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a b s t r a c t

We present the method of characteristics with mass, momentum, and energy conservation to solve the
nonlinear wave equation with shock formation in a two layer one-dimensional rod made of cellular
material. We show that the rigid-perfectly-plastic-locking model cannot predict shock formation at
a material interface, so we propose an elasticeplastic-densifying model to describe the stressestrain
behavior of the cellular materials. The conditions for shock formation at a material interface are pro-
vided. We conduct a two-layer analysis to gain insights into the behavior of two layer cellular systems
and to determine which material properties are most important for design. Finally, we optimize the
significant parameters to reduce the length of one and two layered cellular systems with impulse and
mass constraints subject to pulse loading. The results reinforce the concept of sandwich structures and
show that two layer systems can achieve a 30% reduction in length over single layer ones.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Cellular materials (e.g., foam, honeycomb, lattice structures) have
proven indispensable in a variety of applications such as insulation,
filler for light-weight structural elements, packaging, and, more
recently, armor. It is the ability to absorb significant input energy
while transmitting relatively little load that makes cellular materials
appealing for protective applications [1]. The protective capability of
thesematerials is a function of their stressestrain behavior and their
highly heterogeneous nature [2]. Experimental evidence confirms
that shock fronts can form within cellular materials subject to
dynamic impact loading [3e8]. Under the right conditions, shock
formation can increase the energy absorbing capacity of cellular
materials without increasing the transmitted load.

A number of analytical and numerical methods can be used to
analyze the behavior of a cellular material under a dynamic event.
The detailed numerical methods model the entire cellular structure
(e.g. lattices [9] or voronoi foam [10]) in two or three dimensions
and solve the dynamic problem with the finite element method
(FEM), for example. To reduce the complexity of the analysis, the
cellular material is sometimes represented as a homogeneous
medium in the FEM analysis, when the scale of the element is
sufficiently large to encompass the unit cell of the material [11e13].
Reducing the problem to a single dimension is done to develop
All rights reserved.
analytical solutions that provide insights into the behavior of cel-
lular systems under pulse loadings, such as the minimum impact
speed to induce shock formation [10].

A number of methods have been proposed to solve the one-
dimensional shock problem in cellular materials, including spring-
mass models [14,15], energy balance [16e19], purely mechanical
mass and momentum conservation [13,20,21], and the method of
characteristics in conjunction with a complete thermo-mechanical
conservation analysis [10,22,23]. Note that some of the models,
i.e., spring-mass and energy balance, are regarded today as less
accurate and potentially flawed. Nevertheless, their introduction
allowed future research to be performed in the right direction of
thermodynamically consistent mass, momentum and energy con-
servation. The majority of these works use a rigid-perfectly-plastic-
locking (RPPL) model to describe the stressestrain relationship of
the cellular material. Only a few works have included elasticity
[14,15,20]. In [20], elasticity is only applied to regions of material
that are not fully compacted. Once thematerial has fully collapsed it
is treated by the RPPL model. Omitting elasticity in favor of the RPPL
model simplifies the problem enough for a closed form solution to
be obtained [10]. A closed form solution is advantageous for opti-
mization studies and allows for the optimal (e.g., minimum) length
necessary to defeat a specified load to be calculated [20]. However,
most of these works limit analysis to a single material layer of foam.

The method of characteristics is frequently applied to single
material problems of elastic nature [23e25], as well as elasto-
plastic problems [25e27], and in conjunction with mass,
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Fig. 1. Two-layered cellular material system. Note that the open domain representing
the rod is U0 ¼ U�

0 WG.
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momentum, and energy conservation to treat the wave problem
when shocks are involved [8,22,23]. The NASA report by Utku [23]
uses the method of characteristics to calculate shock wave forma-
tion at the impact surface of two elasto-plastic bodies, but does not
examine the behavior of two materials working together in series
to dissipate an applied load. A thorough analysis of the behavior of
multi-layered systems subject to pulse loading, particularly analysis
of the system response to variations in the properties of the ma-
terial layers and their optimization, is still lacking.

In the area of armor design, it is acknowledged that better armor
performance can be achieved through the layering of different
materials [1]. A few works discuss multi-layered cellular systems
[21,26,28,29]. Sumi [26] does not explicitly explore the problem,
but mentions that finite difference method and the method of
characteristics can be used to solve it. Ma and Ye [21] use a stress
based analysis on a two layer systemwith a rigid mass between the
layers with the RPPL model to describe the material behavior.
However [21], does not address shock formation in two-layer sys-
tems. Maheo and Viot [28] and Zeng et al. [29] perform exper-
imental and FEM numerical analysis on the macroscopic behavior
of multi-layered foams under quasi-static and dynamic loads.
While providing useful insights into the behavior of layered ma-
terials, Maheo and Viot [28] perform no optimization and do not
address shock formation. Konstantinov et al. [30] investigates a two
layer problem where the first layer is elasto-plastic and the second
layer is an infinite elastic bar. The method of characteristics is used
in [30] with a bilinear material model. Although strong disconti-
nuities are discussed, shocks are not examined and since the sec-
ond layer is infinitely long, complex wave interactions are avoided.

Optimization of thematerial parameters as awayof improving the
performance of the system has been investigated in [12,31e34].
Several works focus on the design of microstructure [31e33]. Opti-
mization of macroscopic parameters has also received attention
[12,34]. For example, Zhu et al. [34] examines the effects of changing
length and density on the maximum deflection of a foam sandwich
plate using energy balance andCui et al. [12] optimizes acceleration of
a fixed volume foam panel that is functionally graded using finite
element analysis. Shen et al. [35] provides insights into thebehaviorof
functionally graded cellular materials and derive analytical expres-
sions for shock formation using the RPPL model. In Shen’s work, the
only free parameter is the yield stress gradient. The gradient is varied
from positive to negative slope to study its influence on shock for-
mation and energyabsorption. Unfortunately, shock formation and its
influence on the optimality of a cellular system are rarely discussed.

This work uses the method of characteristics to solve the non-
linear wave equation with mass, momentum, and energy conserva-
tion to treat shock formation in a two layer one-dimensional rod
made of cellular material. A number of features set this work apart
from previous efforts. Wewill show that the RPPLmodel is incapable
of predicting shock formation at the material interface, and so a fully
elasticeplastic-densifying model is used throughout the analysis.
Next, a two layer analysis provides useful insights into the behavior
of two layer cellular systems. A sensitivity study is conducted to
determine which material parameters are most important for the
design of a layered cellular material system. The most influential
parameters are then optimized to improve the performance of one
and two layered cellular systems subject to pulse loading.

A description of thematerial model is covered in the first section
of this paper (Section 2.1), followed by the description of the
characteristics and thermodynamic shock theory in Section 2.2.
Shock formation at the interface is covered in Section 2.3 followed
by a description of the numerical implementation of the method of
characteristics in Section 2.4. Section 3 covers the verification of the
current work and the two layer analysis. Optimization is covered in
section 4. Finally, some conclusions are drawn in Section 5.
2. Shock analysis of two-layer systems

This work will consider two different layers of cellular material as
shown in Fig.1. Here X˛R1 designates the position of material points
in the reference configuration U0˛R1 in the Cartesian coordinate
system and x(X,t) is the spatial coordinate of a particle. Note that O is
the origin of the coordinate system (see Fig. 1). A pulse, of either
constant stress or velocity, is applied to the left end of layer A. A
number of assumptionswill bemade to simplify the analysis: i) shock
process is adiabatic, ii) stress is a functionof strain only, iii) input loads
are piecewise constant, iv) a cellular material is represented as a ho-
mogeneous medium in bulk, and v) the material does not fracture.
2.1. Constitutive law

The stressestrain behavior of cellular materials under com-
pression is typically characterized by a short elastic region, followed
by a relatively flat “plateau” region, followed by a densification
region (see Fig. 2). A number of previous works [10,13,20,22,36,37]
have utilized the RPPL model for cellular materials as a close
approximation. It will be shown that elastic waves become
important in the two-layer problem, and so the RPPL model is
abandoned in favor of a non-linear one. We shall call this model
ElasticePlastic-Densifying and abbreviate it EPD (see Fig. 2). Thus
material behavior is defined by six material constants: elastic
modulus E, plastic modulus H1, densification modulus H2, yield
stress sy, densification strain εD, and the reference mass density
r0 ¼ r0(X,t). From these constants four additional parameters
relevant to the analysis can be derived:

Ep ¼ EH1

E þ H1
; (1)

ED ¼ EH2

E þ H2
; (2)

sD ¼ sy þ H1εD ¼ sy þ Ep
�
εD � εy

�
; (3)

εD ¼ H1

Ep
εD þ εy: (4)

Here, Ep and ED are the elastoplastic and densification tangent
moduli respectively, sD is the densification stress, and εD is the total
strain at onset of densification.

