
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2010; 84:916–946
Published online 3 June 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.2923

Coupled multi-scale cohesive modeling of failure
in heterogeneous adhesives

M. G. Kulkarni1,‡, K. Matouš2,∗,† and P. H. Geubelle1
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SUMMARY

A multi-scale cohesive numerical framework is proposed to simulate the failure of heterogeneous adhe-
sively bonded systems. This multi-scale scheme is based on Hill’s variational principle of energy equiva-
lence between the higher and lower level scales. It provides an easy way to obtain accurate homogenized
macroscopic properties while capturing the physics of failure processes at the micro-scale in sufficient
detail. We use an isotropic rate-dependent damage model to mimic the failure response of the constituents
of heterogeneous adhesives. The finite element method is used to solve the equilibrium equation at
each scale. A nested iterative scheme inspired by the return mapping algorithm used in computational
inelasticity is implemented. We propose a computationally attractive technique to couple the macro- and
micro-scales for rate-dependent constitutive laws. We introduce an adhesive patch test to study the numer-
ical performance, including spatial and temporal convergence of the multi-scale scheme. We compare the
solution of the multi-scale cohesive scheme with a direct numerical simulation. Finally, we solve mode I
and mode II fracture problems to demonstrate failure at the macro-scale. Copyright � 2010 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Multi-scale phenomena are pervasive in many fields of engineering sciences and require the
development of numerical tools that can span multiple spatial and temporal scales. Multi-scale
modeling offers a predictive capability to incorporate information obtained through atomistic and/or
microscopic simulations into the macroscopic level. Even with the advent of supercomputers, the
direct numerical solution (DNS) of multiple scale problems is seldom a feasible option due to
the high memory and computational time requirements of the discrete problem. In addition, it
is often sufficient to predict the macroscopic properties while capturing the small-scale effects
at the higher level rather than being able to resolve all the lower scale features simultaneously.
Multi-scale modeling tools allow for such accurate macroscopic solutions at computational costs
substantially lower than their DNS counterparts.

With concentrated efforts from the material science community over the past two decades to
develop new multi-functional materials that inherently span several length scales due to the presence
of disparate phases, the need for modeling tools that accurately describe the physical phenomena
at each scale has been further emphasized. Multi-scale techniques based on the asymptotic analysis
[1, 2] and energy equivalence [3] for bulk modeling of materials spanning several length scales have
long been available. The focus of the present work is on the multi-scale modeling of heterogeneous
thin layers, such as rubber-toughened adhesives [4], silver-enriched epoxy adhesives [5], and self-
healing adhesives [6]. To model the failure response of these heterogeneous thin layers, we have
developed a multi-scale cohesive scheme [7, 8] based on Hill’s energy equivalence principle. The
approach involves collapsing the heterogeneous layer to a line (in 2D) or to a surface (in 3D)
of cohesive elements at the macro-scale and has the ability to incorporate the physical details of
heterogeneous layers from the micro-scale to obtain a computationally homogenized cohesive law
that can be embedded at the macro-scale.

Although the fully coupled multi-scale formulation has been presented in our initial work [7], as
in most of the multi-scale analyses, the examples presented in Matouš et al. [7] and Kulkarni et al.
[8] involved only a one-way coupling between the scales by specifying an arbitrary macroscopic
displacement jump, /, across the heterogeneous adhesive layer and extracting the corresponding
macroscopic tractions, t, through the computational homogenization approach. The present work
addresses the key issues associated with the true multi-scale cohesive solution of heterogeneous
bonded structures involving a two-way coupling between the macro- and micro-scales. Only a
small number of such two-way coupled multi-scale analyses are available in the literature with
most of them focusing on the bulk modeling of heterogeneous materials. Terada and Kikuchi
[9] have presented the successive iteration algorithm and nested iterative algorithm for modeling
heterogeneous micro-structures using generalized convergence concepts in the two-scale variational
description. Fish and Yu [10] have proposed a non-local multi-scale continuum damage model
within a triples-scale asymptotic analysis to study a composite beam made of Blackglas/Nextel 2D
weave. Feyel and Chaboche [11] have described a multi-level finite element method FE2 to model
fiber matrix composites. Kouznetsova et al. [12] have developed a second-order computational
homogenization scheme for multi-phase materials implemented within a nested scheme as well.
The second-order homogenization model involves translating both macroscopic deformation/stress
and higher order deformation/stress tensors from the micro-scale to the macro-scale. Raghavan
and Ghosh [13] have presented an adaptive multi-level computational model that uses the Voronoi
cell finite element method at the micro-scale and conventional finite element method at the macro-
scale. To our knowledge, the only study presenting two-way coupling examples for heterogeneous
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918 M. G. KULKARNI, K. MATOUŠ AND P. H. GEUBELLE

thin layers is by Hirschberger et al. [14], who extended the multi-scale cohesive scheme of Matouš
et al. [7] to the case of finite deformations. However, their work did not involve modeling of failure
or softening at the macro- and micro-levels, which lies at the heart of the cohesive modeling. In
this work, we propose a multi-scale cohesive numerical framework with the capability to model
such phenomena at the macro-scale by taking into account the fracture processes occurring within
a thin heterogeneous layer at the micro-scale.

One could argue that such two-way coupled multi-scale modeling can be circumvented by
embedding a cohesive damage envelope obtained through a range of microscopic simulations at
the macro-scale. An example of such cohesive envelope obtained by considering straight loading
paths (�1=m�2) in the �1−�2 space can be found in Matouš et al. [7]. Although such modeling
will certainly embed more physics from the micro-scale than the use of a pure phenomenological
model, it might lose certain details of microscopic evolution. To illustrate this point, let us consider
the three macroscopic cohesive laws shown in Figure 1 obtained for three different loading paths
in the �1−�2 space to reach the same final loading state (inset of Figure 1(a)). As indicated
earlier, t and / denote the macroscopic traction and displacement jump, respectively. Details on
the adhesive microstructure and damage models that lead to the curves presented in Figure 1 can
be found in Kulkarni et al. [8]. The point of the results shown in Figure 1 is to illustrate how path
dependent the macroscopic tangential (t1−�1) and normal (t2−�2) cohesive laws are, although
the final values of the imposed macroscopic displacement jump (�1,�2) are identical. This history
dependence, which might be further exacerbated by the possible rate dependence of the damage
model, makes the use of pre-tabulated cohesive failure envelope impractical in the macro-scale
failure modeling of heterogeneous adhesives. This motivates the need for a fully coupled multi-
scale simulation in which the macroscopic and microscopic boundary value problems are solved
simultaneously, thereby preserving the history dependence of the failure process.

In this paper, we present a computationally attractive approach for coupled multi-scale cohe-
sive simulations using the cohesive finite element method at the macro-scale following the work
presented in Matouš et al. [7] and Kulkarni et al. [8]. The manuscript is organized as follows: in the
following section, we summarize the multi-scale cohesive formulation in a variational setting. In
Section 3, we present the finite element and numerical aspects of the multi-scale cohesive scheme
using the nested iterative scheme for rate-dependent constitutive models. Numerical examples
showing failure at both macro- and micro-scales are then presented in Section 4.

