denote the loading
parameters.

Within the cluster (x1, x2, x3). Suppose a pair of errors within the cluster
.x1; x2; x3/ are positively correlated in Figure 6. Similar to our analysis for the
confirmatory three-factor model in the previous section and the two-factor struc-
tural equation model in this section, the within-cluster covariances of .x4; x5; x6/
and .x7; x8; x9/ are not affected, nor are the between-cluster associations of
.x4; x5; x6/ with .x7; x8; x9/. Parameters œ5, œ6, œ8, œ9, and §44 to §99 will be
correctly evaluated. The model-implied variances and covariance mf2f2 , mf2f3 ,
and mf3f3 will also equal their population counterparts corresponding to the
correctly specified model. The remaining analysis for excluding within-cluster
error covariances is also similar to that in obtaining Tables 1 and 2. The results
are summarized in Table 3. Readers are strongly encouraged to analyze Figure 6
themselves and compare their results with those in Table 3. Those who cannot
get the same results may consult the following paragraphs corresponding to the
exclusion of each error covariance.

When ¢e1e2 > 0, the greater ¢12 has to be explained through the path x1  
f1 ! x2 by the model-implied covariance m12 D œ2¥11. Thus, œ2!¥11! >
œ20¥110. Because m23 D œ3m12, there exists œ3! < œ30. Notice that the positions
of œ2 and œ3 are parallel in Figure 6, similar to that in Figure 5, a greater
¥11! alone takes care of the extra association between x1 and x2. Actually,
if œ2! becomes greater and œ3! becomes smaller, the model cannot explain the
associations of x2 and x3 with the other two clusters. Due to a greater ¥11!, §11!

becomes smaller. To explain the extra covariance in ¢12, the average association
of x1, x2, and x3 with f1, given by .mx1f1! C mx2f1! C mx3f1!/ D ¥11!.1 C
œ2!Cœ3!/=3, is stronger. The parameters ”1 and ”2 need to explain the between-
cluster covariances of .x1; x2; x3/ through f1 with .x4; x5; x6/ and .x7; x8; x9/.
They have to be smaller to explain the intact between-cluster covariances in the
population. We cannot determine the directions of change in ”3!, ®22!, ®33!,
§22!. and §33!.
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TABLE 3
The Directions of Change in Parameters When a Within-Cluster Positive Error Covariance

Exists in the Population and the Model is Represented by Figure 6

™! ¢e1e2 ¢e2e3 ¢e4e5 ¢e5e6 ¢e7e8 ¢e8e9

œ2! " C 0 0 0 0

œ3! " C 0 0 0 0

œ5! 0 0 " C 0 0

œ6! 0 0 " C 0 0

œ8! 0 0 0 0 " C

œ9! 0 0 0 0 " C

¥11! C " 0 0 0 0

”1! " " C " 0 0

”2! " " ? ? C "

”3! ? ? ? ? C "

®22! ? C C ? 0 0

®33! ? ? ? ? C ?

§11! " C 0 0 0 0

§22! ? ? 0 0 0 0

§33! ? ? 0 0 0 0

§44! 0 0 " C 0 0

§55! 0 0 ? ? 0 0

§66! 0 0 ? ? 0 0

§77! 0 0 0 0 " C

§88! 0 0 0 0 ? ?

§99! 0 0 0 0 ? ?

When ¢e2e3 > 0, m23! D œ2!œ3!¥11! has to be greater. It is impossible for
œ2! or œ3! to be smaller. Due to greater œ2! and œ3!, ¥11! has to be smaller. For
the same reason as when ¢e1e2 > 0, ”1! and ”2! have to be smaller. A smaller
¥11! together with a smaller ”1! leads to a greater ®22!. A smaller ¥11! leads
to a greater §11!. We are unable to determine the directions of change in ”3!,
®33!, §22!, and §33!.

Within the cluster (x4, x5, x6). As summarized in Table 3, the misspec-
ification of ignoring error covariances within .x4; x5; x6/ does not affect the
evaluation of the within-cluster parameters of .x1; x2; x3/ and .x7; x8; x9/. The
variances and covariance mf1f1! D ¥11!, mf1f3! D ¥11!.”2! C ”1!”3!/, and
mf3f3! D ¥11!.”2!C”1!”3!/2C”2

3!
®22!C®33! will also equal their population

counterparts corresponding to the correctly specified model.
When ¢e4e5 > 0, ¢45 will be greater, which has to be explained by m45 D

œ5mf2f2 . For the same reason as in Figure 5, mf2f2! will be greater, œ5! and
œ6! will be smaller, and §44! will be smaller. Due to smaller œ5! and œ6!, and
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mf1f2! D ”1!¥110, ”1! has to be greater to explain the intact between-cluster
covariances of .x1; x2; x3/ with .x4; x5; x6/. Notice that mf2f2 D ”2

1¥11 C ®22.
Because ”1 is mainly responsible for the between-cluster associations, a greater
”1! alone is not enough for the greater ¢45, and ®22! should be greater for the
greater mf2f2!. We are unable to determine the directions of change in ”2!, ”3!,
®33!, §55!, and §66!.

When ¢e5e6 > 0, similar to when ¢e2e3 > 0, œ5! and œ6! will be greater,
mf2f2! has to be smaller. Notice that mf1f2! D ”1!¥110. Due to greater œ5!

and œ6!, ”1! has to be smaller to explain the between-cluster covariances of
.x1; x2; x3/ with .x4; x5; x6/. A smaller mf2f2! leads to a greater §44!. Due to
the stronger associations within .x4; x5; x6/, ”3! will change to adjust for the
between-cluster covariances. Because too many parameters affect mf2f3 , we are
unable to determine the directions of change in ”3!. We are unable to determine
the directions of change in ”2!, ®22!, ®33!, §55!, and §66! either.

Within the cluster (x7, x8, x9). Using the same logic as in the previous
sections, ignoring possible covariances among e7, e8, and e9 does not affect the
parameters œ2, œ3, œ5, œ6, and §11 to §66. Because mf1f1 , mf1f2 , and mf2f2 are
also correctly evaluated, ¥11, ”1, and ®22 will not be affected either.

When ¢e7e8 > 0, mf3f3! is greater, œ8! and œ9! are smaller, and §77! is
smaller. Because mf3f3 D ¥11.”2 C ”1”3/2 C ”2

3®22 C ®33 and ”2 and ”3 are
mainly responsible for the between-cluster associations, the only function of
®33 is to adjust for mf3f3 ; thus, ®33! should be greater. Note that ®33! does not
contribute to the between-cluster associations. Due to smaller œ8! and œ9!, ”2!

and ”3! need to be greater to explain the intact between-cluster covariances of
.x7; x8; x9/ with .x1; x2; x3/ and .x4; x5; x6/. We are unable to determine the
directions of change in §88! and §99!.

