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Abstract

The effect of damage due to particle debonding on the constitutive response of highly filled composites is investigated
using two multiscale homogenization schemes: one based on a closed-form micromechanics solution, and the other on the
finite element implementation of the mathematical theory of homogenization. In both cases, the particle debonding process
is modeled using a bilinear cohesive law which relates cohesive tractions to displacement jumps along the particle–matrix
interface. The analysis is performed in plane strain with linear kinematics. A detailed comparative assessment between the
two homogenization schemes is presented, with emphasis on the effect of volume fraction, particle size and particle-to-par-
ticle interaction.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper focuses on the modeling of particle
debonding (sometimes referred to as dewetting) in
particulate composites, with special emphasis on
systems characterized by high reinforcement volume
fraction and substantial modulus mismatch between
constituents. Examples include solid propellants
(SP), energetic materials and other reinforced
elastomers, which are typically composed of stiff
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particles (such as ammonium perchlorate and alu-
minum for SP) bonded together in a very compliant
elastomeric matrix. The particles in these materials
range from a few micrometers to several hundred
micrometers in diameter, with a total volume frac-
tion as high as 75%.

Bencher et al. (1995) and Ide and Ho (1999) have
studied fracture processes in solid propellants at low
strain rates (�10�3 s�1) and temperatures ranging
from �55 to 70 �C. They report a damage process
which begins with particle dewetting and formation
of matrix fibrils ahead of the crack tip followed by
void coalescence and fibril rupture leading to crack
advancement. Temperature decrease results in
.
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strengthening of the elastomeric matrix and
increased occurrence of particle debonding rather
than matrix tearing, leading to an increase in the
size of the process zone and higher fracture
toughness.

In experiments on an inert comparison material,
Trumel et al. (2001) also noted particle debonding
as the origin of the damage process in uniaxial
quasi-static tests. This is in contrast to the behavior
under high strain rates (103 s�1), in which particle
fracture is the dominant failure mode, and high
pressures (�500 MPa), in which grain plasticity is
observed. Rae et al. (2002a,b) performed experi-
ments on high explosive, another closely packed
particulate composite system. Their results show
clearly that the damage process is dominated by fail-
ure of the particle–matrix interface, with failure ini-
tiating at multiple sites perpendicular to the applied
loading direction, especially along the boundaries of
large particles.

Failure in energetic materials is thus dominated
by processes which occur at a scale of several hun-
dred microns, orders of magnitude smaller than
the scales of the structural components in which
they are commonly used. It is prohibitively expen-
sive to model a typical component with sufficient
resolution to capture the failure processes, hence it
is customary to model different scales separately
and introduce simplifying assumptions to bridge
them. The most common assumption is that it is
possible to represent the complexity of the micro-
structure through some average material character-
ization at the macroscale, a process of ‘‘smearing’’
or homogenization of the microstructural response.
We consider hereafter two complementary homoge-
nization approaches—an analytical method based
on micromechanics, and a numerical scheme based
on the mathematical theory of homogenization
(MTH).

Micromechanics relates microstructural phenom-
ena such as heterogeneities to the mechanics of
material behavior. Building on Eshelby’s detailed
analytical solution of the problem of an ellipsoidal
inclusion in an infinite matrix (Eshelby, 1957), the
method is extended by considering boundary condi-
tions which account for some interactions between
particles. In the Mori–Tanaka method (Mori and
Tanaka, 1973), the inclusion is subjected to the local
strain in the surrounding matrix, while the self-
consistent method, attributed to Hill (1965) and
Budiansky (1965), embeds the particle in a material
with the properties of the homogenized composite.
The Hashin–Shtrikman bounds (Hashin and Shtrik-
man, 1962) are computed by comparing the com-
posite to a reference material, with stiffness either
greater than any element in the composite (upper
bound) or less than every element (lower bound).
Similar bounds on material properties are obtained
numerically by imposing either traction or displace-
ment on the boundaries of a representative volume
element (RVE). In recent work, Kanit et al. (2003)
compare such results to those obtained when the
unit cell is assumed to be the base cell of a periodic
microstructure and periodic boundary conditions
are imposed.

Homogenization methods based on asymptotic
expansions of solution fields were presented by Ben-
soussan et al. (1978) and Sanchez-Palencia (1980) to
study periodic heterogeneous media. As outlined by
Guedes and Kikuchi (1990), the mathematical the-
ory of homogenization (MTH) provides a powerful
framework for linking multiple length scales, well
suited to computation. This approach has been used
extensively by various research groups; see, for
example, Ghosh et al. (1995); Raghavan et al.
(2001); Fish et al. (1997).

When an analytical solution is available, a
micromechanics model is substantially cheaper than
a numerical solution. However, the assumptions
required for an analytical solution to be tractable
tend to reduce the accuracy of the model. In this
work, we are interested in evaluating the extent to
which the simplified model still provides valid mate-
rial representation, or, at the least, useful physical
insights in the case of particle dewetting.

