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Abstract—Clustering approaches can alleviate the burden of
tagging face identities in ad hoc video and image collections. We
introduce a novel semi-supervised framework for clustering face
patterns into identity groups using minimal human interaction.
This technique combines concepts from ensemble clustering and
active learning to improve clustering accuracy. The framework
actively queries the user for a soft link constraint between
each pair of neighboring faces that are ambiguously matched
according to the ensemble. We demonstrate the efficacy of our
approach with the broadest evaluation of active face clustering
algorithms to date. Our evaluations focus on data that is appro-
priate for human-in-the-loop face recognition, including blurry
point-and-shoot videos, images of women seen before and after
the application of makeup, and photographs of twins. The results
indicate that ensemble-based constrained clustering algorithms
are generally more robust to noise than alternative approaches.
These methods continue to improve the quality clustering as the
set of constraints expands, even though the absolute number of
constraint errors increases. Finally, we show that the proposed
clustering algorithm is more accurate and parsimonious than the
current state-of-the-art.

I. INTRODUCTION

YOUTUBE ingests 100 hours of video footage every
minute [1]. News organizations collect an equally daunt-

ing mass of imagery every day. Often in social media and
consumer applications, the identities of the observed individ-
uals can aid efforts to organize the data [2]. Likewise, the
identities of people recorded by surveillance camera networks
are valuable to the intelligence and forensics communities [3].
A human operator cannot always identify all of the people
in such visual feeds using a database of known persons.
Manually tagging all of the images of the same person poses
a tremendous burden and is only practical for extremely high-
profile cases.

We propose to address this problem through a combina-
tion of face matching tools and clustering techniques. Face
matching provides a measure of similarity between a pair of
faces. Clustering techniques facilitate exploratory analyses by
grouping similar patterns into homogenous clusters [4]. Our
primary objective is to partition the set of observed faces into
identity clusters. Each identity cluster should correspond to
a single individual and vice versa. This task is complicated
by a number of challenges: Face matching remains an open
problem in scenarios involving uncontrolled variations in pose,
illumination, expression and other nuisance factors. And such
scenarios are of course the ones of most interest. We thus
argue that a minimal amount of information about which faces
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Fig. 1. The FACE algorithm forms identity clusters from faces observed in
an ad hoc collection of images or, in this case, videos.

match should be interactively solicited from the user to guide
the system to an accurate solution.

Previous work suggests that the face recognition capabilities
of humans and computers are complementary. Face matching
algorithms have advanced to the point where they can rival or
surpass the recognition accuracy of people from the general
public [5]. On the other hand, point-and-shoot cameras have
been used to record a substantial proportion of the images
and videos seen on social media websites. Face recognition
algorithms often perform poorly on such data because motion
blur and focus problems affect facial appearance [6]. Humans
are surprisingly good at recognizing faces under degraded
viewing conditions [7]. Humans also recognize faces covered
by moderate amounts of makeup accurately [8], but commer-
cial algorithms are relatively poor at matching pairs of faces
in which one or both of the faces are laden with makeup
[9]. Similarly, humans can outperform a commercial face
matching algorithm on images of identical twins, especially
when sufficient time is available for a careful analysis of skin
marks [10]. Fusing the facial similarity estimates of computers
and humans can lead to near-perfect matching performance
[11].

This work introduces a general semi-supervised clustering
scheme, the Framework for Active Clustering with Ensembles
(FACE), with an emphasis on clustering face patterns using
minimal human interaction. The FACE technique combines
concepts from ensemble clustering and active learning to
improve clustering accuracy. In this application of ensemble
clustering, two face patterns are assigned to the same cluster
if the consensus of a diverse set of clusterings indicates
they match. Diversity is achieved by integrating clustering
algorithms with different failure modes, and by varying the
parameterizations of the algorithms. The consensus of the
ensemble is quantified by the proportion of clusterings that
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decide a pair of face patterns share a common identity. As
the clusters are formed, FACE solicits human feedback in the
form of a soft must-link or cannot-link constraint between each
pair of neighboring face patterns with an ambiguous match
consensus. The additional contributions of this paper are two-
fold:
• We extend prior results from Davidson et al. [12] by

showing that a clustering algorithm cannot efficiently
apply soft constraints to converge on a perfectly accurate
partitioning with a bounded number of clusters. We
nevertheless exploit previous work on consensus cluster-
ing [13] to demonstrate that the ensemble-driven FACE
algorithm can converge to the correct result.