When ¢e8e9 > 0, both œ8! and œ9! are greater, mf3f3! is smaller, and §77! is
greater. Due to the greater average path .mx7f3!Cmx8f3!Cmx9f3!/=3, ”2!, ”3!

will be smaller to explain the intact between-cluster covariances. We are unable
to predict the directions of change in ®33!, §88!, and §99!.

Between clusters (x1, x2, x3) and (x4, x5, x6). First, the misspecification
of ignoring a covariance between .e1; e2; e3/ and .e4; e5; e6/ does not affect the
estimation of parameters within cluster .x7; x8; x9/. Thus, œ8!, œ9!, §77!, §88!,
and §99! will equal their counterparts corresponding to the correctly specified
model; ¢f3f3 will also be correctly predicted by mf3f3!. The results for excluding
between-cluster error covariances are summarized in Table 4. We encourage
readers to analyze Figure 6 to obtain their own version of the table.

When ¢e1e4 > 0 in Figure 6, the path f1 ! f2 is responsible for explaining
the greater ¢14 with m14 D mf1f2 D ”1¥11. Different from the model in Figure 5,
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TABLE 4
The Directions of Change in Parameters When a Between-Cluster Positive Error
Covariance Exists in the Population and the Model is Represented by Figure 6

™ ¢e1e4 ¢e1e5 ¢e2e4 ¢e2e5 ¢e1e7 ¢e1e8 ¢e2e7 ¢e2e8 ¢e4e7 ¢e4e8 ¢e5e7 ¢e5e8

œ2! ? ? ? ? " " C C 0 0 0 0

œ3! ? ? ? ? " " " " 0 0 0 0

œ5! ? ? ? ? 0 0 0 0 " " C C

œ6! ? ? ? ? 0 0 0 0 " " " "

œ8! 0 0 0 0 " C " C " C " C

œ9! 0 0 0 0 " " " " " " " "

¥11! ? ? ? ? C C " " 0 0 0 0

”1! C C C C " " C C C C ? ?

”2! ? ? ? ? C C C C " " ? ?

”3! ? ? ? ? ? ? ? ? C C C C

®22! " " " " ? ? ? ? C C ? ?

®33! ? ? ? ? ? ? ? ? ? ? ? ?

§11! ? ? ? ? " " C C 0 0 0 0

§22! ? ? ? ? ? ? ? ? 0 0 0 0

§33! ? ? ? ? ? ? ? ? 0 0 0 0

§44! ? ? ? ? 0 0 0 0 " " ? ?

§55! ? ? ? ? 0 0 0 0 ? ? ? ?

§66! ? ? ? ? 0 0 0 0 ? ? ? ?

§77! 0 0 0 0 " ? ? ? " ? " ?

§88! 0 0 0 0 ? ? ? ? ? ? ? ?

§99! 0 0 0 0 ? ? ? ? ? ? ? ?

f1 is also at the origin of the prediction relation f1 ! f3, the parameter ¥11

is subject to the constraints of the intact covariances between .x1; x2; x3/ and
.x7; x8; x9/. Because mf3f3 is not affected by ¢e1e4 > 0, there is little flexibility in
¥11. Although ”1 also contributes to mf3f3 , the contribution is an indirect effect,
so there is more flexibility in ”1 than in ¥11. Actually, ¥11 has two contributions
to mf3f3 ; one is the direct effect through f1 ! f3, and the other is the indirect
effect through f1 ! f2 ! f3. In the indirect effect, ¥11 and ”1 are comparable
in their contributions. Thus, a greater ”1!¥11! needs a greater ”1!. With a greater
”1!, ¥11! can be greater or smaller; a greater ¥11! corresponds to smaller œ2!

and œ3! and vice versa. However, it is hard to predict the direction of change
in ¥11!. Similarly, œ2!, œ3!, œ5! and œ6! need to explain both the within- and
between-cluster associations of .x1; x2; x3/ and .x4; x5; x6/. For example, ¢24

and ¢34 need smaller œ2! and œ3! whereas ¢12, ¢13, and ¢23 may need them to
be greater. Consequently, it is hard to predict their directions of change. The
parameter ®22 mainly reflects the prediction error in f1 ! f2  d2, a greater
”1! will lead to a smaller ®22!. We are also unable to determine the directions
of change in ”2!, ”3!, ®33!, and §11! to §66!.
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Similar to ¢e1e4 > 0, when a positive covariance between one of .e1; e2; e3/
and one of .e4; e5; e6/ exists, ”1! will be greater and ®22! will be smaller. We
are unable to determine the directions of change in œ2!, œ3!, œ5!, œ6!, ”2!, ”3!,
and ®33!.

Between clusters (x1, x2, x3) and (x7, x8, x9). When ignoring a co-
variance between .e1; e2; e3/ and .e7; e8; e9/, the parameters within the cluster
.x4; x5; x6/ are not affected, as indicated in Table 4; mf2f2! will be correctly
evaluated. The shortest path from xi , i D 1, 2, 3 to xj , j D 7, 8, 9 is through
f1 ! f3. Although the indirect path f1 ! f2 ! f3 may partially explain the
covariances between .x1; x2; x3/ and .x7; x8; x9/, because the model parameters
within the cluster .x4; x5; x6/ are not affected, any extra association between
.x1; x2; x3/ and .x7; x8; x9/ passed through the indirect path is very limited. A
greater ¥11! needs to pass both the direct and indirect paths to achieve a greater
mf1f3!, so ”2! is mainly responsible for a greater ¢ij , i D 1, 2, 3 and j D 7,
8, 9. Notice that, unlike ®22!, the only function of ®33! is to adjust for mf3f3!;
the covariances within the cluster .x7; x8; x9/ have little to do with the values
of ”2! and ¥11!.

When ¢e1e7 > 0, ”2! should be greater and so is m17! D mf1f3!. Notice
m27 D œ2mf1f3 . With a greater mf1f3!, œ2! has to be smaller to explain ¢27.
Similarly, œ3!, œ8!, and œ9! have to be smaller. Due to smaller œ2! and œ3!,
¥11! has to be greater to explain the within-cluster covariances of .x1; x2; x3/.
A greater ¥11! implies smaller ”1! and §11!. Similarly, mf3f3! has to be greater
and §77! has to be smaller. Our analysis cannot determine the directions of
change in ”3!, ®22!, ®33!, §22!, §33!, §88!, and §99!.

When ¢e1e8 > 0, ”2! should be greater and so are mf1f3! and m18!. Because
m18 D œ8mf1f3 and mf1f3 is shared by all the paths between .x1; x2; x3/ and
.x7; x8; x9/, œ8! has to be greater. Notice m28 D œ2m18, m38 D œ3m18, and
m19 D œ9mf1f3 ; hence œ2!, œ3!, and œ9! have to be smaller. Due to smaller
œ2! and œ3!, ¥11! has to be greater to explain the within-cluster associations of
.x1; x2; x3/. A greater ¥11! leads to smaller ”1! and §11!. We are unable to de-
termine the directions of change in ”3!, ®22!, ®33!, §22!, §33!, and §77! to §99!.

