
Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

Journal of the Mechanics and Physics of Solids 59 (2011) 1838–1857
0022-50

doi:10.1

� Cor

E-m
1 Th
journal homepage: www.elsevier.com/locate/jmps
Computing overall elastic constants of polydisperse particulate
composites from microtomographic data
Hyunsun Lee b,1, Andrew S. Gillman a, Karel Matouš a,�
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In this paper, we use the well-known Hashin–Shtrikman–Willis variational principle to

obtain the overall mechanical properties of heterogeneous polydisperse particulate

composites. The emphasis is placed on the efficient numerical integration of complex

three-dimensional integrals and on aspects of the anisotropic material response of real

tomographically characterized packs. For this purpose, we numerically calculate the

complete statistics of real packs, which are numerically or tomographically generated.

We use the parallel adaptive sparse Smolyak integration method with hierarchical basis

to integrate complex singular integrals containing the product of probability functions

and the second derivative of Green’s function. Selected examples illustrate both the

numerical and physical facets of our work. First, we show the reduction of integral

points for integration in spherical coordinates. Then, we comment on the parallel

scalability of our method and on the numerical accuracy associated with the integration

of a singular function. Next, we validate the solver against the experimental data and

verify the results by comparing it to a closed-form expression. To investigate the ability

of our scheme to capture the anisotropic nature of packs, we study a lattice type system.

Finally, we report on the elastic constants computed for the modeled anisotropic

particulate system that is tomographically characterized.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

How to compute the effective properties of heterogeneous materials has been a long standing quest, and many
multiscale techniques that can link physical phenomena across various scales have been proposed over past several
decades to fulfill it. Among those, the seminal work of Hashin and Shtrikman (1962), Willis (1977), Bensoussan et al.
(1978), Hill (1985), Torquato (1997) and Arns et al. (2003) deserve attention, but many others contributed to this effort
also (Castaneda, 1998; Christensen and Lo, 1979; Dvorak and Srinivas, 1999; Fullwood et al., 2008; Ranganathan and
Ostoja-Starzewski, 2008; Šejnoha and Zeman, 2002; Walpole, 1969).

Recently, imaging techniques that are common in medical practice have become very popular in materials science as
well. Three-dimensional microtomography (micro-CT) has especially led to vast expansion of statistical modeling
techniques that investigate the morphology of widely used material systems and its impact on the overall mechanical
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Fig. 1. Typical members of the micro-CT based ensemble. (a) Heterogeneous propellant. (b) Synthetic foam. (c) Glass beads.
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and transport properties. We aim to work on solid propellants (Gallier and Hiernard, 2008), glass beads (Lee et al., 2009),
paper (Rolland du Roscoat et al., 2007), Fontainebleau sandstone (Arns et al., 2002) and engineered cementitious
composites (Bouvard et al., 2007), just to name a few. An example of the complicated microstructures obtained from
micro-CT can be seen in Fig. 1.

The importance of the higher-order statistics and their influence on the overall material behavior start with early work
of Bernal (1959) who investigated the geometrical structure of liquids using the radial distribution function. In condensed
matter physics, the work of Willis (1977) is especially important since it provides a direct link between statistics and
mechanical properties (Hashin–Shtrikman–Willis variational principle). Third-order models of nonlinear composites have
also been proposed (Castaneda, 1998; Talbot and Willis, 1985; Willis, 1986). The assessment of mechanical and transport
properties by the Hashin–Shtrikman–Willis approach relies on the computation of certain mechanical concentration
tensors, which are functions of material morphology and depend on the information transfer through it. We now note that
the integration of the mechanical concentration tensors, which are the basic building blocks of this technique, is strenuous.
Moreover, obtaining detailed statistical information in three-dimensions of real polydisperse systems is laborious.

For the third-order model, the mechanical tensors are computed through double three-dimensional integration of
complex integrands, which are products of the second derivative of Green’s function, C, and the third-order probability
functions Srsqðx,x0,x00Þ. For the second-order model, complexity still remains as C interacts with the second-order
probability functions Srsðx,x0Þ in three-dimensions. Therefore, in many previous works, specific assumptions about the
shape and the orientation of inclusions have been considered (Willis, 1977), and most of the work has been done in
two-dimensions (Šejnoha and Zeman, 2002) using artificial or statistically isotropic probability functions (Castaneda, 1998;
Drugan, 2003; Torquato, 1987). Some nonlocal Hashin–Shtrikman–Willis models are limited to only two-phase composites
(Drugan, 2003). The attempt has been also made to integrate in the Fourier domain (Drugan, 2003; Drugan and Willis, 1996)
and to assess the probability functions on a pixel/voxel basis (Fullwood et al., 2008; Šejnoha and Zeman, 2002).
Unfortunately, voxel-based representation from micro-CT data requires very large data sets, our data consist of � 66
million voxels, as has been pointed out in our previous work (Lee et al., 2009). Moreover, the discrete fast Fourier transform
is not easily parallelizable (Matteo and Johnson, 2005). Many of these issues, especially related to difficulties in obtaining
real probability functions and linking them with statistical micromechanics approaches, are discussed in the work of Willis
(1986) and Torquato (1987).

Therefore, one would like to have the ability to compute properties of polydisperse composites directly without limits
on the complexity of the probability spectrum and multidimensionality, and with statistics that are directly and accurately
computed from micro-CT scans. This is a focus of this paper. In this work, we consider systems with inclusions of arbitrary
size and orientation and focus on efficient numerical integration with realistic statistics, which allows us to accurately
capture the underlying three-dimensional anisotropic nature of particulate polydisperse systems. We employ an adaptive
sparse Smolyak integration scheme with hierarchical basis and exploit the geometrical characteristics of our integrand, i.e.,
we use spherical coordinates to define the basis functions and the integration. The integration scheme is further
parallelized. We resolve the probability spectrum accurately without assumptions on its structure and with very small
errors as has been shown in Lee et al. (2009). The combination of these advances allows us to compute the mechanical
properties with higher fidelity directly from micro-CT data. Material anisotropy due to the microstructure of a composite is
accurately captured. Several examples are selected to demonstrate both the computational and physical facets of our work.
First, we summarize well-established concepts of statistical descriptors and introduce, for the clarity of presentation, the
Hashin–Shtrikman–Willis variational principle (Section 2). Next, we introduce a sparse Smolyak integration scheme to
evaluate complex mechanical concentration tensors (Section 3). Finally, we verify and validate our solver and demonstrate
its capability to assess mechanical properties of systems that are characterized by micro-CT (Section 4). The conclusions
are drawn in Section 5.
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2. Theoretical model

