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Abstract

A novel multiscale cohesive approach that enables prediction of the macroscopic properties of heterogeneous thin layers

is presented. The proposed multiscale model relies on the Hill’s energy equivalence lemma, implemented in the

computational homogenization scheme, to couple the micro- and macro-scales and allows to relate the homogenized

cohesive law used to model the failure of the adhesive layer at the macro-scale to the complex damage evolution taking

place at the micro-scale. A simple isotropic damage model is used to describe the failure processes at the micro-scale. We

establish the upper and lower bounds on the multiscale model and solve several examples to demonstrate the ability of the

method to extract physically based macroscopic properties.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The addition of heterogeneities in thermoset polymer-based adhesives has received increasing attention in a
wide range of engineering applications. In many of these applications, second-phase constituents are added to
improve the fracture properties of the usually brittle adhesive layer, often considered as the weak link of the
bonded structure. In that line of work, thermosetting polymers have been combined with a variety of
reinforcements such as rubber particles (Dean et al., 2004), natural fibers (Ferreira et al., 2005), carbon
nanotubes (Meguid and Sun, 2004), glass fibers (Zhao et al., 2000) and nanoparticles (Zhao, 2007). Beyond the
improvement of the fracture properties, heterogeneities have been introduced in adhesive systems to achieve
multifunctionality. For example, silver flakes (Xu et al., 2003) have been added to improve the thermal and/or
electrical conductivity of adhesives in satellite applications. Another, more recent example involves extending
the fatigue life of adhesive systems through the incorporation of self-healing capability by embedding micro-
capsules filled with a healing agent and a living catalyst in an epoxy-based matrix (White et al., 2001).
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The increasing use of adhesively bonded joints in critical structural applications necessitates the
development of reliable and practical integrity assessment tools. Due to the very high length-to-thickness
ratio characterizing bonded joints, the cohesive finite element (CFE) method (Camacho and Ortiz, 1996;
Needleman, 1990b; Geubelle and Baylor, 1998), which collapses the adhesive layer to a single curve (in 2D
analyses) or a surface (in 3D), appears to be a natural choice for the numerical analysis of bonded structures.
However, the key component of the CFE model, the cohesive law describing the progressive failure of the
adhesive layer, is, in most cases, chosen arbitrarily, in a purely phenomenological or mathematically
convenient manner. Examples of common cohesive laws include bilinear (Geubelle and Baylor, 1998),
exponential (Needleman, 1990b) and trapezoidal (Ferracin et al., 2003) relations between the cohesive
tractions acting along the cohesive interface and the resulting displacement jumps.

However, the complexity of the failure processes taking place in heterogeneous adhesives suggests the
need of a different approach in the extraction of the macroscopic cohesive failure model. The heterogeneous
micro-structure couples the fracture events across scales and it is important that the cohesive law be
representative of these intricate processes. For example, in the case of rubber-modified resins, a clear damage
zone is observed as a result of cavitation in rubber particles, while for carbon-nanotube-modified polymers,
crack bridging plays an important role. Clearly, a multiscale approach capable of relating the complex
micro-scale failure events occurring in the adhesive layer to the macroscopic cohesive law appears as the only
viable option.

To model thin layers, such as adhesives or imperfect contacting bodies, several procedures have been
proposed: Bouchitte et al. (1991) used the boundary homogenization method to capture the effect of asperities
on the contact of elasto-plastic and rigid bodies; Licht and Michaille (1997) and Lebon et al. (1998) adopted
an energy minimization principle with asymptotic highly oscillating functions to deduce a constraint condition
between bodies when the thickness and stiffness of an adhesive tend to zero. More related to the proposed
multiscale approach described in this paper is the asymptotic method adopted by Lebon et al. (2004) to deduce
interface laws for the mechanical behavior of thin layers. Their analysis employs asymptotic decomposition of
the displacements and the stresses in both adhered and adhesive layer. However, all of the methods mentioned
above assume the homogeneous material and thus are not directly applicable to heterogeneous adhesives
considered in this work. To our knowledge, the literature only contains a limited number of numerical
analyses of damage evolution in thin heterogeneous adhesive layers. Of those, most have focused on a single-
scale micro-level investigation of the damage processes (Chew et al., 2004; de Moura et al., 2006; Shi, 2006).
However, the computational detail involved in these studies renders them prohibitively expensive and the
direct link between the scales is not easily obtained.

The multiscale cohesive framework presented hereafter aims at relating microscopic failure processes taking
place in heterogeneous adhesives to the macroscopic cohesive failure model. The macro- and micro-scales are
linked using an energy-based computational homogenization approach, which relies on an implementation of
Hill’s stationarity condition. Our scheme, compared to work presented above, does not place any restrictions
on the stiffness of individual constituents. Heterogeneous adhesives with randomly distributed inclusions of an
arbitrary shape and size can be investigated. Moreover, a computationally attractive coupling between scales
is obtained. Although, the examples investigated in this work focus on the constitutive and failure response of
heterogeneous adhesive systems, the multiscale homogenization scheme could be extended to other properties
such as electrical and thermal conductivities. A detailed description of the multiscale model constitutes the first
part of the paper (Section 2) followed, in Section 3, by a description of the damage model used at the micro-
scale and a discussion on implementation issues. In Section 4, we compare the multiscale numerical results to
the classical micro-mechanics bounds. The multiscale cohesive framework is then applied in Section 5 to
model various heterogeneous adhesive systems involving embedded stiff and soft particles.

2. Multiscale cohesive model

Consider a body represented by an open set O � RN consisting of material points X 2 RN, N being the
space dimension. Its boundary is denoted by qO and is separable into disjoint subsets qOu and qOt, where
displacement ū and tractions t̄ are prescribed, respectively, such that qO ¼ qOu [ qOt and qOu \ qOt ¼ ;.
Given an oriented sub-manifold Gc of dimension N� 1 (i.e., a surface in three dimensions or a curve in two
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dimensions) with a unit normal NðXÞ, let lc be the characteristic (effective) thickness defined by

lc ¼ C=Gc, (1)

whereC is the volume (area in 2D) of an adhesive layer, C ¼
R
C dC. The sub-manifold Gc introduced above is

a mathematical idealization of a heterogeneous adhesive layer and the thickness lc is strictly positive, lc40.
Moreover, we assume the adhesive layer to be locally periodic (Y 1;2-periodic, in-plane Gc-periodic) with the
period of micro-structure defined by the representative volume element (RVE) and denoted by Y, as in Fig. 1.
We now partition the body into sub-domains, such that

O ¼ Oþ [ O� [C, (2)

where O� denote the two homogeneous sub-bodies (adherends) that occupy the plus and minus sides of the
cohesive surface, G�c , respectively (Fig. 1).