We assume an additive split between elastic, and inelastic (total
plastic and densification) strains as

ε ¼ εe þ εi: (5)

The elastic stressestrain relationship is used

s ¼ Eðε� εiÞ: (6)



(a) (b)

Fig. 2. Schematic of elasticeplastic-densifying material law and material constants.
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The strain hardening in the material will be modeled as isotropic
using associative plasticity. The yield criterion, flow rule, hardening
law, and Kuhn-Tucker loading/unloading conditions are

f ðs; a!Þ ¼ jsj � �sy þ H
!
$ a!�; (7)

εi ¼ _g
vf ðs; a!Þ

vs
; (8)

a! ¼ _g
vf ðs; a!Þ

v a! ; (9)

_g � 0; f ðs; a!Þ � 0; _gf ðs; a!Þ ¼ 0; (10)

where _g is the plastic multiplier. H
! ¼ ½H1;H2� and a! � 0

!
is the

amount of plastic deformation along each branch of H
!
. Note that

for our tri-linear model ED cannot be greater than E. The classical
uniqueness condition, 1=2 _s_ε � 0, requires that H1 � 0 and H2 � 0,
which implies that Ep � 0 and ED � 0 (see [38] for more details).
Moreover, if H2 ¼ N then ED ¼ E, which implies that a2 ¼ 0cε.

It is commonly acknowledged that the material properties of
a cellular material can be written as a function of relative density
[39e41],

r0 ¼ r0r
s
0; (11)

where r0 is the reference relativemass density and rs0 is the reference
mass density of the basematerial (e.g., aluminum). Thisworkwill use
RohacellWF foam,whose basematerial is Polymethacrylimide (PMI).
To describe the behavior of Rohacell WF foam, the data para-
metrization of Hanssen [41] is used:

sy ¼ ssyr
n
0; (12)

E ¼ Esrp0; (13)

εD ¼ 1� rm0 : (14)

Here ssy is the yield stress of the base material, n, p and m are ex-
ponents chosen to fit the available data with a power law relation.
The exponent values for this work were selected to best fit the
material data for Rohacell WF-51 foam that is provided by [42] in
order to compare the results against the work of [20]. The values
are n ¼ 1.5, p ¼ 1.737, and m ¼ 0.3712. Although Hanssen does not
include the exponent m in his model [41], it is introduced here to
match the value of εD reported in [14].

Since this work primarily concerns two-layer systems, prop-
erties of a given layer will be referred to with a superscript A or B,
i.e., the yield stress for layer A would be written as sAy or the den-
sification strain of layer B would be written as εBD.

2.2. Governing equations

For the completeness of the analysis, in this section we review
the basic governing equations. The solution to the present problem
is derived from the one-dimensional nonlinear wave equation,

v2u
vt2

¼ CðεðuÞÞ2v
2u

vX2 ˛ U�
0 ; (15)

with

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1
r0

ds
dε

s
; (16)

where u(X,t)¼ x(X,t)�X is the particle displacementfield. To solve the
wave equation, it is necessary to define initial conditions,
uðX;0Þ ¼ u0˛U0 and vðX;0Þ ¼ v0˛U0, as well as boundary condi-
tions, s,bn ¼ t˛vUs and u ¼ u˛vUu (see Fig. 1), where bn is the unit
normal to the boundary. u0 is the displacementfield at t¼ 0, v¼ vu/vt
is theparticlevelocity,v0 is thevelocityfieldat t¼0, t is theprescribed
stress on the boundary vUs, and u is the prescribed displacement on
the boundary vUu. Note that vUs and vUu are smooth open disjoint
subsets of vU0, such that vU0 ¼ vUuWvUs.

In this analysis, it is assumed that the wave speed, C(ε), depends
on strain only. Furthermore, small strain theory is assumed and so
mass conservation is given by

rð1þ εÞ ¼ r0: (17)

Note that under small strain assumption ε z 0 and r0 ¼ r.
Before proceeding to the method of characteristics used in this

work, the shock problem will be addressed. For the clarity of the
presentation, we summarize basic equations in line with the
analysis presented by Tan et al. [10]. Let the location of a dis-
continuity be denoted by Xs(X,t) (see Fig. 1). For a physical quantity
j, the values in front of and behind the discontinuity are jþ and j�,
respectively. The jump is defined as

EjF ¼ j� � jþ: (18)

From Hademard’s Lemma, we arrive at

d
dt

EjF ¼ Evjvt Fþ VsEvjvXF; (19)

where Vs ¼ dXs/dt is the Lagrangian wave speed. If EjF ¼ 0, but
Evj=vtFs0, then
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EvjF ¼ �VsEvjF: (20)
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Fig. 3. Elastic wave interaction with a material interface for elasticeplastic (a) and EPD
(b) material models.
vt vX

If j ¼ u, then (20) gives the kinematic compatibility condition,

EvF ¼ �VsEεF; (21)

which is the mass flux across the shock, and indicates that it must
be conserved.

The time rate of change of linear momentummust balance with
the applied forces on the system. Take a control element of material
located within a material layer such that 0 � a � b � L with body
forces per unit mass, f, and external force on the left, P, and on the
right P(X þ dX). From Newton’s second law, we get

d
dt

Zb
a

r0A0v dX ¼
Zb
a

r0f dX þ PðX; tÞjba: (22)

Next, let two points be chosen such that a < Xs < b. Substitute
P ¼ sA0, where A0 is the reference cross sectional area, and assume
that f ¼ 0, then take the limit as a/X�

s and b/Xþ
s , and (22)

becomes

�r0VsEvF ¼ EsF; (23)

which is the conservation of the linear momentum across the
shock.

The first law of thermodynamics states that the rate of change of
the energy of a system is equal to the heat flux from the system plus
the rate of work performed on the system,

d
dt

ðEK þ EUÞ ¼ dQ
dt

þ dW
dt

; (24)

where EK, EU, Q, and W are the kinetic energy, internal energy, heat
of the system, and work performed on the system respectively. The
energy balance on the element of material enclosed by [a,b] is

d
dt

0B@Zb
a

r0

�v$v
2

þU
�
dX

1CA ¼
Zb
a

r0r dX�qjba|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
body and surface heat

þ svjbaþ
Zb
a

r0f vdX|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
surface and body forces

;

(25)

where U is the specific internal energy, r is the specific heat gen-
eration rate per unit mass, and q is the heat flux per unit area. If
there is no heat generation in the element (r ¼ 0), body forces are
neglected (f ¼ 0), and vu=vt and vU=vt are continuous everywhere
except Xs, then (25) becomes

r0VsEv$v2 þ UF ¼ EqF� EsvF: (26)

This equation represents energy conservation. Utilizing the adia-
batic assumption, (26) can be manipulated to find the change in
internal energy across a shock,

EUF ¼ 1
2

�
s� þ sþ

� EεF
r0

: (27)

To find the shock speed, (21) is used to eliminate EvF in (23), then
solving for Vs gives

Vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r0

EsF
EεF

s
; (28)
which is analogous to (16). The line EsF=EεF is the Rayleigh line, and
its slope is directly related to the shock speed by (28).

Equations (21), (23) and (27) together give the change in phys-
ical states across a discontinuous wave front, G (see Fig. 1). These
equations are equally valid in the propagation of elastic and plastic
waves that are discontinuous in nature. Such waves are generally
formed by sudden loading of the material on the boundaries, such
as by a blast or impact.

If the jumps in (21), (23) and (27) approach infinitely small
values, then the equations become the conservation conditions
across a weak discontinuous wave front, which is valid within open
domain U�

0 :

dv ¼ HCðεÞdε; (29)

ds ¼ Hr0CðεÞdv; (30)

dU ¼ sdε=r0: (31)

These equations are the Method of Characteristics solution for the
relationship between state variables across a wave front. Only
boundary conditions that are piecewise constant will be considered
meaning that Eqs. (29)e(31) evaluate trivially, thus state variables
in U�

0 will be constant valued.
2.3. Conditions for shock formation

It is necessary to investigate the conditions under which a shock
can form at a material interface. In addition to determining the
necessary material properties to allow for shock formation at an
interface, it is also important to investigate if the RPPL assumption is
capable of properly predicting the formation of the interface shock.
First, a look at a simpler elasto-plastic case will show that at an
interface, for a typical set of parameters, only one plastic front or
shock can form from an incident elastic wave. Two plastic waves/
shock waves are possible in only a narrow range of parameters. Sec-
ond, a full EPD case will be investigated to determine the criteria for
shock formation in B using the results from the elasto-plastic analysis.

First consider the simpler elasto-plastic wave scenario pre-
sented in Fig. 3(a). In this case, ε � εD. Region 0 is the initial un-
deformed state, region 1 is the state of the layer A after the incident
wave has passed, regions 3 and 5 are the states of layer A after the
reflected elastic and plastic waves pass respectively, and regions 2
and 4 are the states of layer B after the transmitted elastic and
plastic waves pass respectively. At the interface velocity is con-
tinuous, otherwise the material would superimpose or open holes.
Due to stress equilibrium, s4¼ s5 in Fig. 3(a) and s4¼ s3 in Fig. 3(b).
For simplicity s4 will be used everywhere in derivations. As typical,
it is assumed that tension is represented by positive sign and
compression by negative sign. We assume for simplicity of
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discussion during the plastic analysis that the stresses are tensile.
Note that the results hold for compressive stresses also.

