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Abstract

Interfacial damage nucleation and evolution in reinforced elastomers is modeled using a three-dimensional updated Lagrangian finite
element formulation based on the perturbed Petrov–Galerkin method for the treatment of nearly incompressible behavior. The progres-
sive failure of the particle–matrix interface is modeled by a cohesive law accounting for mode mixity. The meso-scale is characterized by a
unit cell, which contains particles dispersed in a homogenized blend. A new, fully implicit and efficient finite element formulation, includ-
ing consistent linearization, is presented. The proposed finite element model is capable of predicting the non-homogeneous meso-fields
and damage nucleation and propagation along the particle–matrix interface. Simple deformations involving an idealized solid rocket pro-
pellant are considered to demonstrate the algorithm.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

With examples ranging from automobile tires to solid
propellants, particle-reinforced elastomers play an impor-
tant role in a wide variety of engineering applications and
the modeling of their constitutive response continues to
be a long-standing research topic. The complexity of the
modeling is associated with the combination of a large
set of sometimes competing physical processes taking place
at various length scales: large deformations of the quasi-
incompressible elastomeric matrix, large stiffness mismatch
between the matrix and the reinforcing particles, non-linear
viscoelastic response of the elastomer, Mullins hysteretic
effect under cyclic loading, particle debonding, void
growth, matrix tearing, inter-particle interaction, etc.
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(P.H. Geubelle).

URL: http://www.csar.uiuc.edu/~matous/ (K. Matouš).
The number and complexity of these phenomena have
led most of the modeling efforts reported in the literature
to rely on homogenized continuum models to capture some
of these key features of the mechanical response. For
example, Bergstrom and Boyce [2] have proposed a dual-
network model to predict the non-linear viscoelastic
response of carbon-black reinforced rubbers, with empha-
sis on capturing the large deformation and Mullins effects.
Drozdov and Dorfmann [8] also used the network theory
of rubber elasticity to capture the non-linear equilibrium
response of filled and unfilled elastomers. Most theories,
however, are based on phenomenological continuum mod-
els of various features of the constitutive response of filled
elastomers. Examples include Dorfmann and Ogden’s ana-
lysis of the Mullins effect [7], Kaliske and Rothert’s work
on the internal friction [13] and Miehe and Keck’s stress
decomposition model of damage evolution [25].

Another complexity is associated with the numerical
treatment of these materials. As mentioned earlier, the
matrix material is nearly incompressible and a special
numerical formulation has to be employed. A mixed finite
element method that interpolates the pressure and displace-
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Fig. 1. Kinematic decomposition of deformation gradients.
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ment fields separately is required. For Galerkin methods,
the choice of interpolation functions must satisfy the
Babuška–Brezzi condition (see, e.g., [4]) in order to achieve
uniqueness, convergence and robustness. Without balanc-
ing the interpolations properly, significant oscillations in
the solution typically result. Considerable effort has been
devoted in recent years to develop novel numerical tech-
niques that give stable solution [23,37,5]. Especially, stabi-
lized theories, where Babuška–Brezzi stability condition is
circumvented, have been recently explored [16,17,27].

The primary focus of this research is to develop a com-
putational model of damage evolution under high strain
levels in highly filled elastomers such as solid propellants
and other energetic materials, which are composed of par-
ticles of varying sizes (typically a bimodal distribution)
needed to achieve a high energetic content. Various
‘‘homogenized’’ models have been proposed to simulate
the damage evolution: see, for example, the analysis
presented by Farris [11], Schapery [33], Ha and Schapery
[14], Simo [36], Ravichandran and Liu [30]. Other
approaches rely on micromechanics [22,18,38].

In these highly filled elastomers, experimental obser-
vations have shown that the failure process is primarily
driven by the debonding of the larger particles, with the
smaller particles playing the role of stiffener for the matrix
[1,29]. Based on these observations, Zhong and Knauss
[44,45] have used a cohesive finite element approach to sim-
ulate the progressive particle debonding process in simple
2D representative volume elements (RVE) composed of a
few large rigid particles embedded in a non-linear elastic
matrix. The emphasis of their work was to capture the
effect of the inter-particle interaction and the influence of
the interface cohesive properties on the evolution and
stability of the dewetting process.

Building on Zhong and Knauss’ work, we present a
numerical study where the key emphases are: (1) the devel-
opment and implementation of a 3D model under large
deformations; (2) the accurate and efficient treatment of
the near-incompressibility of the matrix through a stabi-
lized finite element formulation; (3) the consistent lineariza-
tion of the set of non-linear equilibrium equations leading
to a very efficient algorithm.

In this paper, the interfacial damage is modeled by cohe-
sive elements [28,31,12,43] and the stabilized Petrov–Galer-
kin formulation is used to describe the large incompressible
deformations of a matrix [16,17]. The formulation and
implementation of the mathematical theory of homogeni-
zation in finite strains is presented in paper by Matouš
and Guebelle [24]. The presented work can also serve as
a computational component in the embedded multiscale
scheme proposed by Oden [26] for example.

The paper is organized as follows: In Section 2, we sum-
marize the basic kinematic, equilibrium and constitutive
relations that describe the problem, including the cohesive
model characterized by an exponential traction–separation
law that accounts for mode mixity. A stabilized variational
framework based on an updated Lagrangian formulation is
presented in Section 3, together with the finite element
formulation and its consistent linearization. Section 4
describes constitutive laws characterizing the mechanical
behavior of individual constituents. A few comments about
the non-linear solver and an adaptive time stepping proce-
dure are presented in Section 5, together with a few illustra-
tive example involving the uniaxial loading of simple unit
cells composed of one and four reinforcing particles.

