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Abstract

Plastic surgery procedures can significantly alter fa-
cial appearance, thereby posing a serious challenge even
to the state-of-the-art face matching algorithms. In this
paper, we propose a novel approach to address the chal-
lenges involved in automatic matching of faces across plas-
tic surgery variations. In the proposed formulation, part-
wise facial characterization is combined with the recently
popular sparse representation approach to address these
challenges. The sparse representation approach requires
several images per subject in the gallery to function ef-
fectively which is often not available in several use-cases,
as in the problem we address in this work. The proposed
formulation utilizes images from sequestered non-gallery
subjects with similar local facial characteristics to fulfill
this requirement. Extensive experiments conducted on a re-
cently introduced plastic surgery database [17] consisting
of 900 subjects highlight the effectiveness of the proposed
approach.

1. Introduction
Traditionally, research in the area of face recognition has

been concentrated on matching faces across changes in il-
lumination and pose [21]. The tremendous improvement
in capability of automatic algorithms and commercial sys-
tems to address these challenges [12][15] has led to inter-
est in other exciting and challenging avenues like matching
faces in low resolution [5], face matching in newborns [4],
etc. Face matching across plastic surgery variations is an-
other such challenging avenue that is starting to interest re-
searchers [17]. Technological advancements have led to
availability of speedy and affordable plastic surgery pro-
cedures. Social pressure and decreased costs are driving
more and more people to undergo such procedures to cor-
rect feature defects and remove birth marks [1]. As a result,
recognizing individuals across plastic surgery procedures is
becoming a pertinent problem for law-enforcement agen-
cies [17].

Figure 1. A few sample images from the plastic surgery
database [17] to illustrate the difficulty of the task. Top row: Pre-
surgery images; Bottom row: Corresponding post-surgery images.
In addition to changes due to plastic surgeries, the images differ in
terms of imaging conditions and imaging sensor. These problems
have challenged automatic face recognition for decades.

Recently, Singh et al. [17] introduced plastic surgery as a
new dimension to face recognition. They report a significant
degradation (25− 30% in rank-1 accuracy) in the matching
performance of various existing face matching algorithms
when confronted with pre- and post-plastic surgery face im-
ages. In this paper, we build on their efforts and introduce
a novel approach customized to deal with the challenges
of matching faces across variations caused by plastic surg-
eries. The proposed approach bridges the performance gap
to a significant degree on the same database of 900 individ-
uals. Example pre-surgery and post-surgery images of a few
subjects from the database are shown in Figure 1.

1.1. Motivation

Facial plastic surgeries are typically performed either
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• locally to correct defects, anomalies or to improve gen-
eral skin texture, e.g., to correct congenital defects
such as cleft lip and palate, to improve nose structure,
chin, etc., or

• globally to reconstruct the complete facial structure.
For example, for patients with severe burns.

Though facial plastic surgeries can be mis-used by criminals
to avoid law-enforcement, typically the goal of these surg-
eries in not to create a new identity. In such cases, both local
and global surgeries may result in varying amount of change
in relative positioning of facial features and texture. Though
the overall face appearance changes, the resulting face typi-
cally resembles the original face in a part-wise manner. Un-
fortunately, these appearance variations are enough to cause
most face matching approaches to show significant degrada-
tion in performance [17]. Based on these observations, we
propose to use a part-wise approach to deal with the chal-
lenges posed by these subtle variations in facial appearance.
The part-wise framework is combined with the sparse rep-
resentation approach [20] to improve face matching perfor-
mance across plastic surgery variations.