When ¢e2e7 > 0, the direct path loading ”2! from f1 to f3 as well as mf1f3!,
m27! and œ2! should be greater. Notice m28 D œ8m27 and m29 D œ9m27, m37 D
œ3mf1f3 ; hence œ3!, œ8!, and œ9! have to be smaller for the corresponding
intact between-cluster covariances. Due to greater œ2!, ¥11! should be smaller
to explain ¢12. A smaller ¥11! leads to greater ”1! and §11!. Our analysis
cannot determine the directions of change in ”3!, ®22!, ®33!, §22!, §33!, and
§77! to §99!.

When ¢e2e8 > 0, both œ2! and œ8! should be greater. Due to a greater œ2! and
œ8!, ¥11!, œ3!, and œ9! have to be smaller to explain the intact within-cluster
covariances. A smaller ¥11! needs a greater ”2!; a smaller ¥11! also leads to a
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greater ”1! and §11!. Our analysis cannot determine the directions of change in
”3!, ®22!, ®33!, §22!, §33!, and §77! to §99!.

Between clusters (x4, x5, x6) and (x7, x8, x9). With possible covari-
ances between .e4; e5; e6/ and .e7; e8; e9/ in Figure 6, the parameters within the
cluster .x1; x2; x3/ are not affected, nor is ¥11 D mf1f1 . The path f2 ! f3

is mainly responsible for explaining the covariances between the indicators
in .x4; x5; x6/ and .x7; x8; x9/. Although mf2f3 involves ”1 and ”2, due to
¥11! D ¥110 and the intact between-cluster covariances of .x1; x2; x3/ with
.x4; x5; x6/ and .x7; x8; x9/, the strength of ”1! and ”2! to affect mf2f3 is
limited. Actually, ”1 is mainly responsible for the between-cluster associations
of .x1; x2; x3/ and .x4; x5; x6/; ”2 is mainly responsible for the between-cluster
associations of .x1; x2; x3/ and .x7; x8; x9/.

When ¢e4e7 > 0, both ”3! and m47 D mf2f3! have to be greater. Notice
m57 D œ5m47, m67 D œ6m47, m48 D œ8m47, and m49 D œ9m47. Due to a greater
m47!, œ5!, œ6!, œ8!, and œ9! have to be smaller. Due to smaller œ5! and œ6!,
mf2f2! has to be greater to explain the within-cluster covariances of .x4; x5; x6/;
§44! has to be smaller. The parameter ®22! should be greater because it is mainly
responsible for adjusting the variance of f2. Due to the smaller average loadings
within the cluster .x4; x5; x6/, ”1! has to be greater to explain the between-cluster
associations of .x1; x2; x3/ with .x4; x5; x6/. Notice mf1f3 D ¥11.”1”3C”2/. Due
to greater ”1! and ”3!, ”2! has to be smaller. Due to smaller œ8! and œ9!, mf3f3!

is greater, and §77! is smaller. We cannot determine the directions of change in
®33!, §55!, §66!, §88!, and §99!.

When ¢e4e8 > 0, ”3! as well as m48! and mf2f3! will be greater. Due to
the unique position of x8, œ8! should be greater. Notice that m49 D œ9mf2f3 ,
m58 D œ5m48, and m68 D œ6m48, hence œ5!, œ6!, and œ9! have to be smaller.
Due to smaller œ5! and œ6!, mf2f2! has to be greater to explain the intact within-
cluster covariances of .x4; x5; x6/. Consequently, ®22!, whose main function is
to adjust for mf2f2!, has to be greater; §44! has to be smaller. Because ”1 is
mainly for the between-cluster associations of .x1; x2; x3/ with .x4; x5; x6/ and
the average factor loading within the cluster .x4; x5; x6/ is smaller, ”1! has to be
greater. Notice mf1f3 D ¥11.”2 C ”1”3/. Due to greater ”1! and ”3!, ”2! has to
be smaller. We cannot determine the directions of change in ®33!, §55! to §99!.

When ¢e5e7 > 0, œ5!, mf2f3!, m57! will be greater. Notice mx6f2 D œ6mf2f3!,
m58 D œ8m57, and m59 D œ9m57; hence œ6!, œ8!, and œ9! need to be smaller.
Due to smaller œ8! and œ9!, mf3f3! will be greater, which leads to a smaller
§77!. Our analysis cannot determine the directions of change in ”1!, ”2!, ®22!,
®33!, §44! to §66!, §88!, and §99!.

When ¢e5e8 > 0, œ5!, œ8!, mf2f3!, m58! will be greater; œ6! and œ9! will be
smaller. We are unable to determine the directions of change in ”1!, ”2!, ®22!,
®33!, §44! to §99!.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
d
i
a
n
a
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
2
:
3
3
 
2
9
 
O
c
t
o
b
e
r
 
2
0
0
8



DIAGNOSIS FOR COVARIANCE STRUCTURE MODELS 587

Extra factor loadings for x1 or x2. When x1 or x2 needs to load on f2

or f3, the model represented by Figure 6 is misspecified. Because the within-
and between-cluster associations of .x4; x5; x6/ and .x7; x8; x9/ are not affected
by the misspecification, œ5!, œ6!, œ8!, œ9!, and §44! to §99! will equal their
counterparts in the correctly specified model. The variances and covariance
mf2f2!, mf2f3!, and mf3f3! will also be correctly evaluated. In the following
we only discuss the remaining parameters when an extra loading exists in the
population for the model represented by Figure 6. The results corresponding
to excluding all the factor loadings are summarized in Table 5. Readers should
analyze Figure 6 to get their own version of the table.

When x1 needs to load on f2 with œ120 > 0, mx1f2! D ¥11!”1! has to
be greater. A greater ¥11!”1! needs smaller œ2! and œ3! to explain the intact
¢x2f2 and ¢x3f2 . Smaller œ2! and œ3! need a much greater ¥11! to interpret the
intact ¢23 and greater ¢12 and ¢13. A much greater ¥11! needs a smaller ”1! to
explain the intact covariances of .x2; x3/ with .x4; x5; x6/. For a similar reason,
”2! needs to be smaller. A much greater ¥11! or greater ¥11!”1! also leads to a
smaller ®22! to have mf2f2! D mf2f20. We are unable to determine the directions

TABLE 5
The Directions of Change in Parameters When an Extra Positive Factor Loading

Exists in the Population and the Model is Represented by Figure 6

™ œ120 œ130 œ220 œ230 œ410 œ430 œ510 œ530 œ710 œ720 œ810 œ820

œ2! " " C C 0 0 0 0 0 0 0 0

œ3! " " " " 0 0 0 0 0 0 0 0

œ5! 0 0 0 0 " " C C 0 0 0 0

œ6! 0 0 0 0 " " " " 0 0 0 0

œ8! 0 0 0 0 0 0 0 0 " " C C

œ9! 0 0 0 0 0 0 0 0 " " " "

¥11! C C " " 0 0 0 0 0 0 0 0

”1! " " C C C C C ? 0 0 0 0

”2! " " C C " " ? ? C C C "

”3! ? ? ? ? " " ? C ? C ? C

®22! " " ? ? ? ? " ? 0 0 0 0

®33! ? ? ? ? ? ? ? ? ? ? ? ?