The symbolic notation adopted herein uses upper case
boldface italic and lower case boldface Greek letters,
e.g., P and r for second-order tensors. The trace of the
second-order tensor is denoted as tr(A), and the tensor
operations between two second-order tensors S and E are
indicated as SE for a tensor contraction (a second-order
tensor) or S:E for the scalar product (a double contraction).

2. Finite strain irreversible cohesive law

Consider a hyperelastic body in an initial configuration
B0 � R3, which undergoes the motion /(X, t) and let
F(X, t) = $/(X, t) be the deformation gradient at the cur-
rent time t 2 Rþ with the Jacobian given by J = det(F).
Here X 2 R3 designates the position of a particle in the ref-
erence configuration B0 � R3 in the Cartesian coordinate
system. Suppose now that the body is divided by a cohesive
surface S0 with a unit normal N0 (Fig. 1). For the sake of
simplicity, we assume that the cohesive surface partitions
the body into two subbodies B�0 , occupying the plus and
minus sides of the cohesive surface, S�0 , respectively.

Next, let x = /(X,t) be the spatial coordinates of a par-
ticle and xn+1 = X + un+1, where un+1 = un + u denotes the
incremental displacement field. Here and henceforth, right
subscripts n and n+1 indicate times tn and tn+1, respec-
tively. Using an updated Lagrangian formulation and
adopting the multiplicative decomposition of the deforma-
tion gradient, we arrive at
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Fnþ1 ¼ FrFn;

Fr ¼ 1þru;

J r ¼ detðFrÞ;
J n ¼ detðFnÞ;

ð1Þ

where Fr represents the relative deformation gradient,
r ¼ rxn is a gradient with respect to xn and 1 denotes
the second-order identity tensor.

Described in quantities of the updated configuration, the
governing equations including the cohesive zone, yield

r � Pr þ f n ¼ 0 in B�n ;

Pr �Nn ¼ �tn on /ðoBPÞ;
u ¼ �u on /ðoBuÞ;
bPr �Nne � btne ¼ 0 on S�n ;

ð2Þ

where tn represents the cohesive tractions across Sn,
Pr ¼ J rrF�T

r is the relative first Piola–Kirchhoff (P–K)
stress, r denoting the Cauchy stress on the deformed con-
figuration B�nþ1, fn(xn) denotes the body forces and �tnðxnÞ
represents the prescribed tractions on the boundary /

(oBP). We also consider Dirichlet boundary conditions �u
on /(oBu). The symbol b•e = (•+�•�) denotes the jump
of a quantity • across the cohesive surface.

Following standard variational methods, the principle
of virtual work readsZ

B�n

Pr : rdudV n þ
Z

Sn

eJ nt0 � bduedSn �
Z

B�n

f n � dudV n

�
Z

oB�n

�tn � dudAn ¼ 0 ð3Þ

for all admissible variations du satisfying

du 2 U � ½H 1�N; du ¼ 0 on /ðoBuÞ; ð4Þ
where N being the space dimension and H1 represents the
Sobolev space.

The presence of a cohesive surface results in an
additional term (second term in (3)) in the principle of
virtual work, which can be deduced from the unbounded
part of the gradient of the weighting function [41]; t0

represents the cohesive tractions across S0 and eJ n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nn � ðFnFT

n NnÞ
q
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between the undeformed and the updated configurations.
Moreover, it follows that tractions t0 do work on the dis-
placement jumps or ‘‘opening displacements’’ defined over
the cohesive surface as

v � b/ðX ; tÞe ¼ vn þ bue: ð5Þ
Please note that v vanishes identically when the body
undergoes a rigid transformation, as required of a proper
deformation measure. The cohesive element is shown
schematically in Fig. 2 together with the effective traction–
separation law, which is described in what follows. Note that
the discontinuity is always contained between volumetric
elements as opposed to the Generalized finite element meth-
od [41]. Hence, the test functions lie in the space of bounded
variations since they are discontinuous across the interface.

By recourse to Coleman and Noll’s method [19,20] it is
possible to show that the local tractions t0 take the form

t0 ¼
ow
ov
: ð6Þ

It is worth noting in this regard that the cohesive free
energy w is subject to the restrictions imposed by material
frame indifference. Following the approach proposed by
Ortiz and Pandolfi [28], the unique deformed cohesive sur-
face S is defined in terms of the mean deformation mapping

�/ðX ; tÞ ¼ 1

2
½/þðX ; tÞ þ /�ðX ; tÞ�;

/�ðX ; tÞ ¼ �/ðX ; tÞ � 1

2
v; ð7Þ

and the traction separation law is given by

t0 ¼
~t
~v

t̂; t̂ ¼ ½b2vþ ð1� b2Þðv �NÞN �; ð8Þ

where b assigns different weights to the sliding and normal
opening displacements and N denotes the unit normal of
the cohesive surface S.