It is known that facial features like nose, eyes, lips, etc.
play an important role in human and automatic face match-
ing. Holistic approaches [21] to face matching character-
ize entire face as one entity. Due to this, even changes to
parts of the face may lead to very different overall facial
characterization, making such approaches non-ideal for the
challenges we address here. Therefore, we propose a part-
wise approach that is based on the intuition that appearance
of one or more facial features may not change much across
plastic surgery procedures. In such a part-wise framework,
the proposed approach exploits recent successes of sparse
representations for face matching [20]. Most sparse rep-
resentation based face matching approaches require several
images of each subject in the gallery. More often than not,
one does not have multiple images per person in the gallery
as is the case with the plastic surgery database we use in
this work. With just one image per subject in the gallery,
we overcome this challenge by using sequestered training
face images (not pre- and post-plastic surgery images). For
each facial part of each gallery subject, we identify most
similar facial parts from the training images and use them
in the absence of multiple images per subject in the gallery.
Even though entire faces from training data do not resem-
ble those in the gallery at all, faces typically show higher
part-wise resemblance. Conceptually, this approach shares
similarities with simile classifiers [10] recently proposed for
the task of face verification. The simile classifiers are bi-
nary classifiers trained to recognize the similarity of faces,
or regions of faces to a few reference people. For example,
an unseen face might be described as having a mouth that
looks like Barack Obama’s and a nose that looks like Owen

Wilson’s [10].
The proposed approach is evaluated on the plastic

surgery database introduced in [17]. Following the sug-
gested evaluation protocol for the database, a significant im-
provement in rank-1 matching accuracy is observed. Effec-
tiveness of the part-wise analysis without the use of sparse
representation is also highlighted.

1.2. Organization of the paper

The rest of the paper is organized as follows. Section 2
briefly discusses a few related works from the literature. A
brief discussion of sparse representation for face matching
is provided in Section 3. Section 4 provides the details of
the proposed part-wise sparse representation approach. The
details of the conducted experiments along with results are
provided in Section 5. The paper concludes with a brief
summary and discussion.

2. Related work
Traditionally, face recognition research has focused pri-

marily on developing novel characterizations and algo-
rithms to deal with challenges posed by variations in ac-
quisition conditions like illumination conditions and head
pose with respect to the camera [21]. Tremendous suc-
cess in dealing with these problems is probably one of the
primary factors that has generated interest in new avenues
in face matching that include matching faces across plastic
surgery variations. Singh et al. [17] introduced matching
across plastic surgery variations as a new dimension to face
recognition discussing various ethical, social and engineer-
ing challenges. They observe that six existing appearance-,
feature- and texture-based face matching algorithms show
significant performance degradation on the plastic surgery
database. The existing algorithms evaluated in [17] are:
Principal Component Analysis (PCA) [19], Fisher Dis-
criminant Analysis (FDA) [3], Local Feature Analysis
(LFA) [13], Circular Local Binary Pattern (CLBP) [2],
Speeded Up Robust Features (SURF) [9], and Neural Net-
work Architecture-based 2-D Log Polar Gabor Transform
(GNN) [18].

In this paper, we propose a part-wise sparse represen-
tation approach to address the challenge of plastic surgery
variations. We provide pointers to a few significant works
that have used sparse representation for recognition tasks.
Wright et al. [20] show in their pioneering work that ex-
ploiting sparsity is critical for high-performance classifica-
tion of high-dimensional data such as face images. They
indicate that choice of feature become less critical than the
number of features when the concept of sparsity is prop-
erly used. The principle of sparsity has since been used
for several other biometrics and computer vision problems.
Pillai et al. [16] use a similar approach to select and rec-
ognize individuals from iris images. One practical draw-



back of sparsity-based biometric recognition is the need
for several images per subject in the gallery [20][16]. The
plastic surgery database used for experimental evaluation
used in our work consists of only one pre-surgery and one
post-surgery image per subject making it difficult to di-
rectly apply sparsity framework to this task. To this end,
we propose a part-wise sparse representation approach that
chooses similar images from sequestered training data in a
part-wise fashion to fulfill the requirement of multiple im-
ages per-subject in the gallery.

3. Sparse representation
The use of sparse representation for face recognition was

introduced by Wright et al. [20]. Given a set of labeled
training samples from k distinct classes, the task is to deter-
mine the class to which a new unseen test sample belongs.
Let Ai = [vi,1, vi,2, . . . , vi,ni

] be an m×ni matrix of train-
ing images from the i-th class in which the ni training sam-
ples are arranged as columns. Each column vi,j in matrix
Ai can be the vectorized intensity image or some suitable
characterization of the intensity image. One simple and ef-
fective approach to exploit the structure of the matrixAi for
face recognition is to model the samples from a single class
as lying on a linear subspace. In other words, given enough
samples from the i-th class , any new test sample y from the
same class can be approximated to lie in the linear span of
the columns of matrix Ai, i.e.,

y =

ni∑
j=1

αi,jvi,j (1)

for some scalars αi,j ∈ R, j = 1, 2, . . . , ni. Since the iden-
tity of the test sample is initially unknown, we define a new
matrix A which is the concatenation of the training samples
from all the classes