2.1. Governing equations

When the deformable solid is subjected to arbitrary loads and boundary conditions, the deformation,
stresses and internal state variables vary from point to point in the adhesive layer due to the micro-structural
heterogeneity. We assume that all quantities at the micro-scale in the bond line are dependent on both macro-
scale X and micro-scale Y coordinate vectors. We then consider the following hierarchical decomposition of
the displacement in the adhesive layer:

AuðX ;YÞ ¼ 0uðXÞ þ 1uðYÞ, (3)

where 0uðXÞ represents the macroscopic displacement and 1uðYÞ denotes the microscopic fluctuation
displacement. The displacement field in the adhesive layer Au belongs to the space

VC�Y ¼ f
AuðX ;YÞjAuðX ;YÞ 2 ½H1ðCÞ � L2ðC;VYÞ�

N,

1uð�;YÞ is Y 1;2�periodic;
Auð�;YÞjG�c ¼

0uðXÞg,

VC ¼ f
0uðXÞj0uðXÞ 2 ½H1ðCÞ�Ng,

VY ¼ f
1uðYÞj1uðYÞ 2 ½H1ðYÞ�N; 1uðYÞ is Y 1;2�periodic,

1uðYÞjG�c ¼ 0g, ð4Þ

whereas the displacement in the sub-domains O� lies in the space VO defined by

VO ¼ fuðXÞjuðXÞ 2 ½H
1ðOÞ�N; uðXÞ ¼ ū on qOug, (5)
X1

X2

X3

Cohesive element

Volumetric element

Volumetric element
X

Macroscale

N
zoom

Y

RVEs

Macroscale
Y1

Y2

Y3

Ω

1, 2
Microscale  Y   periodic

lc

Γc

Ω
+

1
2

1
+

2
+3

+

3

+
Γc

Γc

Ω
+

Ω

Γc

lc
+

Θ Θ

+∂Θ
lc

∂Θ
Γc

∂Θ
Γc

t

u

∂Θ

Fig. 1. Microscopic and macroscopic domains with the idealized adhesive band, and geometry of macroscopic cohesive element.
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and H1ðOÞ is the Sobolev space W 1;2ðOÞ, i.e., H1ðOÞ ¼ fu 2 L2ðOÞ: 8jajp1; qa
xu 2 L2ðOÞg where, a, jaj, and the

derivatives qa
x are taken in a weak sense. Likewise, H1ðCÞ ¼ f0u 2 L2ðCÞ: 8jajp1; qa

x
0u 2 L2ðCÞg and

H1ðYÞ ¼ f1u 2 L2ðYÞ: 8jajp1; qa
x
1u 2 L2ðYÞg. Similar space decomposition has been proposed by Hughes

(1995) in his work on the multiscale variational principle. Further information on the space selection can be
found in Bensoussan et al. (1978) and Hughes (1995).

The corresponding boundary value problem is described by the following set of governing equations:

divðrÞ þ f ¼ 0 in O�

r ¼ L: e in O�

e ¼ rs
X u in O�

9>>=
>>; adherends,

divðsÞ ¼ 0 in C

s ¼ L: ½0e þ 1e� in C
0e ¼ rs

X
0u in C

1e ¼ rs
Y

1u in C

9>>>>>=
>>>>>;

adhesive,

N 	 rjG�c þN 	 sjG�c ¼ 0 on G�c

r 	 n ¼ t̄ on qOt

u ¼ ū on qOu

9>>=
>>; boundary conditions, ð6Þ

where divð�Þ is the divergence operator, r and e are the stress and strain tensors in O� and s denotes the stress
tensor in the adhesive layer C. The symbols rs

X and rs
Y represent the symmetric gradient operators with

respect to X and Y coordinates, respectively. LðXÞ denotes the symmetric material tensor for the
homogeneous adherends and LðX ;YÞ is the spatially dependent instantaneous secant stiffness tensor of the
interface. f ðXÞ denotes the body force vector and t̄ðXÞ represents the prescribed macroscopic traction vector
on the boundary qOt. We also consider the Dirichlet boundary conditions ū on qOu.
2.2. Space dimension reduction

In order to approximate the macroscopic strain tensor 0e in the adhesive layer, we introduce the linear
cohesive layer kinematics. Strains are then derived as layer thickness averages, from the relative displacements
of the top and bottom sub-domains, as shown in Fig. 2. Thus, the average strains in the adhesive layer become:

0�11 ¼ r
s
X 1

0u1 

1
2
ðrs

X 1

0uþ1 þ r
s
X 1

0u�1 Þ,

0�22 ¼ r
s
X 2

0u2 

1
2
ðrs

X 2

0uþ2 þ r
s
X 2

0u�2 Þ,
+

Γc

Γcl c

−

+

Y2

Y3

Y1

Y3 Y2

Y1

0
2
+u

u0
3+

u0
2

u
0

3

+u0
1

u
0

3+

u
0

3

u0
1

N

cΓ

Fig. 2. Adhesive layer kinematics.
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0�12 ¼
0�21 ¼

1
2
ðrs

X 2

0u1 þr
s
X 1

0u2Þ


 1
2
ð1
2
ðrs

X 2

0uþ1 þ r
s
X 2

0u�1 Þ þ
1
2
ðrs

X 1

0uþ2 þ r
s
X 1

0u�2 ÞÞ,

0�33 

1

lc
ð0uþ3 �

0u�3 Þ ¼
1

lc
b0u3e,
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0�31 


1

2

1
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1

2

1

lc
b0u1e,
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1
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1

lc
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0u�2 Þ ¼
1

2

1
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b0u2e, ð7Þ

where b�e ¼ ð�þ � ��Þ denotes the jump operator. Based on such a kinematics, let us introduce the following
notation for the adhesive layer strain tensor:

0e �
1

lc
bb0uee ¼

1

lc

lc
0�11 lc

0�12
1
2
b0u1e

lc
0�21 lc

0�22
1
2
b0u2e

1
2
b0u1e

1
2
b0u2e b

0u3e

2
64

3
75. (8)

As apparent from Eq. (7), ð0�11;
0�22;

0�12Þ and ð
0�33;

0�13;
0�32Þ can be referred as in-plane and out-of-plane

components, respectively. For an adhesive layer, the out-of-plane strains are usually dominant and the in-
plane components are often neglected (Matous̆ and Dvorak, 2002a, b). Remember the relationship between
engineering and tensorial shear strains gij ¼ 2�ij , 8iaj.