If region 0 is at rest, then integrating (29) from 0 to 1 gives

v1 � v0 ¼ v1 ¼ �
Zs1

0

1
rA0C

AðsÞds ¼ �s1
zA
; (32)

where z ¼ r0C is the elastic impedance. Note that Cs in this context
is equivalent to Cε. Similarly, from 0 to 2,

v2 ¼ �s2
zB

; (33)

and, from 1 to 3,

v3 � v1 ¼ s3
zA

� s1
zA

: (34)

Since regions 4 and 5 must have equal velocities,Zs5 ¼s4

0

ds
zAðsÞ �

2s1
zA

¼ �
Zs4

0

ds
zBðsÞ: (35)

Region 4 only forms if s4 > sBy . Assuming this, (35) becomes

2s1
zA

¼
Zs4

0

ds
zAðsÞ þ

s4
zBp

þ sBy

 
1
zB

� 1
zBp

!
; (36)

where zp ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffi
Ep=r0

p
is the plastic impedance. If now it is assumed

that s5 ¼ s4 > sAy so that region 5 may form, then (36) becomes

2s1
zA

¼ s4

 
1
zAp

þ 1
zBp

!
þ sBy

 
1
zB

� 1
zBp

!
þ sAy

 
1
zA

� 1
zAp

!
: (37)

Simplifying matters by assuming that s1 ¼ sAy and solving for s4
gives

s4 ¼
zBps

A
y

 
1þ zAp

zA

!
þ zAps

B
y

 
1� zBp

zB

!
zAp þ zBp

: (38)

If the assumption s4 > sAy , is inserted in (38) it reduces to

sAy
sBy

<
1� zBp=z

B

1� zBp=zA
: (39)

Yet, if the assumption s4 > sBy is inserted in (38) it reduces to

sBy
sAy

<
1þ zAp=z

A

1þ zAp=zB
0

sAy
sBy

>
1þ zAp=z

B

1þ zAp=zA
: (40)

After some algebra, we reach the inequality�
zA � zB

��
zA þ zAp

��
zA � zBp

��
zAp þ zBp

�
< 0; (41)

which implies that either

zA > zB and zA < zBp; (42)

or

zA < zB and zA > zBp: (43)

Because zBp � zB, the first case is not possible. Therefore, in cases
where layer A is stiffer than layer B, it is not possible for both yield
stresses to be less than the reflected stress. The second case leads to
requirements on the differences in the yield stresses of

sAy >
1þ zAp=z

B

1þ zAp=zA|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
<1

sBy ; (44)

sAy <
1� zBp=z

B

1� zBp=zA|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
>1

sBy : (45)

The range within which it is possible for both sides of the material
to yield will depend directly on the plastic moduli of the materials.
If EAp/0 and EBp/0 (the perfectly plastic cases) then it is impossible
for two plastic waves to form even under the condition that zA < zB.

Wewill proceed with the assumption that zA> zB, since this case
is primary focus of this work, thus only a plastic wave will form in
layer B. Returning to (36), assuming that sAy > s4, leads to a value for
the stress in regions 4 and 5 of

s5 ¼ s4 ¼
2zBps1 þ zA

 
1� zBp

zB

!
sBy

zA þ zBp
: (46)

If layer B is strictly elastic, zBp ¼ zB, the solution reduces to the well
known form of the transmitted elastic stress for a material interface

s5 ¼ s4 ¼ 2zB

zA þ zB
s1: (47)

It is now established that in the case where material A is stronger
(has a higher yield point) than material B, the reflected wave in
layer A will be strictly elastic.

Now we investigate if a shock can form at a material interface. It
is given for this part that sAy > sBy , so that, according to the previous
analysis, the shock will form in layer B (see Fig. 3(b)). To ensure
material equilibrium, s3 ¼ s4, and from continuity, we have
v3 ¼ v4. For the incident wave, (32) is still valid. For the reflected
wave,

v3 ¼ s3
zA

� 2
s1
zA

: (48)

Assuming that s3 is sufficient for a shock to form in layer B, the
transmitted elastic wave will be at the yield point,

v2 ¼ �sBy
zB

: (49)

Note that for our material law, EBD � EB. Therefore, shock speed
cannot exceed elastic wave speed and the shock wave will be
preceded by an elastic characteristic. The jump across the shock is
then

s3 ¼ sBy � r0Vsðv3 � v2Þ; (50)

and substituting for v3 and v2 and solving for s3 gives

s3 ¼ sByz
A
�
1� Vs=CB

�þ 2s1rB0Vs

zA þ rB0Vs
: (51)

For the shock to form, assuming tensile stress, then sBD < s3 gives
the minimum value of Vs to be



J.C. Goetz, K. Matou�s / International Journal of Impact Engineering 57 (2013) 55e6960
Vs >
CBzA

�
sBD � sBy

�
2s1zB � sByzA � sBDz

B
: (52)

For the perfectly plastic case, sBD ¼ sBy ;Vs > 0 is the minimum
shock speed, with the material condition that

sBy <
2zB

zA þ zB
sAy : (53)

The result for compressive stress has the opposite inequality in (53).
To find the material properties that lead to the formation of a

shock, (51) is solved instead for Vs and the constitutive law
s3 ¼ EBDðε3 � ε

B
DÞ þ sBD is used, giving

Vs ¼
CBzA

�
sBD þ EBD

�
ε� ε

B
D

�� sBy

�
2sAyzB � zB

�
sBD þ EBD

�
ε� ε

B
D

�� sBy

�
� sByzA

: (54)

Since Vs > 0, and zA, zB > 0, either both the numerator and
denominator are positive or both are negative. For the numerator,
the condition must hold that

sBD þ EBD
�
ε� ε

B
D

�
WsBy ; (55)

where> indicates tensile stress and< indicates compressive stress.
Since the material behavior is defined such that the sBD > sBy for
tensile stresses and sBD < sBy for compressive stresses, this is auto-
matically satisfied. For the denominator,

2sAyWsBD þ sBy
zA

zB
þ EBD

�
ε� ε

B
D

�
; (56)

again where > indicates tensile stress and < indicates compressive
stress. Since both cases are analogous, attention will be given only
to the positive case. The term EBDðε� ε

B
DÞ corresponds to the addi-

tional stress resulting from the shock that is beyond the densifi-
cation stress, sBD, this stress will be referred to as “residual shock
stress”. For residual shock stress to occur,

2sAy > sBD þ sBy
zA

zB
(57)

must hold, and the amount of residual stress corresponds to the
magnitude of the difference. If �zAv1 is substituted for sAy then

�v1 >
sBD
2zA

þ sBy
2zB

; (58)

which gives the necessary velocity in region 1 to lead to a shock. If
layerA ismodeled asanRPPLmaterial so that zA ¼ N, (58) reduces to

�v1 >
sBy
2zB

; (59)

giving a finite, non-zero, value for v1. However, v1 ¼ �sAy=z
A ¼ 0,

meaning that (59) cannot be satisfied. This implies that the multi-
layer material problem cannot be appropriately solved while using
an RPPL model.

For completeness, the minimum velocity to be applied to the
free end of layer A that generates a shock in layer A is now inves-
tigated. If v0 is the boundary applied velocity, then

v0 ¼ �
Zs
0

1
rA0C

AðsÞds: (60)
The maximum velocity, vmax that will not generate a shock is the
one that raises the stress in the material up to the densification
stress. Thus, if s ¼ sAD, then

vmax ¼ �sAD � sAy

rA0Vp
� sAy

rA0C
A
; (61)

where

Vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
rA0

sAD � sAy

ε
A
D � ε

A
y

vuut : (62)

Thus the velocity condition for the formation of a shock at the left
boundary is v0 > vmax.
2.4. Numerical implementation

It is first noted that the assumption of piecewise constant
boundary conditions enforces that all wave fronts are at least weakly
discontinuous and that the regions between wave fronts are con-
stant. Thismeans that (21), (23) and (27) can beused to solve allwave
interactions. This greatly simplifies the computational implementa-
tion since no numerical integration across wave fronts is necessary.

All wave interactions, whether with a boundary, an interface, or
a wave collision, are analyzed as a two-wave collision at an interface
using method of characteristics, Eqs. (29)e(31). Thus at the inter-
actionpoint therewill be a Left (L) side and aRight (R) side and awave
coming from each direction with known stress, strain, velocity, and
internal energy. When the twowaves collide, they may transmit one
or two waves and/or reflect one or two waves. What happens de-
pends on the strength of the incoming waves and the materials
associatedwith the L andR sides. In the case of boundaries, one side is
either an infinitely stiff material (fixed end condition) or an infinitely
soft one (free end). This defines the stress (or velocity) of the reflected
wave and allows for the same solution method to be used.