§11! ? ? C C 0 0 0 0 0 0 0 0

§22! ? ? ? ? 0 0 0 0 0 0 0 0

§33! ? ? C C 0 0 0 0 0 0 0 0

§44! 0 0 0 0 ? ? C C 0 0 0 0

§55! 0 0 0 0 ? ? ? ? 0 0 0 0

§66! 0 0 0 0 ? ? C C 0 0 0 0

§77! 0 0 0 0 0 0 0 0 ? ? C C

§88! 0 0 0 0 0 0 0 0 ? ? ? ?

§99! 0 0 0 0 0 0 0 0 ? ? C C
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of change in ”3! and ®33!. Due to œ120 > 0 positively perturbing ¢11, we are
unable to determine the directions of change in §11! to §33! either.

When x1 needs to load on f3 with œ130 > 0, the stronger association between
x1 and f3 has to be explained by mx1f3 . By similar logic as with œ120 > 0, ¥11!

has to be much greater; œ2! and œ3! have to be smaller; and ”1!, ”2!, and ®22!

have to be smaller. We are unable to determine the directions of change in ”3!,
®33!, and §11! to §33!.

When x2 needs to load on f2 with œ220 > 0, the extra association between
x2 and f2 has to be explained by mx2f2 D œ2”1¥11; thus œ2!”1!¥11! will be
greater. Notice that mx1f2 D ”1¥11 and mx3f2 D œ3”1¥11, ”1!¥11! cannot be
too much greater, so œ2! has to be much greater. A much greater œ2! needs
smaller ¥11! and œ3! to explain the associations within .x1; x2; x3/. A smaller
¥11! leads to greater ”1!, ”2!, §11!, and §33!. We are unable to determine the
directions of change in ”3!, ®22!, ®33!, and §22!.

When x2 needs to load on f3 with œ230 > 0, the extra association between x2

and f3 has to be explained by mx2f3 . By similar logic as when œ220 > 0, œ2! has
to be much greater; ¥11! and œ3! have to be smaller; and ”1!, ”2!, §11!, and
§33! have to be greater. We are unable to determine the directions of change in
”3!, ®22!, ®33!, and §22!.

Extra factor loadings for x4 or x5. When x4 or x5 needs to load on f1

or f3, the model represented by Figure 6 is also misspecified. The within-
and between-cluster covariances of .x1; x2; x3/ and .x7; x8; x9/ are not affected.
Thus, œ2!, œ3!, œ8!, œ9!, §11! to §33! and §77! to §99! still equal those corre-
sponding to the correctly specified model, as indicated in Table 5. The variances
and covariance ¥11!, mf1f3!, and mf3f3! will also be correctly evaluated.

When x4 needs to load on f1 with œ410 > 0, the stronger association between
x4 and f1 has to be explained by mx4f1 D ”1¥11, thus ”1! has to be much greater.
A greater ”1! needs smaller œ5! and œ6! to explain the intact covariances of
.x5; x6/ with .x1; x2; x3/. A much greater ”1! most likely needs to have smaller
”2! and ”3! to keep mf1f3 D ¥110.”2! C ”1!”3!/ the same. We are unable to
determine the directions of change in ®22!, ®33!, and §44! to §66!.

When x4 needs to load on f3 with œ430 > 0, the extra association between
x4 and f3 has to be explained by mx4f3!. Greater mx4f3! leads to smaller œ5!

and œ6! to explain the intact covariances of .x5; x6/ with .x7; x8; x9/. Smaller
œ5! and œ6! need a greater ”1! to explain the between-cluster associations of
.x4; x5; x6/ with .x1; x2; x3/. A greater ”1! needs to have smaller ”2! or ”3! or
both to keep mf1f3! unchanged. It is difficult for us to determine which case.
We are unable to determine the directions of change in ®22!, ®33!, and §44!

to §66!.
When x5 needs to load on f1 with œ510 > 0, the extra association between x5

and f1 has to be explained by mx5f1 D œ5”1¥11, thus œ5!”1!¥110 will be greater.
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Because f1 ! f2 is the direct path for the extra association, ”1! will be greater
but cannot be too much greater, because mx4f1 D ”1¥11 and mx6f1 D œ6”1¥11,
so œ5! has to be much greater. A much greater œ5! needs smaller mf2f2! D
”2

1!
¥110 C ®22! and œ6! to explain the associations within .x4; x5; x6/. Because

”1! is mainly responsible for the between-cluster associations of .x1; x2; x3/
with .x4; x5; x6/, ®22! has to be smaller. A smaller mf2f2! leads to greater §44!

and §66!. We are unable to determine the directions of change in ”2!, ”3!, ®33!,
and §55!.

When x5 needs to load on f3 with œ530 > 0, the extra association between
x5 and f3 has to be explained by mx5f3 D œ5mf2f3 . By an analysis similar to
when œ510 > 0, œ5! has to be much greater. A much greater œ5! needs smaller
mf2f2! D ”2

1!
¥11!C®22! and œ6! to explain the associations within .x4; x5; x6/.

A smaller mf2f2! needs greater ”3!, §44!, and §66!. We are unable to determine
the directions of change in ”1!, ”2!, ®22!, ®33!, and §55!.

Extra factor loadings for x7 or x8. When x7 or x8 needs to load on f1 or
f2, the model represented by Figure 6 is again misspecified. The within- and
between-cluster associations of .x1; x2; x3/ and .x4; x5; x6/ will not be affected.
Thus, œ2!, œ3!, œ5!, œ6!, and §11! to §66! still equal the population values
corresponding to the correctly specified model, as indicated in Table 5. The
variances and covariance mf1f1!, mf1f2!, and mf2f2! will also be correctly
evaluated with ¥11! D ¥110, ”1! D ”10, and ®22! D ®220.

When x7 needs to load on f1 with œ710 > 0, the extra association has to be
explained by mx7f1 D mf3f1 D ¥11.”2C”1”3/. Being mainly responsible for the
association between f1 and f3, ”2! has to be greater. Smaller œ8! and œ9! are
needed to explain the associations of .x8; x9/ with .x1; x2; x3/. We are unable
to determine the directions of change in ”3!, ®33!, and §77! to §99!.