After applying standard variational methods to the problem described by Eq. (6), the principle of virtual
work readsZ

O�
r:rs

XdudO|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
adherend

þ

Z
C

s:rs
XdudC|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

adhesive

�

Z
O�

f 	 dudO�
Z
qOt

t̄ 	 dudA ¼ 0 (9)

for all admissible variations du satisfying

V ¼ fdujdu 2 ½H1ðOÞ�N; du ¼ 0 on qOug. (10)

In the multiscale variational principle (Hughes, 1995), the space decomposition is also performed for
weighting functions and an additional Euler–Lagrange equation is obtained for fine scale unknowns. Here, we
decompose only the displacement space and multiscale coupling is accomplished differently, as described later.
We now focus our attention on the second term in Eq. (9). Integrating by parts, applying the divergence
theorem and approximating the volume integral over C by

R
C �dC 
 lc

R
Gc
�dA, we obtainZ

C
s:rs

XdudC ¼ � lc

Z
Gc

rs
X 	 s 	 dudA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

þ

Z
qC

N 	 s 	 dudA. (11)

Note that first term can be neglected since the cohesive layer thickness is assumed to be much smaller than the
other body dimensions. Assuming that no external forces are acting on the outside boundary, qYl�c

, of the
adhesive bond line with thickness lc, the remaining term can be rewritten asZ

qC
N 	 s 	 d0u dA ¼

Z
Gc

t 	 bd0uedA, (12)

which implies that N 	 sjGþc þN 	 sjG�c ¼ 0 as lc! 0. Thus, we arrive at the classical cohesive contribution and
the principle of virtual work at the macro-scale yieldsZ

O�
r:rs

Xd
0u dO|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

volumetric contribution

þ

Z
Gc

t 	 bd0uedA|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
cohesive contribution

�

Z
O�

f 	 d0u dO�
Z
qOt

t̄ 	 d0u dA ¼ 0 (13)
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for all admissible variations d0u satisfying Eq. (10). Here, we take advantage of the arbitrariness of
the weighting functions and set du ¼ d0uðXÞ. The cohesive contribution term, in the principal of virtual work
(Eq. (13)), can also be deduced from the unbounded part of the gradient of the weighting function (Wells and
Sluys, 2001). Note, however, that in this work, the discontinuity is always contained between volumetric
elements as opposed to the generalized finite element method (Wells and Sluys, 2001). Hence, the test
functions, d0u, belong to the space of bounded variations since they are discontinuous across the interface.
Note that the cohesive tractions t perform work on the displacement jumps or ‘‘opening displacements’’ over
the cohesive surface. The macroscopic cohesive element is shown schematically in Fig. 1.

2.3. Link between macro- and micro-scale

In this subsection, a theoretical framework is presented for relating the deformation at the micro-scale to
that at the macro-scale. We use the standard argument of scale separation, since the macroscopic problem is
defined on a scale with characteristic length lmacro 
 OðGcÞ (scale of adherends) while the micro-structure is of
size lmicro 
 OðlcÞ (thickness of adhesive) as depicted in Fig. 1. The scale separation requires that
lmicro=lmacro51. Thus, the micro-to-macro transitions can be described by the notion of a homogenized
macro-continuum with locally attached heterogeneous micro-structure (RVE). In this work, computational
homogenization is used to link the micro-scale to the macro-scale.

The behavior of a material point at the macro-scale can be linked to the micro-scale through the following
energy condition. The potential energy on the micro- and macro-scales is minimized when the following
condition of stationarity (Hill’s lemma) is met:

inf
b0ue

cðb0ueÞ ¼ inf
0e

inf
1u

1

jYj

Z
Y
cð0eðb0ueÞ þ rs

Y
1uÞdY (14)

and

0eðb0ueÞ 2 Lþ,

1u 2VY, ð15Þ

where c and c represent the free energy density on the micro- and macro-scales, respectively, and Lþ is the
space of second order tensors with positive determinant. By recourse to Coleman and Noll’s method
(Lubliner, 1972, 1973), it is possible to show that the constitutive laws relating the stress to the free energy
density on the micro-scale, and the tractions to the homogenized free energy density c on the macro-scale are

s ¼
qc
qAe

and t ¼
qc

qb0ue
, (16)

where Ae ¼ ð0e þ 1eÞ denotes strain in the adhesive layer. Applying standard variational principles to Eq. (14)
and keeping in mind that the variations of the macro-scale displacement jump bd0ue; d0eðbd0ueÞ and the micro-
scale fluctuation displacements d1u are independent, we arrive at the variational energy condition (see, for
example, references Hill, 1985; Miehe et al., 2002),

Rb0ue ¼ N 	
1

jYj

Z
Y

sdY
� �

� t

� �
	 bd0ue ¼ 0,

R1u ¼
1

jYj

Z
Y

s:rs
Yd

1u dY ¼ 0 ð17Þ

and

d1u 2 ½H1ðYÞ�N; d1ujqYG�c
¼ 0; d1u ¼ periodic on qYl�c

, (18)

where qY ¼ qYGþc
[ qYlþc

[ qYG�c [ qYl�c
being the boundary of Y (Fig. 1). Here, we take an advantage of the

arbitrariness of the displacement jump variation and use

d0eðbd0ueÞ ¼
1

lc
N � bd0ue, (19)

where � represents the dyadic vector product. In other words, the volume average of the variation of the work
performed on the RVE equals the local variation of the work on the macro-scale, and the micro-scale
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fluctuation field does not contribute to the average variation in the work. Furthermore, due to the
arbitrariness of bd0ue, Eq. (17a) indicates that the macroscopic tractions are equal to the volume average of
the stress at the micro-scale contracted with the normal. It should also be noted that Eq. (17b) is the weak
form of the equilibrium equation on the micro-scale for purely kinematic boundary conditions (as in this
work). Eqs. (17) are in general nonlinear, based on the mechanical behavior of the individual constituents.
Possible inelastic mechanical processes, characterized by the secant stiffness tensor LðX ;YÞ, include plasticity,
nonlinear viscoelasticity and/or damage. Mechanical response of a heterogeneous adhesive layer discussed in
this paper is described in Section 3.1.

In general, the Helmholtz free energy per unit volume stored in the system depends on the elastic behavior,
inelastic state of deformation, and temperature. For the sake of simplicity, we neglect thermal effects and
adopt the usual assumption that the elastic potential is unaffected by the inelastic processes. In addition, it is
assumed that the elastic behavior is linear and elastic strains are small, typical for epoxy adhesives.

