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Abstract

Several sources of variation in facial appearance have
long been investigated that affect face matching perfor-
mance. The recently introduced GBU challenge prob-
lem [1] indicates that even when the impact of most known
factors is eliminated or significantly reduced by the data
collection and experimentation protocol, there can be sig-
nificant variation in performance across different partitions
of the data. The GBU challenge problem consists of three
partitions which are called the Good (easy to match), the
Bad (average matching difficulty) and the Ugly (difficult to
match). In this paper, we investigate various image and fa-
cial characteristics that can account for the observed sig-
nificant difference in performance across these partitions.
Given a match pair, we aim to predict the partition it be-
longs to. Partial Least Squares (PLS)-based regression is
used to perform the prediction task. Our analysis indicates
that the match pairs from the three partitions differ from
each other in terms of simple but often ignored factors like
image sharpness, hue, saturation and extent of facial ex-
pressions.

1. Introduction
Face recognition is one of the most active areas of re-

search in the field of computer vision and pattern recogni-
tion and numerous algorithms have been proposed to ad-
dress various aspects of the problem like variations in illu-
mination, pose, expression, age, etc. This has given rise
to a growing need for evaluating and understanding per-
formance of different algorithms and commercial systems.
There have been several recent efforts to perform large scale
independent evaluations of face recognition systems in the
form of Grand Challenges and Vendor Tests, e.g., Face
Recognition Grand Challenge (FRGC) [2], Face Recogni-
tion Vendor Test (FRVT) [3], etc. These efforts have not
only resulted in rank-ordering of different algorithms based
on their performance on different datasets but also played
an important role in development of improved algorithms

Figure 1. All query (top row) and target (bottom row) images of a
subject from the three partitions in the GBU dataset.

based on their observations and analysis.
The recently introduced GBU challenge problem [1]

builds on the success of these evaluations to encourage
development of algorithms that are robust to variations in
frontal face images that are not acquired under studio-like
controlled conditions. The GBU challenge presents three
partitions of face images which are called the Good (easy to
match), the Bad (average matching difficulty) and the Ugly
(difficult to match). The partitions are created based on the
performance of the top performers in the FRVT 2006 evalu-
ation and signify the range of performance that is achieved
with the state-of-the-art systems. What makes this problem
interesting is that usual suspects like subject aging, sub-

1



Figure 2. Match (left) and non-match (right) score distributions obtained using Pittpatt for the three partitions. Similar to the observation
made in [1], the non-match score distribution is stable across the partitions while they differ in terms of match score distribution.

ject recognizability, pose variations and change in camera
are not the factors that can lead to the performance differ-
ence across the three partitions. The potential effects due
to these factors are virtually eliminated by following a strict
data collection and partitioning protocol. All the images in
the three partitions were acquired within the same academic
year by the same model of camera in the frontal pose. In ad-
dition, all the three partitions consists of exactly same sub-
jects with exactly same number of images. All target and
query images of one subject from all the three partitions are
shown in Figure 1. Though there are differences in illu-
mination condition and facial expression across the images,
these differences are present in all the three partitions as can
be seen in Figure 1. The variation in performance across the
three partitions is shown using Receiver Operator Charac-
teristic (ROC) curves in Figure 3. In the absence of access
to the top performing algorithms in the FRVT 2006, a well-
known commercial face recognition system, Pittpatt [4] is
used to compute the similarity scores. Although the per-
formance obtained is slightly worse than what is shown
in [1], the performance difference across the three partitions
is equally prominent. The corresponding match (left) and
non-match (right) score distributions are shown in Figure 2.
The three partitions appear to have very similar non-match
score distributions, therefore much of the variation in the
performance can be attributed to the difference in match
scores. Therefore, in this investigation much of the atten-
tion is devoted to factors that separate match pairs across
the three partitions.

The unique design of the partitions in the GBU chal-
lenge problem leads to an interesting question. What is it
that is influencing the performance so drastically across the
three partitions? or in other words, What are the factors
that differ across the partitions even though such a strict
protocol is used to both acquire images and to partition
the dataset? In this paper, we make an attempt to answer
these questions. Since the apparent variations in illumina-
tion condition and facial expression are present in all the

three partitions, a coarse classification of images as con-
trolled/uncontrolled illumination or neutral/smiling expres-
sion as normally done [5], may not be very fruitful. To
this end, we investigate characteristics like image sharpness,
shadow pattern, hue and saturation content in addition to
metrics quantifying extent of facial expression. The char-
acteristics are chosen to capture observed variations in the
images at a finer scale (compared to controlled/uncontrolled
or neutral/smiling classification) to explain the performance
difference.