The present work adopts the simple and computation-
ally convenient cohesive law [28,31,43] (Fig. 2)

w ¼ ercvc 1� 1þ ~v
vc

� �
e�~v=vc

� �
; ~t ¼ ow

o~v
¼ erc

~v
vc

e�~v=vc ;

ð9Þ
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where e = exp(1), vc denotes the characteristic opening dis-
placement and rc is the maximum effective cohesive trac-
tion. The effective opening displacement ~v is defined by

~v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2~v2

s þ ~v2
n

q
; ð10Þ

while the normal and tangential displacement jump compo-
nents are

~vn ¼ v �N ; ~vs ¼ jvsj; vs ¼ ð1�N �NÞv; ð11Þ
where � denotes dyadic product. As in Ortiz and Pandolfi
[28], we shall assume loading if ~v ¼ ~vmax and _~v P 0. The
evolution of the internal state variable, ~vmax, is given by

_~vmax ¼
_~v if ~v ¼ ~vmax and _~v P 0

0 otherwise:

(
ð12Þ

We also assume unloading to be directed toward the origin
(Fig. 2), giving

~t ¼
~tmax

~vmax

~v if ~v < ~vmax or _~v < 0: ð13Þ

For the cohesive model described by (9), the cohesive
fracture energy per unit area of the cohesive surface is given
by

Gc ¼
Z 1

0

~t d~v ¼ ercvc: ð14Þ

It bears emphasis that, upon closure, the cohesive surfaces
are subjected to a (possibly frictional) contact constraint.
Instead of a more complex numerical treatment of the con-
tact between the crack faces, such as in Simo et al. [34], we
enforce the contact constraint with the aid of a non-sliding
(stick) exponentially increasing compressive constraint on
the effective cohesive traction (Fig. 2):

~t ¼ ~vrc

~vþ vc

v2
c

e
~vþvc
vc ; 8~v > 0; if ~vn < 0: ð15Þ

Please note that the effective opening displacement and
effective tractions are always positive, that contact is de-
tected for negative normal opening displacement, ~vn < 0,
and that the first derivatives of (9b) and (15) evaluated at
~v ¼ 0 are identical.

3. Stabilized finite element formulation

We now outline the variational formulation and numer-
ical treatment by the finite element method of the elliptic
boundary value problem described above, with special
emphasis on the derivation of a consistent linearization
of the non-linear problem and on the accurate numerical
treatment of the near-incompressible response of a matrix.

On the latter issue, the present finite element procedure
is based on a stabilized Petrov–Galerkin formulation to
treat volume constraints arising from the nearly incom-
pressible hyperelastic material behavior. Employing the
additive decomposition of the free energy density into
distortional and volumetric components
W ðCÞ ¼ bW ðCÞ þ UðJÞ; ð16Þ
the second Piola–Kirchhoff tensor in the reference con-
figuration is obtained in the standard manner:

S0 ¼ 2
o bW
oC
þ cJC�1;

c ¼ oU
oJ

;

ð17Þ

where C = FTF denotes the Cauchy–Green deformation
tensor. Note that the scalar multiplier c is equal to the
hydrostatic stress ‘‘pressure’’, c � p = 1/3 tr(r), only if
the energy density is a homogeneous function of zeroth or-
der [3]. We can therefore express the energy function W in
terms of the distortional component of the right Cauchy–
Green tensor bC ¼ ðdet CÞ�1=3

C to give a formally modified
energy functional bW ðCÞ ¼ W ð bC Þ. Details of this substitu-
tion are derived in [3] and the same approach was used by
Klaas et al. [17]. The relative first P–K stress Pr and the
second P–K stress Sn on B�n can be written as

Pr ¼ FrSn;

Sn ¼ /	½S0� ¼
1

J n
Fn
eSFT

n þ pJ rF
�1
r F�T

r ;
ð18Þ

where /*[S0] refers to the push-forward operation and eS
denotes the deviatoric part of S0. In this work, we use
the simple volumetric function U(J):

UðJÞ ¼ 1

2
jðJ � 1Þ2;

p ¼ jðJ � 1Þ;
ð19Þ

where j is the bulk modulus and the relative pressure
over an increment, u, is given by

~p ¼ pnþ1 � pn ¼ j½J nðJ r � 1Þ�: ð20Þ
The distortional component of the free density function is
introduced later in Section 4.

As described by Klaas et al. [17], mesh-dependent terms
that are functions of the Euler–Lagrange equations from
finer scale are added to the variational statement (3) and
the pressure p is interpolated as an independent variable.
In particular, the push-forward of the gradient of pressure
weighting function, F�T

r rd~p, is used to perturb the Galer-
kin weighting space. Thus, the strong form of equilibrium
equations (2) is integrated with the weighting function

dv ¼ duþHF�T
r rd~p; ð21Þ

where the perturbation is applied element-wise and H is
chosen following Hughes et al. [16] as

H ¼ xh2
e

2l
: ð22Þ

Here, he denotes the characteristic element length, l repre-
sents the shear modulus of the material and x is a non-
dimensional, non-negative stability parameter.

Using the standard variational procedure, inserting (18)
into (2), taking (21) into account and enforcing (20) in a
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weak sense, we obtain the following stabilized mixed
formulation:

Ru �
Z

B�n

1

J n
ðFn
eSFT

n Þ : ðFT
rrduÞdV n

þ
Z

B�n

J rpF�T
r : ðrduÞdV n þ

Z
Sn

eJ nt0 � bduedSn

�
Z

B�n

f n � dudV n �
Z

oB�n

�tn � dudAn ¼ 0;

Rp �
Z

B�n

J nðJ r � 1Þ � ~p
j

� �
d~p dV n

�
Xne

el

H
Z

Be
n

J rðF�1
r F�T

r Þ : ðr~p �rd~pÞdV e
n

þ
Xne

el

H
Z

Be
n

r � 1

J n
Fnþ1

eSFT
n

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 for P 1=P 1 elements

0BBB@
1CCCA � ðF�T

r rd~pÞdV e
n ¼ 0;

ð23Þ
where ne denotes the number of elements and du; d~p, are
arbitrary functions satisfying

du 2 U; du ¼ 0 on /ðoBuÞ;
d~p 2 L2:

ð24Þ

In particular, equal-order interpolations for the displace-
ment and pressure (e.g., P1/P1) are supported by the pres-
ent formulation. Due to the linear interpolation of the
displacement field, the last term in (23b) is zero. Please note
that reduction from an updated formulation to total
Lagrangian formulation can be obtained easily by substi-
tuting Fn = 1, Jn = 1, Fr = F, Jr = J and integrating over
the initial domain B�0 . For a more detailed description of
mixed and stabilized formulations, see [5,23,17].