The micromechanics model can be validated
through comparison with experimental results.
However, when the analytical and empirical results
differ, to what do we attribute the error? The error
may be a consequence of material assumptions
(i.e., linear elasticity, small strain) or of simplifica-
tions used to arrive at the micromechanics model
(i.e., spherical particles, hydrostatic stress, uniform
fields in phases). Often, due to the limitations of
experimentation, only a single macroscopic compar-
ison can be made quantitatively, while microscopic
comparison is qualitative at best. Hence comparison
with experimental data is not always sufficient to
identify errors in the model and consequently
improve it. There is a role for solution verification
by comparison with a reference numerical solution.
In this paper, we therefore perform such a com-
parison between a micromechanics model and a
numerical MTH scheme that incorporates the same
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material and failure models, but accounts for heter-
ogeneous fields and particle interactions and allows
for complex loading paths.

The micromechanics model follows that used by
Tan et al. (2005a, 2006) to investigate the debonding
of spherical particles under remote hydrostatic
tension. Debonding at the particle–matrix inter-
face was modeled through the use of a bilinear cohe-
sive law. Beginning with a dilute homogenization
assumption (Tan et al., 2006), the model was subse-
quently extended to a Mori–Tanaka homogeniza-
tion procedure (Tan et al., 2005a), which is valid
for a larger range of volume fractions. Although
based on highly simplifying assumptions (linear
kinematics and material response), the microme-
chanics models captured the size effect observed
experimentally, with large particles debonding
before small particles. The authors identified a crit-
ical particle radius acr above which the composite
softens rather than hardens after debonding, caus-
ing the interface to undergo continuous debonding
even under static load.

The other homogenization approach considered
in this paper, the MTH-based finite element scheme,
served as the foundation of the analysis performed
by Matouš and Geubelle (2006) in a finite strain
setting with cohesive zone modelling of interface
failure. The finite element formulation was stabi-
lized to handle the near-incompressible behavior
of the matrix. Simulations of one- and four-particle
unit cells of an idealized solid propellant allowed
microscale failure processes to be linked with mac-
roscopic stress–strain curves, including an example
in which load path bifurcation occurs. The results
presented in Matouš and Geubelle (2006) are not
predictive, as the size and simplicity of the unit
cell adopted in that study do not approach the sta-
tistical representativity required of an RVE except
for very organized microstructures. Increasing prob-
lem size would substantially increase the computa-
tional costs. In order to further study the physics
of particle debonding in closely packed materials
with much larger unit cells, a simpler computational
model, based on assumptions of linear kinematics
and plane strain, is developed in this paper. This
simpler model provides a useful tool for investiga-
tion of multiple physical phenomena, while not
attempting to approach the accuracy of the above
work.

The objective of this paper is thus to perform a
detailed comparative study between these two mod-
eling approaches to assess the range of validity of
the micromechanics model in the cohesive modeling
of dewetting in particulate composites. As it was the
case in the micromechanics study, this comparative
analysis relies on linear kinematics (small strain),
linear elasticity and equibiaxial loading assump-
tions, although the numerical homogenization
scheme can readily incorporate finite kinematics,
nonlinear material response and more complex
loading cases (Matouš and Geubelle, 2006). The
comparison is performed under the plane strain
assumption, in which the inclusions are actually
fibers rather than spheres, although we will continue
to refer to ‘‘particles’’ and ‘‘particulate composites’’.
Both approaches use identical constitutive models
for the constituents and their interface.

Section 2 sets out the general problem to be
solved, and defines the cohesive law and material
properties which will be used. In Section 3, we
develop the plane strain version of the microme-
chanics model introduced by Tan et al. (2005a,
2006) and present the key results of this homogeniza-
tion scheme. Section 4 is devoted to the presentation,
implementation and application of the MTH-based
finite element method. Simulated damage evolutions
obtained on a variety of loading conditions and their
effect on the macroscopic constitutive response of
the composite are also presented. However, the com-
parison between these two homogenization schemes,
discussed in Section 5, is limited to the equibiaxial
loading case. In Section 6, we evaluate the perfor-
mance of the micromechanics model, and present
conclusions.

2. Problem description

The problem of interest consists of a heteroge-
neous material composed of particles XpI embedded
in a matrix Xm and subjected to a macroscopic stress
�r or strain �e. The volume fraction of particle I is
given by fI ¼ XpI=X, satisfying

P
I fI ¼ f . Super-

scripts m, pI and int denote the matrix, particle I

and interface, respectively. The composite experi-
ences damage through debonding of the particle–
matrix interface, denoted SpI . We aim to determine
the macroscopic stress–strain response of the com-
posite during damage evolution.

The debonding of the particle from the surround-
ing matrix is modeled through a traction–separation
law at the cohesive interface. Tan et al. (2005b) pres-
ent experimental results justifying the use of a bilin-
ear cohesive law, specified in terms of interface
properties,
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Fig. 1. Bilinear cohesive law for opening in the normal direction.
The unloading path is always directed towards the origin.