2. MULTI-SCALE FORMULATION

Let �⊂RN represent a body in an N dimensional space with material points X∈RN belonging to
it. The number of space dimensions, N, is equal to two or three. We denote the boundary of the
body by ��, which is separated into mutually exclusive sets ��u and ��t, on which displacements
up and tractions tp are prescribed, respectively. The decomposition of the boundary is carried
out in the traditional way: ��=��u∪��t and ��u∩��t=∅. We are interested in modeling
heterogeneous bonded systems that typically involve two adherents joined together by a thin
adhesive layer. Let the body � be partitioned into three sub-domains, such that �=�1∪�0∪�2,
with �1 and �2 representing the two adherents, and �0 being the heterogeneous adhesive layer.
The adhesive layer �0 is idealized as a sub-manifold �c of dimension N−1 with a thickness lc
and an outward pointing normal N (Figure 2). In what follows, quantities having zero as the left
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Figure 1. The normal (top) and tangential (bottom) macroscopic traction–separation laws for different
loading paths shown in the inset of the top figure. The non-linearity and the rate dependence in the
solution lead to large differences in the macroscopic cohesive response. The inset of the top figure shows

three different loading paths in the �1−�2 space having the same start- and end-points.

superscript 0(•) are at the macro-scale, whereas those having 1(•) as the left superscript are at the
micro-scale.

In order to effectively capture the effect of heterogeneities in the adhesive layer, we assume an
additive hierarchical decomposition of the displacement field

u(X,Y)=0u(X)+1u(Y), (1)
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Figure 2. Schematic of the multi-scale cohesive scheme. The left half of the figure shows macroscopic
modeling, whereas the right half depicts microscopic modeling details on RVE �.

where 0u(X) denotes the part of the displacement that can be modeled with the standard solution
techniques and 1u(Y) represents the fluctuation part of displacement that is usually filtered out at
the macro-scale. X and Y denote the macro- and micro-scale coordinates, respectively. We note
here that, everywhere except inside the heterogeneous layer, the displacement is a function of X
alone, i.e. u(X)=0u(X), ∀X∈�1∪�2. Next let � denote the representative volume element (RVE)
of the adhesive layer. We further assume that the displacement in the adhesive layer belongs to

V�0 = {0u(X)|0u(X)∈ [H1(�0)]N},
V� = {1u(Y)|1u(Y)∈ [H1(�)]N,1u(Y) is Y1,3-periodic, 1u(Y)|�±c =0},

(2)

whereas the displacement in the adherent sub-domains �1,2 lies in the space

V�={u(X)|u(X)∈ [H1(�)]N,u(X)=up on ��u}. (3)

In the above, H1(�) denotes the Sobolev space of degree 1 and consists of functions that possess
square-integrable generalized derivatives through order 1 [15]. Again as before, the strain tensor
e(X)=∇s

X u, if X∈�1∪�2, where ∇s
X (•) represents the symmetric gradient operator at the macro-

scale.
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The strain in the heterogeneous layer is obtained by differentiating (1) as

e(X,Y)=0e(X)+1e(Y), (4)

where the first term on the right-hand side represents the macroscopic part of the strain tensor,
whereas the second term denotes the fluctuating superposition component. We assume that the
macroscopic part of the strain in the heterogeneous layer is given by a linear kinematics (we
neglect the in-plane strains, as is typically done for an adhesive layer)

0e= 1

lc
(/⊗N)s, (5)

where /=0u+−0u− is the displacement jump across the adhesive layer and the symbol ⊗ repre-
sents the dyadic product between two vectors.

Starting with the equilibrium equations and following standard arguments, one obtains the weak
form of momentum balance at the macro-scale∫

�±
r :∇s

X�ud�︸ ︷︷ ︸
volumetric contribution

+
∫

�c

t·�/dA︸ ︷︷ ︸
cohesive contribution

−
∫

�±
f ·�ud�−

∫
��t

tp ·�udA=0, (6)

where r represents the Cauchy stress tensor, f denotes the body force vector, and tp denotes the
prescribed traction vector acting along ��t . Equation (6) is valid for all admissible variations
�0u∈V�0 and �u∈V�.

At this point, we use the standard argument of scale separation. The macroscopic problem has
a characteristic length scale, lmacro≈O(�c), comparable to the size of the adherents, whereas the
micro-structure is of the size of the thickness of the adhesive layer, lmicro≈O(lc) (Figure 2). The
scale separation is valid if lmicro/ lmacro�1. The link between the macro- and micro-scales is
established via computational homogenization.

Following Hill [3], we further argue that at the equilibrium the strain energy density of a
macroscopic point is equivalent to the average of the strain energy density at the micro-structural
RVE associated with that point,

inf
/

0�(/)= inf
0e

inf
1u

lc
|�|

∫
�

1�(0e(/)+∇s
Y

1u)d�, (7)

where 0� and 1� represent the strain energy densities at the macro- and micro-scales, respectively.
We also assume that the stress in the adhesive layer s and the macroscopic tractions in the adhesive
layer t can be obtained as follows:

s= �1�

�e
and t= �0�

�/
, (8)

where e= (0e+1e) denotes the strain in the adhesive layer. An analytical potential-based cohesive
model for mixed-mode failure of homogeneous materials, similar to (8)2, was recently proposed
by Park et al. [16]. In this work, we construct (8)2 using a multi-scale technique implemented
within the computational homogenization, making it applicable to heterogeneous systems. Applying
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standard variational principles to (7), one obtains the weak form of the governing equation at the
micro-scale:

1

|�|
∫

�
s :∇s

Y �1ud�=0, (9)

and the homogenized macroscopic tractions:

t=
(

1

|�|
∫

�
sd�

)
·N. (10)

Equation (9) is solved for the microscopic fluctuating displacement 1u with the admissible variations
�1u∈V�. Finally, we combine (10) with (6) to obtain the solution to the macroscopic boundary
value problem.

To model the failure of the matrix and inclusions in heterogeneous adhesives at the micro-scale,
we use an irreversible isotropic damage model presented in Appendix A.