In each interaction the state ahead of the incoming waves is
known. The problem is to solve for the central stress sc and central
velocity vc between the transmitted and reflected waves. Equilib-
rium and continuity demands that the stress and velocity between
transmitted and reflected waves be the same, thus (23) can be used
on both the L and R sides and then combined to solve for the central
velocity,

vc ¼ sR � sL þ rL0V
LvL þ rR0V

RvR

rL0V
L þ rR0V

R
; (63)

where V, v, s, r0 are the wave speed material speed, stress, and
density of the respective collision sides. The stress can be found
from (23) using either side as

sRc ¼ sR � rR0V
R
�
vc � vR

�
; (64)

sLc ¼ sL þ rR0V
L
�
vc � vL

�
: (65)

For the converged solution, sRc ¼ sLc ¼ sc. To find the correct
central stress, the correct wave speeds are found through an iter-
ative procedure that operates on both L and R halves. First the
central stress is guessed (in the case of a boundary reflection, this
value is known). A good initial guess is found from (63) and (65)
with the assumption that the wave speeds are elastic, i.e., VL ¼ CL

and VR ¼ CR. The central stress is then compared against the yield
point, Eq. (7), of the given half. If the stress does not cause the



Table 1
Material data for EPD verification comparison.

r0 [kg m�3] E [MPa] ED [MPa]
EPPH 51.6 22.0 N/A
EPD 51.6 22.0 17.6

sy ¼ sD [MPa] εy [%] εD [%]
EPPH 0.8 3.64 68.9
EPD 0.8 3.64 75.7
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material to yield, then new velocity, and strain values are calculated
from (23) and (21).

For material that flows plastically, the yield condition is
calculated. We introduce an iterative process where subscript n
represents the incoming state (either L or R), and nþ1 represents
the final converged state. The yield condition, Eq. (7), takes the
incremental form

fnþ1 ¼ jsnþ1j �
h
sy þ H

!
$
�
a!n þ Dg

�!�i
; (66)

where Dg is the yield step and is obtained from the consistency
condition, _gnþ1

_f nþ1 ¼ 0. Since thematerial hasmultiple hardening
moduli, k ¼ 1,2, each Dgk is calculated separately as

Dgk ¼
jsnþ1j �

�
sy þ Hk$akn

�
Hk

: (67)

The step is then compared against the maximum value of ak to see
if the material has yielded beyond the limit of the current material
branch. If it has, then Dgk is truncated to the limit and then (67) is
recalculated for kþ1. This process is repeated until Dgk does not
exceed the length of its current hardening branch. The yield point is
updated, aknþ1 ¼ Dgk þ akn, and the plastic strain is updated,
εiðnþ 1Þ ¼ εiðnÞ þ

P2
k¼1Dg

ksignðsnþ1Þ. The total strain is then
found from Eq. (6).

Next the wave speeds, VL and VR, are recalculated from (28)
using the snþ1 and εnþ1 values of the respecitve halves. A new vc is
calculated from the new wave speeds using (63) and then new sRc
and sLc are updated from (65). The process is repeated until the
change in sRc ¼ sLc ¼ sc from one iteration to the next is below the
tolerance, jscðjþ 1Þ � scðjÞjh1� 10�4 Pa, where j represents the
iteration number. Last, internal energy is found from (27).
3. Numerical examples

3.1. Model verification

It is critical to verify the present implementation.Weuse thework
of Harrigan et al. [20] for the verification study. This work utilizes
a single-layer bar of Rohacell 1m in lengthwhich isfixed on the right
end and free on the left end. A constant stress of 3.6MPa is applied to
the free end for 1.53ms. Harrigan uses twomaterial models, an RPPL
and an elastic-perfectly-plastic-hardening (EPPH) material model.
Since the EPPHmodel is similar to the EPDmodel used in thiswork, it
serves as a good comparison. The main difference between the EPD
and EPPH models is that Harrigan uses the EPPH model for un-
densified regions only. Regions that have been compacted by
a shock front are afterward treated using the RPPL model. The pri-
mary result of this difference is that once the load is released, the
shock front immediately begins to unload. Thismeans that there is no
lag time between the onset of unloading and when the unloading
wave reaches the shock front, as shown in what follows.

Table 1 contains the material parameters used in Harrigan et al.
[20] and the present work. The strain in the EPPH densification
region is calculated from

ε¼
k2
�
s�sy

�þ2εDr0þk
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s�sy

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
�
s�sy

�þ4
�
εD�εy

�
r0

q
2r0

> εD;

(68)

where k ¼ 0.00105. Fig. 4(a) shows excellent agreement between
the two material laws.
The present EPD model was run for both a limit scenario
(E ¼ ED ¼ 22 GPa, H2 ¼ N) and the scenario given in Table 1. In the
limit case, the densification strain was set at 68.9%. It is clear from
Fig. 4(b) that the RPPL and limit EPD models produce nearly an
exact match.

As expected, the EPD model (solid line with circles in Fig. 4(b))
takes longer to dissipate the shock than Harrigan’s EPPH model.
This is due to the RPPL assumption in compacted regions. There is
a delay of nearly a millisecond as the unloading wave catches up to
the shock front. Thus the shock front is not dissipated as quickly.
Furthermore, Fig. 5 reveals that the reflected shock wave and the
incoming shock front collide (depicted by dash-line circle in Fig. 5),
resulting in a region of higher stress at the back wall at t ¼ 7 ms,
which is not predicted by the EPPH model. This difference in stress
highlights the importance of full elastic modeling of the material.
The initial shock speed in this loading scenario is Vs ¼ 248.3 m/s
and the speed of the reflected shock is Vs ¼ 32.9 m/s.

3.2. Two layer analysis

To better understand the behavior of two-layer systems, an
investigation of a two-layer system is conducted. The boundary and
loading conditions are the same as in the previous section with the
1 m foam rod now divided in half to form a two-layer system. The
density combination rA0 > rB0 was chosen so that it is possible for
both layers to yield. If the second layer is more dense (and hence
stiffer), then it will not generate a shock or plastic wave unless the
first layer has fully collapsed and there is sufficient velocity left in
the first layer to propagate the shock further (see Section 2.3).
Table 2 displays the material parameters used for this analysis.

For the two layer analysis, the shock energy exceeds the elastic
contribution as depicted in Fig. 6. Fig. 7(a) shows that the energy
behind the shock in A is larger than that in B. Spalling would occur
around 2 ms (see Fig. 7(b)). The strains behind the initial shock
fronts in A and B are ε

A(X ¼ 0,t ¼ 0.5) ¼ �0.59896 and
ε
B(X ¼ 50,t ¼ 1) ¼ �0.69049 (strains are constant for the whole
region). The strain behind the reflected shock front from the distal
boundary is εB(X ¼ 100,t ¼ 2) ¼ �0.6904.

The shock front in B speeds up briefly from Vs ¼ 37.2 m/s at
t ¼ 1.60 ms to Vs ¼ 104.2 m/s at t ¼ 1.71 ms from the elastic
reflection of the shock front in layer A (at z1 ms). The shock then
terminates at t ¼ 2.14 ms, reforming briefly as a plastic wave at
t ¼ 2.35 ms and then again as a shock at t ¼ 2.94 ms. The unloading
wave that initially terminates the shock formed at the interface in
layer B also weakens the reflected shock, reducing it to a strictly
plastic wave. The maximum shock speed in layer A is
VA
s ¼ 133:5 m/s, and in layer B is VB

s ¼ 104:2 m/s.

4. Optimization

For the optimization section, the boundary conditions will
continue to be fixed on the right end and free on the left end of the
beam. The load pulse magnitude used is t ¼ 3:6 MPa and the
loading pulse duration is reduced to 100 ms. For simplicity, the
reference cross sectional area will be treated as unity, A0 ¼ 1 cm2.
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The base material of Rohacell foam, used for this section, is poly-
methacrylimide (PMI), and has density rs0 ¼ 1:2 gm/cm3, yield
stress ssy ¼ 90 MPa, and elastic modulus Es ¼ 5.2 GPa.
4.1. Objective function

Cellular materials are used to protect objects and prevent
damage. This purpose drives the development of constraints and
objective functions for our optimization. In protective applications,
the objective is usually to keep transmitted loads below some limit.
In terms of an optimization, the problem can be cast either as
a minimization of transmitted load or as a function of some other
important parameter with the transmitted load applied as a con-
straint. Since weight and/or volume are important considerations
for a protective layer, especially in armor design, the optimization
problem is usually proposed as a minimization of either of these
parameters and load transmission is added as a constraint.

For the present work, the objective will be to minimize total
length of the protective system. Thus the problem is to find a length
that appropriately mitigates expected damage quantities. The
constraint is cast as a limit on themaximum impulse transmitted to
the protected object. Impulse is written in terms of acceleration or
applied stress as

I ¼ MGg$ðt2 � t1Þ ¼ A0

Zt2
t1

sdt; (69)
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Fig. 5. EPD stress contours. Bold solid lines indicate the positions of shock waves.
where M is the mass of the protected object, G is a gravity multi-
plication factor and g ¼ 9.81 m/s2 is the acceleration due to gravity.
In occupant protection scenarios, there is a limit on the number of
G’s that a person can handlewithout fatal injury. Values used by the
U.S. Military can be found in [43]. In the current work, since a fixed
boundary condition is used on the distal end, it is necessary to
convert any acceleration derived impulse into its equivalent stress
value. In this work, we select a stress limit of smax ¼ 1 MPa. In
a real world scenario, G, M, and A0 will be known or design values
and the stress can be calculated from them.