Am×n = [A1, A2, . . . , Ak] (2)
= [v1,1, . . . , v1,n1

| . . . |vk,1, . . . , vk,nk
]

where n =
∑k

i=1 ni.With this definition of A, y in (1) can
be written as

y = Ax (3)

where x = [0, . . . , 0, . . . , αi,1, . . . , αi,ni , . . . , 0, . . . , 0]
T is

a coefficient vector whose entries are zero except those cor-
responding to the i-th class. Given a new test sample y and
matrix A, the objective is to obtain x that is informative
about the identity of the test sample to aid in recognition
task. There exist several decomposition methods for this.
Sparse representation approaches find the sparsest solution
to the linear systems of equations y = Ax. This follows
from the intuition that test sample y can be sufficiently rep-
resented using only the samples from its true class, which

naturally leads to sparse x if the total number of classes in
A is large. The more sparse the recovered x is, the better
it indicates the identity of the unlabeled test sample, which
leads to solving the following optimization problem

x̂ = arg min
x∈Rn

||x||1 subject to Ax = y (4)

Actually, l0-minimization instead of l1-minimization pro-
vides the sparsest solution but it leads to a NP-hard prob-
lem even for approximation. Recent developments in com-
pressed sensing [8] show that if the solution sought is
sparse enough, the solution to the l0-minimization problem
is equal to that of the l1-minimization problem. Readers
are encouraged to refer to [20] for details. The optimization
problem in (4) is known as Basis Pursuit (BP) and can be
solved in polynomial time by standard linear programming
methods [6].

3.1. Applicability to plastic surgery data

One of the main requirements of the sparse representa-
tion based approaches is the availability of multiple samples
for each class in matrix A. The plastic surgery dataset [17]
consists of only one pre-surgery and one post-surgery image
for each subject in the dataset. To this end, we propose to
use sequestered training data with no identity overlap to ful-
fill the requirement. Holistically, the faces in plastic surgery
images do not look similar to the training face images in
any way since those identities are not present in the train-
ing data, but the images show much higher similarity when
considered at a more local level. For example, eyes of a
person may resemble those of some other person. This in-
tuition forms the basis of the proposed training approach.
For each gallery identity, we populate matrix A with the
images with most similar facial characteristics from the se-
questered training data. This is done in a part-wise manner.
The following section describes the details of the proposed
framework.

4. Proposed framework
The proposed approach consists of the following steps

1. Localization of face and primary facial features.

2. Generation of training Matrix A (for each facial part).

3. Sparse Recognition (for each facial part).

We now provide details of each of these steps.

4.1. Localization of face and primary facial features

Like any other modern face matching algorithm, given
a face image, we first need to locate the face region and
various primary facial features like eyes, eyebrows, nose,
mouth, etc. This is done automatically using publicly



Figure 2. A few example images illustrating automatic facial feature localization obtained using an ASM-based library known as
STASM [11].

available Active Shape Model (ASM) library known as
STASM [11].

Here, we provide brief description of STASM for the
sake of completeness. Traditional ASM [7] involves an it-
erative process to locate facial landmarks. The search starts
from the mean shape aligned to the face in the test image
determined by a global face detector. STASM improves tra-
ditional ASM by incorporating a few simple but effective
extensions that include (a) fitting more landmarks than are
actually needed, (b) selectively using two-dimensional tem-
plates in ASM model instead of one-dimensional templates,
and (c) relaxing the shape model where advantageous. Fig-
ure 2 shows a few example images from the plastic surgery
dataset with automatically localized landmarks.