Recent studies [6] have shown that quality of face im-
ages comes in pairs. It is the difference between the two
images that affects similarity score instead of the individual
quality of compared images considered in isolation. Along
these lines, we characterize each match pair using the dif-
ference in investigated characteristics. We observe that the
three partitions differ significantly based on the difference
of these characteristics. Partial Least Squares (PLS)-based
regression [7] is used to highlight the combined usefulness
of these characteristics to distinguish between the three par-
titions.

Figure 3. ROC curves for the three partitions obtained using
Pittpatt as the matching engine.

The rest of the paper is organized as follows. The fol-



lowing section discusses a few significant related works
from the literature. A brief description of the partitions is
provided in Section 3. Description of various characteris-
tics used in the investigation along with their effectiveness
in separating the three partitions is provided in Section 4.
A detailed analysis that includes PLS-based regression to
combine various characteristics is provided in Section 5.

2. Related Work
The existing literature in this topic can broadly be di-

vided into three main categories: a) works that define qual-
ity measures for individual images, b) works that define
quality measures based upon properties of the compared
image pair, and c) works that investigate effects of various
covariates like age, gender, race, etc., on the matching per-
formance. Grother and Tabassi [8] formalize the concept of
sample quality as a scalar quantity that is monotonically re-
lated to the performance of the matcher. Their work asserts
that quality measures should be developed to target match-
ing performance and not just human perception of quality.
Werner and Brauckmann [9] suggest incorporating digital
characteristics like image resolution and compression mea-
sures, and facial characteristics like size and contrast, in ad-
dition to traditional quality metrics like brightness, contrast,
etc., to measure goodness of a face image. Along simi-
lar lines, Weber [10] discuss two aspects of sample quality:
character (features of sample source, e.g., pose, expression,
etc.) and fidelity (accuracy with which the sample repre-
sents the source, e.g., sharpness, resolution, etc.) and inves-
tigate their impact on system performance. Hsu et al. [11]
investigate various image-specific and face-specific quality
metrics and infer that though overall quality scores are posi-
tively correlated with human ratings, humans appear to give
importance to a few metrics that are not very critical in ma-
chine recognition process. A system for evaluating the qual-
ity of face images according to guidelines proposed by In-
ternational Civil Aviation Organization (ICAO) is presented
by Subasic et al. [12]. All these approaches define quality
for individual face images.

Recent advances indicate importance of looking at fa-
cial quality in terms of pairs of images compared instead
of assigning quality values to individual images. Phillips
and Beveridge [13] characterize quality as an interaction
between compared pairs of biometric samples, while show-
ing the theoretical equivalence between perfect matching
and perfect quality analysis. While highlighting this im-
portance, Beveridge et al. [6] show the presence of a large
number of contrary images as opposed to always-hard im-
ages in the GBU dataset. A contrary image is defined as
one which has high match score with at least one other im-
age but gives rise to poor similarity scores when compared
to other good quality images.

Recently, researchers have also started to investigate var-

ious covariates that affect algorithm performance. Givens et
al. [14] use a generalized linear model to analyze the effect
of different covariate factors such as age, gender, race, fa-
cial hair, etc. on the performance of three algorithms. To
estimate the effect of different covariates on performance,
Beveridge et al. [5] fit a Generalized Linear Mixed Model
(GLMM) with Bernoulli response and random effects for
subjects. The analysis is performed on the FRGC data us-
ing both subject and image covariates.

3. GBU Dataset

Thorough details of the GBU dataset are provided in
a recent publication [1]. Here we summarize a few rele-
vant details for completeness. The GBU partitions are con-
structed from the FRVT 2006 [3] data acquired at Univer-
sity of Notre Dame. To control for the variation in ”rec-
ognizability” of different subjects, each of the three parti-
tions consists of same number of images of each person.
To further control sources of variations, all images are ac-
quired using the same camera model and in the frontal pose.
All the images were acquired in the same academic year so
that effect of aging on facial appearance can be reduced.
The images were partitioned into the three subsets using a
greedy strategy based on similarity scores obtained from the
top three performing algorithms in the FRVT 2006 evalua-
tion. Each of the three partitions in the GBU dataset con-
sists of two sets of images, namely, a target set and a query
set. All target and query sets contain 1085 images of 437
unique subjects. For each partition, algorithms are eval-
uated by computing similarity scores between all pairs of
images across target and query sets, resulting in 3297 match
pairs and 1, 173, 928 non-match pairs.