When x7 needs to load on f2 with œ720 > 0, the extra association has to be
explained by mx7f2 D mf3f2 . Being mainly responsible for the path f2 ! f3,
”3! should be greater. A greater mf3f2! needs smaller œ8! and œ9! to properly
explain the between-cluster associations of .x7; x8; x9/ with .x4; x5; x6/. Smaller
œ8! and œ9! need greater ”2! for the between-cluster associations of .x1; x2; x3/
and .x7; x8; x9/. We are unable to determine the directions of change in ®33!

and §77! to §99!.
When x8 needs to load on f1 with œ810 > 0, the extra association has to

be explained by mx8f1 D œ8mf3f1 . Being mainly responsible for the association
between f1 and f3, ”2! has to be greater. Because mf3f1 is shared by all the
variables in .x1; x2; x3/ and .x7; x8; x9/ for between-cluster covariances, œ8! has
to be much greater. A much greater œ8! needs smaller œ9! and mf3f3! to explain
the within-cluster associations of .x1; x2; x3/, which further lead to greater §77!

and §99!. We are unable to determine the directions of change in ”3!, ®33!,
and §88!.
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When x8 needs to load on f2 with œ820 > 0, the extra association has to
be explained by mx8f2 D œ8mf3f2 . Being mainly responsible for the association
between f3 and f2, ”3! has to be greater. Because mf3f2 is shared by .x4; x5; x6/
and .x7; x8; x9/ for their between-cluster associations, œ8! has to be much
greater. A greater œ8! needs smaller œ9! and mf3f3! to explain the within-cluster
associations of .x7; x8; x9/, which further leads to greater §77! and §99!. A much
greater œ8! most likely needs a smaller ”2! for the between-cluster associations
of .x1; x2; x3/ and .x7; x8; x9/. We are unable to determine the directions of
change in ®33! and §88!.

Excluding the ” j. The remaining analysis for Figure 6 is when one of
the paths among the latent factors f1, f2, and f3 are excluded. Similar to the
previous analyses, we consider cases when a positive ”j exists in the population
but not in the model. We discuss the effect in the order of excluding ”1, ”2, and
”3. The results of the analysis are summarized in Table 6, where # means the
parameter is fixed at zero or the path represented by that parameter is excluded
from the model.

TABLE 6
The Directions of Change in Parameters

When ”j > 0 Exists in the Population
But Is Excluded From the Model in Figure 6

™! ”1 ”2 ”3

œ2! 0 0 ?

œ3! 0 0 ?

œ5! 0 ? 0

œ6! 0 ? 0

œ8! 0 0 0

œ9! 0 0 0

¥11! 0 0 ?

”1! # C C

”2! C # C

”3! C C #

®22! C " "

®33! ? ? ?

§11! 0 0 ?

§22! 0 0 ?

§33! 0 0 ?

§44! 0 ? 0

§55! 0 ? 0

§66! 0 ? 0

§77! 0 0 0

§88! 0 0 0

§99! 0 0 0
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When ”10 > 0 in Figure 6 and the path f1 ! f2 is removed from the model,
let mf2f2 D ¥22 D ®22. The model-implied covariance matrix of .f1; f2; f3/ can
be obtained from the matrix in Equation 2 by letting ”1 D 0. It follows from
either the model-implied covariance matrix or the path diagram that the values of
¥11 and ”2 are not identified in mf1f3 D ¥11”2. Similarly, the values of ¥22 and
”3 are confounded in mf2f3 D ¥22”3. Because mf1f2 D 0 whatever values the
parameters are, ¥11! will adjust for the covariances within .x1; x2; x3/ and ”2!

will take whatever ¥11! is and adjust for the covariance between .x1; x2; x3/ and
.x7; x8; x9/. Thus, ¥11! D ¥110, œ2! D œ20, and œ3! D œ30. Similarly, œ5! D œ50,
œ6! D œ60, and ®22! D ¥22! D ¢f2f2 D ”2

10¥110 C ®220. The only function of
®33 is to adjust for the variance of f3, as being predicted by f1 and f2, the
between-cluster covariances can and have to be explained by ”2! and ”3!, so
œ8! D œ80 and œ9! D œ90. The parameters §i i!s also equal their counterparts
corresponding to the correctly specified model. Notice that in the population
there exists ¢f1f3 > ¥110”20, hence ”2! has to be greater to properly explain the
covariances between .x1; x2; x3/ and .x7; x8; x9/. Similarly, ¢f2f3 > ¥22!”30, ”3!

has to be greater to explain the covariances between .x4; x5; x6/ and .x7; x8; x9/.
We are unable to predict the direction of change in ®33!.

When ”20 > 0 in Figure 6 and the path f1 ! f3 is removed from the model,
the model-implied covariance matrix of .f1; f2; f3/ can be obtained from the
matrix in Equation 2 by letting ”2 D 0. Similar to when f1 ! f2 is removed, ”1

and ¥11 are confounded in explaining the relation among the factors, ¥11! will
equal ¥110 to explain the covariances within .x1; x2; x3/, and ”1! will take a value
to best represent the between-cluster associations. Similarly, ®33! will adjust for
mf3f3! to fully explain the covariance within the cluster .x7; x8; x9/. Thus, œ2!,
œ3!, œ8!, œ9!, §11! to §33!, and §77! to §99! will equal their counterparts
corresponding to the correctly specified model. When f1 ! f3 existed, the
association between f1 and f3 was mostly through the direct path; now, it
has to be through the indirect path. Although the path f2 ! f3 still exists,
due to missing f1 ! f3, now mf2f3 D ”2

1”3¥11 C ”3®22. It follows from the
matrix in Equation 2 that, in the population, ¢f2f3 > ”2

10”30¥110C ”30®220. With
¥11! D ¥110, both ”1! and ”3! have to be greater to balance the effect of the
excluded path. Notice that the main and direct effect of ®22 is to adjust for mf2f2

although it also contributes to mf2f3 . Due to a greater ”1!, ®22! should become
smaller. We are unable to determine the directions of change in œ5!, œ6!, §44!

to §66!, and ®33!.
When ”30 > 0 in Figure 6 and the path f2 ! f3 is removed from the

model, the model-implied covariance matrix of .f1; f2; f3/ can be obtained from
Equation 2 by letting ”3 D 0. Now, the only function of ®22 is to adjust for
mf2f2 , so the parameters within the cluster .x4; x5; x6/ can still be evaluated
correctly. For the same reason, the parameters within the cluster .x7; x8; x9/ will
be evaluated correctly. Without the path f2 ! f3, the covariance between f2 and
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592 YUAN, KOUROS, KELLEY

f3 is explained by their sharing the same predictor f1, with the model-implied
covariance mf2f3 D ¥11”1”2. In Figure 6, there are two paths for f1 and f3

to correlate, one is the direct path f2 ! f3, and the other is the indirect path
f1 ! f2 ! f3. Without f2 ! f3, the direct path will pick up the association
in the indirect path. Actually, in the covariance matrix in Equation 2, ”2 always
appears in the form ”2 C ”1”3. Thus, without ”3, ”2! will at least increase up
to ”20 C ”10”30. However, an increased ”2! alone is not enough for modeling
¢f2f3 D ”10¥110.”20 C ”10”30/ C ”30®220. Notice that ”1 and ”2 are parallel in
modeling ¢f2f3 . Because ¥11! needs to model the covariances within .x1; x2; x3/,
both ”1! and ”2! need to be greater. Due to the parallel positions of ”1 and ”2,
a greater mf2f3! D ”1!”2!¥11! most likely leads to a greater ”2

1!
¥11!, and thus

a smaller ®22!. A greater ”1! may need a smaller ¥11! or œ2! or œ3! to explain
the covariances between .x1; x2; x3/ and .x4; x5; x6/. We are unable to determine
the directions of change in ¥11!, œ2!, œ3!, ®33!, and §11! to §33!.