We use the well-known Hashin–Shtrikman variational principle (Hashin and Shtrikman, 1962) in the modified form
presented by Willis (1977) to compute the overall elastic constants of a heterogeneous composite. This variational
principle was later extended by Šejnoha and Zeman (2002), and Prochazka and Šejnoha (2004) by introducing eigenstrains
(stress free strains). It is known that the effective properties of a heterogeneous material do not depend only on the
properties of each phase, but also on the interactions between the material phases. In a statistical sense, both the volume
fraction of each phase and various correlation functions between the phases are fundamental in determining the material
properties (Talbot and Willis, 1985; Torquato, 2002). In this section, we introduce the probability functions and governing
equations for completeness of the presentation.
2.1. Review of basic statistical descriptors

To describe the probability functions, we consider a phase indicator function at a position x in a sample a of an
ensemble space E:

wrðx;aÞ ¼
1 if x in phase r,

0 otherwise:

(
ð1Þ

The ensemble average is given by

wrðxÞ ¼

Z
E
wrðx;aÞpðaÞ da, ð2Þ

where pðaÞ is a probability density function of a in E. The n-point probability function, Sr1r2���rn ðx1,x2, . . . ,xnÞ, is defined as

Srs���qðx1,x2, . . . ,xnÞ ¼ wrðx1Þwsðx2Þ � � �wqðxnÞ, ð3Þ

and it represents the probability of finding phases r,s, . . . ,q at points x1,x2, . . . ,xn, simultaneously. In our work, we use the
second-order model that includes one- and two-point probability functions.

In general, the probability functions for a heterogeneous material are spatially complex. A common assumption is that
of statistical homogeneity, where the probability functions are translationally invariant. For statistical homogeneous
materials, the one-point probability function is a constant value, SrðxÞ ¼ c, and the two-point function simplifies to
Srsðx,x0Þ ¼ Srsðx�x0Þ. When considering statistically homogeneous systems, it is meaningful to define volume averages.
Under the ergodic assumption for homogeneous systems, ensemble averaging is equivalent to volume averaging in the
infinite volume limit as described by the following equation

Srs���qðx1,x2, . . . ,xnÞ ¼ lim
V-1

1

V

Z
V
wrðx1�dÞwsðx2�dÞ � � �wqðxn�dÞ dV

� �
, ð4Þ

where d is the translation vector. With these simplifications, the one-point probability function is reduced to the volume
fraction SrðxÞ ¼ cr of phase r. An additional simplification is that of statistical isotropy, where the probability functions are
rotationally invariant. The two-point probability functions of a statistically homogeneous and isotropic system are defined
as Srsðx,x0Þ ¼ Srsðjx�x0jÞ, where the function only depends on the distance between two points. In addition, we observe the
limit cases in the pointwise sense of the two-point isotropic probability functions which can be expressed as

Srsðjx�x0jÞ-
crdrs if jx�x0j-0,

crcs if jx�x0j-1,

(
ð5Þ

where drs is the Kronecker delta. More information on statistical descriptors can be found in books by Torquato (2002) and
Beran (1968). In this work, we use both complete, Srsðx�x0Þ, and isotropic, Srsðjx�x0jÞ, probability functions to address the
issues of the material anisotropy. Details on how we compute the n-point probability functions from micro-CT data are
given in Lee et al. (2009).
2.2. Governing equations

Let u, r, e and L be the displacement vector, the second-order stress tensor, the second-order strain tensor, and the
fourth-order elasticity tensor, respectively. We start with the local constitutive law of a given constituent at point x in a
representative volume element (RVE) that reads

r¼ Lðe�lÞ, r¼ Leþk, ð6Þ

where l¼�L�1k and k denote eigenstrain and eigenstress, respectively. The eigenstrain field introduced here represents
the stress free strain induced in the system by thermal and/or inelastic effects (e.g., plasticity, decohesion (Matouš, 2003)).
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Fig. 2. Body decomposition with prescribed boundary conditions. Note that û ¼ e0 � x.
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Hashin and Shtrikman (1962), in their seminal work proposed the body decomposition, as shown in Fig. 2, with the
displacement and strain fields split as follows:

u0 ¼ u�u0 in O,

e0 ¼ e�e0 in O,

u0 ¼ 0 on @O, ð7Þ

and introduced the symmetric stress polarization tensor, s, such that

r¼ L0eþs, ð8Þ

where L0 is the stiffness tensor of a homogeneous comparison medium, e0 denotes the strain tensor in a homogeneous
comparison medium, and u0 and u0 represent the homogeneous and fluctuation displacement fields, respectively. The
polarization field captures the heterogeneous and sometimes anisotropic nature of the material.

The objective is to formulate a variational principle describing the behavior of the inhomogeneous and anisotropic
material subjected to known eigenstresses and prescribed boundary displacements (Prochazka and Šejnoha, 2004; Šejnoha
and Zeman, 2002; Willis, 1977). The governing equations of the elliptic boundary value problem are given by

r � ½L0eþs� ¼ 0 in O,

s�½L�L0�e�k¼ 0 in O,

u0 ¼ 0 on @O: ð9Þ

A formulation equivalent to one described by the strong form (9) can be obtained by minimizing a certain extended
functional (Prochazka and Šejnoha, 2004; Šejnoha and Zeman, 2002)

2F ðsÞ ¼
Z
O
ðs�kÞ : ½L�L0�

�1 : ðs�kÞþs :
Z
Ox0

Gðx,x0Þ : ½sðx0Þ�s� dOx0�2s : e0�k : L�1 : k

" #
dO, ð10Þ

where Gðx,x0Þ is the linear operator related to the infinite homogeneous Green’s function and s represents the mean value
of s (Willis, 1977). The product of the Green’s function and the polarization field carries the information about the material
morphology (statistics). For ergodic systems (Eq. (4)), the macroscopic (overall) stress and strain tensors are computed by
volume averaging

r ¼
1

O

Z
O
r dO, e ¼

1

O

Z
O
e dO, ð11Þ

where

e � e0, since

Z
O
e0 dO¼ 0: ð12Þ

Using the formulation highlighted above, the following homogenized macroscopic stress–strain constitutive law can be
derived,

r ¼ L0eþs,

r ¼ Leþk � Lðe�lÞ, ð13Þ

where L denotes the macroscopic homogenized secant modulus and l ¼�L
�1

k is the macroscopic eigenstrain. The
eigenstrains can be used, among other things, to compute the homogenized coefficients of thermal expansion.
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2.3. Discrete Hashin–Shtrikman–Willis variational principle