To compare one and two layer systems, we also discuss a mass
constraint. Since the applied load is a fixed pulse, the amount of
energy put into the system will depend on the total deformation
of the system, which is a function of the relative mass densities
and stiffnesses of the layers. With mass and impulse constraints
considered, the optimization problem can be written as

min
�
LA þ LB

�
; (70)

s:t:
1

t2 � t1

Zt2
t1

s
�
LA þ LB; t

�
dt < smax; (71)

Mtot ¼ MA þMB < M�; (72)

where MA and MB are the layer masses and M� is the mass of the
single layer optimum. The impulse constraint width t2 � t1 can be
varied to restrict or relax the constraint and is applied as a sliding
window over the distal stress. In this work the relaxed constraint is
t2 � t1 ¼ 40 ms and the strict constraint is t2 � t1 ¼ 10 ms.
Table 2
Material data for two layer analysis.

Material A B

r0 [kg m�3] 110.0 51.6
E [MPa] 67.37 22.0
Ep [MPa] 0.67 0.022
ED [MPa] 67.37 22.0
sy [MPa] 2.5 0.8025
sD [MPa] 2.87 0.8169
εD [%] 58.81 68.9



0 1 2 3
0

15

30

45

60

Time [ms]

E
ne

rg
y 

[J
]

T

E
int

T+E
int

U
e

U
i

U
s

Fig. 6. Kinetic and internal energy for two layer analysis. Ue is the elastic energy, Ui is the
inelastic energy and Us is the additional inelastic energy contributed by the shock waves
in the material. Eint ¼ Ue þ Ui þ Us is the total internal energy. T is the kinetic energy.

J.C. Goetz, K. Matou�s / International Journal of Impact Engineering 57 (2013) 55e69 63
4.2. Non-linear sensitivity analysis

To select design variables, the material properties which influ-
ence the distal stress are determined. Note that we do not consider
any distal impulse constraint in the non-linear sensitivity study.
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Fig. 7. Two layer analysis. The plastic waves are indicated by bold gray lines for
Ds > 0:01 MPa and shocks are indicated by bold black lines for EsF > 0:01 MPa. Wave
reflections are indicated by thin gray lines. Thin vertical black line indicates material
interface.
Earlier it was established that the material properties of a cellular
material are functions of the relative density (see Section 2.1). If we
further constrain ED ¼ E, which approximates actual cellular com-
pressive behavior [8], there are only three independent quantities
to consider per layer: r0, Ep or H1, and L, for a total of six.

Since the problem is highly non-linear, a full factorial design of
experiments study is conducted to determine the sensitivity of the
problem to each of the six parameters. Fig. 8 shows the average of
the standard deviations of the impulse at the distal end for each of
the parameters. Standard deviation is taken over a triplet and the
average is taken over all the triplets for a given parameter. A triplet
is a set of low-mid-high values for the given parameter, where all
other parameters are held constant. The most influential parameter
is the relative density of the distal layer (layer B). This is because the
density of layer B directly affects sBy , which has the most immediate
influence on the reflected stress at the fixed wall. The plastic
modulus of A has a negligible effect on the distal stress. This is
because A receives the impulse and immediately shocks along the
Rayleigh line, which completely bypasses the plastic branch of the
material. The plastic modulus of B is more significant because it has
a direct influence on the value of the stress reflected off the distal
end. There is no significant correlation when parameters are ana-
lyzed as a coupled pair (e.g. rA0 and EAp are analyzed together).
4.3. One layer optimization

A one layer baseline establishes an upper bound for the total
two layer length, Ltot, as well as the mass constraint, M*. Using the
three design parameters, r0, Ep, and L, a studywas conducted to find
the minimum length for a single foam layer using PMI as the base
material. Defining areal impulse to be I0 ¼ I=A, a stress of 1 MPa
applied over a time width of 10 ms is used to give the areal impulse
constraint (I0 ¼ 10 MPa ms). The maximum r0 which will not
exceed the stress constraint upon reflection off the distal boundary
is calculated using themethod discussed in Section 2.4. The value of
maximum density, assuming Ep ¼ 0, is rmax ¼ 0:04794, and it is
the boundary of the design space. If either r0 > rmax and Ep ¼ 0 or
r0 ¼ rmax and Ep > 0 the stress constraint will be violated for all
lengths. The value of Ep¼ 0.2MPa is themaximum allowable plastic
modulus that will not violate the stress constraint upon the initial
reflection off the distal boundary for the case where r0 ¼ 0:047.
The r0 ¼ 0:048 case, at I0 ¼ 10:01 MPa ms, will just violate the
constraint. Thus, the rmax case provides the minimum value,
Lmin ¼ 6.64 cm. Note that reducing the density, regardless of Ep,
increases the distal stress. The reason for this behavior is that lower
density materials have a lower yield stress, which means that the
total plastic dissipation is less and so more length is needed to
provide the same total energy dissipation. Increasing the plastic
modulus does not eliminate the deficit in energy dissipation and
increases the stress of the initial reflection.
Fig. 8. Sensitivity of distal stress to each design parameter. Y-axis is the average of the
standard deviations of each parameter triplet. A triplet is a set of low-mid-high values
for the given parameter where all other parameters are held constant.
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Fig. 9(a) shows the system energies for the r0 ¼ 0:04794
one-layer optimum point for a t2 � t1 ¼ 10 ms impulse width. The
shock contribution to energy dissipation is 46.6%. Fig. 9(bed) shows
the internal energy, stress, and velocity contours. At t ¼ 0.16 ms,
when the unloading wave first catches the shock wave, 79.1% of the
total system energy has been dissipated. At this time, the dis-
sipation rate is reduced by the decrease in the shock strength from
Vs ¼ 249.2 m/s to Vs ¼ 90.0 m/s, which is seen in Fig. 9(b) by the
change in color of the internal energy from red to orange after the
reflection of the unloading wave. The second collision of the
unloading wave at t ¼ 0.30 ms reduces the shock speed to
Vs ¼ 2.54 m/s, and at this time 94.8% of the energy is dissipated.
After the termination of the shocks at t ¼ 0.46 ms, 0.4% of the en-
ergy remains as elastic energy. Note that the incoming and reflected
shocks do not collide, instead they are terminated by the unloading
wave just prior to collision. The termination prevents a region of
high stress from forming (see Fig. 5 and the discussion in section
3.1) and allows the impulse constraint to be satisfied for all time.
This length fully utilizes all of the available material for energy
dissipation. Finally, the velocity contours indicate the material is
nearly at rest when the shocks terminate, but remaining elastic
energies cause the densified material to oscillate between positive
and negative velocities.

4.4. Two layer optimization

To better visualize the design space, we perform an exhaustive
search within the design region. Thus the two layer optimization
was conducted in two phases, where Phase 1 is a coarse grain
(a)

(c)

Fig. 9. Evolution of energy quantities, as well as internal energy, stress, and material veloci
impulse width constrained at t2 � t1 ¼ 10 ms.
search and Phase 2 is a refined search over a reduced space based
on the results of the first search. The impulse constraint is the same
as in the single layer case (strict constraint) for both phases.
However, we add the relaxed constraint during Phase 2 for
comparison.

Phase 1 optimization. Design variables for the first phase were
varied according to the values in Table 3. The ranges were chosen to
give good coverage of the design space. Note if rA0 > 0:117 no
plasticity will occur in layer A. For each value of LA a binary search
for the minimum value of LB was conducted with a termination on
the change in length of jLBnþ1 � LBnjh0:1 cm. The results of this phase
show that there are no successful points off of the rB0 ¼ 0:04794
and EBp ¼ 0 boundary, confirming the observation from the single
layer optimization. Although rB0 was reported to have the most
influence on the distal stress (see Section 4.2), for purposes of
determining the optimum, the results of the one layer and phase 1
optimizations show that it should not be included as a design
variable. An increase in rB0 will exceed the impulse constraint while
a decreasewill not fully utilize the dissipative capabilities of layer B.
This is due to the very high sensitivity of distal stress on rB0 as
shown in Fig. 8. Similarly, varying EBp is also not necessary. Having
a value of EBp > 0 forces rB0 < 0:04794 and therefore does not
maximize the dissipative potential of layer B. Therefore, for Phase 2,
rB0 ¼ 0:04794 and EBp ¼ 0 become fixed quantities.

Phase 2 optimization. The remaining design variables for phase 2
are rA0, LA and LB. rA0 was varied from 0.06 to 0.15 by 0.03 increments.
The density range was selected based on the relative densities of
Rohacell foam currently available, which range from 0.043 to 0.171
[44]. LA was varied from 0.4 to 5.0 cm by 0.2 cm increments. LB was
(b)

(d)

ty contours for the optimal length of a single layer foam for r0 ¼ 0:04794, Ep ¼ 0, and



Table 3
Material data for phase 1 optimization.