EXAMPLES

The previous sections illustrated the technique of analyzing the path to iden-
tify parameter changes due to model misspecification. This section applies the
technique to three models. The first one is a continuation of Example 1, in
which we show that the predicted change in ”3! by analyzing the path agrees
with the change in O”3 when the model is changed. The second one is based
on a data set from Chatterjee, Handcock, and Simonoff (1995); the model is
a one-factor model. We verify whether the parameter change as predicted by
analyzing the path concurs with that in real data. The last one is based on a data
set from Holzinger and Swineford (1939). That model is a confirmatory three-
factor model, the same as the one analyzed earlier. Because we do not know
the correct model in any of the examples, our analysis is to compare parameter
estimates between different models. These examples allow us to see how the
technique of analyzing the path performs with real data, especially whether it
can still predict the change of parameter estimates when the model with more
parameters may only represent a closer fit.

Example 1 Continued

Applying the same analysis as for the three-factor structural equation model
in the previous section to Figure 1, ”3! should increase when (a) e3 $ e5 is
removed; (b) e4 $ e6 is removed; (c) both e3 $ e5 and e4 $ e6 are removed;
and (d) e3 $ e5 and e4 $ e6 are removed, as well as when f1 together with
education and occupational status index are out of the model. With the real data,
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the maximum likelihood estimates O”3s are

model change (a) (b) (c) (d) (e)

O”3 0.655 0.617 0.705 0.789 0.607
p 0.000 0.275 0.000 0.000 0.316

where (e) is for the full model in Figure 1. Our analysis therefore applies not only
to the population parameter values, but also to their estimates. The second row of
numbers are the p values when referring the normal distribution-based likelihood
ratio statistics, with N D 932, to the corresponding chi-square distributions.
Both the full model and the model without the path e4 $ e6 are statistically
acceptable. However, they generate different O”3. If one is an unbiased estimate,
the other might be a biased estimate. A complication with real data is that the
difference between the different O”3s might be just due to sampling error. Yuan
et al. (2003) provided a procedure for testing the significance of the difference.

Example 2

Chatterjee et al. (1995, p. 299) contains a data set of descriptive statistics for
105 guards of the National Basketball Association (NBA) for the 1992–1993
season. Among the variables are total minutes played, points scored per game,
assists per game, and rebounds per game. Yuan and Bentler (1998) proposed
a one-factor model for these four variables. To make the four variables have
comparable standard deviations we divide the first three variables by 880, 6, and
2, respectively. Such a change of scale makes the convergence of the iterative
procedure for obtaining the maximum likelihood estimates much faster. It has
no effect on the substantive aspects of the analysis but makes the factor loadings
and error variances of similar magnitude.

Fitting the sample covariance matrix to a one-factor model, as represented
in Figure 2 (without the correlated error), leads to the first column of numbers
in Table 7. However, the LM test in EQS indicates that the model will fit the
data significantly better if allowing e2 and e4 to correlate. Adding the parameter
§24 to the model results in the second column of numbers under O™0 in Table 7.
Due to the model change, the likelihood ratio statistic changes from 15.281 with
2 df to 3.557 with 1 df; the LM test implies that no other model modification is
needed at the .05 level. If we regard the modified model as the correct model,
then O™ ! O™0 contains both the sampling error and the biases. The fourth column,
under D, is the signs of bias obtained by analyzing the path, which agree with
the actual change on all the estimates.

Yuan and Bentler (1998) noted that cases numbered 2, 4, and 6 in the NBA
data are influential and should be downweighted or removed for proper analysis.
After the three cases are removed, the parallel results are shown on the right
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TABLE 7
Maximum Likelihood Estimates for Two Different Confirmatory Factor Models

Using NBA Data and by Removing Three Cases

The Original Sample Cases 2, 4, 6 Removed

™ O™ O™0
O™ " O™0 D O™ O™0

O™ " O™0 D

œ1 0.897 0.977 "0.080 " 0.911 0.959 "0.048 "

œ2 0.895 0.818 0.078 C 0.805 0.759 0.046 C

œ3 0.895 0.913 "0.018 " 0.937 0.945 "0.008 "

œ4 1.086 0.959 0.127 C 1.004 0.937 0.067 C

§11 0.208 0.058 0.150 C 0.160 0.070 0.089 C

§22 0.218 0.351 "0.133 " 0.197 0.268 "0.071 "

§33 0.749 0.716 0.033 C 0.704 0.690 0.014 C

§44 0.478 0.737 "0.260 " 0.355 0.485 "0.130 "

§24 # 0.238 # 0.131

side of Table 7. Again, the predicted change and the actual change in parameter
estimates agree. Without Cases 2, 4, and 6, the LM test also implies that adding
the parameter §24 can improve the model fit significantly; the likelihood ratio
statistic changes from 7.500 to 1.201 due to the model change.

Example 3

Holzinger and Swineford (1939) contains test scores on the following subtests or
variables: visual perception, cubes, lozenges, paragraph comprehension, sentence
completion, word meaning, addition, counting dots, and straight-curved capitals.
The first three variables were designed to measure spatial ability, the next three
variables were designed to measure verbal ability, and the last three variables
were administered with a limited time and were designed to measure a speed
factor in performing the tasks. Thus, Holzinger and Swineford’s design can be
represented by the confirmatory factor model in Figure 4. However, all nine
available statistics for testing † D M.™/ indicate that the model does not fit
the sample (see Yuan & Bentler, 2007a), the largest p value is .015. The LM
test indicates that the model would fit the data much better when adding either
e7 $ e8 or x9  f1 to the model represented by Figure 4. Assuming the

model with a free §78 is correct, parameter estimates Oœ7, Oœ8, and O§99 will

contain positive biases according to our analysis; Oœ9, O¥13, O¥23, O§77, and O§88

will contain negative biases; the rest of the parameter estimates do not contain

biases. Assuming the model with a free œ91 is correct, then Oœ9, O¥13, O§77, and O§88

will contain positive biases; and Oœ7 and Oœ8 will contain negative biases; and Oœ1
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to Oœ6 and O§11 to O§66 do not contain any biases. These results will be contrasted
with numerical values of the estimates next.

