

UNIVERSITYOF NOTRE DAME

High-performance Image-based Modeling of Failure in Heterogeneous Materials with Application to Thin Layers

Karel Matouš

M. Mosby and A. Gillman

Motivation

S. Xu, D. Dillard and J. Dillard

Multiscale Cohesive Model

Strong and Weak Forms

Macroscale Strong FormBoundary Conditions $\nabla_{\boldsymbol{X}} \cdot {}^{0}\boldsymbol{P} + \boldsymbol{f} = \boldsymbol{0} \in \Omega_{0}^{\pm}$ ${}^{0}\boldsymbol{P} \cdot \boldsymbol{N} = \boldsymbol{t}^{p} \quad \text{on } \partial \Omega_{0}^{t}$ ${}^{0}\boldsymbol{P} = \frac{\partial^{0}W}{\partial^{0}\boldsymbol{F}} \in \Omega_{0}^{\pm}$ ${}^{0}\boldsymbol{u} = {}^{0}\boldsymbol{u}^{p} \quad \text{on } \partial \Omega_{0}^{u}$ ${}^{t} + \boldsymbol{t}^{-} = \boldsymbol{0} \quad \text{on } \Gamma_{0}$

$$\mathbf{Macroscale Weak Form}$$

$${}^{0}\mathcal{R} = \int_{\Omega_{0}^{\pm}} {}^{0}\boldsymbol{P} : \nabla_{\boldsymbol{X}}(\delta^{0}\boldsymbol{u}) \, \mathrm{dV} \quad -\int_{\Omega_{0}^{\pm}} \boldsymbol{f} \cdot \delta^{0}\boldsymbol{u} \, \mathrm{dV} - \int_{\partial\Omega_{0}^{t}} \boldsymbol{t}^{\mathrm{p}} \cdot \delta^{0}\boldsymbol{u} \, \mathrm{dA} + \int_{\Gamma_{0}} {}^{0}\boldsymbol{t} \cdot \left[\!\left[\delta^{0}\boldsymbol{u}\right]\!\right] \, \mathrm{dA} = 0$$

 $\begin{aligned} & \mathbf{Microscale \ Strong \ Form} \\ & \nabla_{\boldsymbol{Y}} \cdot {}^{1}\boldsymbol{P} = \boldsymbol{0} \quad \in \ \Theta_{0} \\ & {}^{1}\boldsymbol{P} = \frac{\partial^{1}W}{\partial \boldsymbol{F}} \quad \in \ \Theta_{0} \\ & \boldsymbol{F} = \boldsymbol{1} + \frac{1}{l_{c}} \left[\!\!\begin{bmatrix}^{0}\boldsymbol{u}(\boldsymbol{X})\end{bmatrix}\!\!\end{bmatrix} \otimes^{0}\boldsymbol{N} + \nabla_{\boldsymbol{Y}}{}^{1}\boldsymbol{u}(\boldsymbol{Y}) \end{aligned}$

Hill-Mandel Lemma

- Microscale weak form
- Yields closure on ⁰*t*
- Restrictions on BC

Hill-Mandel Lemma

$$\inf_{\llbracket^{0}\boldsymbol{u}\rrbracket} {}^{0}W(\llbracket^{0}\boldsymbol{u}\rrbracket) = \inf_{{}^{0}\boldsymbol{F}} \inf_{{}^{1}\boldsymbol{u}} \frac{l_{c}}{|\Theta_{0}|} \int_{\Theta_{0}} {}^{1}W\left({}^{0}\boldsymbol{F}(\llbracket^{0}\boldsymbol{u}\rrbracket) + \nabla_{Y} {}^{1}\boldsymbol{u}\right) \,\mathrm{dV}$$

At microscale
$${}^{0}\boldsymbol{t} = {}^{0}\boldsymbol{N} \cdot \frac{1}{|\Theta_0|} \int_{\Theta_0} {}^{1}\boldsymbol{P} \,\mathrm{dV}$$

equilibrium

 \bigcirc No assumption on form of ${}^{0}t$

Microscale Boundary Condition Admissibility

$$\frac{1}{|\Theta_0|} \int_{\Theta_0} \nabla_{\mathbf{Y}} {}^1 \boldsymbol{u} \, \mathrm{dV} = \frac{1}{|\Theta_0|} \int_{\partial \Theta_0} {}^1 \boldsymbol{u} \cdot \boldsymbol{N}_{\Theta} \, \mathrm{dA} = \mathbf{0} \qquad \Longrightarrow \begin{cases} {}^1 \boldsymbol{u} = \mathbf{0} & \text{on } \partial \Theta \\ {}^1 \boldsymbol{u}^+ = {}^1 \boldsymbol{u}^- \parallel \bar{\boldsymbol{t}}^+ = -\bar{\boldsymbol{t}}^- & \text{on } \partial \Theta \\ \bar{\boldsymbol{t}} = \mathbf{0} & \text{on } \partial \Theta \end{cases}$$

Constitutive Response of Adhesive Layer

•Isotropic damage law

$$^{1}W(\boldsymbol{F},\omega) = (1-\omega)^{1}W(\boldsymbol{F})$$

•Damage surface

$$g(\bar{Y},\chi^{\mathfrak{t}}) = G(\bar{Y}) - \chi^{\mathfrak{t}} \le 0$$

$$G(\bar{Y}) = 1 - \exp\left[-\left(\frac{\bar{Y} - Y_{in}}{p_1 Y_{in}}\right)^{p_2}\right], \qquad H = \frac{\partial G(\bar{Y})}{\partial \bar{Y}}$$