3. NUMERICAL IMPLEMENTATION

We now present the nested iterative scheme implemented within the framework of the finite element
method. We also present an integration algorithm to couple strain rates in the macro- and micro-
scale simulations for rate-dependent constitutive models. Consider a discretization of the adherents
�V =�1∪�2 into open non-overlapping volumetric elements, �e, such that

�̄
V =

0 N V
el⋃

e=1
�̄

e
, (11)

where 0 N V
el is the number of macroscopic volumetric elements. Further, �0 is collapsed to a surface

(in 3D) or a line (in 2D) of cohesive elements, such that �̄
C=⋃0 N C

el
e=1 �̄

e
, where 0 N C

el denotes
the number of macroscopic cohesive elements. Each Gauss point Ge

i , i=1 . . .ngpt, of a cohesive
element �e is associated with a microstructure domain �. For the purpose of this work, all the
cohesive Gauss points are assumed to have the same microstructure. The microstructure itself is
decomposed into non-overlapping elements �e, such that

�̄=
1 Nel⋃
e=1

�̄
e
, (12)

with 1 Nel being the number of microstructural elements. By introducing finite-dimensional approxi-
mations for 0u and 1u and following the standard procedure, one obtains the finite element residuals
at the macro- and micro-scale using (6), (9), and (10) as

0R(0U,1U)=
0 N V

el
A

e=1

{∫
�e

0G
T
r(0U)d�−

∫
��t

0MTtp d�
∫

�e

0MTfd�

}

+
0 N C

el
A

e=1

∫
�e

0P
T

t(0U,1U)dA, (13)
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1R(0U,1U)=
1 Nel
A

e=1

∫
�e

1G
T

L(0U,1U)(0e+1e)d�, (14)

where 0M contains the finite element shape functions. Note that here 1U∈Vh
� where Vh

� denotes
the discrete counterpart of V� and 0U∈Vh

� for all macroscopic degrees of freedom, i.e. ∀X∈�
where Vh

� is the discrete counterpart of V�. The constitutive matrix at the micro-scale is given
by L(0U,1U)= (1−�(0U,1U))D, where � is the isotropic damage parameter that is defined in
Appendix A and D is the linear elastic stiffness matrix. The usual strain-displacement operators
containing the derivatives of finite element shape functions are denoted by 0G, 1G, whereas 0P
denotes a linear operator relating the macroscopic displacement jump / to the local degrees of
freedom of the cohesive elements. In (13) and (14), 0U and 1U denote the nodal degrees of
freedom, and the symbol A represents the finite element assembly operator. As usual, we write
the first-order Taylor series approximation of the macro- and micro-scale residuals (13) and (14)
about 0U and 1U to obtain a linearized version of the equations:

�0R

�0U
�0U+ �0R

�1U
�1U=−0R, (15)

�1R

�0U
�0U+ �1R

�1U
�1U=−1R, (16)

which must be solved simultaneously to obtain a converged solution at the macro- and micro-scale.
Although solving the coupled Equations (13) and (14) in a monolithic fashion is desirable and
ensures the optimal quadratic rate of convergence, it remains impractical from the computer imple-
mentation perspective. We instead follow a computationally more tractable, staggered approach
that solves the equations in a nested iterative fashion. The scheme is intuitive of the computa-
tional mechanics community as it relies on the return mapping algorithm concept of computational
inelasticity. It should be noted that the independence of each microscopic simulation in the nested
algorithm makes the two-scale computational problem amenable to a parallel implementation.

3.1. Nested iterative scheme

As mentioned above, to circumvent the use of a monolithic solver, we use a nested iterative scheme.
The nested iterative scheme involves the use of the Newton–Raphson technique at both scales.
The micro-scale unit cell corresponding to each macro-scale cohesive Gauss point is equilibrated
at every macroscopic iteration.

Algorithm for microscopic problem. Let us assume that all the macro- and microscopic field vari-
ables at nth loading step are known from a previously converged solution. A converged microscopic
solution suggests that the tractions are self-equilibrated at time Tn and we prescribe the current
macroscopic deformation up

n+1 and/or tractions tp
n+1. Then, the microscopic problem involves iter-

ative determination of 1un+1, 1en+1, and 0tn+1 for the prescribed loading state at i th macroscopic
iteration by solving Equation (14). In the nested iterative scheme, we iteratively solve the micro-
scale equilibrium equation at each macroscopic Gauss point at every macroscopic iteration. During
the micro-scale simulation, the macroscopic displacement vector 0Un+1 is known and remains
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Table I. Algorithm for the microscopic problem. The key difference with an uncoupled micro-scale
simulation involves the computation of the macroscopic tangent.

1. set j←0;
1U(0)

n+1←1Un and �1U( j)
n+1=0

2. Evaluate 1R(0U(i)
n+1,1U( j)

n+1) using (14).

3. DO WHILE 1R= (‖1R( j)‖/‖1R(0)‖) > 1Tol

• Compute ��1U( j+1)
n+1 =−11K 1R

• 1U( j+1)
n+1 ← 1Un+�1U( j+1)

n+1 where �1U( j+1)
n+1 =�1U( j)

n+1+��1U( j+1)
n+1

• Evaluate 1R(0U(i)
n+1, 1U( j+1)

n+1 )
• j← j+1

• Evaluate �1R/�0U for use at macro-scale.
ENDDO

4. Post-process, i.e. evaluate 0tn+1 and �0tn+1/�1Un+1 at converged
1Un+1(r̄n+1,�r̄n+1/�0Un+1,�r̄n+1/�1Un+1)

unaltered, which enables one to follow the standard linearization procedure, thus reducing (16) to
obtain the corrector displacement in the ( j+1)th iteration as

�1R(0U(i)
n+1,

1U( j)
n+1)

�1U
��1U( j+1)

n+1 =−1R(0U(i)
n+1,

1U( j)
n+1). (17)

The evaluation of microscopic tangent operator �1R/�1U is presented in Appendix B. The algorithm
for the micro-scale problem, solved at each Gauss point of macroscopic cohesive elements along
�c, is presented in Table I.

Algorithm for macroscopic problem. Consider the macroscopic residual given by (13). We assume
that the macro-scale structure � along with the unit cells � associated with each macroscopic
cohesive Gauss point Ge are equilibrated at time Tn with prescribed load up

n and/or tp
n . After

applying the incremental load at time Tn+1, the macro-scale problem involves the determination
of the macroscopic displacement 0Un+1 in an iterative fashion by solving the non-linear equation
(13) after substitution of (10). The macro-scale residual should be linearized consistently taking
into account the contribution from the micro-scale (Equation (10)). The incremental corrector
displacement for the Newton–Raphson scheme is obtained from linearized equations (15) and (16).
Solving for �1U from (16) and substituting in (15) yields{

�0R

�0U
− �0R

�1U

(
�1R

�1U

)−1 �1R

�0U

}
︸ ︷︷ ︸

K

��0U(i+1)
n+1 =−0R+ �0R

�1U

(
�1R

�1U

)−1
1R︸ ︷︷ ︸

=0 for the nested scheme

, (18)

where (i+1) denotes the current macroscopic iteration. All the residuals and their derivatives
in (18) are evaluated at 0U=0 U(i)

n+1, 1U=1UConvg
n+1 , where 1UConvg denotes the converged micro-

scale displacement. The second term on the right-hand side in (18) vanishes when a converged
micro-scale solution is used at the macroscopic level. The computation of the macroscopic tangent
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Table II. Algorithm for the macroscopic problem. Each macro-scale simulation involves a non-linear finite
element solution at each cohesive Gauss point.

1. Initialization
• Compute element tangents for �1,2

• Assign RVE to each Gauss point of the cohesive elements along �c
• Perform micro-scale simulation using Table I at no load.

2. Increment load; set i←0; 0U(0)
n+1←0 Un and �1U(i)

n+1=0
3. Evaluate 0R(i) using (13).
4. DO WHILE 0R= (‖0R(i)‖/‖0R(0)‖)>0Tol
• Assemble macroscopic tangent

• Compute ��0U(i+1)
n+1 using (18).