To find a second-order approximation to the stationary point of (10), Willis adopted a piecewise constant trial
polarization stress

s�ðxÞ ¼ s�ðx;aÞ ¼
Xn

r ¼ 1

srwrðx;aÞ, ð14Þ

where sr is constant over the phase r as depicted in Fig. 3, and n represents the number of phases in the composite. In the
same manner, the eigenstress field can be expressed as

k�ðxÞ ¼ k�ðx;aÞ ¼
Xn

r ¼ 1

krwrðx;aÞ: ð15Þ

We use the ergodicity assumption in our work (Eq. (4)), and thus, we perform the volume averages and omit a hereafter.
After introducing discretization of s� and k� into (10), averaging over the ensemble space E and using the calculus of

variations (dF is the first variation of the functional (10) with respect to s�), we obtain the stationary point of the discrete
energy principle:

dF ðs�Þ ¼ 0, ð16Þ

crðLr�L0Þ
�1srþ

Xn

s ¼ 1

Z
Ox0

Cðx�x0ÞðSrsðx�x0Þ�crcsÞss dOx0 ¼ creþcrðLr�L0Þ
�1kr : ð17Þ

The matrix form of the above system for all polarization stresses can be conveniently written as

Xn

s ¼ 1

Arsss ¼Br , ð18Þ

where the mechanical concentration tensor Ars, which does not depend on x0, states

Ars ¼

Z
Ox0

Cðx�x0ÞðSrsðx�x0Þ�crcsÞ dOx0 þcrðLr�L0Þ
�1drs, ð19Þ

and

Br ¼ creþcrðLr�L0Þ
�1kr : ð20Þ

By solving for sr from (18) and averaging over the phases, we get the overall (mean) polarization stress field as

s ¼
Xn

r

crsr : ð21Þ

Finally, using (13), (19) and (20), we obtain L together with k.
In his original work, Willis (1977) adopted the assumption of statistical isotropy which simplifies

R
Ox0

Cðx�x0Þ
ðSrsðx�x0Þ�crcsÞ dOx0 to P½Srsð0Þ�crcs�, where P is the polarization tensor originally derived by Eshelby (1957) for isotropic L0.
The second form of P presented in Willis (1977) is for the specific case in which a matrix contains aligned ellipsoids. Both cases
assumed no long-range order, where a system is said to possess no long-range order if the events jx�x0j-1 for all positions x
Fig. 3. An example of piecewise constant trial polarization stress field s�ðxÞ for a three-phase composite. The phases r and s are particulate phases and q is

the matrix phase. Note that the vertical direction indicates the constant value of polarization stress.
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and x0 are statistically independent (Torquato, 2002). It can be shown that a similar result for P is obtained when one considers
only the singular part of the C function, such that

GkipjðrÞCGs
kipjðrÞ, ð22Þ

with

Gs
kipjðrÞ ¼

dðrÞ
3m dkpdij�

K

5
ðdkpdijþdkidpjþdkjdpiÞ

� �
, ð23Þ

where r¼ x�x0, and dðrÞ is the Dirac delta function. Here we use the standard indicial notation, and denote m the shear modulus
and K ¼ ð3kþmÞ=ð3kþ4mÞ, where k is the bulk modulus, respectively. A suitable choice for the polarization tensor is to use a
comparison medium, P � P0, where the comparison medium is assumed to be isotropic for this choice of C (Eq. (23)).

In the present paper, we also use the piecewise constant trial polarization stress, sr . However, instead of the singular
approximation, we use the complete form of the C function, which accounts for both short and long-range interactions.
Furthermore, we numerically evaluate the complex mechanical concentration tensor Ars using the real, three-
dimensional, micro-CT based, first- and second-order statistics. The C function, which is related to the second derivative
of the Green’s function, is defined in our work as

GkipjðrÞ ¼Gs
kipjðrÞþG

f
kipjðrÞ, ð24Þ

where

Gf
kipjðrÞ ¼

1

8mp
ð2�KÞdkpdij�KðdpjdkiþdpidkjÞ

jrj3
þ
ð3K�6Þrirjdkpþ3KðrprjdkiþrkrjdpiþrprkdijþrirpdkjþrirkdpjÞ

jrj5
�

15Krirjrkrp

jrj7

� �
:

ð25Þ

In general, the singular part, Cs, represents the localized bonds while the formal part, Cf , accounts for strain variations
within an inclusion from its average value (Fokins and Shermergor, 1969).

We observe that the integration of the mechanical concentration tensor Ars (Eq. (19)), which is a product of the Gamma
function and the second-order probability function, is strenuous especially near the origin due to the singularity of C.
Although it is difficult to predict the behavior of this integrand, it has some spherical character. This characteristic is used
in constructing the numerical integrator. This is described in the following section.

3. Numerical method

To overcome the difficulties with the integration, we use the adaptive sparse-grid Smolyak Integration method with
hierarchical basis, which was recently proposed by Ma and Zabaras (2009) for solution of stochastic differential equations.
We further extend it to spherical coordinates and parallelize it for our particular problem. The adaptivity of the method
reduces the numerical expense that arises due to the complexity of the integrand, and the Smolyak quadrature reduces the
complexity present due to the multivariate nature of equations. Integrating using spherical coordinates is natural for our
predominantly distance-dependent integrand.

In our work, we follow closely the approach of Ma and Zabaras (2009). For the completeness and clarity of presentation,
we describe the fundamentals of an adaptive hierarchical sparse Smolyak method hereafter. A more detailed description
can be found in Bungartz and Griebel (2004); Gerstner and Griebel (1998); Smolyak (1963).