4.2. Generation of training Matrix A

Using the landmark locations automatically determined
by STASM, we crop several facial regions that include the
two eyes, nose, mouth and eyebrows. Figure 3 shows the
cropped facial regions for two subjects obtained from pre-
surgery and post-surgery face images. As can be seen, the
appearance of the two subjects changes significantly from
a holistic point of view. On the other hand, appearance
appears to be better preserved for individual face regions
(especially eyes and eye-brows in this example) across the
plastic surgery procedures. Although we use the mentioned
six regions in this investigation, other regions can easily be
added in the framework. The rest of the processing includ-
ing generation of the training matrix and recognition using
the principle of sparsity, is performed individually for each
facial region.

As mentioned in Section 3, one needs multiple images
per subject to populate training matrix A for the sparse
recognition process to function effectively. The plastic
surgery database has just one pre-surgery and one post-
surgery image per subject. Therefore, we make use of se-
questered training data with no identity overlap to populate
the training matrix. The basic intuition is to look for facial
regions from the training face images that closely resemble
those in pre-surgery gallery images. For each gallery image,
the closely resembling facial regions from the training data

are then used to populate training matrix A as if they be-
longed to the corresponding gallery identity. Following this
protocol, class-wise sub-matrices Ai in the training matrix
A = [A1, A2, . . . , Ak] from (3) consists of one pre-surgery
gallery image and training images that closely resemble the
gallery image as follows

Ai = [vi, ti,1, ti,2, . . . , ti,ni−1] (5)

where ti,1, ti,2, . . . , ti,ni−1 are from the training images
such that

||ti,l − vi|| < ||ti,l − vj ||, (6)

∀l ∈ 1, . . . , ni − 1 and ∀j ∈ 1, . . . , k, j 6= i. Note that we
omit the second subscript from the v’s as there is just one
sample per subject.

As mentioned earlier, each vi (or ti,l) can simply be the
vectorized intensity image of the corresponding facial part
or some suitable characterization of the intensity image. In
all the experiments described in this paper, we use a stan-
dard PCA-based representation [19] to characterize each fa-
cial region. Sequestered non-plastic surgery training data is
used to generate the PCA space.

4.3. Sparse recognition

The identity is determined independently for each facial
part as follows. Given a test sample y and the training ma-
trix A, the sparse coefficient vector x̂ is obtained by solv-
ing (4). Final classification is performed by determining
which class present in A best represents the test sample us-
ing the recovered x̂. Representation error for the i-th class is
computed by reconstructing test sample using the samples
belonging to that class only as follows.

ei(y) = ||y −Ax̂i||, (7)

where x̂i = [0, 0 . . . , 0, x̂i,1, . . . , x̂i,ni , 0, . . . , 0]
T ∈ Rn.

Since in our framework, sparse recognition is performed in-
dividually for each part, one needs to fuse evidence from
all the six parts for overall recognition. For fusion, we use
simple sum rule such that overall sparse representation error



Figure 3. Pre-surgery and post-surgery images for two subjects along with their corresponding cropped facial regions. Although the holistic
appearance appears to change significantly due to plastic surgeries for these subjects, appearance seems to be better preserved for several
of the cropped facial regions.

ei(y) for a test sample y for the i-th class is

ei(y) =

6∑
p=1

epi (y) (8)

where epi (y) corresponds to the sparse representation error
for the p-th part. The test sample is classified to the class
that produces smallest representation error.

5. Experiments
We now describe the details of the experimental evalua-

tions performed along with the results obtained to evaluate
the efficacy of the proposed approach. The performance
of the proposed approach is compared against all six algo-
rithms evaluated in [17].

5.1. Datasets

Singh et al. [17] procured a dataset by download-
ing pre-surgery and post-surgery images from the web
(www.locateadoc.com and www.surgery.com). A list of

URLs to images of 900 subjects is publicly available that is
used to download images to conduct experiments presented
in this paper. There is one pre-surgery and one post-surgery
image for each subject resulting in a total of 1800 images.
A few images from the dataset are shown in Figure 1.

To facilitate applicability of the principle of sparsity to
this task, the proposed framework requires a sequestered set
of face images that have no identity overlap with the plas-
tic surgery dataset. Here, we use a subset of still face im-
ages from the Multi-Biometric Grand Challenge (MBGC)
dataset [14]. The images used are captured in reasonably
good illumination with subjects in frontal pose (Figure 4).
The imaging conditions and sensor quality in these im-
ages is quite different from the images in plastic surgery
database. These images are also used for generation of
PCA-space for characterization of facial parts.