• We present the broadest evaluation of constrained face
clustering algorithms to date. Unlike earlier work from
this area [14]–[16], we consider the effects of constraint
noise, which will likely occur when a human user is
tasked with matching unfamiliar faces [5]. We compare
the FACE algorithm to the state-of-the-art in active face
clustering [16], with a focus on applications that are
amenable to human intervention. The results indicate that
the FACE approach forms more accurate identity clusters
than other approaches and is highly robust to constraint
noise.

In the sections below, we review the related literature
(Section II) and describe the FACE algorithm (Section III).
The experimental results (Section IV) are then presented,
followed by our conclusions (Section V).

II. RELATED WORK

The application of clustering approaches to face data has
received a significant amount of attention throughout the last
decade. For instance, clustering methods have been used for
organizing face images or sequences into identity groups.
Recently developed algorithms have exploited pairwise con-
straints from external sources outside the (dis)similarity metric
with the objective of improving accuracy. Constraints are
generally gathered passively before clustering or obtained
through active learning.

Recent work on clustering faces into identity groups in-
cludes that of Tao and Tan [17], who handled difficult pose
variations by comparing face sequences in terms of frames
with similar poses. Clustering is then performed with the
affinity propagation algorithm. They present strong results
from clustering experiments involving segments from three
movies. A similar framework for automatically labeling the
faces of characters in TV or movie videos was proposed
by Sivic et al. [18]. Yu et al. [19] applied a parameter-free
clustering algorithm to detect social groups and leaders in
crowds recorded by a surveillance camera network.

Identity clusters can be exploited in people-counting ap-
plications. A meeting understanding system that clusters face
sequences and then counts meeting attendees was introduced
by Vallespi et al. [20]. This system consists of an adaptive sub-
space face tracker and a temporal subspace clustering method
based on the normalized cuts clustering algorithm. Prince and
Elder [21] combined clustering with a Bayesian approach

to count the number of different people who appear in a
collection of face images. The parameters of a generative prob-
abilistic model describing the face manifold are learned during
training. This model enables the computation of the posterior
probability over possible clusterings, so that Bayesian model
selection can be applied to compare partitionings of varying
sizes.

Although the algorithms presented in [17]–[21] address key
challenges such as head pose, illumination or facial expression,
they do not provide a means to exploit external feedback.
Such feedback is valuable when nuisance factors overwhelm
the face matching algorithm. For instance, Wu et al. [14]
employed pairwise must- and cannot-link constraints derived
from the simple observations that all images from the same
sequence must match and images of faces from co-occurring
sequences cannot match. They incorporated these spatiotem-
poral constraints into a probabilistic clustering scheme based
on hidden Markov random fields, thus enabling the incorpo-
ration of side information from outside the employed facial
dissimilarity metric. The pairwise constraints improved the
performance of the clustering algorithm.

Ideally, a sequence of face images would cover the entire
interval of frames in which a given person appeared. Long,
continuous sequences of faces support the creation of more
spatiotemporal constraints than disconnected sub-sequences.
Abrupt changes in appearance, occlusions and camera move-
ments can cause tracking to fail and thereby prevent the
collection of continuous face sequences in practice. Wu et al.
[15] later extended the constrained clustering approach from
[14] to simultaneously link sub-sequences and group faces
based on appearance and motion cues.

Unlike the FACE algorithm, all of the constraints for these
clustering schemes [14], [15] are spatiotemporal in nature and
must be gathered prior to execution. The clustering algorithms
do not actively select the pairs of faces for which constraints
are retrieved. Some of the constraints may provide redundant
match information that is strongly correlated with the outputs
of the dissimilarity metric.

Cinbis et al. [22] drew upon the spatiotemporal relationships
between tracked faces to compute actor-specific dissimilarity
metrics via logistic discriminant metric learning. Throughout a
series of experiments conducted on episodes of Buffy the Vam-
pire Slayer, the clusterings computed with the actor-specific
metrics were shown to be more accurate than partitionings
obtained with generic metrics. The information provided by
the clustering algorithm was not capitalized upon to improve
performance, just as in [14], [15].

Similar to active learning in the context of supervised
classification, active clustering techniques solicit a minimal
number of constraints from a user with the aim of creating
a higher quality clustering than can be obtained without user
feedback [23]. A wide variety of active clustering algorithms
have been devised, including pairwise constraint k-means
(PCKmeans) [24] and active spectral clustering [25].

PCKMeans [24] queries for pairwise constraints in two
initial phases, Explore and Consolidate. The Explore phase
performs a farthest-first traversal of the data patterns while
seeding an initial set of clusters. Actively queried link con-
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straints determine the cluster to which each point is assigned,
until k clusters are initialized or the query budget is exhausted.
The Consolidate phase uses the initial clusters to group more
patterns. By querying for k− 1 constraints, the true cluster of
a given pattern can be found. The set of must-link constraints
is augmented by taking the transitive closure of the must-link
constraints, and adding entailed cannot-link constraints.