Because standard deviations of the nine variables differ a lot, we divide
them, respectively, by 6, 4, 8, 3, 4, 7, 23, 20, 36 to keep each marginal standard
deviation between 1 and 2. This change of scale makes the factor loadings
and error variances of a similar magnitude; thus, it facilitates our comparison
of parameter change. Table 8 contains the maximum likelihood estimates O™,
corresponding to the model represented in Figure 4; and O™01, corresponding
to the model with e7 $ e8 being added to Figure 4 and O™02, corresponding
to the model with x9  f1 being added to Figure 4. For easy comparison,
the differences O™ ! O™01 and O™ ! O™02 as well as the directions of change in ™!,
under D, are also included in Table 8. For all the ™!s that are going to change
according to the analysis, their estimates move in the predicted direction. For
those ™! D ™0 according to the analysis, their estimates also become smaller or
larger, most likely due to sampling error. For those the analysis cannot predict,
their change might be due to sampling error as well as biases.

TABLE 8
Maximum Likelihood Estimates for Three Different Confirmatory Factor Models

Using Data of Holzinger and Swineford (1939)

™ O™ O™01
O™02

O™ " O™01 D O™ " O™02 D

œ1 0.779 0.821 0.819 "0.041 0 "0.040 0

œ2 0.574 0.548 0.543 0.026 0 0.031 0

œ3 0.721 0.693 0.688 0.028 0 0.033 0

œ4 0.974 0.975 0.975 "0.001 0 "0.001 0

œ5 0.964 0.965 0.964 "0.001 0 0.000 0

œ6 0.938 0.936 0.937 0.002 0 0.001 0

œ7 0.682 0.440 0.708 0.242 C "0.026 "

œ8 0.837 0.568 0.900 0.269 C "0.063 "

œ9 0.720 1.007 0.453 "0.287 " 0.267 C

¥12 0.541 0.542 0.554 "0.001 0 "0.013 0

¥13 0.522 0.624 0.392 "0.102 " 0.130 C

¥23 0.335 0.381 0.240 "0.046 " 0.096 ?

§11 0.721 0.654 0.657 0.066 0 0.064 0

§22 0.905 0.934 0.940 "0.029 0 "0.035 0

§33 0.560 0.601 0.607 "0.040 0 "0.046 0

§44 0.317 0.315 0.315 0.002 0 0.002 0

§55 0.422 0.421 0.422 0.001 0 "0.000 0

§66 0.409 0.413 0.411 "0.004 0 "0.002 0

§77 0.604 0.876 0.568 "0.272 " 0.036 C

§88 0.402 0.780 0.293 "0.378 " 0.109 C

§99 0.540 0.045 0.479 0.495 C 0.062 ?

§78 # 0.388 #

œ91 # # 0.460
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We might have observed that, in Table 8, a parameter or its estimate may
change to different directions when the model is modified differently. If the

model with œ91 being included represents the correct model, then Oœ7 and Oœ8

contain negative biases, whereas Oœ9, O¥13, O§77, and O§88 contain positive biases.
If the model with §78 being included represents the correct model, then these
estimates contain biases in the opposite directions. This is because the two
modified models are not mathematically equivalent. Actually, all the reliable
statistics indicate both the modified models fit the data well. Again, the challenge
with practical data is that we do not know which model is the correct one.

DISCUSSION

SEM, and covariance structural analysis in particular, has been widely used in
the social and behavior sciences. Due to the effort of many methodologists,
the capacity of SEM in modeling more complex data structures is increasing.
When simultaneously modeling the relation among manifest and latent variables
as well as measurement errors, misspecification is inevitable. Diagnostic tools
that facilitate the understanding of the relation among different parts of the
model and how misspecification affects model parameters are needed. Advanced
mathematical and statistical procedures have been developed to study the effect
of misspecification (e.g., Yuan et al., 2003), but they are not designed for model
diagnosis. The technique of analyzing the path is not only intuitive but also
facilitates a good understanding of the relation of various parts of the model
and provides a clear picture of reactions of parameters to a misspecification.
Thus, it is a valuable tool for model diagnosis. However, like any other method,
analyzing the path needs conditions to work well. We discuss these conditions
and related results later.

We intend to introduce the technique of analyzing the path for model diagno-
sis. The mathematics behind the analysis is Equation 1, which holds only when
† is in a neighborhood of †0. The validity of analyzing the path is also restricted
to when † is close to †0. Notice that the coefficients aij s in Equation 1 depend
on the discrepancy function used in estimating the model, so analyzing the
path also depends on the discrepancy function employed. Actually, the function
g.†/ introduced earlier is closely related to the weight matrix in the estimating
equation (Yuan et al., 2003). Among all the discrepancy functions, only the
normal distribution-based likelihood function corresponds to a weight matrix
decided solely by the structural model M.™/. When the model is misspecified,
different discrepancy functions are not equivalent (Yuan & Chan, 2005). Because
analyzing the path only uses information from the model and not from the
weight matrix, the results obtained only correspond to the most widely used
ML method. Of course, the function ™ D g.†/ also depends on M.™/. Thus,
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the aij in Equation 1 is model dependent, which implies that analyzing the path
is also model specific. There is no general conclusion that a parameter has to
become smaller or greater when either † or M changes arbitrarily. When M is
given, !™ D !™.†/ is just a function of †. When ¢ij is perturbed, the bias
!™ is characterized by Equation 1 and is predictable by analyzing the path. The
models discussed in this article aim to be simple and to mimic those typically
encountered in textbooks. The same technique and logic can be equally applied
to more complex situations. For example, with more indicators in a cluster,
the corresponding ™! will also change according to the analysis but the actual
values of the change may be smaller due to their subjection to more model
and population constraints. Equality constrains are often used in SEM. When
parameters ™1 and ™2 are set equal but their population values ™10 and ™20 in
the unrestricted model are not equal, then their common estimated value in the
restricted model will be somewhere between ™10 and ™20.

We have only discussed biases in unstandardized parameter estimates due to
model misspecification. In the applied literature, standardized estimates are re-
ported more often than unstandardized estimates. Because standardized estimates
are functions of unstandardized estimates, biases in unstandardized parameter

estimates imply biases in standardized estimates. Let Oœsi be the standardized
estimate of the factor loading œi and O§si be the standardized estimate of the
standard deviation of ei in the model represented by either Figure 2 or 4.
Then

Oœsi D Oœi=si ; O§si D O§i =si ; (3)

where O§i D O§
1=2
ii and si is the sample standard deviation of xi . Because si

is consistent for ¢i , Oœsi and O§si are consistent estimates of œsi! D œi!=¢i and

§si! D §i!=¢i , respectively. Thus, the biases in Oœsi and O§si will be in the same

directions as those in Oœi and O§i i , respectively. The simple relation in Equation 3
is due to ¥kk D 1 in Figures 2 and 4. When ¥kk ¤ 1 as in Figures 1, 3, 5,
and 6,

Oœsi D Oœi
O¥k=si ; O§si D O§i =si ;

where O¥k D O¥
1=2
kk is the estimate of the standard deviation of the kth factor.