• 0U(i+1)
n+1 ←0 Un+�0U(i+1)

n+1 where �0U(i+1)
n+1 =�0U(i)

n+1+��0U(i+1)
n+1

• Evaluate 0R(i+1).
Perform micro-scale simulation at each Gauss point of cohesive elements

to obtain tn+1 and �tn+1/�1Un+1.
• i← i+1

ENDDO
5. Post-process.

matrix K is described in Appendix B. An algorithm for the macro-scale simulation is presented in
Table II.

While it is conceivable that such a multi-scale solution strategy involving a microstructure for
each macroscopic cohesive Gauss point will be computationally demanding, it is possible to use a
pre-computed solution at the Gauss points where the non-linearities are not pronounced. We return
to elaborate on this type of computational strategy in Section 3.3. In the current implementation,
we equilibrate the micro-scale boundary value problem at each macro-scale iteration, which allows
us to eliminate the second term on the right-hand side of (18) as mentioned above.

3.2. Integration algorithm for constitutive equations

As mentioned earlier and as detailed in Appendix A, we adopt a rate-dependent constitutive damage
model to capture the failure response of the heterogeneous adhesive at the micro-scale. The rate
form of constitutive equations need to be integrated in an accurate fashion in order to obtain a
time converged solution. We use the implicit backward Euler method along with an adaptive load-
stepping scheme. The rate dependence of the constitutive equations at the micro-scale makes the
whole coupled macro–micro problem rate dependent. The loading rate at which the macroscopic
scale is loaded is prescribed by a user as an input. Unlike the macro-scale, the loading rate at
which the micro-scale cell is loaded cannot be prescribed independently and has to be evaluated
consistently with the macro-scale loading rate. Correct coupling between the loading rates used at
the macro- and micro-scales is necessary not only to obtain meaningful solutions at both scales,
but also to avoid the numerical difficulties stemming from the non-convergence of the coupled
multi-scale scheme. The loading rate at each semi-periodic cell at the micro-scale is different
and should be computed using the current and previously converged solutions at the Gauss point.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 84:916–946
DOI: 10.1002/nme



926 M. G. KULKARNI, K. MATOUŠ AND P. H. GEUBELLE

The loading rate at the current Newton iteration i+1 is computed using the backward difference
operator as follows:

0ėi+1
n+1=

(
[H]0Ui+1

n+1−[H]0U∞n
�T 0

n+1

)
, (19)

where 0U∞n denotes the converged degree of freedom vector at nth macroscopic loading step and
�T 0 is the time step at the macro-scale. The symbol [H] denotes a linear operator that relates
the macro-scale strain tensor given by (5) to the local degree of freedom vector. We note that the
current macroscopic degree of freedom vector 0Ui+1

n+1 is not equilibrated and (19) represents only
a guess at which the micro-scale simulation should be performed.

Equation (19) is based on a trial macroscopic solution and one could essentially use a predictor–
corrector method to correct the loading rate at which the microscopic simulation is carried out.
With regard to the computational effort, it is conceivable that the backward Euler estimate based on
a trial solution will be sufficient compared to the computationally demanding predictor–corrector
approach, which will involve several passes to the micro-scale before converging to the strain rate
at which the micro-structure should be loaded. Further improvements to the strain rate estimate, at
which the microscopic simulation could be carried out, can be made using the trapezoidal rule, for
example. The details of the numerical implementation of the rate form of constitutive equations is
provided in Appendix A.

As mentioned before, we use an adaptive load-stepping strategy with implicit backward Euler
integration scheme to update the rate form of constitutive equations. The adaptive load-stepping
scheme at the micro-scale is implemented, such that the ratio

1�= ��max

��d
, (20)

remains approximately equal to unity, where ��max is the maximum of the change in the damage
parameter over all Gauss points during a given loading step and ��d is a user-defined parameter that
represents the desired change in the damage parameter (chosen as 0.1 in our analysis). Likewise,
the adaptive load-stepping algorithm at the macro-scale operates in such a fashion that

0�=
max(max(��max)|Ge )|

�̄
C

��d
, (21)

is approximately equal to unity, where �̄
C

denotes the set of macro-scale cohesive elements and Ge

represents the set of Gauss points in a micro-scale domain. The time adaptivity criteria presented
in Table III are used to monitor the value of �T at both scales.

For a given macroscopic displacement jump at a macroscopic loading step, the cohesive tractions
and their derivatives are obtained by performing a lower scale simulation at each Gauss point
of a cohesive element. At the end of each macroscopic loading step, we store the converged

Table III. Algorithm for macro- and micro-scale load-step adaptivity.

1. If 0.8<��1.25 then �Tn+1=�Tn�
2. If 0.5<��0.8 then �Tn+1=1.25�Tn
3. If ��0.5 then �Tn+1=1.5�Tn
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solution, i.e. the values of micro-scale displacement 1Un , internal variables and the corresponding
macroscopic strain 0en for each lower level cell. The previously converged solution is used as an
initial guess for obtaining a solution for the next macroscopic loading step. We emphasize here
that each micro-scale simulation is not started from a zero initial guess since the non-linearity
in the damage model makes the solution history sensitive. The difference between the current
macroscopic strain at (i+1)th iteration and the previously converged macroscopic strain at a given
Gauss point 0eDiff=0e

(i+1)
n+1 −0en is applied to the micro-structure to solve (14) at the strain rate

given by (19). Each lower level simulation itself is subdivided into several loading steps of size �T 1

depending on the degree of non-linearity encountered by using the adaptive load-stepping scheme
described above. Thus, the macroscopic cohesive law is constructed in an incremental fashion
for each macro-scale loading step of size �T 0, which in turn is divided into several microscopic
loading steps.

3.3. Adaptive multi-scale cohesive modeling

A serial architecture implementation of the multi-scale scheme naturally invokes the question of
the computational feasibility of a given two-scale simulation. In a typical fracture simulation, such
as a double cantilever beam (DCB) problem, the length of the cohesive zone for many materials is
usually very small (less than 1 mm) and most of the macroscopic cohesive Gauss points experience
little or no damage in a given loading step. This fact can be intuitively exploited to reduce the
computational effort by introducing a spatial adaptivity criterion that enables one to switch between
a complete microscopic analysis and a pre-computed solution to obtain the cohesive tractions.
A complete microscopic analysis is performed only for the Gauss points of the macroscopic
cohesive elements that are in the region where displacement gradients are evolving rapidly (e.g.
near a crack tip), whereas a pre-computed linear constitutive law can be used at Gauss points
away from the active region. We use a set of pre-computed tractions and derivatives obtained
by performing an independent micro-scale simulation (i.e. by solving the micro-scale residual
equation (14) alone) with a prescribed macro-scale strain rate 0ė if for a given Gauss point

‖/‖L2
D
���c, (22)

where �<1, �c is the smaller of the critical displacement jumps (i.e. the value at which failure
begins) among the pre-computed normal and tangential cohesive laws and the symbol ‖•‖L2

D

denotes the discrete L2 norm. We use the following linear traction–separation relationship

t=k/, (23)

where k represents the slopes of the pre-computed traction–separation curves in the initial linear
regime. For an isotropic adhesive, the off-diagonal terms of k are identically zero.