PCKMeans suffers from two drawbacks. First, active learn-
ing takes place before clustering, so the query selections are
not based on the confidence of the clustering algorithm. The
Explore phase is also computationally intensive when the
number of clusters is a large proportion of the number of
patterns, which is often the case for face clustering tasks.

Active spectral clustering [25] iteratively takes a graph over
the input patterns and the constraints that have already been
solicited, and produces a cut of the graph which satisfies
the constraints. Additional pairwise constraints are collected
actively according to a selection procedure that maximally
reduces the expected error between the clusters and the true
class distributions. This algorithm is only suitable for data with
two clusters. However, techniques for recovering an arbitrary
number of clusters are briefly described in [25].

Neither [24] nor [25] focus on actively clustering face data.
Biswas et al. [16] made one of the first ventures into this do-
main with the Active Hierarchical Agglomerative Constrained
Clustering (AHACC) approach. The idea is to maximize the
expected gain of the solicited link constraints throughout a
sequence of iterations. The clustering algorithm is a simple
variation of single-link hierarchical agglomerative clustering
that satisfies the link constraints. Query selection is performed
by simulating the effects of obtaining either a must- or a
cannot-link constraint for all of the unconstrained pattern pairs.
The pair that induces the greatest change in the clustering for
a particular time step is chosen as the next query.

AHACC is limited because the constraints are assumed to be
noise-free and self-consistent. This approach is also inefficient.
Simulating the effects of a must- and a cannot-link for each
pair of unconstrained patterns involves running the clustering
algorithm a quadratic number of times in the number of
patterns. These simulations occur once for each query. Further,
the number of clusters must be specified prior to clustering.
Resorting to optimization of the clustering with respect to
the number of clusters will only amplify these inefficiencies.
These issues restrict the applicability of AHACC.

Barr et al. [26] also investigated the application of active
clustering to facial imagery. The authors proposed the Active
Clustering with Ensembles (ACE) algorithm, a method that
operates on an ensemble of partitionings to accurately cluster
face patterns and select query face pairs. ACE creates the
clustering ensemble by applying SCOP-KMEANS [27] on
multiple representations of the data. If the ensemble yields
an unclear consensus as to whether two faces reside within
the same cluster, a link constraint is solicited from the user.

ACE and FACE are similar insofar as they leverage en-
sembles for the clustering and active learning tasks. These
approaches nevertheless differ across a number of key dimen-
sions. One salient difference is that ACE only uses a single
clustering algorithm to create the ensemble, SCOP-KMEANS.

FACE relies on algorithms with distinct biases to increase
diversity within the ensemble. These algorithms include an
approach that we introduce here, Soft Hierarchical Agglomer-
ative Constrained Clustering, and a k-means based approach,
LCVQE [32]. Moreover, FACE varies parameters such as
the number of clusters in the ensemble members, whereas
ACE generates ensemble members using the same parameters.
Another point of distinction is that the ACE algorithm selects
query pairs solely in terms of the ensemble consensus without
regard to the distances between patterns. FACE accounts for
the ensemble consensus yet draws from neighboring pairs that
can further define the boundaries between clusters. Lastly, the
analyses in [26] emphasize performance comparisons between
actively and randomly selected queries solicited on a single
data set. This work presents a more meaningful empirical
evaluation involving multiple active clustering algorithms op-
erating on data that are conducive to human feedback. We
also clarify the theoretical underpinnings for the correctness
of ensemble-based constrained clustering algorithms such as
ACE and FACE.

III. FRAMEWORK FOR ACTIVE CLUSTERING WITH
ENSEMBLES

Our main focus is on a framework for clustering face
observations according to their identities using feedback from
a human user. The first step is to detect or track the faces
to determine when and where they appear. This process
results in a collection of cropped face images or sequences
F = {f1, f2, . . . , fnf

}. The ultimate goal is to attain an
arbitrary identity labeling for the faces L : F → Z that
indicates which face observations correspond to the same
person.

Clustering algorithms can either be instance- or metric-
based. Whereas instance-based approaches operate on patterns
represented by vectors, matrices or tensors, the metric-based
approaches only require a matrix of (dis)similarity values
for the pairs of patterns. A distance matrix can be readily
computed from a collection of patterns using the Euclidean
distance or more sophisticated metrics. We consequently as-
sume that a matrix X ∈ Rnf×d of d-dimensional face patterns
is available prior to clustering. We sometimes interchange
xi ∈X for fi for simplicity of notation, e.g. we occasionally
refer to L(xi) instead of L(fi). With this formulation, faces
can be clustered with both instance-based and metric-based
clustering algorithms.