4. Face Image Characterizations

The characterizations explored by us can be broadly di-
vided into two categories: 1) image-specific characteriza-
tions, and 2) face-specific characterizations. Image-specific
characterizations are generic image properties that have no
relation whatsoever to the fact that images being analyzed
are face images. On the other hand, face-specific character-
izations are used to quantify facial properties which may
not have any meaning for non-face images. The image-
specific characterizations analyzed in this investigation in-
clude image sharpness, image hue content, image saturation
content and image intensity content. Face-specific charac-
terizations are included to account for variations in facial
expression observed in the GBU dataset. We use several
geometric measurements around the mouth region in an at-
tempt to characterize these variations and to investigate if
these play any role in the performance difference across the
the three partitions in the GBU dataset. We now describe
each of these characterizations in detail.



4.1. Image Sharpness-based Measures

The extent to which a face image is in focus has been
shown to be a factor that influences matching perfor-
mance [5]. Typically accurate knowledge about the degree
of focus for an image is not available but reasonable esti-
mates can be made from the image. We compute a sharp-
ness metric that is shown to be sensitive to blur [15]. The
value of this metric drops when the image becomes blurred.
This makes it suitable to evaluate visual quality. The com-
putation of this metric involves Singular Value Decompo-
sition (SVD) of the local image gradient matrix. Given an
image region of interest g(x, y), its gradient matrix is de-
fined as

G =


gx(1) gy(1)

...
...

gx(k) gy(k)
...

...
gx(N) gy(N)

 (1)

where gx(k) and gy(k) denote x and y gradients at pixel
location k, respectively. One can estimate local dominant
direction and its strength for this region by computing SVD
of the gradient matrix G as follows

G = USV T = U

[
s1 0
0 s2

] [
v1 v2

]
(2)

The singular values s1 and s2 represent the energy along
directions v1 and v1, respectively. Xhu and Milanfar [15]
show the behavior of dominant singular value s1 on sev-
eral different kinds of patches illustrating its usefulness as a
sharpness metric.

Input face images are divided into regular rectangular re-
gions and sharpness is computed for each of these regions
resulting in a vector representing sharpness content of the
entire face image. Given the sharpness vectors for each im-
age in the dataset, we explore its usefulness to explain the
performance difference across the three partitions. Given
a match pair, Euclidean distance between the two sharp-
ness vectors is computed. The underlying intuition is that a
match pair should be relatively easy to verify if the images
are similar as far as the sharpness measure is concerned.
Figure 4 shows the distributions of difference in the sharp-
ness measure obtained for match pairs for the three parti-
tions. The three distributions differ significantly indicating
that this sharpness-based measure is one of the factors that
are responsible for the performance difference.

In addition to the described sharpness-based measure,
we investigated an edginess based measure of image fo-
cus [5]. Given a face image, the approach involves con-
volving the image with Sobel edge operator followed by
measurement of edge density. Edge density in a region is
measured by collecting the gradient magnitudes in that re-
gion. Input face images are divided into regular rectangular

Figure 4. Distributions of the difference in the SVD-based sharp-
ness measure in match pairs for the three partitions in the GBU
dataset.

regions and focus is computed for each of these regions re-
sulting in a vector representing focus content of the entire
face image. The distributions obtained for the three par-
titions using this measure appear quite similar to the ones
shown in Figure 4 and are omitted due to space constraints.

4.2. HSV space-based Measures

A quick glance at the images in the GBU dataset indi-
cates a certain degree of variation in hue and saturation lev-
els in the image. To investigate these variations for possible
impact on the observed difference in matching performance,
we compute simple hue and saturation-based measures. In-
put face images are transformed from RGB to HSV color
space followed by computation of average hue and satu-
ration values. The averages are computed for each of the
small rectangular regions as done for the sharpness-based
metrics.