3.4. Arc length procedure

In order to solve a Neumann boundary value problem numerically with softening at the macro-
scale, the arc length procedure is required for the non-linear root finding [17, 18]. We present
such an example in Section 4.3. The macroscopic loading is parameterized with a scalar load
parameter � as

F=F(�)=�F̄, (24)
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where F̄ is a user-defined fixed load. With the microscopic constitutive model being rate dependent,
the macroscopic strain rate (19) is a function of �, which is in turn controlled by the arc length
parameter. The macro-scale residual now reads as

0R(0U,1U,�)=
0 N V

el
A

e=1

{∫
�e

0G
T
r(0U,�)d�+

∫
��t

0MT t̄(�)dA

}

+
0 N C

el
A

e=1

∫
�c

0P
T

t(0U,1U,�)d�, (25)

which needs to be consistently linearized about (0U,1U,�) to obtain a solution through the arc
length update procedure in a manner similar to (15). The arc length constraint is given by

�l=
√

(c�0U ·�0U+b��2), (26)

where c=1−b/q ·q and b∈ [0;1] is a parameter that decides the relative contribution of pure
displacement control and pure force control. The radius of the arc is denoted by �l. For the
problems considered in this work, we use b=1/2. In (26), �0U and �� denote the incremental
displacement and load parameter, respectively, and q=K−1

0 F̄, with K0 being the initial tangent
matrix. To accelerate a simulation using the arc length technique, it is desirable to vary the radius
of the arc �l depending on the convergence information from the previous load step. We use the
following arc length adaptivity criterion to modify the radius of the arc [19]

�ln+1=
√

In

Id
�ln, (27)

where In is the number of iterations required for nth macroscopic loading step and Id is the desired
number of iterations—a user input. It is worthwhile to notice that In is an indicator of the degree
of non-linearity in the macroscopic solution, and, for a linear problem, the solution is achieved in
one iteration. We use Id=14 for the example presented in Section 4.3.

4. ILLUSTRATIVE EXAMPLES

In this section, we present examples to assess the performance of the numerical algorithm presented
for coupled multi-scale cohesive schemes in Section 3. All the examples are solved in a 2D plane
strain setting, although the formulation presented in Section 2 is equally applicable in 3D. We
use the small strain kinematics and linear elastic constitutive behavior to describe the response
of adherents at the macroscopic level in all the examples discussed in this paper. At the lower
level, we use a small-strain irreversible damage model to describe the failure in the heterogeneous
adhesive layer, which is described in Appendix A. We first present a simple adhesive patch test to
elaborate on the numerical characteristics of the coupled scheme. We further solve a mode I DCB
example having steel adherents joined by a heterogeneous adhesive layer. Finally, we present a
mode II bending example with steel adherents joined by a heterogeneous adhesive layer. For all
the examples, the numerical tolerance in the nested iterative scheme (see Tables I and II) at both
micro- and macro-scale is chosen as 1×10−8.
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4.1. Adhesive patch test

An adhesive patch test is devised to assess the numerical characteristics of the coupled algorithm.
It consists of two steel adherents joined together by a heterogeneous adhesive layer. The composite
block of material is fixed at the bottom and is on roller support on the sides as shown in Figure 3.
A uniform mode I displacement loading is applied at the top edge of the block. The patch test is
devised in such a manner that a homogeneous state of deformation is obtained at all the cohesive
Gauss points, which eliminates the effect of the gradient in the macroscopic displacement jump
introduced in problems with a non-homogeneous state of deformation. Hence, it would suffice
to perform the micro-scale simulation only at one of the Gauss points and use the same traction
and tangents for all the macroscopic cohesive Gauss points from a computational perspective.
Further, the patch test limits the effect of the boundary conditions of the microscopic unit cell on
the macroscopic solution. Furthermore, the patch test is simple enough to compare the multi-scale
solution with a DNS of the same problem solved at a single scale. We use constant strain three-node
triangles as volumetric elements, whereas the adhesive layer is modeled using 4-node cohesive
elements with zero thickness in the undeformed configuration. The following geometry parameters
are chosen: h=2mm, W =2.4mm, lc=0.2mm, w=0.4mm. The finite element discretization used
at the micro-scale is also shown in Figure 3. The top edge is loaded at a displacement loading rate of
�̇=0.04mm/s. A 10-particle adhesive cell with Vf=10.05% is chosen as the micro-scale domain
(Figure 3). The macroscopic material properties are chosen as Esteel=200GPa, 	steel=0.34; the
micro-scale material properties are given in Table IV. For this example, we present the following
results in that order: (i) temporal convergence, (ii) spatial convergence, (iii) comparison with direct
numerical simulation, and (iv) convergence properties of the nested iterative scheme.

The macroscopic force–displacement curves for three different constant time step values (�T =
0.00625s,�T =0.00312s,�T =0.00156s) are shown in Figure 4(a). For this simple example, the
adaptive time stepping is switched off to show that the loading rates are accurately transferred
from the macro- to the micro-scale. The curves for the two smaller values of time step coincide

lc

w

Adherent # 1
steel

Adherent # 2
steel

Displacement loading

h

h

Adhesive layer

W

Figure 3. The geometry and loading conditions (left) and the micro-structure and corresponding micro-scale
finite element discretization (right) for adhesive patch test. Note the finite element mesh refinement between

particles that are in proximity.
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Table IV. Material properties at the micro-scale used to solve all the example problems.

E (GPa) 	 Yin (J/m3) p1 p2 
 (1/s)

Matrix 2.4 0.34 0.62 2.5 1.9 19.0
Inclusion 0.24 0.34 0.32 2.5 1.2 19.0

0 0.005 0.01 0.015 0.02 0.025
0

20

40

60

80

100

120

140

160

180

δ [mm]

P 
[N

]

Δ T = 0.00625 s

Δ T = 0.003125 s

Δ T = 0.00156 s

0 0.005 0.01 0.015 0.02 0.025 0.03
0

10

20

30

40

50

60

70

80

φ2 [mm]

t 2
 [

M
Pa

]

Δ T=0.00625 s

Δ T=0.00312 s

Δ T=0.00156 s

B

A

C

6 6.2 6.4 6.6

71.5

72

72.5

73

φ2 [mm]

t 2 
[M

Pa
]

Figure 4. Macroscopic force–displacement curves for different values of time steps while maintaining
the strain rate at which the adhesive layer is loaded constant at 0.04s−1 (top). The macro-scale trac-
tion–separation law, obtained from microscopic simulations, is constructed in an incremental manner
(bottom). Points A, B, C denote the states corresponding to the damage patterns depicted in Figure 5
on the traction–separation curve. The inset of the bottom picture shows a zoom-in near the peak of the

macroscopic cohesive law and illustrates the incremental nature of the cohesive law.
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Figure 5. Damage evolution with increasing loading for the adhesive patch test corresponding
to points A, B, C in Figure 4(b). Owing to homogeneous macroscopic loading, all the cohesive

Gauss points behave in an identical fashion.

within a given numerical tolerance confirming the time-convergence of the numerical scheme.
The macroscopic traction–separation law is constructed in an incremental fashion as described
previously in Section 3.2 and is depicted in the inset of Figure 4(b). As the time step value
is reduced, a converged macroscopic traction–separation law is obtained. This confirms that the
rate-dependent integration algorithm is independent of the time step increment. The evolution of
the damage parameter (defined in Appendix A) at the micro-scale is shown in Figure 5. As the
loading continues, several micro-cracks form at the equators of the soft heterogeneities and finally
coalesce together to form a dominant crack that indicates failure of the microscopic cell and the
corresponding macroscopic Gauss point. Owing to a homogeneous macroscopic loading state at
all the cohesive Gauss points, all the cells behave in an identical fashion.