Table 1
Cohesive interface properties

Property Symbol Value

Interface strength (MPa)

Normal rmax 0.02
Tangential smax 0.02

Critical opening displacement (lm)

Normal Dnc 1.0
Tangential Dtc 1.0

Linear modulus (MPa/lm) kr 1.00
Softening modulus (MPa/lm) ~kr 0.02

Initial damage (–) Sinit 0.98
Interface energy (MPa lm) cint 0.01
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where rmax, kr and ~kr respectively represent the
interface strength, modulus and softening modulus
of the interface, and surb is the interface opening
(or displacement jump) in the radial direction, mak-
ing use of the discontinuity notation s• b. Since the
loading condition is hydrostatic, they consider only
normal extension and do not account for tangential
opening or for normal compression.

The bilinear irreversible cohesive law used in the
numerical simulations presented in Section 4 is that
described by Geubelle and Baylor (1998), which, at
each point along the interface, relates the normal
(Tn) and tangential (Tt) cohesive tractions to the
normal (Dn) and tangential (Dt) displacement jumps
through

T n ¼
rmax

Sinit

S
1�S

Dn
Dnc

for Dn P 0;

rmax

1�Sinit

Dn
Dnc

for Dn < 0;

(
ð2Þ

T t ¼
smax

Sinit

S
1� S

Dt
Dtc

: ð3Þ

The coupling between normal and tangential failure
is achieved through an interface damage parameter
S, which degrades from its initial value Sinit, chosen
close to unity, to 0 with increased interface opening
according to

S ¼ hh1� keDk2ii ¼ hh1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dn
Dnc

� �2

þ Dt
Dtc

� �2
s

ii
ð4Þ

when Dn is positive. In the case of compression
(Dn < 0), no further accumulation of damage is al-
lowed. In the above expression, hhaii = a if a > 0
and hhaii = 0 otherwise. S represents the remaining
capacity of the local interface to sustain tractions.
The parameters rmax and smax entering (2) and (3) de-
note the tensile and shear interface strengths respec-
tively, while Dnc and Dtc represent the critical normal
and tangential values of the opening displacements
beyond which complete failure is assumed.

As shown in Fig. 1, the cohesive laws used in the
micromechanics model and in the numerical simula-
tions are identical for the normal opening direction
in the absence of shear failure, when cohesive stiff-
nesses are related through
kr ¼
rmax

ð1� SinitÞDnc

; ð5Þ

~kr ¼
rmax

SinitDnc

; ð6Þ

and the interface fracture toughness, (i.e., the area
under the traction-separation curve) is given by

cint ¼ r2
max

2

1

kr
þ 1

~kr

� �
¼ 1

2
rmaxDnc: ð7Þ

The interface properties, given in Table 1, and vol-
umetric material properties, given in Table 2, have
been chosen to ensure that failure occurs within
the limit of small strain, as the linear kinematics
assumption is invoked in both the micromechanics
and MTH models. This is acceptable, since we are



Table 2
Volumetric material properties

Constituent E (MPa) m

Particles 150 0.3
Binder 1 0.4
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interested in comparing two models using identical
material properties. Throughout the paper, all re-
sults are normalized with respect to the chosen
properties. Note the large mismatch between the
material properties of the matrix and the particles.

3. Micromechanics model

The micromechanics model with debonding pre-
sented by Tan et al. (2005a, 2006) is reformulated
here for plane strain conditions. Only the key plane
strain results are summarized hereafter: for more
detail, the reader is referred to the above references.
In this section and the remainder of this paper,
uppercase subscripts denote the particle number
and are not summed over unless explicitly specified,
while lowercase indices follow conventional summa-
tion rules and in this plane strain setting take the
values 1 and 2.

To find a relationship between macroscopic
strain, �e, and macroscopic stress, �r, we begin with
the following expression for the macroscopic strain
taken from Benveniste and Aboudi (1984):

�e ¼Mm : �rþ
X

I

fIfðMpI �MmÞ : hrpiI þ heintiIg;

ð8Þ

where M is the material compliance tensor, hrpiI
represents the stress average over particle I, and
heintiI represents the strain average over interfaces
around particle I,

heintiI ¼
1

2XpI

Z
SpI

ðsut� nþ n� sutÞdA; ð9Þ

where n is the normal to the cohesive interface. In
other words, the macroscopic (or average) strain
can be considered as the strain due to the average
stress applied to the matrix material, with perturba-
tions due to the stress in each particle and due to the
displacement discontinuity at the damaged particle–
matrix interfaces. Note that this relation is general
and only assumes linearity of the matrix and particle
constitutive laws.