3.1. Numerical integration on an adaptive hierarchical sparse grid

Let us consider a smooth function f : ½0,1�N-R. In one-dimension (N¼1), f can be interpolated as

U iðf Þ ¼
Xmi

j ¼ 1

f ðYi
j Þa

i
j, ð26Þ

where i 2N ðN—set of all positive integers except zero), ai
j 2 Cð½0,1�Þ are the interpolation nodal basis functions, and mi

represents the number of elements of the set Xi of support nodes, Yj
i
:

Xi ¼ fYi
j jY

i
j 2 ½0,1� for j¼ 1,2 . . . ,mig: ð27Þ

As in Ma and Zabaras (2009), we use hat functions for the basis functions

a1
1 ¼ 1,

ai
j ¼

1�ðmi�1ÞjY�Yi
j j if jY�Yi

j jo1=ðmi�1Þ,

0 otherwise,

(
ð28Þ
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Fig. 4. Hierarchical basis functions in one-dimension and interpolation at level 1,2,3. (a) Basis functions. (b) Interpolation.
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for i41 and j¼ 1, . . . ,mi. The support nodes are defined as

mi ¼
1 if i¼ 1,

2i�1
þ1 if i41,

(
ð29Þ

Yi
j ¼

j�1

mi�1
for j¼ 1, . . . ,mi, if mi41,

1=2 for j¼ 1, if mi ¼ 1:

8><
>: ð30Þ

Fig. 4(a) shows the hierarchical implementation of these nodal basis functions. The building blocks of the Smolyak
algorithm for the multivariate case ðN41Þ are tensor product formulae

ðU i1 � � � � � U iN Þðf Þ ¼
Xm1

j1 ¼ 1

� � �
XmN

jN ¼ 1

f ðYi1
j1

, . . . ,YiN
jN
Þðai1

j1
� � � � � aiN

jN
Þ: ð31Þ

Using those, we can construct the N-dimensional multi-linear basis functions

ai
jðYÞ ¼ ai1

j1
� � � � � aiN

jN
¼
YN

k ¼ 1

aik
jk

, ð32Þ

where the multi-index j¼ ðj1, . . . ,jNÞ 2 N
N , and jk, k¼ 1, . . . ,N represents the location of a given support node in the k-th

dimension from Eq. (30). Here we also denote by i the multi-index i¼ ði1, . . . ,iNÞ 2 N
N with jij ¼ i1þ � � � þ iN . Note that ik,

k¼ 1, . . . ,N is the level of the interpolation along the k-th direction.
We build the sparse grid interpolation formula by exploiting the incremental structure of the algorithm

U0 ¼ 0,

Di
¼ U i�U i�1: ð33Þ

The incremental interpolation formula takes advantage of the nested nature of the grid points, Xi 	 Xiþ1, and leads to
formulation of the hierarchical surplus, wj

i
, such that

Di
ðf Þ ¼

X
Yi

j
2Xi

D

ai
jðf ðY

i
j Þ�U i�1ðf ÞðYi

j ÞÞ,

¼
Xmi

D

j ¼ 1

ai
jðf ðY

i
j Þ�U i�1ðf ÞðYi

j Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wi

j

Þ, ð34Þ

where Xi
D ¼ Xi

\Xi�1 and mi
D ¼mi�mi�1 since Xi�1 	 Xi. The second equation in (34) is obtained by consecutively numbering

the elements in Xi
D and denoting the j-th point of Xi

D as Yj
i
. Fig. 4 shows the hierarchical hat functions and the interpolation

in one-dimension including the surplus wj
i
.

For the multivariate case, the sparse interpolant, using the product formula once more, is given by

Aq,Nðf Þ ¼Aq�1,Nðf ÞþDAq,Nðf Þ,
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DAq,Nðf Þ ¼
X
jij ¼ q

ðDi1 � � � � �DiN Þ, ð35Þ

with AN�1,N ¼ 0 and qZN. The Eq. (35) can be expanded as

Aq�1,Nðf Þ ¼
X
jijrq�1

ðDi1 � � � � �DiN Þ,

DAq,Nðf Þ ¼
X
jij ¼ q

X
j2Bi

ðai1
j1
� � � � � aiN

jN
Þðf ðYi1

j1
, . . . ,YiN

jN
Þ�Aq�1,Nðf ÞðY

i1
j1

, . . . ,YiN
jN
Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wi
j

Þ, ð36Þ

where the new multi-index set reads

Bi ¼ fj 2 N
N : Yik

jk
2 Xik

D for jk ¼ 1, . . . ,mik
D, k¼ 1, . . . ,Ng: ð37Þ

The hierarchical surplus, wi
j, represents the difference between the function value at a point in the current level of

integration and the corresponding value at the previous level. For functions with discontinuities or steep gradients, the
magnitude of the surplus grows depending on the strength of the underlying discontinuity. For smooth functions, the
hierarchical surplus goes to zero as the interpolation goes to infinity. Thus, the hierarchical surplus is a natural candidate
for the sparse grid adaptivity and error control.

As in Ma and Zabaras (2009), we perform the adaptation and refinement process at the level of the single hierarchical
basis function (32). This allows us to capture important physical directions of the mechanical concentration tensor (19)
and to resolve the singularity of C. The basic idea is to use the hierarchical surpluses as an error indicator to detect the

smoothness of the solution and refine the hierarchical basis functions ai
j (32) whose magnitude of the surplus satisfies

wi
j Z ê. If this measure is satisfied, we simply add two support nodes for each of the previous integral nodes in each

direction. Note that there is a possibility that the same support nodes have already been added by other points, and thus,
it is critical to keep track of the uniqueness of the set of active points. For N-dimensional space the number of the active

integral nodes, N a
q, is

N a
qr2N 
 OðN a

q�1Þrð2NÞ2 
 OðN a
q�2Þr � � �r ð2NÞq: ð38Þ

The implementation details are given in Ma and Zabaras (2009).

3.2. Spherical coordinate system

We recall that the integrand in (19) is a product of the Gamma function and a two-point probability function. Both
C and Srs have a certain spherical property, i.e., they broadly depend on the distance between two points. Although, the
C function also carries the directional information and Srs is not always fully isotropic. Nevertheless, we adopt the
spherical coordinate system and transform the basis functions, Eq. (32), from Cartesian coordinates ½0,1� 
 ½0,1� 
 ½0,1� to
those in spherical coordinates ½0,R� 
 ½0,p� 
 ½0,2p�. Fig. 5 shows two basis functions in both coordinate systems. Note that
the basis functions are presented in two-dimensions, in the r–y space, for visualization purpose.