3.1. Consistent linearization

The finite element method together with an arc-length
procedure is applied to solve the non-linear system of equa-
tions (23). The formulation of a consistent tangent stiffness
tensor is therefore essential to maintain a quadratic rate of
convergence [35]. A consistent linearization for the set of
non-linear equations about a configuration ðu; ~pÞ yields

DRu½Du� þ DRu½D~p� ¼ �Ru;

DRp½Du� þ DRp½D~p� ¼ �Rp;
ð25Þ

where

DRu½Du�

¼
Z

B�n

1

J n
½FT

nþ1ðrduÞFn� : L : ½rðDuÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
material contribution

þ ½FT
n ðrduÞTrðDuÞFn� : eS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

geometric contribution

8><>:
þ pJ rJn½trðF�1

r rðDuÞÞtrðF�1
r rduÞ � trðF�1

r rðDuÞF�1
r rduÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pressure geometric contribution

9>=>;dV n

þ
Z

Sn

eJ nDt0½Du�� � bdue|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cohesive model contribution

dSn;
DRu½D~p� ¼
Z

B�n

J rtrðF�1
r rduÞD~p dV n;

DR~p½Du� ¼
Z

B�n

J rJ ntrðF�1
r rðDuÞÞd~p dV n

�
Xne

el

H
Z

Be
n

J r½trðF�1
r rðDuÞÞF�1

r F�T
r

� F�1
r rðDuÞF�1

r F�T
r F�1

r F�T
r

ðrðDuÞÞT F�T
r � : ½r~p �rd~p�dV e

n;

DRp½D~p� ¼ �
Z

B�n

1

j
d~pD~p dV n

�
Xne

el

H
Z

Be
n

J r½F�1
r F�T

r � : ½rðD~pÞ � rd~p�dV e
n; ð26Þ

with the tangent hyperelastic pseudo-moduli given by

L ¼ 2
oeS
oC

A ¼ CA: ð27Þ

Here we use the notation A for the fourth-order tensor
1/2(oC/oFr). The deviatoric part of the material stiffness
tensor C ¼ 2oeS=oC is derived for a particular free density
function in Section 4. The notation Rkþ1

y 
 Rk
yþ

DRy½Dy� ¼ 0 is employed in this paper for the consistent
linearization of a non-linear system Ry ¼ 0, where a solu-
tion yk+1 = yk + Dy at iteration k + 1 is obtained using an
arc-length method. The resulting tangent stiffness tensor
is non-symmetric in the present analysis. Several finite
element approximation schemes can be used within the
proposed variational framework provided by (23). In this
work, continuous displacement and pressure interpolations
are assumed, i.e., we use the so-called P1/P1 elements. The
system of linear equations (25) is solved using the sparse di-
rect solver UMFPACK [6]. The last missing component is
the consistent linearization of the cohesive model contribu-
tion, Dt0[Du±], present in (26a). This term is described next.

3.2. Consistent linearization of cohesive model contribution

Let us first recall that the cohesive surface contribution
in the principle of the virtual work isZ

Sn

eJ nt0 � bduedSn �
Z

Sn

eJ n

~t
~v

t̂ � bduedSn ð28Þ

with the displacement jump and its weighting function
defined by

v ¼ vn þ ðuþ � u�Þ;
bdue � duþ � du�:

ð29Þ

In addition, we recall that the cohesive tractions t0 are
dependent on both the opening displacement v and the
normal N:

t0 ¼ t0ðv;NÞ: ð30Þ
Following the framework outlined in Section 2, all geomet-
rical operations such as the computation of the normal, N,
are carried out on the middle surface S with coordinates

�xnþ1 ¼ �xn þ
1

2
ðuþ þ u�Þ: ð31Þ
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The normal is expressed in terms of the tangent basis vec-
tors e1 and e2 as

N ¼ e1 � e2

je1 � e2j
; ð32Þ

where e1 and e2 are obtained using the standard isoparama-
tric element procedure, i.e., e1 ¼ o�x=ox1, e2 ¼ o�x=ox2.

The linearized cohesive model contribution is then

Dt0½Du�� ¼ ot0

ov

ov

ou�
Du� þ ot0

oN

oN

o�x

o�x

ou�
Du�; ð33Þ

where, based on (8)–(10) and (32)

ot0

ov
¼ w00~v�~t

~v3
t̂ � t̂ þ

~t
~v
½b21þ ð1� b2ÞN �N �;

ot0

oN
¼ w00~v�~t

~v3
½b2ðv �NÞ2N þ ð1� b2Þðv �NÞv� � t̂

þ
~t
~v
ð1� b2Þ½v�N þ ðv �NÞ1�;

oN

o�x
¼ 1� ðN �NÞ

je1 � e2j
oðe1 � e2Þ

o�x
;

ð34Þ

and

w00 � o
2w

o~v2
¼ o~t

o~v
¼ rce

�~v�vc
vc

ð Þðvc � ~vÞ
v2

c

: ð35Þ

Please recall that 1 is the second-order identity tensor and
� denotes the dyadic product. Finally, a simple calculation
gives

ov

ou�
¼ 1þ � 1� and

o�x

ou�
¼ 1

2
ð1þ þ 1�Þ: ð36Þ
4. Constitutive laws

Although the model developed in this work pertains to
many reinforced elastomeric materials, we focus our atten-
tion in the examples presented hereafter on the damage
evolution in an idealized solid propellant composed of
Ammonium Perchlorate (AP) particles embedded in a rub-
bery binder. As mentioned earlier, to achieve high energy
content, solid propellants are typically characterized by
high particle volume fractions obtained through a bimodal
distribution of particle sizes. The small particles have a
mean diameter of about 20 lm, while that of the larger
particles is in the 100–300 lm range.