The softening at the micro-scale renders the governing equations non-elliptic and introduces
a potential mesh bias in the solution. The mesh bias is eliminated by introducing a numerical
damping term through a viscous regularization technique (see Appendix A). The micro-scale
spatial discretization is refined to make sure that a mesh independent solution is obtained. The
macro-scale force–displacement curve and the corresponding macroscopic cohesive law are shown
in Figures 6(a, b). We see that a spatially converged solution has been obtained.

Further, we compare the multi-scale simulation with a DNS (Figure 7). DNS is performed by
solving the same boundary value problem at a single scale using the finite element method, but the
adhesive layer is discretized completely instead of collapsing it to a line of cohesive elements. We
place six replicas of the same unit cell used in the multi-scale simulation to model the adhesive
layer. The adherents are modeled using the mixed enhanced strain elements proposed by Kasper
and Taylor [20]. It has been mathematically proven, in a linear setting, that multi-scale asymptotic
methods converge weakly to a single scale (DNS) solution [1, 2]. As our patch test limits the
deformation state, the multi-scale and DNS solutions numerically coincide in the hardening and
softening regime with only a small deviation around the limit point, showing a good verification
of the multi-scale cohesive scheme with the conventional finite element approach.

Finally, we comment on the convergence properties of the nested iterative scheme. The use of a
consistent tangent operator at the microscopic level yields the optimal quadratic convergence rate
at the lower scale, and hence, is not reported here. The reduction in the macroscopic residual as a
function of macroscopic number of iterations is shown in Figure 8 for �T =0.00625s case. Each
line in Figure 8 represents the reduction in residual for a given macroscopic loading step. The
convergence properties, namely, the order p and a finite constant c, are computed for the sequence
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Figure 6. Macro-scale force–displacement curves for two different micro-scale discretizations (top) and the
corresponding macroscopic traction–separation law (bottom). A spatially converged solution is obtained.

Note the incremental nature of the micro-scale solution as depicted in the inset of the bottom figure.

of residuals at (n+1)th loading step {0R i
n+1|i�1} by employing

|0R i+1
n+1|�c|0R i

n+1|p, (28)

where i+1 is the current iteration number. A linear order of convergence is obtained at the
macroscopic scale for the nested iterative scheme. However, we emphasize the fact that even for a
linear order of convergence, a small value of the constant c ensures rapid convergence properties.
For two arbitrarily chosen macroscopic loading steps, we provide the reduction in the macroscopic
residual ratio in Table V. The finite constant c in (28) for the two macroscopic loading steps
considered here is 1.8×10−3 and 2.3×10−6, respectively.
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Figure 7. Macroscopic force–displacement curves obtained with the
multi-scale cohesive approach and DNS.
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Figure 8. Evolution of the normalized macroscopic residual showing the linear convergence of the nested
Newton–Raphson iterative scheme at the macro-scale for �T =0.00625s.

4.2. Mode I failure of DCB

We now turn our attention to the multi-scale modeling of mode I failure of a DCB specimen
under displacement control. The specimen consists of two steel adherents joined together by a
heterogeneous adhesive layer with the geometry and loading conditions depicted in Figure 9. The
adhesive layer is modeled by collapsing it to a single line of macroscopic cohesive elements. The
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Table V. Reduction in the macroscopic residual for two arbitrarily chosen
loading steps. The symbol 0R is defined in Table II.

Step no. Iteration no. 0R

32 1 0.4858
2 6.19E-004
3 1.13E-004
4 2.09E-009

50 1 0.4952
2 1.15E-006
3 2.97E-012

lc H

H

H

Adhesive layer collapsed to a line of cohesive elements
P

Steel adherent

lc/2

Steel adherent

δ

2δ

beam c/s

w

Figure 9. DCB specimen geometry and loading conditions. At each macro-scale Gauss
point, we use a 10-particle microscopic RVE.

traction–separation relationship at an integration point of the macroscopic cohesive elements is
obtained by performing a micro-scale simulation. We use the same unit cell and finite element
discretization at the micro-scale as in the adhesive patch test (lc=0.2mm,w=0.4mm). The adher-
ents and adhesive layer are assumed to have the same material properties as in Section 4.1. The
length of the beam is 40mm with the initial crack length of 4mm. In order to capture the bending
response accurately, the adherents are modeled using quadrilateral mixed-enhanced strain elements.
The cross-section of each of the two arms of the DCB specimen is heterogeneous, which needs to
be taken into account when computing the location of the neutral axis and moment of inertia while
deriving the closed-form solution. The analytical load-deflection solution in the linear regime and
in the failure regime is presented in Appendix C. A stable crack propagation is obtained under the
displacement control conditions.

It is important to estimate the size of the cohesive zone Lcoh to determine the size of the cohesive
elements at the macro-scale. The estimate provided by Rice [21] for the length of the cohesive zone
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Figure 10. Comparison of the multi-scale and analytical macroscopic force–displacement curves.

is only valid for the case of a homogeneous infinite body, which is inapplicable to the problem
at hand because of its heterogeneity and finite size. Hence, we resort to a numerical technique to
obtain an estimate for Lcoh and compute the cohesive zone size using phenomenological cohesive
elements. The size of the cohesive zone for the chosen material properties is approximately 3.1 mm.
Thus, we consider three cohesive element sizes at the macroscopic level, namely, 2, 1, and 0.5 mm,
and check the spatial convergence of the multi-scale solution. The macro-scale force–displacement
curve for DCB specimen is depicted in Figure 10. We see that for the two smaller element sizes
the macro-scale solution is spatially converged, whereas for hmacro=2mm the solution starts to
deviate.