To illustrate the advantages of the integration in spherical coordinates, we consider a test example shown in Fig. 6.
The example is a simple integration of a discontinuous density function

R 1
0 r dO, where

r¼
100 rr0:3,

1 r40:3:

�
ð39Þ

The number of integral points and the integral error for each coordinate system are presented in Table 1. Here the error is
calculated as

error ½%� ¼ jIc,s
e �Inj=jI

c,s
e j 
 100, ð40Þ

where Ic,s
e is the exact analytically calculated integral, and In is the numerically evaluated integral, using the sparse grid

method (Section 3.1). The superscript c refers to the function integrated in Cartesian coordinates (Fig. 6(a)), and s refers to
the function integrated in spherical coordinates (Fig. 6(b)). The surplus tolerance used in this example is ê ¼ 0:001.

The reduction of integral points is more apparent when the locations of integral points are plotted (Fig. 7). Since the density
function has a discontinuity at r¼0.3, the integral nodes in the Cartesian coordinate system are clustered near the discontinuity
and on the projection planes that are consequences of the node generation in the x, y and z directions, respectively. However, the
integral nodes in the spherical coordinate system are efficiently organized considering the symmetry of the function.

3.3. Parallel implementation

As we have seen in the previous Section 3.2, the Smolyak integration on the adaptive sparse grid in spherical
coordinates is very efficient for functions with spherical character. Despite the adaptivity and the adequacy of the
numerical method, it is still numerically expensive, especially when high integral levels are required as in the integration
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Fig. 5. Comparison of basis functions in Cartesian and polar coordinate systems. Note that the basis functions are presented in two-dimensions for
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Fig. 6. Density function with discontinuity at r¼0.3 described by Eq. (39) in Cartesian and spherical coordinates. (a) Function integrated in Cartesian

coordinates. (b) Function integrated in spherical coordinates.

Table 1
Comparison between Cartesian and spherical coordinate systems in

integrating the discontinuous density function at the same integral

level 15. Note the small error and fewer number of points for the

spherical integrator.

Coordinates # Integral nodes Error (%)

Cartesian 11,409 5.445

Spherical 1261 0.103
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of a singular function ðCÞ. The most expensive parts of the integration algorithm are the routines used to generate new
support nodes and to test each support node against all previous active integral nodes to determine if the candidate is
active or not. Note that these support nodes are increasing at every hierarchical level as given by Eq. (38) and depicted in
Fig. 8.
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Fig. 8. Integral nodes generation in three-dimensional space. Black nodes are the active nodes. In each new level there are six times more candidate
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Fig. 9. Double parallelization of computations. (a) Assignment of entries of the mechanical tensor. (b) Distribution of the support nodes.
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To optimize the algorithm, we perform the double parallelization depicted schematically in Fig. 9. The first parallel
algorithm splits the entries of the mechanical concentration tensor (19). This parallelization strategy is beneficial for fully
populated mechanical tensor (full anisotropy) and large n-phase systems. The second parallel algorithm distributes the
new integration points across the parallel platform. The second parallelization strategy is useful for all forms of the
stiffness tensor. A simple load balancing algorithm that is based on the estimate of the number of searches is provided to
keep the work of each processor approximately constant. Once the active nodes are identified, the master processor
performs the sorting and removes any duplicate nodes to keep the new active set unique.

The efficacy of the second parallelization strategy, which is the most computationally expensive one, is tested with the
formal part of the Gamma function (25). The complexity of the C function is shown in Fig. 10. Although it has a very
complex structure with a singularity at the origin, the integral of the function is equal to zero (Willis, 1977):Z

ao jxjob
C dO¼ 0, 8a and b, with 0oaob: ð41Þ

Based on this characteristic, we integrate the Gamma function with m¼ 3:15 MPa and k¼ 7:92 MPa from 1:0 to 2:0 mm.
The target level of accuracy of the function approximation is selected to be ê ¼ 0:0001 in this example. Fig. 11(a) shows
convergence of the numerical integral. The parallel efficiency of our method is shown in Fig. 11(b). The speedup is obtained
for a fixed integration level q¼23 with 622,971 number of integral points. Almost 68% parallel efficiency is achieved for
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the current implementation. We attribute this deviation from a perfectly scalable algorithm to several local searches
required to create a unique set of active points. A more sophisticated implementation using a hash table, for example, is
required to improve the parallel performance.

4. Numerical examples

In this section, we present three examples to demonstrate the physical observations that are captured due to new
numerics used in this work. This improved numerical scheme allows us to efficiently capture the anisotropic, three-
dimensional response using real micro-CT generated probability spectrum. The first example is devoted to both model
verification and validation. The second example is focused on a lattice type system in order to demonstrate the anisotropy
and to confirm that proper symmetries typical for lattice structures are obtained. The last example is devoted to
computing properties of particulate systems with the real material statistics that are obtained using microtomography.
Details on micro-CT analysis and evaluation of a probability spectrum have been reported in Lee et al. (2009). We use
isotropic constituents and an orthotropic overall material response in our examples, with six independent material
constants ðEx,Ey,Ez,Gxy,Gxz,GyzÞ. However, our solver is general and can compute overall properties of fully anisotropic
medium with 21 independent constants. All examples are computed on 128 CPUs using only the parallelization II strategy.

4.1. Polydisperse particulate material—model validation

In this section, we focus on model verification and validation. An experimental data set from the work of Smith (1976)
is used for validation. A heterogeneous composite studied in Smith (1976) consists of glass beads embedded in an epoxy
matrix. Thus, the material system is considered to be a two-phase composite, with isotropic particles p and an isotropic
matrix m. The mechanical properties of these particles are, Ep¼76.0 GPa and np ¼ 0:23, whereas those of the matrix are,
Em¼3.0 GPa and nm ¼ 0:4. Perfect bonding between particles and a matrix is assumed in this study.
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The distribution of the particle diameters is not exactly described in Smith (1976), but it is reported that it is in the
range of 1–30 mm. Therefore, we use a normal distribution for the diameter of particles, in this range, and generate
simulated packs using Rocpack, a particle packing software (Maggi et al., 2008). To compare our result with the
experimental data, five different volume fractions (cp) are considered: 0.100, 0.202, 0.302, 0.401, and 0.499. Fig. 12 shows
one packing realization with a volume fraction of cp¼0.499. The corresponding distribution of the particle sizes, for this
pack, is depicted in Fig. 13.