Based on such an observation, one can define the potential, referred to in Eqs. (14) and (16), as

cðAeÞ ¼ 1
2
ð0e þ 1eÞ: L: ð0e þ 1eÞ, (20)

and, according to Eq. (16), the micro-scale constitutive stress strain relation used in Eq. (6) reads

s ¼
qc
qAe
¼ L: ½0e þ 1e�. (21)

Assuming that variational equations (17) are satisfied, the macroscopic traction vector is then given by

t ¼ N 	
1

jYj

Z
Y
L:

1

lc
bb0uee þ rs

Y
1u

� �
dY

� �
, (22)

where tT ¼ ftt1 ; tt2 ; tng. As one can see, the macroscopic cohesive vector depends on both macro- and micro-
scale contributions. For the homogeneous adhesive layer, where LðX ;YÞ ¼ LðXÞ we get

t ¼
1

lc
N 	 fL: bb0ueeg, (23)

and the following constraint on the fluctuation field results

1

jYj

Z
Y
rs

Y
1u dY ¼ 0 )

1

jYj

Z
qY

1

2
½NY �

1u þ 1u �NY�dA ¼ 0, (24)

where NY is the outward normal of the micro-system at Y 2 qY. Note that along the top and bottom edges of
the layer, i.e., 8 Y 2 qYG�c

, NY � N (Fig. 2). Non-trivial boundary conditions for the fluctuation displacement
defined by Eq. (4) satisfy the constraint (24).
2.4. Linearized form of the macroscopic traction-separation law

An incrementally linearized form of the macroscopic traction-separation law can be defined by linearizing
the nonlinear equations (17), where the micro-scale constitutive law (21) is used to relate the strain tensor at
the micro-scale, 0e þ 1e, to the stress tensor s. Linearization of Eq. (17) yields

K11 K12

K21 K22

" #k
bD0ue

D1u

( )
¼

t

0

� �kþ1

�
t

R2

( )k

, (25)

where

bd0ue 	K11 �
qRb0ue

qb0ue
; bd0ue 	K12 �

qRb0ue

q1u
,

d1u 	K21 �
qR1u

qb0ue
; d1u 	K22 �

qR1u

q1u
; d1u 	R2 � R1u ,
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K. Matouš et al. / J. Mech. Phys. Solids 56 (2008) 1511–15331518
and, for the ðk þ 1Þth iteration, the macroscopic displacement jump, the micro-continuum fluctuation

displacement field, and the macroscopic traction vector are updated as b0uekþ1 ¼ b0uek þ bD0ue,
1u

kþ1
¼ 1u

k
þ D1u, and tkþ1 ¼ tk þ Dt, respectively. Eliminating the fluctuation displacements D1u from

Eq. (25) provides the incrementally linear macroscopic traction-separation law

Dt ¼L: bD0ue � ðK12K
�1
22 Þ

k:Rk
2, (26)

where the tangent instantaneous cohesive moduli is

L ¼ ðK11 �K12K
�1
22 K21Þ

k. (27)

The above linearized form of the macroscopic traction-separation response is useful for computational
purposes.

3. Damage model and implementation issues

To illustrate the multiscale cohesive model described in Section 2, we investigate in Section 5 the failure
response of model heterogeneous adhesives characterized by a simple isotropic damage law. In this section, we
develop the damage evolution model used at the micro-scale and outline the numerical implementation of
multiscale cohesive approach.

3.1. Irreversible isotropic damage law

The damage model employs irreversible thermodynamics and the internal state variables theory. Similar
formulations have been applied to a variety of continuum damage mechanics problems (Lemaitre, 1985; Simo
and Ju, 1987a, b); Ju, 1989; Lubarda and Krajcinovic, 1995; Matouš, 2003). To introduce damage behavior,
let us consider the free energy potential given by Eq. (20) as

cðAe;oÞ ¼ ð1� oÞc0ð
AeÞ, (28)

with

c0ð
AeÞ ¼ 1

2
Ae: AL: Ae, (29)

where c0ð
AeÞ represents the total potential energy function of an undamaged (virgin) material, o denotes the

isotropic damage parameter and ALðX ;YÞ is the elastic stiffness of micro-constituents. Considering only the
mechanical loading, the Clausius–Duhem inequality reads

� _cþ s: A_eX0, (30)

and the dissipative inequality is given by (differentiate Eq. (28) and use Eq. (30))

D ¼ � _oYX0, (31)

where Y ¼ �c0ð
AeÞ denotes the thermodynamic force (damage energy release rate) conjugate to the damage

variable _o.
To define the onset or continuation of damage, we adopt the approach based on a damage surface

analogous to the yield surface used in the theory of plasticity (Bittnar and Šejnoha, 1996; Ju, 1989; Matouš,
2003). The state of damage in the material is governed by the following criterion:

gðȲ ; wtÞ ¼ GðȲ Þ � wtp0; Ȳ ¼ �Y ; t 2 Rþ, (32)

where wt denotes the softening parameter (internal state variable) usually set as wt¼0 ¼ 0. The notation Ȳ ¼

�Y is used here for convenience. The function GðȲ Þ, which characterizes the damage process in the material,
can possess various mathematical forms and we here adopt a three-parameter Weibull distribution that reads

GðȲ Þ ¼ 1� exp �
Ȳ � Y in

p1Y in

� �p2
� �

, (33)
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Other material properties used are E ¼ 2:4GPa, n ¼ 0:34, Y in ¼ 0:32 J=m3 and m ¼ 19:0 s�1.
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where Y in denotes the initial threshold (energy barrier), and p1 and p2 are non-dimensional scale and shape
parameters, respectively. The three-parameter form of above expression enables it to capture a wide range of
material behaviors. A few representative constitutive response curves obtained by using the Weibull
distribution within the isotropic damage model discussed above are shown in Fig. 3. Note that the exponential
form of the damage function (33) makes it infinitely continuously differentiable.