To understand the crack propagation (downward) portion of the force-displacement curve, we
follow in Figure 11 the strain rate history at two macroscopic Gauss points (the second Gauss
point of the first and second cohesive elements in front of the crack tip, henceforth denoted as
Locations A and B, respectively). The two Gauss points approximately follow a similar strain
rate history separated by a time lag, which is governed by the location of the respective points.
The strain rates are initially low and approximately remain constant followed by a linear increase
as the failure commences, which continues until complete failure occurs. The linear increase in
the strain rate indicates that the crack is propagating at a constant speed. Moreover, the history
indicates that the strain rate during failure does not remain constant and a range of strain rate values
should be considered for obtaining the material fracture toughness value GIc that enters into the
analytical solution (C1) (see Appendix C). The rate dependence of the fracture toughness arises
from the use of a viscous damage model at the micro-scale. The linear elastic fracture mechanics
(LEFM) solution cannot capture this variation of strain rate at each material point. For plotting
the analytical solution, we obtain the mode I fracture toughness values GIc by performing an
uncoupled stand-alone microscopic simulation at two macroscopic strain rate values, 0ė22=0.1s−1

and 0ė22=0.5s−1 that are representative of the average strain rates experienced by these micro-
structures before and during the failure (Figure 11). It is also worth mentioning that the Gauss
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0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 [mm]

Location A

Location B

Figure 11. Macro-scale strain rate 0ė22 at two cohesive Gauss points located in the path of the crack. Both
Gauss points follow the same strain rate history separated by a time lag.

points further ahead of the crack tip experience relatively lower values of strain rates till they are
approached by the propagating crack. The analytical solutions corresponding to these two strain
rates are presented in Figure 10 and the multi-scale solution lies between these two cases.

Figure 12 shows the damage evolution at the two integration points at different macroscopic
loading steps. The presence of heterogeneities leads to damage nucleation at the equator of the
inclusions. These micro-cracks propagate through the soft inclusions coalescing into a dominant
crack passing all across the unit cell, which indicates the complete failure of the corresponding
macroscopic Gauss point. All the cohesive Gauss points fail under mode I and approximately
follow a similar damage pattern evolution as the DCB specimen is further loaded.

In the adhesive patch test presented in Section 4.1, the geometry and loading conditions were
chosen to render a minimal effect of the semi-periodic boundary conditions of the adhesive micro-
structure and of the gradient of the macroscopic displacement jump on the comparison between
the multi-scale and DNS. In the case of DCB, the periodicity assumption and the constant gradient
jump state are not satisfied very near to the crack (notch) tip. To understand the effect of these
phenomena in front of the crack tip and of the weak convergence of the multi-scale solution to
a single scale solution in general, we present a comparison of the multi-scale solution with the
DNS. For this comparison, the length of the beam is chosen as 20mm to limit the number of
degrees of freedom in the DNS. The deformed finite element mesh for the DNS and macroscopic
mesh for multi-scale scheme are shown in Figure 13. The magnified view near the crack tip
shows details of the finite element discretization for DNS (∼95000 degrees of freedom). We use
quadrilateral mixed-enhanced strain elements to model the adherents, whereas the bonding layer
is modeled by placing replicas of the adhesive micro-structure discretized with constant strain
triangles. We have checked the spatial convergence of the finite element solution. The comparison
of force-displacement curves for DNS and multi-scale cohesive scheme is shown in Figure 14. The
multi-scale solution is presented for two macroscopic cohesive element sizes, namely, hmacro=
0.8 and 0.5 mm to confirm the spatial convergence of the multi-scale solution. For the former
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Figure 12. Micro-scale damage evolution for two points located in the path of the crack.

element size, the macroscopic discretization of the multi-scale solution contains only 50 mixed-
enhanced elements and 25 cohesive elements used to model the adherents and adhesive layer,
respectively (Figure 13). The multi-scale and DNS solutions show a good comparison except for
minor differences which we attribute to the weak convergence of the multi-scale method to DNS
with non-periodicity of the solution and gradient effects near the notch tip playing an important role.

To conclude this example, we investigate the impact of the adaptive multi-scale cohesive scheme
described in Section 3.3. We compare the variation in the macroscopic force–displacement obtained
by using the multi-scale cohesive scheme and the adaptive multi-scale scheme in Figure 15 for
hmacro=1mm mesh size. The full multi-scale solution involves 36 cohesive elements each with 3
Gauss points (total 108 Gauss points). Each Gauss point is assigned a unit cell and the microscopic
solution involves a non-linear solution process. For the adaptive scheme, we use three values of
the adaptivity parameter � (see Equation (22)), 0.4, 0.3, and 0.0, in order to switch from a pre-
computed linear solution to a complete multi-scale solution. The computational effort for different
values of adaptivity parameter � is listed in Table VI. As expected, when �=0.0, we recover the
multi-scale solution, whereas a higher value of � can significantly reduce the computational effort,
although at the expense of the solution accuracy.
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Figure 13. Deformed mesh and damage pattern for DNS (top and center) and the macroscopic deformed
mesh for the multi-scale cohesive solution (bottom).

4.3. Mode II failure

The last example involves the mode II failure of a beam using the geometry proposed by Reeder and
Crews [22] as shown in Figure 16. Again, as for the DCB example, two steel adherents are joined
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Figure 14. Comparison of the multi-scale and DNS force–displacement curves. For the sake of this problem
the beam length is chosen as 20 mm.
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Figure 15. Macroscopic force–displacement curve for the DCB specimen showing the effect of the
adaptivity parameter � entering (22). The case �=0 corresponds to the complete multi-scale simulation

in which a subscale unit cell is assigned to each macroscopic Gauss point.

by an adhesive layer with the material properties listed in Section 4.1. The weak bonding layer is
collapsed to a line of cohesive elements. In this problem, we use a simpler micro-structure with four
particles of diameter 50.6micron representing a 10.05% volume fraction of a 400×200microns
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Table VI. A measure of computational effort for different values of the adaptivity parameter � at
�≈0.038mm. The total number of cohesive Gauss points in the macroscopic mesh is 108.

� No. of ‘active’ cohesive Gauss points Ratio (no. of ‘active’ points/total no. of points)

0.4 16 0.15
0.3 18 0.17
0.0 108 1.00

Figure 16. Specimen geometry and loading conditions for mode II bending problem.

unit cell. The arc length procedure is used to solve the macroscopic problem. We use L=50mm,
a0=15mm and the height of each beam is chosen as 3 mm.

The macro-scale force–displacement curve obtained using the multi-scale cohesive approach is
compared to the analytical solution in Figure 17. The three different branches of the analytical
solution, namely, the initial linear part (a=a0), the downward portion (a<L), and the final rising
portion (a>L), are provided in Appendix D. The latter two parts of the analytical solution are
obtained by using GIIc=1727J/m2. The fracture toughness value is obtained by performing a
micro-scale simulation at a strain rate value 0ė12=1s−1, which has been selected by monitoring
the strain rates in the multi-scale simulation. As in the DCB example, one could plot a range of
analytical solutions obtained by using different values of GIIc at different strain rates, but for the
sake of simplicity, we have chosen only one representative value of the strain rate from the range
of strain rate values experienced by all Gauss points. The initial slope of the numerical solution
is lower than the analytical solution due to the presence of the cohesive elements in the mesh.
The third branch of the analytical solution (a>L) is parallel to the final part of the numerical
solution. We again emphasize the fact that the multi-scale approach can capture the variations in
the strain rate at different locations in front of the crack tip, which is not accounted for in the
analytical solution. The marker locations on the numerical solution are an indication of the size
of an arc length chosen in a given macroscopic loading step. In the initial rising part, the adaptive
load stepping increases the arc length, which is reduced to a small value in the downward portion
of the curve, followed by a gradual increase in the final rising part of the curve.