We would like to investigate the effect of the pack statistics on the anisotropy of elastic constants. Thus, we consider
both the complete, Srsðx�x0Þ, and the isotropic, Srsðjx�x0jÞ, probability spectrum. Fig. 14 shows a complete two-point
Fig. 12. Polydisperse pack with cp¼0.499 volume fraction generated by Rocpack. The size of the pack is 241:03 mm
 241:03 mm
 241:03 mm. This pack

consists of 5002 particles.
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probability function, Smm, and the isotropic two-point probability functions computed for the pack depicted in Fig. 12.
The isotropic two-point probability functions are obtained by averaging the complete two-point probability functions over
all possible directions. The maximum standard deviation that represents the variation from the perfect statistical isotropy
is ŝmm ¼ 0:004. The second-order probability functions also provide the characteristic material length scale, i.e., the length
for which two material points become statistically independent. We use the characteristic material length scale to reduce
the size of the integration domain, when we compute the mechanical concentration tensor Ars (Eq. (19)). In this example,
we integrate the domain bounded by the radius of 50 mm, rather than the entire domain since the rest of the domain does
not statistically influence the results. This approach has been confirmed by studying the size of the integration window.

For the perfectly statistically isotropic medium, the integral that appears in (19) leads toZ
Ox0

Cðx�x0ÞðSrsðx�x0Þ�crcsÞ dOx0 ¼ P½Srsð0Þ�crcs�, ð42Þ

where

P ¼

Z
jxjoa

C dO�Cs
8a40, ð43Þ

as pointed out in Willis (1977) and Buryachenko (2007). We take advantage of this fact and assess the error due to our
numerical integration using the characteristic in (41) and (43). Moreover, one can set P0 ¼Cs

0 by substituting m¼ m0 and
k¼ k0 in (23), where m0 and k0 are the shear and bulk moduli of a comparison medium, respectively.

Since the C function is singular at the origin, we do not integrate the singularity exactly and approximate the integral
(42) byZ

Ox0

Cðx�x0ÞðSrsðx�x0Þ�crcsÞ dOx0 �

Z
Ox0 \v

Cðx�x0ÞðSrsðx�x0Þ�crcsÞ dOx0 , ð44Þ

where v is the small volume close to the singularity that we remove. In our examples, this volume v is characterized by the
distance ~e from the origin. Furthermore, we replace the exact integral

R
Ox0
� dOx0 by the numerical integral Iq,Nð�jOx0 \vÞ

using the sparse Smolyak algorithm presented in Section 3.1. Therefore, our numerical accuracy depends on three
parameters, namely the quality of the interpolation ê, the quality of the singular integration ~e and on the convergence of
the integral that is controlled by the integral level q. We will comment on these numerical tolerances hereafter. To better
understand all of the influences discussed above, three models are defined as

singular modelFP0½Srsð0Þ�crcs�,

isotropic modelF

Z
Ox0

C0ðx-x0ÞðSrsðjx-x0jÞ-crcsÞ dOx0 ,

anisotropic modelF

Z
Ox0

C0ðx�x0ÞðSrsðx�x0Þ�crcsÞ dOx0 : ð45Þ

Note that the singular model leads to a closed-form formula for L

L ¼
XN

r ¼ 1

crLr½IþP0ðLr�L0Þ�
�1

XN

s ¼ 1

cs½IþP0ðLs�L0Þ�
�1

( )�1

, ð46Þ

where I is the identity matrix, and P0 is given by Eq. (43). The formula (46) was given in Willis (1977). The singular and
isotropic models are compared for the purpose of verification as these should lead to the same result. This verification is
performed for all examples presented in this work.

To quantify the anisotropic response of the glass-bead composite, we introduce a mean macroscopic Young’s modulus

E
i,a
¼ ðE

i,a

x þE
i,a

y þE
i,a

z Þ=3: ð47Þ

where E
i

denotes the overall modulus from the isotopic model, whereas E
a

represents the mean modulus computed by the
anisotropic model (We assume an orthotropic overall material behavior in our work). For the singular model, all principal
directions are identical, and we simply set E

s
¼ Ex. Fig. 15 shows the comparison of the overall Young’s modulus for the

singular model, statistically isotropic model and the model with fully resolved probability spectrum, anisotropic model,
that leads to a certain degree of anisotropy. Experimental data from Smith (1976) is also included. As expected for this
example, all models coincide due to the high isotropy of the pack. All computations are performed with the matrix m

serving as the comparison medium in this example (lower bound).
The quality of the interpolation is controlled with ê ¼ 0:0005 and the singular integration is attained with ~e ¼ 0:1 mm.

All solutions are stopped when the integral converges within a certain tolerance,

EI ¼ jIq�Iq�1j=jIq�1jrtol1, ð48Þ
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or when the maximum surplus, wi
j, normalized by the maximum amplitude of the function over the integral domain is

within a given tolerance

EM ¼
maxjw

i
j

AqðfmaxÞ�AqðfminÞ
rtol2 at jij ¼ q: ð49Þ

The integration stops, if one of these criteria is smaller than a corresponding threshold for two consecutive levels of the
interpolation/integration. The second stopping criterion is introduced to eliminate the numerical pollution that can
develop for large integral domains. The function values given by (45) oscillate around zero far away from the origin,
because Srsðjx�x0jÞ-crcs as jx�x0j-1. Therefore, large numerical errors can be accumulated even when wi

j approaches
zero for large Ox0 \v. In this first example, we set tol1 ¼ tol2 ¼ 0:005. To quantify the precision, or numerical error, the
variation within the directional components of the mechanical properties is compared. The numerical error of the isotropic
model is defined as

en ¼ ðmaxðE
i

x,E
i

y,E
i

zÞ�minðE
i

x,E
i

y,E
i

zÞÞ=E
i

 100 ½%�: ð50Þ

For the volume fraction equal to 0.499, en ¼ 0:08% and the isotropic model deviates from the singular one by 0.15% (Willis’
model (Eq. (46))). This verifies our model. The elastic modulus calculated from the anisotropic model deviates by 0.27%
from the isotropic approximation. Note again that the standard deviation from perfect statistical isotropy was
ŝmm ¼ 0:004. Therefore, it is not surprising that the anisotropic model does not deviate much from the isotropic one.
This is not the case in general as will be shown hereafter.