The damage process is derived in terms of the following irreversible, dissipative equation of evolution:

_o ¼ _k
qg

qȲ
¼ _kH; H ¼

qGðȲ Þ

qȲ
, (34)

where _k is a damage consistency parameter, which defines damage loading/unloading according to the
Kuhn–Tucker complementarity conditions:

_kX0; gðȲ ; wtÞp0; _kgðȲ ; wtÞ � 0. (35)

In addition, we define _wt ¼ _kH and the parameter _k is determined from the consistency condition _g ¼ 0, from
which follows

_k ¼ � _Y (36)

and

_Y ¼ �s̄: A_e; s̄ �
s

1� o
, (37)

where s̄ represents the effective stress tensor. The evolution of the monotonically increasing internal state
variable, wt, is given by

wt ¼ max w0; max
s2ð�1;t�

ws

� �
, (38)

and we assume unloading towards the origin.
It is prevalent that there are well-posedness and uniqueness problems associated with the loss of strong

material ellipticity. As a result, the numerical computations exhibit mesh bias, i.e., the solution is sensitive to
discretization. The numerical deficiencies may be bypassed by means of the nonlocal model proposed by
Pijaudier-Cabot and Bažant (1987) or by viscous regularization (Simo and Ju, 1987a, b; Ju, 1989). In this
work, we adopt the approach proposed by Simo and Ju (1987b) based on a viscous damage model.
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In particular, the evolution equations for _o and _wt that govern the visco-damage behavior are obtained by
replacing the damage consistency parameter _k as follows:

_o ¼ _kH ! _o ¼ mhfðgÞi and _wt ¼ _kH ! _wt ¼ mhfðgÞi, (39)

where m denotes the damage viscosity coefficient. fðgÞ represents the viscous damage flow function with g

defined in Eq. (32), and the symbol h�i denotes McAuley brackets. As in Ju (1989), we assume a linear viscous
damage mechanism, fðgÞ � g. As m goes to zero, we obtain the instantaneous elastic behavior, whereas, for m
approaching infinity, we recover the rate-independent model.
3.2. Numerical implementation

The multiscale cohesive framework developed in Section 2 and the damage model described in Section 3.1
are implemented into conventional finite element framework. Here, we do not numerically solve the
macroscopic boundary value problem, Eq. (13). The deformation path of a macroscopic cohesive point is
rather predefined by applying a displacement jump, b0ue, across the cohesive interface, and hence, the first
Euler–Lagrange equation (17a) is trivially satisfied. Thus, we need to solve only the second equation,
Eq. (17b), and the macroscopic tractions can be directly computed using Eq. (22). The numerical
implementation involves three issues: the numerical integration of the rate form of the constitutive equations,
the consistent linearization of the finite element form of the micro-scale equilibrium equation, and the adaptive
load-stepping scheme. These three issues are discussed next.

A key aspect of the numerical scheme is the precision of the incremental update procedure used to integrate
the evolution equations (39). The associated computational algorithm follows that of Ju (1989) and is
summarized for completeness in Appendix A. Let R, B, and 1U represent the residual, strain-displacement
(gradient) matrix, and micro-scale degree-of-freedom vector, respectively. The weak form of the equilibrium
equation at the micro-scale (17b) can be discretized to obtain the standard finite element form as

Rð1U Þ ¼
1

jYj
A
Nel

e¼1

Z
Ye

BTLB dYe1U þ

Z
Ye

BTLdYe0e

� �� �
¼ 0, (40)

where we have made use of Eq. (21) and the secant stiffness tensor is given by L ¼ ð1� oÞAL. The symbolA in
Eq. (40) represents assembly operator, while Nel is the number of finite elements. The second term of the
equation represents the contribution from the macro-scale and acts as a forcing term. The nonlinear equations
described by Eq. (40) are solved using the Newton–Raphson iterative scheme, yielding the following linearized

form of the system of equations about a configuration 1U
ðiÞ
nþ1:

DRð1U ðiÞnþ1ÞD
1U ¼ �Rð1U ðiÞnþ1Þ, (41)

where nþ 1 represents the current loading step and i þ 1 is the current Newton iteration. The tangent operator
is obtained by consistent linearization of the residual Eq. (40), for the constitutive model described in
Section 3.1, and is given by

DRð1U ðiÞnþ1ÞD
1U ¼

1

jYj
A
Nel

e¼1

Z
Ye

BTð1� onþ1Þ
ALB dYe

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
secant part

2
6664 �

Z
Ye

BTALB1U ðiÞnþ1 �
qonþ1

q 1U ðiÞnþ1

dYe

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tangent correction part

þ

Z
Ye

BT0e �
qonþ1

q1U ðiÞnþ1

dYe

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
macro�scale contribution

3
7775D1U , ð42Þ
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where

qonþ1

q1U ðiÞnþ1

¼
qonþ1

qȲ nþ1

qȲ nþ1

q1enþ1

q1enþ1

q1U ðiÞnþ1

. (43)

The linearization of the damage law (first term on the right-hand side of Eq. (43)) is delineated in Appendix A.
To control the accuracy of the time integration of the constitutive response, an adaptive time-stepping

procedure is required. The technique used in the current implementation is similar to one described by Lush
et al. (1989). The maximum increment in the damage parameter at any integration point, Domax, is monitored
to control the size of the loading step. The details of the load-stepping procedure are given in Appendix B.

4. Bounds on the multiscale cohesive response

In this section, we investigate the upper and lower bounds on the multiscale cohesive solution by analyzing a
3000� 300mm cell with 30:15% particle volume fraction (see insert of Fig. 4(a)). The micro-structure consists of
54 particles with a 40mm diameter. The bounds on the multiscale cohesive solution are analyzed by considering 2D
plane strain conditions and two different constitutive behaviors: (1) a material that hardens and (2) a material that
initially hardens and then softens. The loading rate in Y 3-direction is kept constant at 0�33 ¼ 0:1 s�1 for both cases.

4.1. Hardening material

The individual cohesive response of matrix and inclusion along with the bounds are depicted in Fig. 4(a).
The matrix phase is assumed to be three times stiffer than the particles. The material properties are listed in
Table 1. The traction-separation curves labeled ‘‘matrix’’ and ‘‘particle’’ are obtained by applying the
0 0.005 0.01 0.015 0.02 0.025 0.03
0

50

100

150

200

250

300

350

Macroscopic displacement jump ⎣0u3⎤ [mm] 

 t n
 [

M
Pa

]

Matrix

Taylor

Periodic

Sachs

Particle

0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

Macroscopic displacement jump ⎣0u3⎤ [mm] 

0

 t n
 [

M
Pa

]

Matrix

Taylor

Periodic

Sachs

Particle

Fig. 4. Bounds on the multiscale semi-periodic cohesive solution in (a) hardening and (b) hardening-softening regimes. The inset in the

figure (a) shows the geometry of the adhesive semi-periodic cell from which the bounds are extracted.