As described in the introductory section, damage initia-
tion in these materials is often associated with the debond-
ing of the larger particles and the role of the smaller ones is
primarily to stiffen the binder. In the examples presented
below, we assume a 64% concentration of AP particles,
with 34% of large particles. The remaining 30% of small
particles is then combined with the 36% of binder to create
a homogenized matrix (blend).

To capture the mechanical behavior of the compressible
AP particles and the nearly incompressible matrix, two
hyperelastic material models are introduced. These models
differ by the expression of the deviatoric component of
their free energy density function: the functional form of
the volumetric contribution is the same for both AP parti-
cles and the blend and is given by the simple relation (19).

4.1. AP particles

The deviatoric behavior of particles is described by the
following distortional component of the free density
functionbW ¼ lE : E; ð37Þ
where E = 1/2(C � 1) is the Green-Lagrange strain tensor,
l denotes the shear modulus and the deviatoric part of the
second P–K stress readseS ¼ 2lE ¼ lðC � 1Þ: ð38Þ
For this model, the Lagrangian tensor C entering (27) is gi-
ven by

C ¼ 2lI ; ð39Þ
where I denotes the fourth-order identity tensor.

4.2. Homogenized blend

The homogenized matrix is modeled as a nearly incom-
pressible Neo-Hookean material with the distortional com-
ponent of the free density function given by

bW ¼ 1

2
l½trðĈÞ � 3�; bC ¼ ðdet CÞ�1=3

C ; ð40Þ

where l denotes the shear modulus obtained from homo-
genization. The deviatoric part of the second P–K stress
is then given by

eS ¼ lðdet CÞ�1=3
1� 1

3
trðCÞC�T

� �
: ð41Þ

The corresponding expression of the fourth-order Lagrang-
ian tensor C is

C ¼2lðdet CÞ�1=3 1

9
trðCÞC�1 � C�1 � 1

3
1� C�1

�
� 1

3
C�1 � 1þ 1

3
trðCÞB

�
; ð42Þ

where the fourth-order tensor B in indicial notation reads

BIJMN ¼ C�1
NI C�1

JM : ð43Þ

The homogenized mechanical properties of a blend, (l,j),
are obtained by a homogenization procedure. As pointed
out by Dvorak et al. [9], various estimates of the composite
stiffness L of any statistically homogeneous representative
volume element (RVE) consisting of r = 1,2, . . . ,N phases
can be written as

L ¼
XN

r¼1

crðL	 þ LrÞ�1

" #�1

� L	; ð44Þ



Table 1
Mechanical properties of individual constituents

Constituent E* [MPa] l [MPa] m

AP particle 32.447 · 103 14.19 · 103 0.1433
Binder 2.400 0.8003 0.4995
Homogenized blend 7.393 2.4656 0.4991

Table 2
Cohesive properties used for the particle/blend interface

rc [MPa] vc [lm] Gc [J/m2] b

Interface 1
1.0 0.75 2.039 0.9

Interface 2
0.5 0.75 1.019 0.9
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where cr and Lr, respectively, denote the volume fraction
and elastic stiffness of constituent r; L	 ¼ L0S

�1ðI �SÞ
corresponds to Hill’s constraint tensor, L0 represents the
stiffness of a comparison medium, S is the Eshelby tensor
[10] and I is the identity matrix. Moreover, Walpole [39,40]
proved that (44) satisfies the Hashin–Shtrikman [15] first-
order variational bounds on the actual overall elastic prop-
erties, where the bounds Lþ and L� on the actual stiffness L
are obtained by selecting the stiffness L0 of a comparison
medium. In this work, we adopt the Mori-Tanaka homog-
enization scheme for the blend, in which the binder serves
as the comparison medium, i.e., L0 = Lm. This assumption
provides a lower bound on the overall compliance of the
composite medium.

5. Examples

To illustrate and verify the proposed numerical frame-
work, we now analyze the damage evolution in two model
particulate composite systems. In the first one, which is
composed of a single embedded particle, we focus on the
debonding process along the particle/blend interface, with
emphasis on the effect of the cohesive properties on the
damage process and the existence of bifurcation in the solu-
tion. In the second example, we consider a four-particle
composite system and demonstrate the ability of the
numerical scheme to capture the effects of non-uniform
particle spacing and size.

It is important to note, however, that, in the examples
presented in this section, the finite element analysis
enforces strictly homogeneous boundary conditions on
the heterogeneous medium. This simple choice of boundary
conditions affects the extracted average constitutive prop-
erties, presented below in terms of load multiplier versus
axial displacement curves. This so-called embedded
scheme, which was also used by Zhong and Knauss
[44,45] in their 2D analysis, does not therefore lead to truly
multiscale constitutive results, but can be used as a compu-
tational engine for embedded multiscale models [26]. The
derivation and implementation of a mathematically consis-
tent homogenization scheme were presented by Matouš
and Geubelle [24]. The primary focus of the examples pre-
sented hereafter is to demonstrate the ability of the numer-
ical scheme to capture the key features of the dewetting
process.