Property r0 Ep L

Layer A 0.05, 0.08, 0.12, 0.15 0 MPa 0.5e6.0 cm
Layer B 0.046, 0.047, 0.04794 0, 0.1, 0.2 MPa LB < 6.64�LA cm
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decreased from themaximum LB ¼ Lmax � LA by 0.1 cm increments
until the impulse constraint could not be satisfied, where
Lmax ¼ 6.64 cm (one layer optimum length).

Fig. 10 shows Ltot/Lmax for each of the tested values of rA0 as
a function of LA. Black marker-lines are below the one-layer mass
limit (M* ¼ 0.382 g) while gray marker-lines are above it. Missing
data points are unable to satisfy the impulse constraint for any
value of LB þ LA < Lmax.

In Fig. 10(a), the relaxed, t2 � t1 ¼ 40 ms, impulse constraint is
used. The minimum for each curve is closer to the lower end of the
design space. It is the stiffest material, rA0 ¼ 0:015, for which layer
A remains entirely elastic, that gives the global minimum total
length at Lmin ¼ 4.54 cm with LA ¼ 1.6 cm.

Fig. 10(b) shows the results when the strict, t2 � t1 ¼ 10 ms,
constraint is applied. In general, there is greater difficulty in
satisfying the impulse constraint as is indicated by the increase in
missing data points (due to the constraint violation) and the non-
monotonic curve profiles. Note that in some cases, e.g., rA0 ¼ 0:15
and rA0 ¼ 0:12 cases, multiple points have the sameminimum total
length. However, the optimum is still on the rA0 ¼ 0:15 curve, now
at 4.64 cm and LA¼ 1.4 cm. The optima for the rA0 ¼ 0:06;0:09;0:12
curves are Ltot ¼ 6.14 cm, 5.44 cm, and 5.24 cm for LA ¼ 1.8 cm,
2.2 cm, 1.2 cm, respectively. The optimal points are indicated by
black filled marker faces and labeled A, B, C, and D in Fig. 10(b). The
points listed are the ones with the least mass among equal length
minima. Finally, although the minimum is much lower for the
rA0 ¼ 0:15 case than all the others, if a mass constraint is applied
(black line andmarker edges), the reduction in total length from the
rA0 ¼ 0:12 to the rA0 ¼ 0:15 case is only 0.1 cm. Note that only for
the rA0 ¼ 0:06 case, the minimum length also satisfies the mass
constraint of the one layer optimum. However, for all the cases,
large length reductions, with respect to the one layer case, are still
obtained without increasing the mass (7.5% for rA0 ¼ 0:06, 12.4%
for rA0 ¼ 0:09, 18.4% for rA0 ¼ 0:12, and 19.9% for rA0 ¼ 0:15).
The minima data points A, B, C, and D are investigated in more
detail next.
(a)

Fig. 10. Curves of non-dimensional optimal length as a function of LA. Missing data points in
points indicate that the solution violates the mass constraint. Filled in markers, for the t2
Lmax ¼ 1 corresponds to the one layer optimum Lmax ¼ 6.64 cm.
Case AðrA0 ¼ 0:06Þ: From Fig. 11(a), we can see that the shocks
contribute to nearly 34% of the total dissipation and Fig. 11(b)
indicates that both layers are responsible for a significant portion
of the energy absorption. Note that all of the material undergoes
compaction by the final stage. Additionally, the mass of this design,
Mtot ¼ 0.378 g, is lower than that of the single layer system
(M* ¼ 0.382 g). Of interest is the set of shock waves that form
between the incoming and reflected shock waves at X ¼ 5.1 cm and
t ¼ 0.30 ms. These waves form when the incoming shock tempo-
rarily disappears due to a tensile wave catching up with the front
followed shortly by a compaction wave. When the tensile wave
reflects off the distal shock it does so in compression. Then, when
the tensile wave’s reflection encounters the incoming compression
wave, they collide and exceed the densification point. The shock in
layer B varies widely in speed, reaching a peak of Vs ¼ 245.9 m/s at
t ¼ 0.15 ms, after layer A collapses. The maximum shock speed in
layer A is Vs ¼ 216.5 m/s. A tensile wave forms in layer A around
t ¼ 0.12 ms, which would result in spalling (see Fig. 11(c)). The
tensile wave does not reach the shock, but temporarily reduces
compressive stress, slowing the shock front in layer B between
t ¼ 0.15 ms and t ¼ 0.17 ms to as little as Vs ¼ 21.5 m/s before
speeding up to Vs ¼ 110.4 m/s. The minimum strains (maximum
compressive strains) are ε

A
min ¼ �0:7727 and ε

B
min ¼ �0:8176 in

layers A and B respectively.
Case BðrA0 ¼ 0:09Þ: Fig. 12 reveals that a significant portion of

layer A is not compacted. Additionally, the stresses in layer B remain
low behind the shock fronts. Together, the higher density of A
(and thus higher sAy ) and lower stresses in B lead to a reduced
contribution to energy dissipation by the shocks (12.1%). The mass,
Mtot ¼ 0.424 g, exceeds the one layer case by 11.0%. This system is
shorter than the rA0 ¼ 0:06 case by 0.7 cm with Ltot ¼ 5.44 cm. The
additional mass in A that is uncompacted acts as an inertia buffer
thus allowing shorter lengths of layer B. The higher elastic wave
speed in layer A leads to a greater number of reflections off of the
material interface, which in turn leads to a more smoothly varying
shock front in layer B as morewaves interact with it. The maximum
shock speeds are VA

s ¼ 137:7 m/s and VB
s ¼ 133:7 m/s in layers A

and B respectively. The minimum strains are ε
A
min ¼ �0:6257 and

ε
B
min ¼ �0:7239 in layers A and B respectively.

Cases C and DðrA0 ¼ 0:12 and rA0 ¼ 0:15Þ: Because layer A does
not deform plastically in either Case C or Case D, the results are
qualitatively similar. Therefore, we describe in detail Case C only.
Since the first layer remains elastic, there is no energy dissipation
provided by layer A as shown in Fig.13(b). The shock contribution to
(b)

dicate that no value of LB for that length of LA could satisfy the impulse constraint. Gray
� t1 ¼ 10 ms case, are minimum total length points. A non-dimensional length of Ltot/



Fig. 11. Evolution of energy quantities, as well as internal energy, stress, and material velocity contours for the optimal length of LB for rA0 ¼ 0:06, point A in Fig. 10(b), and impulse
width constrained at t2 � t1 ¼ 10 ms. Thin vertical black line indicates material interface.

Fig. 12. Evolution of energy quantities, as well as internal energy, stress, and material velocity contours for the optimal length of LB for rA0 ¼ 0:09, point B in Fig. 10(b), and impulse
width constrained at t2 � t1 ¼ 10 ms. Thin vertical black line indicates material interface.
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Fig. 13. Evolution of energy quantities, as well as internal energy, stress, and material velocity contours for the optimal length of LB for rA0 ¼ 0:12, point C in Fig. 10(b), and impulse
width constrained at t2 � t1 ¼ 10 ms. Thin vertical black line indicates material interface.
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Fig. 14. Position of front face (empty markers) and material interface (filled markers)
relative to the fixed end as a function of simulation time.
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energy dissipation is 16.5%. However, since layer A is stiff and the
total bar deformation is small, the amount of input energy is low,
and thus layer A does not require as much material in layer B to
dissipate the loading pressure pulse. The shock speed increases
with each reflection off the material interface from the waves in
layer A during the loading period (t < 0.10 ms). The internal energy
amount grows larger as Vs increases (indicated by flattening of the
bold shock line) from Vs¼ 41.2 m/s to amaximum of Vs¼ 184.3m/s,
when the unloading wave reaches the front and the speed begins to
decrease. Fig. 13(d) shows that the material velocity takes time to
ramp up prior to the end of the load pulse. Layer A operates strictly
as an inertia buffer, delaying the ramp up in material speed with its
ownmass. Once the loading pulse ends, the velocity ramps down to
elastic speeds. The mass of Case C is Mtot ¼ 0.405 g, which exceeds
M* by 6.0%. The minimum strains are ε

A
min ¼ �0:0347 and

ε
B
min ¼ �0:7399 in layers A and B respectively. Note the small
elastic compressive strain in layer A.

The primary difference in Case D is that layer A is 0.2 cm longer
and the total energy is 2.09 J as opposed to 2.87 J in Case C. The shock
contribution to energy dissipation reduces to 9.4% in Case D, and the
shock speed increases from Vs ¼ 21.5 m/s to a maximum of
Vs ¼ 144.1 m/s. The mass of Case D is higher than Case C at
Mtot ¼ 0.438 g, which exceedsM* by 14.7%. The minimum strains are
ε
A
min ¼ �0:0270 and ε

B
min ¼ �0:7236 in layers A and B respectively.

Fig. 14 shows the position of the front end and the material
interface for the one layer case and cases A through D. In Case A
ðLtot ¼ 6:14Þ layer A collapses from LA0 ¼ 1:80 cm to LAf ¼ 0:69 cm

in length and layer B collapses from LB0 ¼ 4:34 cm to LBf ¼ 1:60 cm.