Table 1

Material properties used to compute the bounds for a hardening material

E (GPa) n Y in ðJ=m3Þ p1 p2 m ð1=sÞ

Matrix 2.4 0.34 0.32 30000.0 0.35 19.0

Inclusion 0.8 0.34 0.32 30000.0 0.35 19.0
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Table 2

Material properties used in bound analysis with a softening material

E (GPa) n Y in ðJ=m3Þ p1 p2 m ð1=sÞ

Matrix 2.4 0.34 0.3 30.0 1.3 19.0

Inclusion 0.8 0.34 0.1 30.0 1.3 19.0
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multiscale cohesive scheme to homogeneous adhesive layers made of the individual phases (23). The Taylor
solution (Taylor, 1938) represents the upper bound on the multiscale response, while the Sachs solution
(Sachs, 1928) forms the lower bound. The Taylor bound corresponds to a constant strain condition or uniform
rate of deformation, i.e., rs

Y
1u ¼ 0 within the micro-structure. Substituting this condition in Eq. (22), the

Taylor bound, CTaylor, can be computed exactly. The upper bound turns out to be the weighted mean of
individual material properties with the weights equal to the volume fractions of each constituent phase. On the
other hand, the lower bound, CSachs, denotes a constant-stress condition within the micro-structure and is
given by the harmonic mean of individual constituent properties. The problem is driven by the constant stress
condition in each phase, the strain in individual phases is then computed by invoking the constitutive
relationship. The corresponding macroscopic jump can be computed by taking the volume average. We see
that the effective multiscale properties (CMC) are well confined within the Taylor and Sachs bounds, i.e.,
CSachsoCMCoCTaylor. The multiscale solution is solved using semi-periodic boundary conditions (periodicity
only for left and right edges) and the micro-scale fluctuation displacement 1uðYÞ 2VY, as defined in Eq. (4).

4.2. Softening material

More relevant to the multiscale analysis of the cohesive failure response is the second, softening case,
modeled with material properties shown in Table 2. Although, the bounds are quite well understood for
hardening materials (Talbot and Willis, 1985, 1992), the bounds for softening materials are still open question,
at least to authors’ knowledge. Here, we do not intend to establish mathematically rigorous bounds, but rather
report on the numerical solutions only. More detailed study would be required to prove that the solution is
bounded, if even such a claim is relevant or can be made. As in the previous case, the matrix is assumed to be
three times stiffer than the inclusions. The individual cohesive response of matrix and inclusion are depicted in
Fig. 4(b). Both phases harden after crossing the linear elastic regime and then experience softening. The
material properties for these phases are so chosen that the maximum stress occurs at the same value of strain.
The Taylor and Sachs bounds can be computed exactly as mentioned previously. The multiscale solution is
observed to obey the micro-mechanics bounds in the hardening regime, while in the softening region the
multiscale solution lies below the Sachs solution. This can be attributed to loss of ellipticity of governing
equation in the softening region. Physically, this implies that a heterogeneous material has less failure
resistance in the softening regime than the corresponding constant stress condition.

5. Illustrative examples

We now turn our attention to a set of adhesive failure problems illustrating how the multiscale cohesive
framework described in Sections 2 and 3 can relate micro-structural damage evolution to the macroscopic
cohesive response of heterogeneous layers made of circular inclusions. Although, the theoretical framework
presented in this work is 3D, the illustrative examples described in this section are solved in a 2D (plane strain)
setting. In the model problems described hereafter, the interface between the embedded particles and the
surrounding matrix is assumed to be perfect and the damage evolution in both phases is captured with the
isotropic rate-dependent damage model described in Section 3.1. The loading rate is kept constant for all
loading cases (mode I or mixed mode) such that 0_�33 ¼ 0:1 s�1, 0_�23 ¼ 0:1 s�1 and b0u2e=b

0u3e ¼ 1:0 for mixed
loading. The properties of the two components are chosen to simulate two failure scenarios: (1) soft particles
in a stiff brittle matrix, (2) stiff brittle particles in a soft matrix. The primary focus of this illustrative study is to
show how the very different failure processes taking place at the micro-scale for these two failure scenarios
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affect the overall cohesive response of the adhesive as predicted by the multiscale formulation. Although, the
micro-scale domain selected in all the simulations is large enough to capture the relevant physics, we make no
claim regarding the representativeness of the domain (with respect to the RVE size). One would need to
compute the bounds on the solution with respect to the cell size to determine the representativeness of results.

5.1. Soft particles in a stiffer, brittle matrix

The constitutive response of the matrix and inclusion phases is shown in Fig. 5. The material properties,
listed in Table 3, have been chosen to model soft, ductile particles embedded in a (three times) stiffer but brittle
matrix. Two random particle distributions are considered, as illustrated in Fig. 6 and in Table 4, which also
provides information on the finite element discretization adopted for the two heterogeneous adhesive layers.
The particle volume fraction V f is kept almost constant (at about 22.4%), but the particle size (and therefore
their number) is varied.

For all problems studied in this paper, the finite element discretization is chosen to provide a spatially
converged solution. The temporal convergence is guarded by a fully implicit nonlinear solver and the adaptive
time stepping procedure discussed in Section 3.2 and Appendix B. The desired incremental value of the
damage parameter Dod is set to 0:125. The spatial and temporal convergence of the finite element solution is
demonstrated in Fig. 7 for the 40-particle case subjected to mode I loading. This particular case is further
investigated in Fig. 8(a), which presents the macroscopic traction-separation law for the mode I case and the
evolution of damage taking place at the micro-scale for the three states A, B, and C marked on the
macroscopic response. In all three micro-scale contour plots, the displayed quantity, the damage parameter o,
ranges from 0 to 1; 0 being the undamaged state and 1 representing the fully damaged condition. State A

corresponds to the failure strength of the composite. Although damage is still limited in the heterogeneous
layer, stress concentrations are observed especially in regions of higher particle concentrations due to the
proximity between inclusions. The nucleated micro-cracks progressively coalesce, leading to a network of
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Fig. 5. Constitutive response of adhesive matrix and particle inclusions. The material properties used are listed in Table 3. Above material

behavior corresponds to an uniaxial strain condition with a strain rate of _� ¼ 0:1 s�1.

Table 3

Material properties for soft particle/stiff matrix example

E (GPa) n Y in ðJ=m3Þ p1 p2 m ð1=sÞ

Matrix 2.4 0.34 0.32 2.5 8.0 19.0

Inclusion 0.8 0.34 0.1 30.0 1.3 19.0
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Y2
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Fig. 6. Semi-periodic unit cells for heterogeneous adhesives composed of (a) 103 50mm diameter particles (V f ¼ 22:42%) and (b) 40 80mm
diameter particles (V f ¼ 22:34%).