In order to find the macroscopic stress–strain
relationship, we need to investigate the stress within
particles and the strain across particle interfaces.
We make simplifying assumptions in order to pro-
ceed with an analytical solution: isotropy of parti-
cles and matrix, equibiaxial applied strain �e and
cylindrical particles of radius aI. These assumptions
reduce the problem to an axisymmetric one and
ensure uniform stress fields in the particles. The
average stress in a particle is then given by

1

2
hrp

kkiI ¼ rint
I ; ð10Þ

while the interface strain (9) reduces to

heint
kk iI ¼

2hsurtiI
aI

: ð11Þ

The relationship between interface traction and dis-
placement jump is the cohesive interface law (1). The
relationship between displacement jump and macro-
scopic stress requires a further assumption about
the stress in the matrix surrounding the particle.
The dilute assumption considers the particle to be
embedded in an infinite matrix subjected to remote
equibiaxial stress �r. The Mori–Tanaka assumption,
by contrast, considers a particle embedded in the
local matrix and subjected to stress rm, with the
macroscopic stress balanced by

�r ¼ ð1� f Þrm þ
X

I

fIhrpiI : ð12Þ

It is clear that, for small f, the Mori–Tanaka and the
dilute assumptions converge, as we would expect.
The two assumptions are represented schematically
in Fig. 2.

The displacement discontinuity is readily deter-
mined (Timoshenko and Goodier, 1970) to be

surt¼ aI
2ð1� mmÞð1þ mmÞrE�ð1þ mmÞrint

Em � rint

2KpI
pl�e

" #
;

ð13Þ

where Kpl�e is the plane strain bulk modulus
expressed in terms of the Young’s modulus E and
Poisson’s ratio m as

Kpl�e ¼
E

2ð1� 2mÞð1þ mÞ ; ð14Þ

and rE denotes the macroscopic applied equibiaxial
stress,

rE ¼
�r; for the dilute model;

rm; for the Mori–Tanaka model:

�
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Fig. 2. Schematic comparison of dilute (left) and Mori–Tanaka (right) assumptions under conditions of remote equibiaxial stress.
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We use (13) to rewrite the cohesive law (1) as

rint ¼
aIrE; undamaged

1þ a0I
aI

� �
rmax � a0Ir

E; transition

0; fully damaged

8><>:
ð15Þ

where aI and a0I are functions of the material
properties:

aI ¼
2ð1� mmÞð1þ mmÞ

Em

kraI
þ Em

2K
pI
pl�e

þ 1þ mm
; ð16Þ

a0I ¼�
2ð1� mmÞð1þ mmÞ
� Em

~kraI
þ Em

2K
pI
pl�e

þ 1þ mm
: ð17Þ

The macroscopic strain in the composite can now be
found by substituting (10) through (13) in (8) for the
dilute and Mori–Tanaka cases, respectively:

�eD ¼2ð1þ mmÞð1� mmÞ
Em

1� 2mm

2ð1� mmÞþ f
� �

�r�
X

I

fIr
int
I

" #
;

ð18Þ

�eMT ¼2ð1þ mmÞð1� mmÞ
Emð1� f Þ

1� 2mmþ f
2ð1� mmÞ �r�

X
I

fIr
int
I

" #
;

ð19Þ

where rint
I is related to �r through (15). The dilute

and Mori–Tanaka macroscopic stress–strain curves
obtained for the volumetric and cohesive properties
described in Section 2 and for a relatively small vol-
ume fraction (f = 0.2) of 40 lm radius particles are
shown in Fig. 3. For a single particle size (I = 1)
and the equibiaxial loading case, the constitutive re-
sponse is trilinear, with the undamaged and fully
damaged portions of the curve passing through
the origin (as indicated by the dotted lines in
Fig. 3). The fully damaged solution, for which all
interfaces have debonded (i.e., rint

I ¼ 0 : 8I), corre-
sponds to the response of a linearly elastic material
with a void volume fraction f (i.e. porous medium).
The sign of the coefficient a0I defined in (17) deter-
mines the slope of the transitional stage of the mac-
roscopic stress–strain curve.

The predicted undamaged response and onset of
the transition between undamaged and fully dam-
aged states are, for this value of f, very similar
between the dilute and the Mori–Tanaka models.
However, as is apparent in Fig. 3 even for this rela-
tively low volume fraction, substantial differences
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exist between the two micromechanics models in the
transition and fully damaged responses. Since we
are primarily interested in composite systems with
moderate to high particle volume fractions, we will
focus the remainder of this discussion on the
Mori–Tanaka model.

The effect of the volume fraction on the �r–�e
curve is shown in Fig. 4. As expected, due to the
stiffness mismatch between the particles and the
matrix, an increasing value of f leads to a stiffening
undamaged response and a more compliant fully
damaged response. Note that the maximum theo-
retical packing density of circles of a single size in
a plane is f � 0.91, in contrast to the maximum
for spheres, which is f � 0.78. In practice, the high
volume fractions in energetic materials are achieved
by using a distribution of particle sizes. When there
is more than one particle size, as in Fig. 5, the mac-
roscopic stress–strain curve becomes more complex,
with critical points corresponding to damage initia-
tion and complete failure for each of the phases,
starting with the larger particles, as observed
experimentally.