All constituents are assumed to be isotropic hyperelastic
solids with the free energy density functions described in
Section 4. The elastic moduli of the various components,
including those of the homogenized blend, are listed in
Table 1. All finite element meshes are composed of four-
node tetrahedral elements and have been generated using
the T3D generator developed by Rypl [32]. The stability
parameter x entering (22) was set to one. For finite elastic-
ity, this value was shown to be satisfactory [17] and no
pressure oscillations were observed.

As mentioned earlier, the arc-length method is used to
solve the non-linear system of equations (25). The arc-
length procedure proposed by Simo et al. [34] was adopted
in this work. Although the present finite element method is
fully implicit and the time step is therefore mainly limited
by considerations of convergence and accuracy of the solu-
tion of the non-linear equations, we implemented a simple
time stepping procedure based on subdivision of a user-
defined loading history [23]. The automatic time stepping
procedure is robust and quickly finds the optimal time
and load sub-increments for a given load path and a max-
imum number of iterations.

Two types of interfaces are considered; a strong interface
(referred as Interface 1) and a weak one (Interface 2), char-
acterized by the cohesive parameters listed in Table 2.

5.1. One-particle composite system

The geometry and boundary conditions for the one-
particle system are presented in Fig. 3. A cubic unit cell
consisting of a single AP spherical particle is loaded pro-
portionally in tension. The displacements at the top and
bottom surfaces of the unit cell are fixed in the x1– x2 plane.
The bottom surface was fixed in x3 direction also, and the
top surface was proportionally loaded, T = kT0, by the
load multiplier k, through a rigid plate to ensure the uni-
form displacement in the x3 direction. The reference axial
force T0 = 8100 lN was uniformly distributed over the
top rigid surface.

Convergence studies involving cohesive finite element
models have indicated that, for the case of interfacial fail-
ure, at least three cohesive elements have to be present in
the active cohesive zone in front of the advancing crack
front to achieve mesh independence. The expression of
the cohesive zone size for the debonding of a curve bimate-
rial interface is not available. We have instead opted, for a
rough estimate, the classical expression of the cohesive
zone length Lc in a homogeneous medium of stiffness E*

and Poisson’s ratio m:

Lc ¼
p
8

E	

1� m2

Gc

r2
ave

: ð45Þ

In (45), Gc and rave denote the fracture toughness and aver-
age cohesive strength of the material, respectively. A con-
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servative estimate of the cohesive zone size was obtained by
substituting the properties of the more compliant blend in
(45), together with the cohesive properties listed earlier.
Two mesh discretizations were investigated to verify the
spatial convergence of the solution. The first mesh uses a
cohesive element size hc

e 
 Lc=3, the second hc
e 
 Lc=6.

The characteristics of the finite element discretizations are
listed in Table 3, where nn is the number of finite element
nodes, ne represents the number of volumetric elements,
nce denotes the number of cohesive element and dof is
the number of degrees of freedom.

The load–displacement curves for both mesh discretiza-
tions, together with the response of a porous medium and a
homogenized blend, are shown in Fig. 4. A good agreement
is obtained between the solutions corresponding to the two
meshes over the loading history, vouching for the spatial
convergence of the numerical solution. The difference
between the numerical solutions, at the larger strains (from
point C to point E), is associated with the volumetric
response of the surrounding binder, when the particle is
substantially debonded and the matrix carries the most of
the load and experiences substantial deformation.

Although the geometry and boundary conditions are
symmetric, the decohesion process for mesh 2 initiates at
the bottom of the particle due to the imperfections associ-
ated with the nonuniform discretization. Note that, for the
coarser mesh 1, the decohesion process starts at the top of
the particle. The resulting force–displacement behavior is
however almost identical as shown in Fig. 4. A discussion
Table 3
Details of the two finite element discretizations for the one-particle
composite system

nn ne nce dof

Mesh 1 1629 6619 420 5754
Mesh 2 2913 12,997 684 10,511
on a possible bifurcation of the solution path is provided
below.

The decohesion process computed with mesh 2 is
depicted in a series of snapshots shown in Fig. 5, corre-
sponding to the points labeled A–E on the force–displace-
ment curve in Fig. 4. At point A of the loading process
(Fig. 5A), the effective traction on the cohesive surface
almost reaches its critical value. As loading continues, the
bottom part of the particle debonds and the dewetting is
accompanied by the rapid unloading of the top surface
and decrease in the overall applied force (point B and
Fig. 5B). The crack growth at the bottom of the particle
and subsequent reloading of the top cohesive surface up
to the critical value are shown in Fig. 5C (point C). The
bottom of the particle is then unloaded and a second de-
bonding initiates at the top of the particle, leading to the
second drop of the applied force (Fig. 5D and point D).
At this point, the particle is debonded on both sides and
the cracks propagate along the matrix–particle interface
(Fig. 5E and point E).

As expected, compressive forces are present along the
particle equator at the end of the loading process prevent-
ing the complete decohesion of the particle and resulting in
a damaged material that is stiffer than a porous medium.
This fact can be observed in Fig. 6, which shows the effec-
tive cohesive tractions along the particle surface and the
compressive ring arresting those tips in the equatorial
region. The stiffening of material due to the circumferential
constraint is also visible in Fig. 4, as the damaged material
response lies between those of the undamaged blend (dot-
ted line) and the fully porous system (dash-dotted curve).

Fig. 4 also shows the influence of the cohesive failure
properties and, in particular, of the failure strength, on
the load-displacement curve. The key features of the mate-
rial response for the weak interface are similar to those
described earlier for the stronger interface, with the same



Fig. 5. Effective opening ~v defined by (10) along the top and bottom
cohesive surface obtained with mesh 2 at loading points labeled A–E in
Fig. 4. All contour plots have the same scale, with the min (white) and max
(black) values equal to 0 lm and 10 lm, respectively.