Table 4

Geometrical and finite element discretization details for the two heterogeneous layers shown in Fig. 6

# of particles Diameter ðmmÞ V f (%) # elements # nodes

Fig. 6(a) 103 50.0 22.42 45 490 23 112

Fig. 6(b) 40 80.0 22.34 27 926 14 310
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larger cracks that form discrete damage zones and weaken the adhesive layer (Point B), thereby reducing its
cohesive strength. While the initial failure took place in the stiffer, more brittle matrix, damage quickly
appears in the particles as well. Upon further loading, the damage zones act as dominant cracks, leading to the
complete failure of the adhesive layer (Point C). Note the complexity of the failure process at the micro-scale,
which includes branching as apparent in the upper left corner of the cell. The crack path is dictated by the
distribution of the particles. One of the micro-cracks becomes dominant and the associated strain localization
unloads other parts of the adhesive unit cell. Throughout the failure process, the damage distribution is
periodic as prescribed by the boundary conditions along the left and right edges of the adhesive unit cell.
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The multiscale cohesive framework can also be used to extract, in a natural way, the mixed-mode failure
response of heterogeneous adhesives, as illustrated in Fig. 9, which shows the evolution of the macroscopic

normal, tn, and tangential, tt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2t1 þ t2t2

q
, cohesive tractions versus the normal, b0u3e, and tangential,

b0ute ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0u1e

2 þ b0u2e
2

q
, displacement jumps. Recall that due to the plane strain assumption, b0u1e ¼ 0, and

due to orientation of the normal, tt1 ¼ 0. For the chosen level of mode mixity (kept constant throughout the
loading process), the computed failure strength in shear is substantially smaller than its normal counterpart. It
is likely that this result is an outcome of the simple isotropic damage model used to capture the progressive
failure of the matrix and the particles. A more sophisticated anisotropic damage model would need to be
adopted at the micro-scale to capture the increased resistance to shear failure. The damage pattern associated
with the complete mixed-mode failure of micro-structure is shown in Fig. 10. Although it also involves the
coalescence of micro-cracks through the particles and the matrix, the failure pattern is quite different from
that obtained in the mode I case, primarily in terms of the orientation of the micro-cracks. Note the
localization apparent from the deformed periodic boundaries of the adhesive layer.

By repeating the failure process under a range of mode mixity, the cohesive failure envelope can be extracted
as displayed in Fig. 11, clearly illustrating the combined effect of the normal and tangential failure modes on
the fracture properties of the adhesive layer. Due to the variational character of our multiscale model, even for
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Fig. 10. Damage pattern for 40-particle cell under mixed mode loading.
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the random distribution of the circular inclusions, an outcome of the multiscale cohesive scheme is the anti-
symmetric shear failure response, often assumed in phenomenological cohesive laws. It should be noted that
the cohesive failure envelope, shown in Fig. 11, has been computed by following failure paths with fixed level
of mode mixity, i.e., by following a set of rays (centered at the origin) in the ðb0u2e; b

0u3eÞ space. Due to the
nonlinearity of the damage process, a different path in the above space is likely to yield a different damage
map, and thus the envelop can only be used as an approximate model at the macroscale. The fully coupled
micro- and macro-analysis, which is a part of our future research, would be required to obtain the exact
macroscopic response.

5.1.1. Effect of particle size

To study the effect of particle size on the macroscopic properties, we compare the failure responses of the
40- and 130-particle cells described in Fig. 6 and Table 4. As shown in Fig. 12, the macroscopic failure
responses for these two adhesive systems are almost identical, both under mode I and mixed-mode conditions.
The failure patterns are, however, somewhat distinct, as illustrated in Figs. 13(a) for the 130-particle case (to
be compared with their 40-particle counterparts, Figs. 8 and 10). As the number of particles increases, the
number of nucleation sites increases, leading to a larger number of micro-cracks, many of which get arrested
as a few critical ones coalesce. However, these differences at the micro-scale do not appear to affect the
macroscopic failure response of the adhesive. This similarity between the solid and dashed curves in Fig. 12
likely stems from the absence of a direct length scale in the isotropic damage model adopted in this study and
from the highly distributed nature of the damage processes taking place in the heterogeneous adhesive. By
incorporating a cohesive law along the particle–matrix interface, a natural failure length scale that captures the
effect of particle size can be introduced, as demonstrated by Tan et al. (2005). It is worth pointing out,
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however, that, regardless of the particle size, the nature of the damage taking place in a heterogeneous layer
with soft particles appears to be entirely cohesive (adhesive fails rather than bond between the adhesive layer
and an adherend, which we refer to as adhesive failure).

5.1.2. Effect of volume fraction

Focusing on the effect of volume fraction on the macroscopic cohesive properties, we now investigate 11
random micro-structures with particle volume fraction ranging from 2:79% to 30:15%. We assume that
every periodic unit cell has a random particle distribution, with the statistical effect of the particle distri-
butions quantified by considering for every volume fraction five cells with different particle arrangements.
The macroscopic traction-separation curves for a few representative cases (5 of 11) are shown in Fig. 14. Those
are computed as mean of five runs for each cell with error bars corresponding to the standard deviation.
Since the inclusions are softer than the surrounding matrix, the elastic modulus decreases with increasing
volume fraction. The tensile failure strength tmax follows a similar trend, dropping from close to 80MPa for
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V f ¼ 2:79% to less than 60MPa for V f ¼ 30:15%. The value of macroscopic displacement jump, at which the
peak cohesive traction occurs, shifts to the right with increasing particle volume fraction. These effects can be
directly related to the individual constitutive response of the matrix and the particles (see Fig. 5).

The amount of energy spent in the fracture process at the micro-scale can be computed by integrating the
area under the traction-separation law as

GIc ¼

Z b0uef

0

tnðb
0ueÞdb0u3e, (44)

where GIc denotes the mode I fracture toughness and b0uef is the displacement jump associated with the
complete failure of the adhesive layer. The effect of the volume fraction on the mode I fracture toughness is
shown in Fig. 15(a). Displayed curve represents mean, and the error bars have been obtained again by
computing the standard deviation of fracture toughness for five different particle distributions for each case.
To understand this result, let us start by noticing that the failure energy of the particles exceeds that of the
matrix (Fig. 5). With an increase in the volume fraction of particles, the fracture toughness of the adhesive is
then expected to increase, at least initially, as apparent in Fig. 15(a). However, with further increase in volume
fraction, the particles act as stress concentrators and favor micro-cracks propagation resulting in a reduced
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fracture toughness. It should be noted that the large size of the error bars is associated with the limited range
of GIc values displayed on the vertical axis.