Fig. 6 shows the effect of the particle radius on the
macroscopic stress–strain curve for a fixed volume
fraction. Increasing the radius decreases the slope
of the transitional stage, which suggests the existence
of a critical radius, acr, below which the composite
hardens in the transitional phase, and above which
the material softens. Tan et al. (2006, 2005a) differ-
entiate between stable and unstable paths, with cat-
astrophic debonding possible under load control for
particles larger than the critical particle size. How-
ever, as we will see in Section 5, even the mono-
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volume fraction f = 0.2.
tonically increasing macroscopic responses show
instability under equibiaxial loading.
4. MTH-based multiscale finite element method

Consider the multiscale structural problem
shown in Fig. 7. The macroscopic scale x is related
to the microscopic scale y through an asymptotic
scaling parameter n, as y = x/n. The macroscopic
domain X with boundary C is subject to mixed
boundary conditions. Tractions are applied to Ct

and displacements are imposed on Cd, with C =
Ct [ Cd. No body forces are considered in
this work. The heterogeneous microscopic domain
H is assumed to be periodic and contains fibers
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embedded in a surrounding matrix. The progressive
failure of the fiber–matrix interfaces, denoted by Cc,
is characterized by the cohesive law given in (2)–(4).

We define an asymptotic expansion of the dis-
placement field,

uðx; yÞ � uð0Þðx; yÞ þ n1uð1Þðx; yÞ þ n2uð2Þðx; yÞ þ � � � ;
ð20Þ

where superscripts in parentheses (0),(1),. . . indicate
the asymptotic order. Next, we use the differentia-
tion operator

o/ðx; yÞ
ox

¼ o/
ox
þ 1

n
o/
oy

ð21Þ

to derive the asymptotic expansion of the displace-
ment gradient

oui

oxj
� ouð0Þi

oxj
þ 1

n
ouð0Þi

oyj

þ n
ouð1Þi

oxj
þ ouð1Þi

oyj

þ n2 ouð2Þi

oxj

þ n
ouð2Þi

oyj

þ � � � ð22Þ

The strain, defined to be the symmetric part of the
strain operator in the small strain setting, is thus
given by

eij � n�1 oSuð0Þi

oyj

 !
þ n0 oSuð0Þi

oxj
þ oSuð1Þi

oyj

 !

þ n1 oSuð1Þi

oxj
þ oSuð2Þi

oyj

 !
þ � � � ; ð23Þ

� n�1eð�1Þ
ij þ n0eð0Þij þ n1eð1Þij þ � � � ; ð24Þ
where we have introduced the symmetric gradient
operator

oS�i

oxj
¼ 1

2

o�i

oxj
þ o�j

oxi

� �
: ð25Þ

In terms of the material stiffness tensor, E, the exter-
nal tractions applied on Ct, t, and the cohesive trac-
tions present on Cc, T, the principle of virtual work
(PVW) for this problem isZ

X
Eijklekl

oSvi

oxj
dX�

Z
Ct

tivi dS þ
Z

Cc

T isvitdS ¼ 0;

ð26Þ
for all admissible displacements v satisfying

v 2 ½H 1�2; v ¼ 0 on Cd; ð27Þ
where [H1]2 is the Sobolev space for the 2-D prob-
lem. Expanding (26) and grouping by powers of n
leads to

1
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dX¼ 0; ð28Þ
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¼
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Ct

tivi dS: ð30Þ

We make use of the integration operators for y-peri-
odic functions

lim
n!0þ

Z
X

/ðx; yÞdX ¼ 1

jHj

Z
X

Z
H

/ðyÞdHdX; ð31Þ

lim
n!0þ

n
Z

C
/ðx; yÞdA ¼ 1

jHj

Z
X

Z
oH

/ðyÞdAH dX; ð32Þ

in evaluating (28) and (29). Eq. (30) represents equi-
librium at the macroscale and is used to fully couple
the macro- and microscale solutions. However, this
relation is not used in this work, as we assume a
macroscopic strain history �e and extract from the
periodic RVE the effect of the microscale damage
evolution on the macroscopic stress �r.

As described in detail by Guedes and Kikuchi
(1990), from (28) we establish that u(0) depends only
on the macroscale,

uð0Þðx; yÞ ¼ uð0ÞðxÞ ð33Þ
with no y-dependence, and is hence a continuous
field. From (33) and (29), we obtain an expression
of equilibrium at the microscale
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1

jHj

Z
H

Eijkl
oSuð0Þk ðxÞ

oxl
þ oSuð1Þk

oyl

 !
oSvi

oyj

" #
dH

þ 1

jHj

Z
Cc

T isvitdS ¼ 0; ð34Þ

for all admissible displacements v satisfying

v 2 ½H 1�2; vðyÞ is Y -periodic on oH: ð35Þ
Defining the macroscopic strain, �e ¼ oS uð0Þ

ox
, and the

fluctuating strain, ~e ¼ oS uð1Þ

oy
, and considering the

macroscopic strain as having the effect of a loading
term at the microscale, we can rearrange (34) in the
following form:

1

jHj

Z
H

Eijkl~ekl
o

SviðyÞ
oyj

dHþ 1

jHj

Z
Cc

T isvitdS

¼ � 1

jHj

Z
H

Eijkl
oSviðyÞ

oyj

dH�ekl; ð36Þ

which serves as the basis for the finite element solu-
tion for the discontinuous displacement field u(1). In
the following, we refer to u(0) as the macroscopic dis-
Fig. 8. (a) Typical RVE mesh, incorporating 3- and 4-noded elements
distribution.
placement, and u(1) as the fluctuating displacement.
The macroscopic stress �r is given by the volume
average of the local stress field. Note that the mac-
roscopic stress and strain defined in this section
have the same meaning as those defined in Section 3.