• Irreversible dissipative evolution equations

 $\dot{\omega} = \dot{\kappa}H \qquad \rightarrow \qquad \dot{\omega} = \mu \langle \phi(g) \rangle$ $\dot{\chi}^{\mathfrak{t}} = \dot{\kappa}H \qquad \rightarrow \qquad \dot{\chi}^{\mathfrak{t}} = \mu \langle \phi(g) \rangle$

viscous regularization

Different constitutive laws can be used

High Performance Computing - Weak Scaling

Displacement Magnitude [mm]

0,1

0.2

0.3

 $N_n=23,841,057$ $N_e=123,168,768$

- four nonlinear steps
- four iterations

Hierarchically Parallel Multiscale Solver

$$\begin{bmatrix} {}^{0}\mathcal{R} = \int_{\Omega_{0}^{\pm}} {}^{0}\boldsymbol{P} : \nabla_{\boldsymbol{X}}(\delta^{0}\boldsymbol{u}) \, \mathrm{dV} & -\int_{\Omega_{0}^{\pm}} \boldsymbol{f} \cdot \delta^{0}\boldsymbol{u} \, \mathrm{dV} - \int_{\partial\Omega_{0}^{\pm}} \boldsymbol{t}^{\mathrm{p}} \cdot \delta^{0}\boldsymbol{u} \, \mathrm{dA} + \int_{\Gamma_{0}} {}^{0}\boldsymbol{t} \cdot \left[\!\left[\delta^{0}\boldsymbol{u}\right]\!\right] \, \mathrm{dA} = 0$$

Hierarchically Parallel Multiscale Solver

- Client-server communication structure
- Point-to-point, non-blocking communication structure
- •Load balancing based on round-robin scheduling

Image-based (Data-Driven) Modeling

100µm

scan - 19123 particles cell - 1082 particles

scan - 1445x1288x798 μm cell - 400x400x400 μm

Parallel Genetic Algorithm

Polydisperse Crystalline Systems

Image-based (Data-Driven) Modeling

•20 micron particles

 $1/2 l_{\rm RUC}$ $l_{\rm RUC}$

2 l_{RUC}

 $\frac{1/2 \, l_{\rm RUC} - 70 {\rm x} 70 {\rm x} 200 \, \mu {\rm m}^3}{l_{\rm RUC} - 140 {\rm x} 140 {\rm x} 200 \, \mu {\rm m}^3}$ $\frac{2 \, l_{\rm RUC} - 280 {\rm x} 280 {\rm x} 200 \, \mu {\rm m}^3}{2 \, l_{\rm RUC} - 280 {\rm x} 280 {\rm x} 200 \, \mu {\rm m}^3}$

 $1/2 l_{RUC} - Np = 23$ $l_{RUC} - Np = 93$ $2 l_{RUC} - Np = 374$

$$\llbracket u_s \rrbracket = \sqrt{\llbracket u_{s1} \rrbracket^2 + \llbracket u_{s2} \rrbracket^2}$$

 \bigcirc Mean element size 1.5 μ m

 $2 l_{RUC}$ •Ne=48,537,975 •Nn=8,294,617 •Dofs=24,758,080

Mesh Convergence Study

Richardson extrapolation max error < 1.05%</p>

<u>RUC Study</u>

Solution Secondary Isocontours of $\omega \ge 0.999$ Solution Secondary Secondary

Particle Diameter Effect

Particle Diameter Effect

Hierarchically Parallel Multiscale Solver

L=22 mm, W=10 mm, H=5 mm
l_c=0.125 mm, l_{RUC}=0.25 mm

	Nodes	Elements	DOFs
Macroscale Microscale	731 193,873,920	2,684 1,098,283,920	1,878 574,612,560
TOTAL	193,874,651 🤇	1,098,286,604) 574,614,438

- •16 Clients
- •12 Servers @ 128 cores
 - 1552 cores
 - 370,241 DOFs / core

Department of Aerospace and Mechanical Engineering

)F E

Hierarchically Parallel Multiscale Solver

- Macro-scale
 - No-slip on top/bottom
 - h= 10 mm, d = 20 mm
- E = 15 GPa, v = 0.25
- 15K elements in Macro

- Micro-scale
 - $250 \ge 250 \ge 125 \ \mu m^3$
 - 40 voids, 40 µm diameter
- E = 5 GPa, v = 0.34
- 5M elements in RUC

Multi-scale Simulations, *PGFem3D* - GCTH 487M Node, 2.65B Elements, 1.39B DOF, 64K cores μσμ GPa

Hierarchically Parallel Multiscale Solver

LLNL Vulcan

- Total
 - 16.1M Elements
 - 3.6M Nodes
 - 8.6M DOF
- Macro-scale (16 core)
 - 15,164 Elements
 - 3,338 Nodes
 - 8,328 DOF
- RUC (256 core each)
 - 31,392 Elements
 - 7,074 Nodes
 - 16,758 DOF

Modeling with Co-Designed Experiments

Microtomography In Situ Testing

"Virtual" FE2 Micro-computer Tomography

 $1x1x1 \text{ mm}^3 = \mathcal{O}(10^9)$ elem. mean element size ~ 1 micron $1x1x1 \text{ cm}^3 = \mathcal{O}(10^{12}) \text{ voxels}$ detectability ~ 1 micron

1000 RUCs
Trillion number of elements
Billion number of equations

Karel Matouš Associate Professor Department of Aerospace & Mechanical Engineering University of Notre Dame 367 Fitzpatrick Hall of Engineering Notre Dame, IN 46556 Email: <u>kmatous@nd.edu</u> WWW:<u>http://www.nd.edu/~kmatous</u>