4.2. Lattice pack

To investigate the anisotropy of the material, we study the periodic lattice pack (Fig. 16) that is anisotropic (transverse
isotropic). The bimodal lattice pack is composed of small and large beads. Small particles with packing fraction of 0.087
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are 5 mm in diameter and large particles with packing fraction of 0.174 are 10 mm in diameter. The total pack dimensions
are 100
 100
 90 mm3 with the total particle volume fraction of 0.261.

Fig. 17 shows the complete Smm probability function, Srsðx�x0Þ, and selected isotropic, Srsðjx�x0jÞ, two-point probability
functions. As can be observed, the matrix–matrix probability function is not isotropic and captures the layered nature of
the pack morphology with bands of lower and higher probability of realization. Note that for the multi-layered pack, the
probability functions do not saturate, as in Fig. 14(b), but rather oscillate with the period of the microstructure (layers) as
seen in Fig. 17(b). This is a consequence of the long-range order (Torquato, 2002). Note that all nine second-order
probability functions are evaluated for this three-phase medium. The comparison medium L0 is set in this example as
L0 ¼ c1L1þc2L2þcmLm, where c1, c2, and cm are the volume fractions of big particles, small particles, and the matrix,
respectively. The properties of individual constituents are listed in Table 2. The overall mechanical properties are
computed by the singular, isotropic and anisotropic models in order to assess the effect of the statistical information on the
anisotropic mechanical properties. The interpolation is controlled by ê ¼ 0:0002, and the singular integration is governed
by ~e ¼ 0:1, in this example. The error of the integration is controlled by (48) and (49) with EI ¼ EMr0:005. The size of the
integration window is 50 mm. Due to the quick decay of the C function, the window size of 50 mm is sufficient in this
example as has been verified by the convergence study.

Using Eq. (47), the isotropic model predicts E
i
¼ 46:418 GPa with a numerical error of en ¼ 0:373%, as defined by

Eq. (50). The isotropic model should produce equivalent results to the singular model (verification), which yields
E

s
¼ 46:379 GPa. E

i
differs from E

s
by 0.084%. The mean shear modulus yields G

i
¼ 17:640 GPa with a numerical error

en ¼ 0:886%, and this modulus deviates by 1.21% from the singular model that predicts G
s
¼ 17:857 GPa. Note that

numerical error in the shear modulus is computed in the same fashion as for Young’s modulus by proper exchange of
variables in Eq. (50). The anisotropic results are listed in Table 3. The lattice has a symmetric structure in the x and y

directions (transverse isotropy). Therefore, Ex and Ey constants are similar (deviation is due to the numerical error).
Moreover, the x�y properties are stiffer, because the lattice is densely packed in that direction, whereas a more compliant
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Table 2
Volume fraction, Young’s modulus (E) and

Poisson’s ratio ðnÞ for lattice pack constituents.

Note that constituents are assumed isotropic.

Phase Volume fraction E (GPa) n

Big-1 0.174 3 0.4

Small-2 0.087 120 0.34

Matrix-m 0.740 60 0.2

Table 3
Overall properties in (GPa) for the lattice pack shown in Fig. 16 computed by the anisotropic model.

Ex Ey Ez Gxy Gyz Gzx

51.976 52.783 43.797 19.302 14.861 14.852
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modulus Ez is obtained in the z direction. The difference between x�y and x�z or y�z properties yields ðExþEyÞ=2�
Ez ¼ 8:58 GPa, which constitutes a 16.38% difference (anisotropy). Shear behavior of the homogenized continuum is more
isotropic since shear planes can develop in both x�y and x�z or y�z directions, respectively. The weakest material, the
large beads, are favorably oriented for x�y slip, but their volume fraction is relatively low and the matrix increases the
overall shear modulus. The x�z and y�z slip planes cut across the stiffest material, but the thickness of the small particles
is small, and thus, the shear modulus does not deviate from the mean dramatically.
4.3. Polydisperse pack with two dominant modes

In the last example, we focus on computing the mechanical properties of a heterogeneous system that is characterized
using microtomography. A sample pack is composed of spherical glass beads with average diameters of 44 and 250 mm in a
3.175 mm diameter scanning tube (Fig. 18). The details on sample preparation, the scanning procedure and computation of
statistics are given in our previous work (Lee et al., 2009). The image processing is done in Amira (Visage Imaging Inc.). The
resolution for this scan is 4:638 mm per voxel. To compute the statistics of the material, we acquire a block ð1477:14

1538:96
 2645:00 mm3Þ from the core of the 3D scanned image in Fig. 18. That corresponds to 60.3 million voxels. There
are 48,214 small particles and 163 big particles with volume fractions c1¼0.402 (small particles) and c2¼0.207 (big
particles) in the composite. Fig. 19 shows detected particles and the position of the big particles in particular. Note that the
big particles are clustered on one side of the pack, which indicates the anisotropy of the pack.

As in the previous examples, we consider two types of the two-point probability functions, i.e., the complete
probabilities, Srsðx�x0Þ, and the isotropic ones, Srsðjx�x0jÞ (Fig. 20). For the three-phase composite considered in this
example, we compute nine second-order probability functions. Fig. 20(b) shows the complexity of S1m close to the origin
that is associated with small particles, and the long-range structure of S22 related to the mean diameter of large particles
ð250 mmÞ. The Smm is also complex in the � 44 mm range (the mean diameter of small particles) since it highly depends on
morphology or reinforcement. All of these statistical features directly impact the mechanical properties, and their proper
integration in (19) is essential. The results from the isotropic model are used to measure the numerical error. The quality of
interpolation is dictated by ê ¼ 0:0001, and the singular integration is set as ~e ¼ 0:1, in this example. The error of
integration is controlled by (48) and (49) with EI ¼ EMr0:001, and the size of the integration window is 500 mm. The size
of the integration window was verified by a convergence study once more. To study different scenarios relevant in analysis
of multi-phase continuum, we analyze two three-phase composite mixtures with small particles, big particles and a
matrix. The two formulations have the same microstructure and differ only in the mechanical properties of the
constituents. Table 4 shows the mechanical properties of individual constituents for both formulations. The comparison
medium for this example is, L0 ¼ c1L1þc2L2þcmLm.