A sample representative volume element (RVE)
of a simulated particulate composite containing 50
circular particles is shown in Fig. 8(a). The RVE
is square, with edges of length 693.5 lm. The parti-
cle radius distribution is bimodal, as shown in
Fig. 8(b), with peaks at a = 50 and 30 lm, and with
volume fractions of 0.26 and 0.18, respectively. The
total particle volume fraction is thus 0.44. The par-
ticles and matrix are discretized with 3- and 4-noded
elements using the T3D meshing tool (Rypl and
Bittnar, 2002), which creates a periodic mesh. The
particle–matrix interfaces are modeled with 4-noded
cohesive elements. To enforce periodicity, corre-
sponding nodes on opposite edges are assigned the
same equation number. The nonlinear system of
equations resulting from (36) is solved using the
stiffness matrix from the previous load step, with
, with refinement in areas of high heterogeneity. (b) Particle size
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an adaptive load stepping scheme to ensure accu-
racy and efficiency of computational effort. The
mesh is checked to ensure that there are sufficient
cohesive elements within the cohesive zone. More
details on the packing and discretization methodol-
ogies can be found in Matouš et al. (2006).

Fig. 9 shows results from this RVE under an
imposed macroscopic equibiaxial strain, �e ¼ ð�e11;
�e22;�e12Þ ¼ ð0:0045; 0:0045; 0:0000Þ. The macroscopic
stress–strain (left axis) and cohesive damage evolu-
tion (right axis) are plotted on the same graph to
allow for a direct correlation between microscale
damage and macroscopic constitutive response.
The macroscopic stresses �r11 and �r22 are normalized
Fig. 9. (Top) MTH prediction of macroscopic stress–strain and damage
stress distributions plotted on the deformed shape (displacements magn
denoted by open circles in the top figure.
by the critical opening stress rmax. Below the graph,
a sequence of von Mises stress fields, rvm, are plot-
ted on the deformed shape, with displacements mag-
nified 10 times. The gray scale maps have been
normalized and the range limited to allow clear dis-
cernment of variations in the fields. For this reason,
the signal saturates in regions of particularly high
stresses.

The dash-dotted curve corresponds to the evolu-
tion of the fraction of cohesive elements which are
damaged, i.e., those which are in the downward por-
tion of the cohesive curve in Fig. 1, while the dashed
and dotted curves denote the fraction of fully failed
cohesive elements on the boundaries of large and
evolution curves for equibiaxial strain case. (Bottom) Von Mises
ified by 10) of the RVE at the four stages in the damage process
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small particles, respectively. As apparent in Fig. 9, a
substantial fraction (about 40%) of the particle–
matrix interfaces is damaged before we can discern
a deviation from linearity in the stress–strain curves.
Under the highly unstable macroscopic equibiaxial
strain, the damage evolution curve rises rapidly up
to the point at which the first interfaces fail com-
pletely leading to a sudden dropoff in macroscopic
stresses, as indicated by (a). Failure commences at
the large particles and in regions of locally high vol-
ume fraction and is a sudden event. The initial inter-
facial failure drives a localization process, visible in
(b), resulting in a loss of stress equibiaxiality, with
�r11 < �r22 since the system becomes more compliant
in the direction normal to the localization band.
Localization continues until all the particles across
the height of the RVE have failed, at (c). At this
Fig. 10. Uniaxial macroscopic strain: (a) Macroscopic stress–
strain curve, including damage evolution; (b) Von Mises stress
distribution at �e11 ¼ 0:6%. The displacements have been magni-
fied by 10 to emphasize the interface failure.
point, we note that, in reality, the small remaining
ligaments of matrix between the decohered particles
would tear, causing complete failure of the compo-
nent. However, since matrix tearing is not consid-
ered in this study, continuing loading causes a new
process of localization to initiate perpendicular to
the original localization direction, as shown in (d),
resulting in a return to near equibiaxiality of the
macroscopic stresses. Throughout this sequence,
the periodicity of the domain is evident, with dis-
placements and stresses at opposite boundaries of
the RVE being identical. Failure occurs preferen-
tially at the interfaces of large particles, in agree-
ment with experimental observations.

Fig. 10 presents the macro- and micro-scale
results associated with �e ¼ ð0:006; 0; 0Þ. The uniaxial
state of macroscopic strain leads to a more stable
Fig. 11. Macroscopic shear stress state: (a) Macroscopic stress–
strain curve, including damage evolution; (b) Von Mises stress
distribution at �e11 ¼ 2:3%. Displacements magnified by 10.
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macroscopic solution. In this case, failure initiates
at large particles, with opening normal to the
applied loading direction. Due to the lower level
of stress biaxiality, the failure process is less sudden,
although localization of damage still appears in the
direction perpendicular to the applied macroscopic
strain. Note the presence of stress concentrations
in the vicinity of interfacial crack tips.