Then the direction of the bias in Oœsi depends on the magnitude of the biases

in Oœi and O¥kk . When Oœi contains a positive bias and O¥kk contains a negative

bias, the bias in Oœsi can be either negative or positive. So the directions of
biases in standardized estimates are more difficult to determine by analyzing the
path.

Analyzing the path is not a mathematical proof; the directions of change in
parameters or their estimates will most likely happen according to the analysis.
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They may not always happen as predicted under all conditions. First, our analysis
is based on a model containing only a single misspecification. When a model
contains multiple misspecifications or misses multiple parameters, a parameter
may need to become larger by one misspecification and to become smaller by
another. The resulting value of the parameter will be the accumulated changes,
depending on the specific value of each change. Then analyzing the path cannot
predict the direction of the accumulated parameter change. If dealing with one
misspecification at a time, even when neither of the models is correct, the result
of analyzing the path will still be valuable, as illustrated by the examples in the
previous section, where we do not have the true model. Second, outliers may
create problems when applying the technique to data. One outlier in a single
sample may move a parameter estimate to an arbitrary place, and analyzing the
path cannot predict such kinds of biases. When data contain outliers or heavy
tails, one may need to remove the outliers, use a robust procedure, or transform
the data before applying the ML procedure (see Yuan, Chan, & Bentler, 2000).
Third, our analysis is based on all the model parameter values being comparable.
When one parameter has a dominated value, a change in this parameter may
have a dominant effect that is different from our analysis. In practice, one may
rescale the variables to have comparable standard deviations, as was done to
the NBA data and data of Holzinger and Swineford (1939) in the previous
section. Fourth, analyzing the path cannot identify the directions of change on
all model parameters. This typically happens when ™ is associated with several
other parameters in explaining a variance or covariance, some of which need ™!

(O™) to be greater and some of which need ™! (O™) to be smaller. Fifth, analyzing
the path cannot identify the directions of change on parameters when latent
variables are omitted in the model. A structure equation or confirmatory factor
analysis model is at least partially justified by theory or previous exploratory
analysis, so missing latent variables in the model are possible but unlikely.
Most of these limitations are not unique to analyzing the path. For example,
a single outlier can move the commonly used likelihood ratio statistic to an
arbitrary value (Yuan & Bentler, 2001). Similarly, a statistical test may not be
able to tell whether the population value of a parameter is changed either due
to effect size, sampling errors, or crude estimation of standard errors, especially
with misspecified models (see Yuan & Hayashi, 2006). Actually, none of the
differences of the estimates in Table 8 is zero. Analyzing the path tells us that
some of these nonzero numbers are just due to sampling errors.

Analyzing the path is parallel to the functional relation in Equation 1 but
provides an intuitive tool for model diagnosis. Different from the functional
relation is the statistical relation that characterizes the reaction (fluctuation) of
parameter estimates with sampling errors occurring to all the variables. The
fluctuation and correlation among parameter estimates, caused by sampling
errors, can be described by the asymptotic covariance matrix of the estimates.
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For normally distributed data, the asymptotic covariance matrix is obtained by
inverting the related information matrix. With a particular change in the model,
the biases in parameter estimates have little to do with their correlations. For
example, with positive population factor loadings in Figure 2 and normally
distributed data, their estimates are positively correlated. When a pair of errors in
Figure 2 are correlated and ignored, two loading estimates contain positive biases
and two contain negative biases. Actually, asymptotic or population correlations
or covariances among parameter estimates depend on the distribution of the

data. For given ¢s, the correlations among O™s change when the distribution of
the sample changes; the values of ™! and ™0 remain fixed when an estimation
procedure is chosen, regardless of how the population distribution changes.
Similarly, the predicted value change of a parameter estimate by analyzing the
path does not imply the corresponding standard error will change proportionally.

The focus of this article is the biases in parameter estimates due to model
misspecification. For certain parameters in statistical modeling, estimates with
small biases may have much smaller variances when compared with those of
the unbiased estimates. In the context of ML estimation for covariance structure
models, adding variables or reducing the number of parameters usually leads to
smaller variances (Kano, Bentler, & Mooijaart, 1993; Yung & Bentler, 1999).
Biased estimates due to model misspecification do not necessarily have smaller
variances (Yuan & Hayashi, 2006).

In summary, analyzing the path is an intuitive tool for model diagnosis for
the most widely used ML procedure. It not only provides information on biases
of parameter estimates when a model is misspecified but also facilitates a good
understanding of the relation of various parts of the model in a path diagram.
Like any other method of statistical modeling, it needs conditions to work
effectively.
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APPENDIX

This appendix provides the detail leading to Equation 2. The relation of f1, f2,
and f3 in Figure 6 are expressed in equations as

f2 D ”1f1 C d2;

f3 D ”2f1 C ”3f2 C d3

D ”2f1 C ”3.”1f1 C d2/C d3

D .”2 C ”1”3/f1 C ”3d2 C d3;

where E.f1/ D 0, E.f2/ D 0, E.f3/ D 0, E.d2/ D 0, E.d3/ D 0, E.f1d2/ D
0, E.f1d3/ D 0, E.f2d3/ D 0, E.d2d3/ D 0, and Var.f1/ D ¥11 according to
the model assumption. Thus,

Var.f2/ D EŒ.”1f1 C d2/2"

D E.”2
1f 2

1 C 2”1f1d2 C d 2
2 /

D ”2
2¥11 C ®22;

Var.f3/ D EfŒ.”2 C ”1”3/f1 C ”3d2 C d3"2g

D EŒ.”2 C ”1”3/2f 2
1 C ”2

3d 2
2 C d 2

3 C 2.”2 C ”1”3/”3f1d2

C 2.”2 C ”1”3/f1d3 C 2”3d2d3"

D .”2 C ”1”3/
2¥11 C ”2

3®22 C ®33;

Cov.f1; f2/ D EŒf1.”1f1 C d2/"

D ”1¥11;

Cov.f1; f3/ D Eff1Œ.”2 C ”1”3/f1 C ”3d2 C d3"g

D .”2 C ”1”3/¥11;

Cov.f2; f3/ D Ef.”1f1 C d2/Œ.”2 C ”1”3/f1 C ”3d2 C d3"g

D EŒ”1.”2 C ”1”3/f 2
1 C ”1”3f1d2 C ”1f1d3

C .”2 C ”1”3/f1d2 C ”3d 2
2 C d2d3"

D ”1.”2 C ”1”3/¥11 C ”3®33:

Putting these elements into a matrix yields Equation 2.
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