The mechanical properties of the first formulation computed using the isotropic model are, E
i
¼ 31:829 GPa and

G
i
¼ 10:825 GPa with normal en ¼ 0:157% and shear en ¼ 1:460% numerical errors, respectively. The singular model used for

verification yields E
s
¼ 31:869 GPa and G

s
¼ 11:153 GPa with normal 0.126% and shear 2.94% verification errors. The

isotropic properties of the second formulation are E
i
¼ 56:882 GPa and G

i
¼ 20:605 GPa. The numerical errors are

en ¼ 0:154% (normal) and en ¼ 1:170% (shear). The singular model used for verification yields E
s
¼ 57:441 GPa and

G
s
¼ 20:969 GPa, and the errors with respect to the isotropic model are 0.973% and 1.74%. All errors are evaluated as in

the previous examples. Note that these errors are small considering the size of the integral domain and complexity of
probability space. The mechanical properties computed with the anisotropic model are listed in Table 5. To evaluate the
Fig. 18. Polydisperse glass beads system. The pack has two dominant modes of 44 mm and 250 mm. (a) Specimen. (b) Tomographic scan.



Fig. 19. (a) Location of particles in the pack. There are 48,214 small and 163 big particles in the pack. (b) and (c) show different views of the large

particles in the pack.
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extent of the anisotropy the following measure is introduced,

MA½%� ¼maxðjEx�E
i
j,jEy�E

i
j,jEz�E

i
jÞ=E

i

 100: ð51Þ

The first formulation shows anisotropy in the x and z directions withMA ¼ 5:209%. Recall that the biggest particles are the
stiffest ones in this case. It can be observed, Fig. 19, that big particles are diluted in the x�y plane, but they form



Table 4
Mechanical properties of individual isotropic phases for two formulations. Young’s modulus E is in (GPa).

Matrix Small particles Big particles

Formulation 1 E¼3.0, n¼ 0:40 E¼60.0, n¼ 0:20 E¼120.0, n¼ 0:34

Formulation 2 E¼120.0, n¼ 0:34 E¼60.0, n¼ 0:20 E¼3.0, n¼ 0:40

Table 5
Overall properties in (GPa) for the pack in Fig. 19 computed by the anisotropic model.

Formulation Ex Ey Ez Gxy Gyz Gzx

1 33.487 32.392 33.254 10.317 11.330 11.208

2 54.519 56.658 59.862 20.047 21.549 21.515
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Fig. 21. Effect of the singularity on the numerical integration for polydisperse glass bead system with formulation 1. ~e 2 ð0:1;400Þ.
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a dominant column-like structure in the z direction, which coincides with the longitudinal axis of the straw. Moreover, the
column is spreading more toward the x direction in the x�y plane at the base. This column is created due to the improper
mixing and pouring of glass beads into a straw, which produces this directional anisotropy. The shear anisotropy for the
first formulation, measured with the same formula appropriately modified for G, isMA ¼ 7:352%. Once more, the column-
like structure that developed stiffens more both Gyz and Gzx moduli, whereas Gxy is the weakest one, since the matrix has
the lowest shear modulus and favorable slip planes can develop in the x�y plane with the smallest number of big particles
to be intersected. Formulation 2 also has the stiffest response in the z direction with the anisotropic measure reaching
MA ¼ 5:239%. Note that we use the same formula to construct the comparison medium, which leads to different elastic
constants of the comparison medium for formulation 2. Although big particles are the softest ones in this case, their
concentration and distribution does not alter the response in the z direction substantially. It is interesting to observe from
Fig. 19 that large particles are positioned diagonally in the x�y plane with moderate preference in the x direction. Thus, a
similar response in these directions, weighted by the stiffer (Ex4Ey, formulation 1) or by the softer (ExoEy, formulation 2)
large particles, can be expected and is correctly predicted for both formulations.

We are also interested in the effect of the singular integration parameter, ~e, on the elastic properties. Fig. 21 shows the
effective modulus of formulation 1, E, as a function of ~e. The singular model (Eq. (46)) is shown by the horizontal dashed line. It
can be seen that the isotropic model is almost unaffected by the size of the singular exclusion and is within 1% of the singular
model. Exact integration would lead to a flat line, and thus, the deviation can be viewed as a numerical error. These errors are
consequences of both the integration and statistical sampling methods. The numerical error for the isotropic model when ~e ¼ 0:1
is en ¼ 0:157%. On the other hand, the anisotropic model shows marked sensitivity to C (singularity) and Srsðx�x0Þ structure.
Notice that the changes in E

a
occur close to the singularity, the mean diameter of the small glass beads, and the mean diameter of

the large glass beads (44 and 250 mm, see Fig. 20(b) for structure of Srsðjx�x0jÞ).

5. Conclusions

In this manuscript, we propose a computational scheme for evaluation of mechanical properties of polydisperse particulate
composites. The complex statistical characteristics are obtained from micro-CT data. The well-known Hashin–Shtrikman–Willis
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variational principle, that links directly the statistical descriptors to mechanical properties, is adopted. Unfortunately, computation
of mechanical tensors that are building blocks of the Hashin–Shtrikman–Willis model is very demanding. To alleviate this
problem, we employ the adaptive sparse Smolyak integration method with hierarchical basis. Moreover, we extend it to spherical
coordinates and parallelize it for our particular problem. We show that spatially complex mechanical tensors, based on fully
resolved anisotropic probability spectrum, can be efficiently integrated. Due to our improved numerics, we capture in detail the
anisotropic response of polydisperse particulate packs that is often hidden. We validate our numerical method by comparing
computer-generated packs to experimental data, and verify the isotropic model against a closed-form expression. Finally,
we apply the method to a real polydisperse system that is obtained using microtomography.

Future research directions are to compute both bounds and to extend this technique to nonlinear media. Application to
ellipsoidal packs and/or other crystalline shapes, where anisotropy is more pronounced, needs to be investigated. The
third-order model with realistic tomographically characterized probability descriptors that will tighten the bounds is also
of interest.
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