Fig. 15(b) shows the effect of volume fraction on the maximum tensile cohesive strength, tmax, of the
heterogeneous adhesive (mean and standard deviation is shown). As expected, the maximum strength
decreases with the volume fraction, as was alluded to in Fig. 14.

5.2. Hard brittle particles in a soft matrix

The material properties for the model problem involving stiff particles embedded in a softer matrix are
chosen by simply switching the matrix and inclusion properties adopted for the soft-particle example described
in the previous subsection, allowing for a more direct comparison with the soft-particle case results. The
geometry and discretization of the unit cell for the adhesive are the same as those used for the soft-particle case
(see Fig. 6 and Table 4).
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As was the case for the soft-particle problem, the mode I and mixed-mode macroscopic cohesive failure
response of the heterogeneous adhesives with stiff particles (Fig. 16) shows almost no dependence on the
particle size. However, a direct comparison between the soft-particle case results (Fig. 12), and those
obtained with the stiff inclusions (Fig. 16), yields some important differences between these two cases.
The predicted failure strength is significantly lower than in the previous case, while the value of the
displacement jump vector at which the cohesive tractions reach their peak is substantially higher for stiff
particles than for soft inclusions. These differences can be traced to the damage obtained at the micro-scale
shown in Figs. 17 and 18 for the 40- and 103-particle cases, respectively. The key difference is associated
with the fact that, in the stiff-particle case, the failure takes place almost exclusively in the matrix.
The particles still play the role of stress concentrators that initiate matrix cracking. However, while damage
ran through the soft particles, the micro-cracks tend to propagate around the stiffer and stronger particles,
which act as obstacles. This leads to a much more distributed damage in the unit cell compared to the soft-
particle system.

Another important observation relative to the micro-scale damage process is the fact that failure in the stiff-
particle case takes place in a more adhesive fashion (i.e., that damage tends to be more concentrated along
the top and bottom edges of the adhesive layer) than in its soft-inclusion counterpart. This is particularly
true in the mixed-mode situation and in regions where the particle clustering makes adhesive failure
more energetically favorable. Note that, in this study, the adherent/adhesive interface has been assumed to be
very strong, and adhesive failure can only be achieved through the propagation of micro-cracks through
the matrix material in the immediate vicinity of the top and bottom edges of the adhesive layer. A more
detailed study of this competition between adhesive and cohesive failure might require a different failure
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Fig. 17. Damage pattern for 40-particle case with stiff particles under (a) mode I and (b) mixed mode loading.
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Fig. 18. Damage pattern for 103-particle case with stiff particles in soft matrix under (a) mode I and (b) mixed mode loading.
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model for the adherent/adhesive interface, but the role of particle clustering, alluded to in this model problem,
is likely to persist.

6. Conclusions

A multiscale cohesive model capable of linking the micro-scale failure events in heterogeneous thin layers to
the macroscopic constitutive relationship has been developed and implemented. The model relies on the Hill’s
energy equivalence lemma for bridging the micro- and macro-scales within the computational homogenization
scheme. A simple isotropic damage constitutive relation has been used to model the failure of heterogeneous
adhesives. The classical micro-mechanics bounds on the multiscale cohesive solution in the hardening as well
as the softening region have been presented. The robustness of the framework has been demonstrated by
solving several examples, including various model heterogeneous adhesive layers with stiff and soft particles
subjected to a range of loading conditions. Through these examples, we have demonstrated how the multiscale
cohesive framework can be used to extract physically based macroscopic constitutive law from micro-scale
failure processes. The multiscale cohesive framework is not specific to the damage model considered in this
study and can readily be applied to a wide range of damage models used to capture the failure processes taking
place at the micro-scale.
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Appendix A. Integration algorithm and consistent linearization for viscous damage model

To integrate the evolution equations (39) we employ the implicit backward Euler integration scheme. Thus
the equations of evolution are solved incrementally over a sequence of given time steps ½tn; tnþ1� � Rþ; n ¼
0; 1; 2; . . . with initial conditions fs;o; wgjt¼tn

¼ fsn;on; wng. The time step is given by Dt ¼ tnþ1 � tn.

Algorithm 1. Rate-dependent damage integration algorithm.
1 Compute Ȳ nþ1 ¼
1
2
Aenþ1:

AL: Aenþ1

2 Check g ¼ GðȲ nþ1Þ � wn40 ?
NO! no damage within this time step EXIT

YES! rate-dependent damage loading CONTINUE

3 Compute onþ1 and wnþ1

onþ1 ¼ on þ
Dtm

1þ Dtm
½GðȲ nþ1Þ � wn�

wnþ1 ¼
wn þ DtmGðȲ nþ1Þ

1þ Dtm
4 Update stress

s̄nþ1 ¼
AL: Aenþ1

snþ1 ¼ ð1� onþ1Þs̄nþ1
Note that since 0pmp1 the state variable wt is properly bounded, wnpwnþ1pGðȲ nþ1Þ, between the
instantaneous elastic and inviscid damage limits.

The numerical scheme as describe in Section 3.2 is implicit and thus consistent linearization is
important if one wants to maintain a quadratic rate of convergence, when Newton’s type algorithm
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is employed to solve the system of nonlinear equations. The linearized term associated with the damage
law is given by

qonþ1

qȲ nþ1

¼
Dtm

1þ Dtm
qG

qȲ nþ1

, (A.1)

where

qG

qȲ
¼

p2

p1Y in
exp �

Ȳ � Y in

p1Y in

� �p2
� �

Ȳ � Y in

p1Y in

� �p2�1

. (A.2)

Appendix B. Adaptive load-stepping scheme

The automatic time-stepping algorithm (Lush et al., 1989) can be operated to keep the ratio

a ¼
Domax

Dod
(B.1)

approximately equal to 1:0 by adjusting the size of time step. In above, Dod is desired increment in damage
parameter, a user input. The following algorithm is used to adjust the size of time step:

Algorithm 2. Adaptive load-stepping.
1 If 0:8oap1:25 then Dtnþ1 ¼ Dtna
2 If 0:5oap0:8 then Dtnþ1 ¼ 1:25Dtn

3 If ap0:5 then Dtnþ1 ¼ 1:5Dtn
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