The solution is quite different in the shear loading
case (Fig. 11), for a macroscopic strain of �e ¼
ð0; 0; 0:023Þ. The maximum principal stress is at a
45� angle to the RVE axes, and the openings are
again normal to the applied load. The large negative
principal stress results in considerably less failure of
the cohesive interfaces than in the two other loading
cases, and prevents crack propagation along the
interfaces. Instead of the damage localization
observed in the other two loading cases, we observe
much more distributed damage in the RVE, which
leads to a very limited deviation from linearity in
the macroscopic �r12–�e12 curve (Fig. 11(a)). As in
the uniaxial strain case, damage initiates around
the larger particles. Some of the cohesive failure is
in rotation, particularly evident in those particles
which are on the periodic boundaries.

5. Comparative assessment

In order to compare the micromechanics and
MTH-based finite element (MTHFE) models, we
consider first a single particle unit cell subjected to
equibiaxial loading. Periodic boundary conditions
impose a regular stacking of unit cells, thus the sin-
gle particle cell represents a regular array of parti-
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Fig. 12. Comparison between micromechanics a
cles. The volume fraction can be easily controlled
by changing the size of the unit cell while keeping
the particle size constant. Fig. 12 shows the results
of this comparison for low volume fraction
(f = 0.2) for particles smaller (a) and larger (b) than
the aforementioned critical particle size, acr = 27 lm
for this material system. In all the comparative
curves, dashed lines represent the micromechanics
prediction, and solid curves are used for the results
of the MTHFE simulation.

As apparent in Fig. 12 the Mori–Tanaka solution
captures the essential features of the MTHFE result,
with the initial slope and damage initiation point in
good agreement between the two, and the final slope
of the MTHFE tending toward that predicted by
the Mori–Tanaka model. However, the two solu-
tions differ substantially in the transition phase.
Although the MTHFE curve initially follows the
slope of the micromechanics prediction, there is an
instability present in the solution regardless of
whether the predicted material response is mono-
tonic or not. This instability can be related to vari-
ations in stress concentration around the particle
boundary, a consequence of the periodic arrange-
ment of particles, where points at the top, bottom,
left and right of the particle are the closest to a
neighboring particle. Slight differences in cohesive
tractions experienced at different points of the parti-
cle–matrix interfaces, coupled with randomness in
the mesh (analogous to randomness in the particle
shape or local variations in material properties in
a real material) cause the problem to lose axisymme-
try. The instability of the loading conditions and the
softening cohesive law create a system which drives
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Fig. 13. Comparison between micromechanics and MTH solu-
tions for a unit cell containing 18 particles. The failure of each
particle is a discrete event.
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rapid failure of the portion of the interface which
was initially perturbed. We see that, while the
Mori–Tanaka solution assumes that failure occurs
axisymmetrically and uniformly, MTHFE allows
failure to occur non-uniformly, through crack initi-
ation at a random location, followed by crack prop-
agation around the interface. The interface never
fails completely, hence the final slope of the
MTHFE solution does not decline to that predicted
by micromechanics. Once a considerable portion of
the interface has failed, little driving force remains
to debond the last few elements.

To investigate the effect of non-regular particle
distribution, we perform the same comparison on
a periodic unit cell containing 18 particles in a ran-
dom array, shown in Fig. 13. (This locally random
particle arrangement is, however, repeated through
periodicity.) For reference, the solution for a single
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particle with the same volume fraction and particle
size is plotted on the same graph, with a dotted
curve. While the beginning of instability occurs at
almost the same point for both simulations, the
dropoff is much more sudden for the multi-particle
system than it is for a single particle, due to particle
interaction and localization. As failure initiates in
one particle, that drives failure for all the particles
across the height or width of the cell. The failure
process is discrete, as an ongoing failure process
relieves stresses elsewhere in the RVE, delaying the
failure of other particles.

Thus far, we have considered only microstruc-
tures with low volume fractions. Fig. 14 shows
results for volume fractions as high as f = 0.7 (close
to the maximum possible for a rectangular array).
As seen earlier, for low volume fraction, the models
are in good agreement about key features of the
solution. As the volume fraction increases, the level
of agreement between the two models in the transi-
tion region decreases. The difference is particularly
obvious in Fig. 14(c) and (d). This is expected since
the Mori–Tanaka assumption is known to be valid
only for low to moderate volume fractions. The
Mori–Tanaka model also underpredicts the initial
slope slightly. The sharp damage initiation point,
a consequence of the bilinear cohesive law, is
present in the solutions at low volume fraction,
but becomes less marked as f increases. The increas-
ing packing density results in an increase in stress
concentration at localized points on the particle
boundary, causing damage to begin earlier than
predicted. The transitional phase does not display
the same sudden dropoff as observed for lower vol-
ume fraction and the slope is significantly more neg-
ative in the entire region, since failure is not
occurring at the same rate everywhere around the
boundary.