5.2. Evaluation

In [17], 360 subjects (40% of the dataset) are used for
training while the remaining 540 subjects are used for test-
ing. The non-overlapping train-test partitioning is repeated



Figure 4. A few example images from the MBGC dataset.

ten times. The accuracy is reported in terms of Cumulative
Match Characteristic (CMC) curves and rank-1 accuracy.
To facilitate easy comparison, we follow the same evalua-
tion protocol. In our set up, we do not need images from the
plastic surgery dataset for training. Therefore, we randomly
sample 540 subjects several times from the entire dataset
and report average performance accuracy. We start with
showing performance of each of the six parts individually
followed by overall performance obtained by their fusion.

Figure 5 shows the individual CMC curves correspond-
ing to the six facial parts. Table 1 shows the corresponding
accuracies in terms of rank-1 performance. Rank-1 recog-
nition accuracy of the parts vary in 21.5% − 40.9% range
with eyes, nose and mouth regions performing better than
the eyebrows. Note that even with PCA-based characteri-
zation (used in conjunction with sparse recognition), four
out of the six facial regions outperform the performance of
PCA-based matching (performed on the entire face) as re-
ported in [17].

Figure 5. CMC plots demonstrating the recognition performance
for each of the six facial regions used in the proposed framework.

Figure 6 shows the CMC obtained by performing sim-
ple sum-based fusion of evidence from the six facial parts.
Fusion performance obtained without using sparse recogni-
tion for each part is also shown. CMCs of six algorithms
evaluated in [17] are approximately reproduced from the
publication. Corresponding rank-1 accuracies are shown in
Table 2. Since the six facial parts contribute independent

Facial Part Rank-1 Performance
Right Eye 39.5%
Left Eye 36.8%

Nose 40.9%
Mouth 36.4%

Right Eyebrow 21.5%
Left Eyebrow 24.2%

Table 1. Rank-1 recognition accuracy for each of the six facial
regions used in the proposed framework.

information, the fused performance is much better than the
one observed with any of the facial parts. The proposed
part-wise sparse recognition-based approach significantly
outperforms the rest by a significant margin. The good per-
formance can be attributed to both the part-wise framework
and the principle of sparsity. In fact, as shown in Figure 6
and Table 2, simple fusion of the six parts with PCA-based
characterization (without sparse recognition) outperforms
holistic PCA by over 15% in terms of rank-1 accuracy.

Figure 6. CMC plot demonstrating the recognition performance
obtained by fusing evidence from the six facial regions used in the
proposed framework. Fused performance of the six parts without
using the sparse recognition framework is also shown. The two
CMC curves are compared against the six algorithms evaluated
in [17].

6. Summary and Discussion
In this paper, we built on the efforts of Singh et al. [17],

who introduced face recognition across plastic surgeries as
a new dimension to face recognition. The proposed frame-
work exploits the advantages of part-wise analysis with the
recently popular sparse recognition approach to deal with
the challenges posed by plastic surgery variations. The
proposed formulation relies on training images from se-
questered non-gallery subjects to fulfill the multiple image



Algorithm Rank-1 Performance
PCA [19] 29.1%
FDA [3] 32.5%
LFA [13] 38.6%
CLBP [2] 47.8%
SURF [9] 50.9%
GNN [18] 54.2%

Fusion of PCA-features 46.4%
(without use of sparsity)

Proposed Approach 77.9%

Table 2. Rank-1 recognition accuracy obtained by fusing evidence
from the six facial regions used in the proposed framework. Fused
performance of the six parts without using the sparse recognition
framework is also shown. Comparison against the six algorithms
evaluated in [17] is also shown.

requirement of sparse recognition method. Closely resem-
bling training images with facial parts most similar to each
subject in the gallery are identified and used in the absence
of multiple gallery images. We show that the proposed algo-
rithm significantly bridges the performance gap earlier ob-
served when matching faces across plastic surgeries, com-
pared to matching normal face images. As supported by the
experimental evaluations, the good performance of the pro-
posed approach is attributed to both part-wise analysis and
sparse recognition technique.
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