Fig. 6. Effective cohesive tractions at the end of the loading process (point
E).

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
Axial displacement [μm]

0.00

0.50

1.00

1.50

2.00

Lo
ad

 m
ul

tip
lie

r 
λ

Solution path 1 (debonding/unloading)

Solution path 2 (debonding/debonding)

1A

2A

Fig. 7. Bifurcation: load–deflection curves for two solution paths.
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succession of peaks and valleys associated with the initia-
tion of local debonding followed by unloading phases.
However, due to the lower value of the critical traction,
the maximum load reached before softening is lower for
the weaker interface as shown in Fig 4. As expected, the
material response of the fully damaged material (i.e., at
the conclusion of the debonding process) is the same for
both interface strengths.

Bifurcation is a common phenomenon in non-linear
continuum mechanics and appears even in seemingly sim-
ple problems involving fairly standard constitutive models
[42,21]. However, the direct detection of bifurcation points
is not simple and requires a special numerical treatment
[42]. Here we analyze the bifurcation of the solution
obtained for two different loading histories. Note that,
in this work, bifurcation points are not detected directly.
The geometry, and boundary conditions are the same as
above, with the fine discretization (Mesh 2) and the weak
interface. Two loading histories characterized by different
arc-length sizes are analyzed and lead to a bifurcation in
the solution path, as illustrated in Fig. 7. As mentioned ear-
lier, the solution labeled 1A corresponds to the debonding
of one of the poles of the spherical particle followed by
the unloading of the opposite surface. As shown in
Fig. 7, the second solution path exists for which both cohe-
sive surfaces debond simultaneously, leading to the force–
displacement curve labeled 2A. The differences in the failure
process can also be assessed from the opening displacement
contour plots shown in Fig. 8.

5.2. Four-particle composite system

We now turn our attention to a four-particle composite
system to demonstrate the ability of the numerical scheme



Fig. 8. Effective opening displacement for two solution paths shown in
Fig. 7 at points 1A and 2A. Min (white) and max (black) values are 0 lm
and 3 lm, respectively.

Fig. 9. Geometry and surface/cohesive mesh of four-particle unit cell.

Table 5
Particle center locations and diameter (given in lm) for the first four-
particle unit cell problem

Particle # X1 X2 X3 B

1 210 0 10 174
2 200 0 200 174
3 0 10 �10 174
4 �10 �10 190 174
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to capture effects associated with nonuniform particle spac-
ing and size. In the first example, we study the damage evo-
lution in a composite medium composed of four randomly
distributed spherical particles with the same diameter of
174 lm. The particles are dispersed in a unit cell of dimen-
sions 420 · 220 · 410 lm, yielding a moderate particle vol-
ume fraction of about 0.29. The unit cell is loaded by the
same tensile force as in the previous examples. The other
boundary conditions and material properties are also the
same (Table 1). The adopted interface properties corre-
spond to the second (weaker) interface listed in Table 2
and the mesh characteristics are listed in Table 4. The sur-
face/cohesive mesh for the four-particle unit cell is shown
in Fig. 9. The particles are not organized in a perfect lattice
as the center coordinates are slightly perturbed as listed in
Table 5.

Fig. 10 presents the force–displacement curves for the
first four-particle unit cell problem. As expected, damage
nucleates in the vicinity of the most closely packed particles
(Particles 1 and 2), as illustrated in Fig. 11. The damage
nucleation, denoted by point A on the force–displacement
curve in Fig. 10, leads to a pronounced non-linear change
of the force–displacement curve. However, due to the com-
plex interactions between the particles, the damage evolu-
tion taking place at the microscale does not affect the
average macroscopic response as drastically as for the sin-
gle-particle unit cell. Although the particle diameters, the
material and interfacial properties and volume fractions
are almost identical, the resulting force–displacement curve
for the four-particle unit cell remains monotonically
Table 4
Finite element discretization for the unit cell composed of four particles of
equal diameter

nn ne nce dof

16,625 80,451 3702 64,109
increasing and does not display the softening and re-hard-
ening regions shown in Fig. 4. The effective opening dis-
placement distribution in the damaged medium (Point B

in Fig. 10) is presented in Fig. 12, showing substantial deb-
onding along the two more closely packed particles (1 and
2) and along particle 3. The accompanying unloading and
the deformation of the matrix prevents the last particle (4)
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
Axial displacement [μm]

0.00

0.50

Fig. 10. Force–displacement curve for unit cell with four equal size
particles.



Fig. 13. Effective cohesive tractions for four-particle unit cell.
Fig. 11. Effective opening displacement distribution at damage nucleation
(point A in Fig. 10) in the first four-particle unit cell problem. Min (white)
and max (black) values are 0 lm and 0.75 lm, respectively.
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to experience any damage along its lower surface at this
stage of the loading process. To ensure uniform macro-
scopic deformation of the unit cell, damage is more pro-
nounced along the top surface of particle 3. Debonding is
also observed along particle surfaces located close to the
top and bottom of the unit cell, probably due to the addi-
tional constraints associated with the rigid boundary con-
ditions. The effective cohesive tractions acting along the
particle surfaces are presented in Fig. 13, clearly showing
the crack front location and the presence of compressive
rings that lead to crack arrest. Higher axial loading of
the unit cell would be required to achieve further damage
in the model composite. However, the finite element mesh
quickly becomes distorted due to the large deformations
experienced by the matrix, requiring re-meshing or local
mesh repair to guarantee the accuracy and convergence
of the numerical scheme.