Real material systems have multiple particle
sizes. Fig. 15 shows the results of a simulation with
two different particle sizes. For particles of similar
sizes, shown in (a), stress concentrations and locali-
zation processes play a significant role. The failure
processes for large and small particles are not inde-
pendent, as predicted by the micromechanics solu-
tion. However, once the difference between particle
sizes becomes significant, as in (b), the effect of the
smaller particles on the failure process is reduced
substantially. The smaller particles serve merely to
stiffen the binder and to trigger damage nucleation
through local stress concentration. This is evident
in both the MTHFE and micromechanics results,
indicating that the micromechanics model, while
not fully capturing the failure process, can nonethe-
less give useful information about which particles
need to be modeled.
6. Conclusions

We have performed a detailed comparative
assessment of micromechanics and finite element
based homogenization schemes for the problem of
debonding damage in a plane strain particulate
composite system. Special emphasis has been placed
on the ability of the two schemes to capture particle-
to-particle interactions and the effect of dissimilar
particle sizes.
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The plane strain micromechanics model devel-
oped by Tan et al. (2005a) is effective at capturing
key features of the macroscopic stress–strain
response for minimal computational effort. The
shortcomings of this model are that it cannot cap-
ture the instability inherent in the system or the het-
erogeneous stress and strain fields. In a highly filled
composite, interactions between particles are a sig-
nificant contributor to failure through local stress
concentrations and the occurrence of localization.
The micromechanics model does not capture these
interactions during the failure process, and hence
ceases to be predictive under high volume fraction,
f > 0.5, when stress concentrations begin to play a
significant role in the solution, or when the particle
distribution is random, resulting in localization.
Both models demonstrate that, for large differences
in particle diameters, it is unnecessary to model the
debonding of smaller particles, but it is sufficient to
represent their contribution to damage nucleation
and to the stiffness of the matrix.

The ability of the MTHFE code to function as a
direct numerical simulation for validation of simpler
models has been demonstrated. The MTH-based
code has an ability to capture a richness of details
about the physical response of the system. The
method is capable of solving more complex loading
cases, and can be extended to include different mate-
rial models and nonlinear kinematics, which is of
particular interest in the modeling of damage in
energetic materials.
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of Energy. K. Matouš and P.H. Geubelle also
acknowledge support from ATK/Thiokol (Program
Managers, J. Thompson and Dr. I. L. Davis). H.
Tan and Y. Huang acknowledge additional support
from ONR Composites for Marine Structures Pro-
gram (Grant N00014-01-1-0205, Program Manager
Dr. Y.D.S. Rajapakse).

References

Bencher, C.D., Dauskardt, R.H., Ritchie, R.O., 1995. Micro-
structural damage and fracture processes in a composite solid
rocket propellant. Journal of Spacecraft and Rockets 32 (2),
328–334.

Bensoussan, A., Lions, J.L., Papanicolaou, G., 1978. Asymptotic
Analysis for Periodic Structures. North-Holland.
Benveniste, Y., Aboudi, J., 1984. A continuum model for fiber
reinforced materials with debonding. International Journal of
Solids and Structures 20, 935–951.

Budiansky, B., 1965. On the elastic moduli of some heteroge-
neous materials. Journal of the Mechanics and Physics of
Solids 13, 223–227.

Eshelby, J.D., 1957. The determination of the elastic field of an
ellipsoidal inclusion, and related problems. Proceedings of the
Royal Society of London A 241, 376–396.

Fish, J., Shek, K., Pandheeradi, M., Shephard, M.S., 1997.
Computational plasticity for composite structures based on
mathematical homogenization: theory and practice. Com-
puter Methods in Applied Mechanics and Engineering 148,
53–73.

Geubelle, P.H., Baylor, J.S., 1998. Impact-induced delamination
of composites: a 2D simulation. Composites Part B 29B,
589–602.

Ghosh, S., Lee, K., Moorthy, S., 1995. Multiple scale analysis of
heterogeneous elastic structures using homogenization theory
and Voronoi cell finite element method. International Journal
of Solids and Structures 32 (1), 27–62.

Guedes, J.M., Kikuchi, N., 1990. Preprocessing and postpro-
cessing for materials based on the homogenization method
with adaptive finite element methods. Computer Methods in
Applied Mechanics and Engineering 83, 143–198.

Hashin, Z., Shtrikman, S., 1962. A variational approach to the
theory of the elastic behaviour of polycrystals. Journal of the
Mechanics and Physics of Solids.

Hill, R., 1965. A self-consistent mechanics of composite materi-
als. Journal of the Mechanics and Physics of Solids 13, 213–
222.

Ide, K.M., Ho, S.-Y., 1999. Fracture behaviour of accelerated
aged solid rocket propellants. Journal of Materials Science 34,
4209–4218.

Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D., 2003.
Determination of the size of the representative volume
element for random composites: statistical and numerical
approach. International Journal of Solids and Structures 40,
3647–3679.
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