The micro-scale damage evolution and the macroscopic tangential traction–separation laws for
two points along the crack path are shown in Figure 18. The cohesive Gauss point at location A,
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Figure 17. Macroscopic force–displacement curve for the mode II example. � is the deflection at the
center of the beam in this case.

being closer to the initial crack tip, experiences higher strain rates and fails earlier than the cohesive
Gauss point at location B. As expected, the unit cells are observed to fail in shear. The semi-
periodicity assumed in the multi-scale cohesive formulation is more evident for the mode II bending
example. Once again, the particles being softer, the damage passes through the heterogeneities.

5. CONCLUSIONS

We have presented the formulation and implementation of a fully coupled multi-scale cohesive
scheme for the simulation of failures of structures bonded with heterogeneous adhesives. The
emphasis is placed on modeling of the failure simultaneously at macro- and micro-scales through a
computationally attractive nested scheme linking the macro- and microscopic finite element models.
Mode-mixity can be naturally captured by our multi-scale scheme through a macro–micro load
coupling. The multi-scale scheme with an embedded rate-dependent constitutive model effectively
captures the effect of disparate loading rates at each macroscopic cohesive Gauss point. The
loading rates are conceivably high in front of the crack tip and reduce as one moves away from the
crack tip. Such effects cannot be easily accounted for in the LEFM analytical solution and justify
the necessity of the multi-scale scheme. We note that in this work, we have limited ourselves to
two levels of the multi-scale strategy, although the formulation and computational implementation
presented are equally extensible to more levels with appropriate modifications. We have proposed
an adhesive patch test to assess the numerical characteristics of the scheme, including the spatial
and temporal convergence. The multi-scale cohesive solution has been verified by comparing it
with a direct numerical simulation performed at a single scale. The order of convergence at both
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Figure 18. Micro-scale damage evolution (top) and macroscopic tangential traction–separation laws
(bottom) at locations A and B. The damage patterns show the semi-periodicity of the unit cell and the

traction–separation law confirms that each Gauss point experiences a different strain rate.

scales is presented. To reduce the computational effort in the multi-scale simulations, we have
proposed a spatial adaptivity criterion, which relies on the adaptive introduction and extraction of
an adhesive unit cell in the path of the crack. The multi-scale solution is compared to the analytical
solution for the mode I (DCB) and mode II failure problems.
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APPENDIX A: IRREVERSIBLE DAMAGE MODEL

The damage model employs irreversible thermodynamics and the internal state variables
theory [23]. To introduce damage, we consider the free energy potential given by

�(e,�)= (1−�)�0(e), (A1)

with

�0(e)= 1
2 e :D :e, (A2)

where �0(e) represents the total potential energy function of an undamaged material, � denotes
the isotropic damage parameter, and D is the elastic stiffness of micro-constituents.

The onset of damage is defined based on the concept of a damage surface. The state of damage
in the material is governed by

g(Y,�t )=G(Y )−�t�0, t ∈R+, (A3)

where Y is the thermodynamic force or damage energy release rate, whereas �t denotes the softening
parameter (internal state variable) usually set as �t=0=0. The function G(Y ) that characterizes the
damage process consists of a three-parameter Weibull distribution and is given by

G(Y )=1−exp

[
−
(

Y−Yin

p1Yin

)p2
]
, (A4)

where Yin denotes the initial threshold (energy barrier), and p1 and p2 are non-dimensional scale
and shape parameters, respectively.

The damage process is derived in terms of the following irreversible, dissipative evolution
equations

�̇= �̇
�g

�Y
= �̇H, H= �G(Y )

�Y
, (A5)

where �̇ is the damage consistency parameter. In addition, we define �̇t= �̇H and the parameter
�̇ is determined from the consistency condition ġ=0. It should be noted that the damage model
leads to the loss of the strong material ellipticity and the associated numerical computations tend
to exhibit mesh bias. To address this issue, we adopt the viscous regularization approach proposed
by Simo and Ju [24]. The evolution equations for �̇ and �̇t that govern the visco-damage behavior
are obtained by replacing the damage consistency parameter �̇ as

�̇= �̇H→ �̇=
g and �̇t= �̇H→ �̇t=
g, (A6)

where 
 denotes the damage viscosity coefficient.
The algorithmic form of the constitutive update using an implicit backward Euler scheme is

given below

�n+1 =�n+ �t


1+�t

[G(Ȳn+1)−�n], (A7)

�n+1 =
�n+�t
G(Ȳn+1)

1+�t

. (A8)
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APPENDIX B: COMPUTATION OF TANGENT MATRIX

The micro-scale tangent operator is obtained by differentiating the corresponding residual (14) as
follows:

�1R

�1U
=
∫

�e

[
−1GTD(1U)(0e+1e)⊗ ��

�1U
+1 GTL1G

]
d�, (B1)

where

��

�1U
= ��

�1e

�1e

�1U
, (B2)

and one can arrive at the expression for ��/�1
e by differentiating the algorithmic form of the

constitutive update (A7).
The computation of the macro-scale tangent operator is quite cumbersome and the contribution

from the micro-scale must be considered. By differentiating the macro-scale residual (13) with
respect to the macroscopic displacement, we arrive at

�0R

�0U
=
∫

�e

0G
T �0r

�0U
d�+

∫
�e

0P
T � t

�0U
d�, (B3)

whereas linearization with respect to the micro-scale displacement yields

�0R

�1U
=
∫

�e

0P
T � t

�1U
d�. (B4)

The expressions for �t/�0U and �t/�1U are obtained by differentiating the macroscopic tractions
and are computed by assembling the contribution of each micro-scale element and averaging
them over the volume of the unit cell. In order to complete the definition of the macro-scale
tangent matrix K in (18), we finally need to linearize the microscopic residual with respect to the
macro-scale displacement,

�1R

�0U
=
∫

�e

1G
T

L(0e+1e)⊗ ��

�0U
d�. (B5)

The expression for ��/�0U is obtained in a fashion similar to (B2).

APPENDIX C: DCB ANALYTICAL SOLUTION

The fracture (i.e. monotonically decreasing) part of the analytical solution reads as

P=
√

1

3�
(BG I c)3/4(EI)1/4, (C1)

where GIc is the critical mode I energy release rate, B is the breadth of the specimen, and I is the
second moment of area.
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APPENDIX D: MODE II BENDING ANALYTICAL SOLUTION

In Figure 16, for l=0, the initial linear analytical part (denoted ‘linear analytical’ in Figure 17) is
given by

�= P(2L3+3a3
0)

96E I
. (D1)

The force–displacement relationship for the unloading line (denoted ‘a<L’ in Figure 17) is given
by

�= P

96E I

[
2L3+ (64GIIc B E I )3/2

√
3P3

]
, (D2)

where GIIc is the mode II critical fracture toughness. The equivalent relationship for the line
denoted by ‘a>L’ in Figure 17 reads as

�= P

24E I

[
2L3− (64GIIc B E I )3/2

4
√

3P3

]
. (D3)

For more information on analytical solutions, see [25].
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