The second four-particle example is devoted to the influ-
ence of the particle diameter on the mechanical response
and the damage nucleation. Particles of two different dia-
meters (174 lm, 87 lm) are dispersed in the unit cell of
dimensions 420 · 220 · 460 lm yielding a small volume
fraction of about 0.15. The unit cell is subjected to the same
tensile force and boundary conditions as in the first exam-
ple. The mechanical properties are listed in Table 1 and the
Fig. 12. Two views of the effective opening displacement distribution in
damaged material (point B in Fig. 10) in the first four-particle unit cell
problem. Min (white) and max (black) values are 0 lm and 8.6 lm,
respectively.
second (weaker) interface is selected again in this study
(Table 2). The mesh characteristics are listed in Table 6.
The particles are this time perfectly organized with center
coordinates listed in Table 7. To minimize the influence
of the top and bottom fixed boundaries, the reference
box is enlarged in X3 direction from 410 to 460 lm so that
the distance from the large particles to the top and bottom
boundaries of the unit cell is approximately equal to the
center-particle distance.

Fig. 14 presents the force–displacement curves for the
second four-particle unit cell problem. Due to the low par-
ticle concentration, the force–displacement curve is much
closer to the response of the blend, and the difference
between the blend and porous medium responses is
decreased also. As typical for such systems, damage nucle-
ates on the cohesive surface associated with the bigger par-
ticles. The effective cohesive opening at the early stage of
damage is shown in Fig. 15. This corresponds to point A
on the force–displacement curve in Fig. 14. Since the vol-
ume fraction of particles is low, the stiffness quickly deteri-
orates and the composite response is degraded almost to
that of the blend (Fig. 14). Dilute reinforcement also makes
the force–displacement curve monotonically increasing
without softening and re-hardening regimes. The effective
opening displacement distribution in the damaged medium
Table 6
Finite element discretization for the second four-particle unit cell problem
with different particle diameters

nn ne nce dof

Mesh 1 16,952 85,587 1944 65,020

Table 7
Particle center locations and diameter (given in lm) for the second four-
particle unit cell

Particle # X1 X2 X3 B

1 200 0 0 174
2 200 0 200 87
3 0 0 0 87
4 0 0 200 174
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Fig. 14. Force–displacement curve for four-particle unit cell with different
particle sizes.

Fig. 15. Effective opening displacement distribution at damage nucleation
(Point A in Fig. 14) in the second four-particle unit cell problem, showing
damage nucleation along the larger particles. Min (white) and max (black)
values are 0 lm and 0.90 lm, respectively.

Fig. 16. Two views of the effective opening displacement distribution in
damaged material (point B in Fig. 14) in the second four-particle unit cell
problem. Min (white) and max (black) values are 0 lm and 7.3 lm,
respectively.

Fig. 17. Effective von Mises stress in the matrix (point B in Fig. 14) in the
second four-particle unit cell problem. Labels ‘‘a’’ and ‘‘b’’ denote
debonding of the large and small particles, while the stress concentration
regions likely to lead to matrix failure are denoted by ‘‘c’’. The cut-off
plane is X = {0,0,0}.
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(point B in Fig. 14) is presented in Fig. 16, displaying sub-
stantial debonding along the top (particle 4) and bottom
(particle 1) cohesive surface. The smaller particles 2 and 3
are also debonded in the regions closer to the big particles
1 and 4, respectively. Further loading would be needed to
complete the decohesion process. However, the large
strains present in the matrix (about 12% at point B) lead
to element distortion and make convergence and accuracy
increasingly difficult. Once again, the re-meshing or local
mesh repair would be required at this point. Fig. 17 dis-
plays the von Mises effective stress in the matrix. As appar-
ent there, the bottom and top regions (points a in Fig. 17)
of particles 1 and 4, respectively, are fully unloaded due to
the progressive interfacial damage. The bottom and top
regions (points b in Fig. 17) of particles 2 and 3 are also
unloaded. Moreover, stress concentrations can be observed
at the crack tips (points c in Fig. 17), which would most
likely lead to tearing of the matrix and void coalescence.
Since the geometry, boundary conditions and load are sym-
metric, the stress distribution shown in Fig. 17 holds the
symmetry as well.

6. Conclusions

We have formulated and implemented a 3D computa-
tional model to simulate dewetting evolution in reinforced
elastomers subject to finite strains. The particle–matrix
interface is modeled by a cohesive law that accounts for
irreversibility and mode mixity. The finite element frame-
work is based on a stabilized updated Lagrangian formula-
tion and adopts a decomposition of the pressure and
displacement fields to eliminate the volumetric locking
due to the nearly incompressible behavior of a matrix.
The consistent linearization of the resulting system of
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non-linear equations has been derived and leads to an effi-
cient solution of the complex highly non-linear problem.

Through a set of examples involving one- and four-par-
ticle unit cells, we have shown the ability of the numerical
scheme to capture the non-homogeneous stress and de-
formation fields present in the matrix and the damage
nucleation and propagation along the particle–matrix
interface. In particular, the scheme was shown to capture
effects associated with the interface strength and nonuni-
form particle spacing and size. The existence of a bifurca-
tion in the solution path was also briefly investigated.

The present work is a first step toward linking the
macro-scale to the meso-scale through the computational
homogenization, where a meso-structure is fully coupled
with the deformation at a typical material point of a
macro-continuum. The formulation and implementation
of a truly multiscale model for the effect of microstructural
damage on the macroscopic constitutive response of
reinforced elastomers is the topic of our future research.
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