Given a match pair, Euclidean distances between the two
hue and two saturation vectors are computed. Figure 5 and
Figure 6 show the distributions of difference in hue and
saturation measures, respectively obtained for match pairs
from the three partitions in the dataset. For both hue and
saturation-based metrics, the three distributions differ sig-
nificantly indicating that they play a role in the performance
difference across the three partitions.

4.3. Measures to Characterize Shadow Patterns

A few images in the GBU dataset appear to have cast
shadow patterns on the face regions that may be playing
a role in the performance difference across the three par-
titions. Accurate detection and characterization of shadow
patterns may require accurate face modeling which is out of
the scope of this investigation. Instead, we divide the face



Figure 5. Distributions of the difference in the hue content-based
measure in match pairs for the three partitions in the GBU dataset.

Figure 6. Distributions of the difference in the saturation content-
based measure in match pairs for the three partitions in the GBU
dataset.

image into regular rectangular regions and compute aver-
age intensities in each of these regions to capture intensity
variations across the image due to any cast shadows. Raw
image intensities are normalized by median intensity value
for the entire image before computing the averages. This re-
sults in a shadow-indicator vector for each input image that
consists of these average intensities.

Given a match pair, Euclidean distance between these
shadow vectors is computed. Figure 7 shows the distribu-
tions of difference in shadow vectors obtained for match
pairs from the three partitions in the dataset. The three dis-
tributions appear to differ significantly, indicating that they
play a role in the performance difference across the three
partitions. We also explored value from HSV-space in place
of image intensity to capture shadow patterns. The result-

ing distributions appear very similar to the ones shown in
Figure 7.

Figure 7. Distributions of the difference in the intensity-based
shadow vectors in match pairs for the three partitions in the GBU
dataset.

4.4. Measures to Characterize Extent of Facial Ex-
pression

The GBU dataset consists of face images with both neu-
tral and smiling facial expressions. Therefore, as part of
our investigation, we are interested in knowing if expres-
sion plays a role in the performance discrepancy across
the partitions. Instead of classifying images coarsely as
neutral or smiling as typically done [5], we make an at-
tempt to quantify and estimate the extent of expression.
For this, one needs to locate various primary facial land-
marks. This is done automatically using publicly available
Active Shape Model (ASM) library known as STASM [16].
STASM improves over the traditional ASM by incorporat-
ing a few simple but effective extensions that include a)
fitting mode landmarks than are actually needed, b) selec-
tively using two-dimensional templates in the ASM model
instead of one-dimensional template, and c) relaxing the
shape model when advantageous. Figure 8 shows an ex-
ample face image with the facial landmarks as identified by
STASM. Seven measurements around mouth region are in-
cluded in the analysis that include outer width of the mouth,
inner vertical gap and outer vertical gap (marked in the fig-
ure).

Given a match pair, differences between these various
measurements are computed and used for analysis. Figure 9
shows the distributions of differences in length of one of
the measurements for match pairs for the three partitions.
The distributions indicate that extent of facial expression
appears to be a factor that plays a role in the performance
difference across the three partitions. The plots for the other



measurements show similar pattern and are omitted in the
want of space.

Figure 8. Facial landmarking using STASM [16] library to mea-
sure extent of facial expressions. Several measurements around
mouth region are included in the analysis that include outer width
of the mouth, inner vertical gap and outer vertical gap (marked in
the figure).

Figure 9. Distributions of the difference in the outer width of
mouth in match pairs for the three partitions in the GBU dataset.

5. Analysis of Characterizations
On the whole, we investigated thirteen pair-wise mea-

sures that include two for image sharpness, two for HSV-
based metrics, two to capture shadow patterns and seven to
capture extent of facial expressions. All measures other than
expression-based measures are computed locally by divid-
ing the face region into regular 7 × 7 rectangular grid. As
shown in the previous section, each of these measures ap-
pear to be correlated with the performance difference across
the three partitions in the GBU dataset to a certain degree.

The leads us to a few interesting issues that are discussed as
follows:

5.1. How correlated are these measures?

Out of the thirteen measures analyzed in the previous
section, a few of them try to capture very similar character-
istics from the input face images. Therefore, we perform
correlation analysis over them to understand how differ-
ent are these measures from one another. Figure 10 shows
a matrix consisting of Spearman’s rank correlation coeffi-
cient obtained for each pair of the investigated measures.
The coefficient indicates how well the relationship between
two variables can be described using a monotonic function.
As expected, the two image-sharpness based measures and
the two shadow-characterizing measures appear to be very
highly correlated. There appears to be very low correlation
between image-specific characterizations and expression-
based characterizations.