Case A, at a final length of 2.27 cm, is the thinnest of all cases at the
end of the simulation. Layer A in Case B (Ltot ¼ 5.44) collapses from
LA0 ¼ 2:2 cm to LAf ¼ 1:52 cm and Layer B collapses from

LB0 ¼ 3:24 cm to LBf ¼ 1:16 cm. Layer A in Cases C (Ltot¼ 5.24) and D

(Ltot ¼ 4.64) does not collapse since the layer remains elastic and
changes in front face positions observed in Fig. 14 are primarily due
to rigid body motion. However, Layer B reduces from LB0 ¼ 4:04 cm

to LBf ¼ 1:54 cm and LB0 ¼ 3:24 cm to LBf ¼ 1:25 cm for cases C and

D respectively. The final system thicknesses of cases B, C, and D are
2.67 cm, 2.74 cm, and 2.65 cm respectively.

Fig. 15 shows the distal stresses for the one layer case and cases
A throughD. The overall behavior for the two layer cases is the same
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despite the variability in layer lengths and densities. This behavior
indicates that the second layer of material operates as a pulse
modulator, taking an input from the first layer and transforming it
into a desired profile on the fixed end. We note that this observa-
tion is in line with those made in [37] and [43], where it was
reported that positioning the weakest material at the fixed end
allowed for a lower transmitted load through the system. Com-
pared to the one-layer case, Case A holds the compressive load for
longer and has a longer duration tensile rebound from the fixed
end. Cases BeD smooth out the transitions between compressive
and tensile stresses. The pulse widths for the stresses
beyond �1 MPa (between 0.3 ms and 0.4 ms) are very small (typ-
ically <0.1 ms) and satisfy the constraint over the impulse width.

In the optimal case for rA0 ¼ 0:06, the whole two layer system
undergoes densification. Although the minimum for rA0 ¼ 0:09
does not completely densify (see Fig. 13), the first value of
rA0 ¼ 0:09 that satisfies the mass constraint (LA ¼ 0.8 cm,
Ltot ¼ 5.84 cm, M ¼ 0.376 g, and indicated as the rightmost black
diamond in Fig. 10(b)) is completely densified. Layer A in cases C
and D is too stiff to undergo densification under the applied load.
Therefore, absorptive capacity is not fully utilized. Layer A, in cases
C and D, acts as a face sheet while layer B behaves as a core material.
The stronger and heavier the face sheet, the less core is needed, and
thus the shorter the system length. However, if mass is constrained,
there is a diminishing return on increasing face sheet density.

5. Conclusions

The formation of shocks in two-layer cellular systems have been
analyzed using the method of characteristics with thermodynamic
shock theory. The EPD material model is proposed to capture the for-
mation of shocks at the interface between material layers. We show
that the RPPL model does not allow shock formation in two layer
systems. The numerical implementationwas verified against existing
work. The two-layer analysis demonstrates that layer A is responsible
for the majority of the energy dissipation when shocks form in both
layers. Thesearch for theoptimumrevealed that thehigher thedensity
of layer A, the shorter the total system length. However, there is a cost
in mass associated with the reduction in total system length. The re-
sults further reinforce the established concept of sandwich materials,
where a soft core is placed between stiff outer layers. Another finding
in theoptimizationstudy is that, inall cases, the time for thematerial to
dissipate the applied energy (minus remaining elastic energies) is the
same at approximately t ¼ 0.42 ms, meaning that a two layer config-
uration does not appear to improve dissipation rates.

The method as implemented is not restricted to two layers and
could be executed for more interfaces. The primary drawback to
this method is that it solves every wave reflection, and the number
of wave reflections increases substantially for each material inter-
face, resulting in large computational cost. Furthermore, the
method as implemented only handles piece-wise constant loading
inputs and additional work is required to handle problems that
involve continuously varying loads.
References

[1] Gama BA, Bogetti TA, Fink BK, Yu CJ, Dennis Claar T, Eifert HH, et al.
Aluminum foam integral armor: a new dimension in armor design. Com-
posite Structures 2001;52(3e4):381e95. http://dx.doi.org/10.1016/S0263-
8223(01)00029-0.

[2] Jang WY, Kyriakides S. On the crushing of aluminum open-cell foams: Part I.
Experiments. International Journal of Solids and Structures 2009;46(34):617e
34. http://dx.doi.org/10.1016/j.ijsolstr.2008.09.008.

[3] Mazor G, Ben-Dor G, Igra O, Sorek S. Shock wave interaction with cellular
materials. Shock Waves 1994;3(3):159e65. http://dx.doi.org/10.1007/
BF01414710.

[4] Elnasri I, Pattofatto S, Zhao H, Tsitsiris H, Hild F, Girard Y. Shock enhancement
of cellular structures under impact loading: Part I experiments. Journal of the
Mechanics and Physics of Solids 2007;55(12):2652e71. http://dx.doi.org/10.
1016/j.jmps.2007.04.005.

[5] Deshpande VS, Fleck NA. High strain rate compressive behaviour of alumi-
nium alloy foams. International Journal of Impact Engineering 2000;24(3):
277e98.

[6] Edwin Raj R, Parameswaran V, Daniel B. Comparison of quasi-static and dy-
namic compression behavior of closed-cell aluminum foam. Materials Science
and Engineering: A 2009;526(1e2):11e5. http://dx.doi.org/10.1016/j.msea.
2009.07.017.

[7] Lopatnikov SL, Gama BA, Jahirul Haque M, Krauthauser C, Gillespie JW,
Guden M, et al. Dynamics of metal foam deformation during taylor cylinder-
hopkinson bar impact experiment. Composite Structures 2003;61(1e2):61e
71. http://dx.doi.org/10.1016/S0263-8223(03)00039-4.

[8] Tan P, Reid S, Harrigan J, Zou Z, Li S. Dynamic compressive strength properties
of aluminium foams. part Ieexperimental data and observations. Journal of
the Mechanics and Physics of Solids 2005;53(10):2174e205. http://dx.doi.org/
10.1016/j.jmps.2005.05.007.

[9] Guruprasad S, Mukherjee A. Layered sacrificial claddings under blast loading
part I e analytical studies. International Journal of Impact Engineering 2000;
24(9):957e73.

[10] Tan P, Reid S, Harrigan J, Zou Z, Li S. Dynamic compressive strength prop-
erties of aluminium foams. Part IIe‘shock’ theory and comparison with
experimental data and numerical models. Journal of the Mechanics and
Physics of Solids 2005;53(10):2206e30. http://dx.doi.org/10.1016/j.jmps.
2005.05.003.

[11] Langdon G, Karagiozova D, Theobald M, Nurick G, Lu G, Merrett R. Fracture of
aluminium foam core sacrificial cladding subjected to air-blast loading. In-
ternational Journal of Impact Engineering 2010;37(6):638e51. http://dx.doi.
org/10.1016/j.ijimpeng.2009.07.006.

[12] Cui L, Kiernan S, Gilchrist MD. Designing the energy absorption capacity of
functionally graded foam materials. Materials Science and Engineering: A
2009;507(1e2):215e25. http://dx.doi.org/10.1016/j.msea.2008.12.011.

[13] Hanssen AG, Enstock L, Langseth M. Close-range blast loading of aluminium
foam panels. International Journal of Impact Engineering 2002;27(6):593e
618. http://dx.doi.org/10.1016/S0734-743X(01)00155-5.

[14] Li QM, Meng H. Attenuation or enhancementea one-dimensional analysis on
shock transmission in the solid phase of a cellular material. International
Journal of Impact Engineering 2002;27(10):1049e65. http://dx.doi.org/10.
1016/S0734-743X(02)00016-7.

[15] Shim VPW, Tay BY, Stronge WJ. Dynamic crushing of strain-softening cel-
lular structuresea one-dimensional analysis. Journal of Engineering Mate-
rials and Technology 1990;112(4):398e405. http://dx.doi.org/10.1115/1.
2903349.

[16] Seitz MW, Skews BW. An analytical model for shock wave impact on com-
pressible open-cell foam. Shock Waves 2007;16(4e5):287e98. http://dx.doi.
org/10.1007/s00193-007-0073-2.

[17] Main JA, Gazonas GA. Uniaxial crushing of sandwich plates under air blast:
Influence of mass distribution. International Journal of Solids and Structures
2008;45(7e8):2297e321. http://dx.doi.org/10.1016/j.ijsolstr.2007.11.019.

[18] Ashby MF, Evans A, Fleck NA, Gibson LJ, Hutchinson J, Wadley HN. Metal
foams: a design guide. Boston: Butterworth Heinemann, ISBN
9780750672191; 2000. p. 40e54.

[19] Fleck NA, Deshpande VS. The resistance of clamped sandwich beams to shock
loading. Journal of Applied Mechanics 2004;71(3):386e401. http://dx.doi.org/
10.1115/1.1629109.

[20] Harrigan J, Reid S, Seyed Yaghoubi A. The correct analysis of shocks in a cel-
lular material. International Journal of Impact Engineering 2010;37(8):918e
27. http://dx.doi.org/10.1016/j.ijimpeng.2009.03.011.

[21] Ma G, Ye Z. Analysis of foam claddings for blast alleviation. International
Journal of Impact Engineering 2007;34(1):60e70. http://dx.doi.org/10.1016/j.
ijimpeng.2005.10.005.

http://dx.doi.org/10.1016/S0263-8223(01)00029-0
http://dx.doi.org/10.1016/S0263-8223(01)00029-0
http://dx.doi.org/10.1016/j.ijsolstr.2008.09.008
http://dx.doi.org/10.1007/BF01414710
http://dx.doi.org/10.1007/BF01414710
http://dx.doi.org/10.1016/j.jmps.2007.04.005
http://dx.doi.org/10.1016/j.jmps.2007.04.005
http://dx.doi.org/10.1016/j.msea.2009.07.017
http://dx.doi.org/10.1016/j.msea.2009.07.017
http://dx.doi.org/10.1016/S0263-8223(03)00039-4
http://dx.doi.org/10.1016/j.jmps.2005.05.007
http://dx.doi.org/10.1016/j.jmps.2005.05.007
http://dx.doi.org/10.1016/j.jmps.2005.05.003
http://dx.doi.org/10.1016/j.jmps.2005.05.003
http://dx.doi.org/10.1016/j.ijimpeng.2009.07.006
http://dx.doi.org/10.1016/j.ijimpeng.2009.07.006
http://dx.doi.org/10.1016/j.msea.2008.12.011
http://dx.doi.org/10.1016/S0734-743X(01)00155-5
http://dx.doi.org/10.1016/S0734-743X(02)00016-7
http://dx.doi.org/10.1016/S0734-743X(02)00016-7
http://dx.doi.org/10.1115/1.2903349
http://dx.doi.org/10.1115/1.2903349
http://dx.doi.org/10.1007/s00193-007-0073-2
http://dx.doi.org/10.1007/s00193-007-0073-2
http://dx.doi.org/10.1016/j.ijsolstr.2007.11.019
http://dx.doi.org/10.1115/1.1629109
http://dx.doi.org/10.1115/1.1629109
http://dx.doi.org/10.1016/j.ijimpeng.2009.03.011
http://dx.doi.org/10.1016/j.ijimpeng.2005.10.005
http://dx.doi.org/10.1016/j.ijimpeng.2005.10.005


J.C. Goetz, K. Matou�s / International Journal of Impact Engineering 57 (2013) 55e69 69
[22] Li QM, Reid SR. About one-dimensional shock propagation in a cellular ma-
terial. International Journal of Impact Engineering 2006;32(11):1898e906.

[23] Utku S. On the impact induced stress waves in long bars. Technical report
32e932. Pasadena, California: Califonia Institute of Technology, Jet Pro-
pulsion Laboratory; 1966. p. 21.

[24] Tran DVD, Singh MC. Nonlinear uniaxial thermoelastic waves by the method
of characteristics. Journal of Thermal Stresses 2004;27(8):741e77. http://dx.
doi.org/10.1080/01495730490440154.

[25] Kolsky H. Stress waves in solids. New York: Dover Publications; 1963. p. 208.
[26] Sumi N. Numerical solutions of thermoelastic wave problems by the method

of characteristics. Journal of Thermal Stresses 2001;24(6):509e30. http://dx.
doi.org/10.1080/014957301300158085.

[27] Lubliner J, Valathur M. Some wave-propagation problems in plasticevisco-
plastic materials. International Journal of Solids and Structures 1969;5(12):
1275e98. http://dx.doi.org/10.1016/0020-7683(69)90072-9.

[28] Maheo L, Viot P. Impact on multi-layered polypropylene foams. International
Journal of Impact Engineering 2012. http://dx.doi.org/10.1016/
j.ijimpeng.2012.03.011.

[29] Zeng H, Pattofatto S, Zhao H, Girard Y, Fascio V. Impact behaviour of hollow
sphere agglomerates with density gradient. International Journal of Me-
chanical Sciences 2010;52(5):680e8. http://dx.doi.org/10.1016/j.ijmecsci.
2009.11.012.

[30] Konstantinov GG, Marchenko LL, Shkhinek KN. Wave propagation in a finite
elastoplastic bar with longitudinal impact. Combustion, Explosion, and Shock
Waves 1967;1:39e42. http://dx.doi.org/10.1007/BF00748811.

[31] Guedes J, Rodrigues H, Bendse M. A material optimization model to approx-
imate energy bounds for cellular materials under multiload conditions.
Structural and Multidisciplinary Optimization 2003;25(5):446e52. http://dx.
doi.org/10.1007/s00158-003-0305-8.

[32] Yu J, Li J, Hu S. Strain-rate effect and micro-structural optimization of cellular
metals. Mechanics of Materials 2006;38(12):160e70. http://dx.doi.org/10.
1016/j.mechmat.2005.05.018.
[33] Zhang W, Sun S. Scale-related topology optimization of cellular materials and
structures. International Journal for Numerical Methods in Engineering 2006;
68(9):993e1011. http://dx.doi.org/10.1002/nme.1743.

[34] Zhu F, Wang Z, Lu G, Zhao L. Analytical investigation and optimal design of
sandwich panels subjected to shock loading. Materials & Design 2009;30(1):
91e100. http://dx.doi.org/10.1016/j.matdes.2008.04.027.

[35] Shen C, Yu T, Lu G. Double shock mode in graded cellular rod under impact.
International Journal of Solids and Structures 2013;50(1):217e33. http://dx.
doi.org/10.1016/j.ijsolstr.2012.09.021.

[36] Ma GW, Ye ZQ. Energy absorption of double-layer foam cladding for blast
alleviation. International Journal of Impact Engineering 2007;34(2):329e47.

[37] Pattofatto S, Elnasri I, Zhao H, Tsitsiris H, Hild F, Girard Y. Shock enhancement
of cellular structures under impact loading: part II analysis. Journal of the
Mechanics and Physics of Solids 2007;55(12):2672e86. http://dx.doi.org/10.
1016/j.jmps.2007.04.004.

[38] Simo JC, Hughes TJR. Computational inelasticity. 1st ed. New York, NY:
Springer, ISBN 9780387975207; 1998. p. 392.

[39] Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge,
United Kingdom: Cambridge University Press, ISBN 9780521499118; 1999.
p. 392.

[40] McCullough KYG, Fleck NA, Ashby MF. Uniaxial stress-strain behaviour of
aluminium alloy foams. Acta Materialia 1999;47(8):2323e30. http://dx.doi.
org/10.1016/S1359-6454(99)00128-7.

[41] Hanssen AG, Hopperstad OS, Langseth M, Ilstad H. Validation of constitutive
models applicable to aluminium foams. International Journal of Mechanical
Sciences 2002;44(2):359e406.

[42] Li QM, Mines RAW, Birch RS. The crush behaviour of rohacell-51WF structural
foam. International Journal of Solids and Structures 2000;37(43):6321e41.
http://dx.doi.org/10.1016/S0020-7683(99)00277-2.

[43] Occupant crash protection handbook for tactical ground vehicles. Warren,
Michigan: United States Dept of the Army; 2000.

[44] Products & services. 2012. URL: http://www.rohacell.com.

http://dx.doi.org/10.1080/01495730490440154
http://dx.doi.org/10.1080/01495730490440154
http://dx.doi.org/10.1080/014957301300158085
http://dx.doi.org/10.1080/014957301300158085
http://dx.doi.org/10.1016/0020-7683(69)90072-9
http://dx.doi.org/10.1016/j.ijimpeng.2012.03.011
http://dx.doi.org/10.1016/j.ijimpeng.2012.03.011
http://dx.doi.org/10.1016/j.ijmecsci.2009.11.012
http://dx.doi.org/10.1016/j.ijmecsci.2009.11.012
http://dx.doi.org/10.1007/BF00748811
http://dx.doi.org/10.1007/s00158-003-0305-8
http://dx.doi.org/10.1007/s00158-003-0305-8
http://dx.doi.org/10.1016/j.mechmat.2005.05.018
http://dx.doi.org/10.1016/j.mechmat.2005.05.018
http://dx.doi.org/10.1002/nme.1743
http://dx.doi.org/10.1016/j.matdes.2008.04.027
http://dx.doi.org/10.1016/j.ijsolstr.2012.09.021
http://dx.doi.org/10.1016/j.ijsolstr.2012.09.021
http://dx.doi.org/10.1016/j.jmps.2007.04.004
http://dx.doi.org/10.1016/j.jmps.2007.04.004
http://dx.doi.org/10.1016/S1359-6454(99)00128-7
http://dx.doi.org/10.1016/S1359-6454(99)00128-7
http://dx.doi.org/10.1016/S0020-7683(99)00277-2
http://www.rohacell.com

	Shock analysis and optimization of two-layered cellular materials subject to pulse loading
	1. Introduction
	2. Shock analysis of two-layer systems
	2.1. Constitutive law
	2.2. Governing equations
	2.3. Conditions for shock formation
	2.4. Numerical implementation

	3. Numerical examples
	3.1. Model verification
	3.2. Two layer analysis

	4. Optimization
	4.1. Objective function
	4.2. Non-linear sensitivity analysis
	4.3. One layer optimization
	4.4. Two layer optimization

	5. Conclusions
	References