Figure 10. Spearman’s rank correlation analysis over the thirteen
characterization. 1 and 2 correspond to image-sharpness metrics,
3 and 4 correspond to hue and saturation content-based metrics, 5
and 6 correspond to metrics to characterize shadow patterns, and
7 − 13 correspond to expression-based geometric measures (Best
viewed in color).

5.2. Distributions for Non-match Pairs

So far, we have considered the effects of various char-
acterizations only on match pair comparisons. Here, we il-
lustrate the relation of a few of the investigated measures
to the non-match comparisons for the three partitions. Fig-
ure 11 and Figure 12 show the comparison of distributions
for match and non-match pairs for the focus-measure and
an expression-measure, respectively. Interestingly, though
the match and non-match distributions for the good parti-
tion differ significantly, this difference is relatively negligi-
ble for the bad and the ugly partitions. The same behavior
is observed for the other metrics also, the plots for which
are omitted due to space constraints. This observation fur-
ther indicates that the investigated characterizations point



towards much better performance for the good partition as
compared to the bad and the ugly partitions.

Figure 11. Distributions of the difference in the focus-measure in
match and non-match pairs for the three partitions in the GBU
dataset.

Figure 12. Distributions of the difference in the vertical outer
mouth gap in match and non-match pairs for the three partitions.

5.3. Fusion of Characterizations

Given a pair of matching images, the underlying goal
of this investigation is to predict either its similarity score
or the partition it belongs to. To this end, we use Par-
tial Least Squares (PLS)-based regression to fuse match-
pair quality evidence obtained from the investigated char-
acteristics. PLS regression generalizes and combines con-
cepts from principal component analysis and multiple re-
gression [7]. Like any other regression technique, the goal
of PLS regression is to predict dependent variables from a
set of independent variables. In this scenario, the dependent

variable can either be the similarity score or the partition in-
dicator variable that indicates whether a match pair belongs
to the good, the bad or the ugly subset. Readers are referred
to [7] for more details on PLS regression.

We perform PLS regression twice: once using the simi-
larity scores for match pairs obtained from Pittpatt as the de-
pendent variable, and second using partition indicator vari-
able as the dependent variable. In both settings, the pre-
sented quality evidences are used as the independent vari-
ables. Figure 13 shows the predicted similarity scores ob-
tained for match pairs from the three partitions. Ideally,
these distributions should have been identical to the ones
shown in Figure 2 (left). Though not perfectly similar to
the desired distributions, the distributions indicate the use-
fulness of the proposed pair-wise measures to predict sim-
ilarity score. PLS regression allows one to find out how
much variation in dependent and independent variable is
captured by the estimated latent vectors. We observe that
while virtually all the variation in independent variables is
accounted for, only about 64% of the variation in dependent
variable (here similarity score) is captured, thereby indicat-
ing presence of other factors that have not been investigated
in this paper. Figure 14 shows the predicted partition indi-
cator variable obtained for match pairs from the three parti-
tions. The three distributions are reasonably separated indi-
cating the effectiveness of the proposed pair-wise measures
in distinguishing between the three partitions.

Figure 13. Predicted similarity scores obtained using PLS-based
regression over match pairs.

6. Summary
The paper presented an investigation to explore the fac-

tors behind significant difference in performance across the
three partitions in the GBU dataset. The strict acquisition
and partitioning protocol of the dataset ensured that the
usual suspects for performance degradation are not respon-



Figure 14. Predicted partition indicator variable obtained using
PLS-based regression over match pairs.

sible for the performance degradation. We showed several
image-specific and facial expression-specific metrics com-
puted in a pair-wise fashion for match pairs that appear to
play a role in the performance degradation across the parti-
tions. PLS regression based fusion of the proposed metrics
further indicated their effectiveness in being able to distin-
guish between the three partitions. We believe that reliably
identifying these measures and understanding their behav-
ior on performance can potentially serve three important
goals - to predict the performance of algorithms on novel
data; to design appropriate algorithms to account for varia-
tions in these characteristics; and to design appropriate ac-
quisition environments at prospective sites to optimize per-
formance.
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