The clustering inputs consist of X along with a set of must-
link constraints M = {mij : mij = (fi, fj)} and a set of
cannot-link constraints C = {clk : clk = (fl, fk)}. When an
external source of information suggests that a pair of faces
should be connected by a must- or cannot-link constraint,
they likely represent the same identity or different identities,
respectively. This side information can enable the clustering al-
gorithm to compensate for errors that occur if a (dis)similarity
score suggests different faces match or observations of the
same person do not match.

The set of link constraints L =M∪C is iteratively enhanced
by querying an oracle. The oracle may provide either noise-
free or noisy responses. The constraints in L are soft in the
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sense that an algorithm is not required to satisfy all of them.
As a result, noisy or inconsistent constraints can be ignored.
We denote the set of violated must-link constraints with VM =
{mij ∈ M : L(fi) 6= L(fj)}. Likewise, the violated cannot-
link constraints VC = {clk ∈ C : L(fl) = L(fk)}.

Given the clustering inputs, we desire the labeling L. The
labels define identity cluster assignments: cluster Ca = {fi :
L(fi) = a} and clustering C = {Ca : a = 1 . . . k}. The
number of clusters k presumably is not known in advance.
Instead, k is assumed to lie within {kmin, . . . , kmax}, where
1 ≤ kmin ≤ kmax ≤ nf . The labeling L is created through
ensemble clustering with the constraints.

A. Clustering Faces
The FACE method combines ideas from ensemble clustering

and active learning. In ensemble clustering, multiple partition-
ings are created with distinct clustering algorithms, through
various algorithmic parameterizations or from different views
of the data [13], [28]. A high quality clustering of the data
can result from a consensus vote on which pairs of patterns
belong to the same cluster. Moreover, an ensemble can be used
to recover arbitrarily shaped clusters.

In supervised active learning, query-by-committee [29] is a
well-known approach for creating queries for user labeling.
This technique selects the training instance for which an
ensemble of models produces the weakest consensus. We
extend this idea to the semi-supervised clustering domain
using partitioning ensembles.

The FACE algorithm iteratively clusters faces into identity-
specific groups using a diverse ensemble of clusterings com-
puted with distinct algorithms and parameterizations. Clusters
are formed from pairs of faces that match according to the
consensus of the ensemble.

Queries are generated from neighboring patterns for which
the match consensus is unclear. The answers to these queries
can potentially mitigate errors committed by the face matching
algorithm. In this way, the FACE algorithm learns a simi-
larity metric based on the consensus of the ensemble as it
compensates for the limitations of automatic face recognition
technology. This similarity metric is subsequently employed
to produce a consensus clustering Ct. Clustering completes
after a user-defined query budget has been exhausted.

1) Clustering Ensemble: Ensemble clustering methods de-
pend on a diverse collection of base partitionings with com-
parable quality to find a higher quality result than the best
clustering in the ensemble [30], [31]. Diversity can be achieved
in a number of different ways. In this work, we promote
diversity using two base clustering algorithms with distinct
biases, and apply a range of parameterizations to the base
clustering algorithms.

The learning task is complicated by the fact that the pairwise
constraints may have noise. Errors can be introduced by
mistakes in human judgement. In contrast to hard constraints,
which an algorithm must satisfy in order to attain a valid
solution, soft constraints can be violated if they are inconsis-
tent or otherwise reduce the optimality of the clustering. We
therefore require base clustering algorithms that can accept
soft constraints.

Consensus 

Matrix 

Match? 

∆ 

• ∆ 
∆ ∆ 

• • 

▪ ▪ ▪ 
▪ 

Face 

Patterns 

Clustering 

Ensemble 

Constraint 

Set 

Identity 

Clusters 

- SHACC 

- LCVQE 

Human 

User 

Fig. 2. An array of base clustering algorithm instances creates an ensemble
of clusterings based on the input patterns, similarities and link constraints.
The consensus of the ensemble about which faces match governs both query
selection and the formation of the output clustering. Pairs of neighboring faces
for which the consensus is unclear are submitted as queries to a human user.

One such technique, the Soft Hierarchical Agglomerative
Clustering with Constraints (SHACC) algorithm, is a soft-
constrained extension of the clustering technique at the core of
the Active HACC algorithm (AHACC) [16]. We complement
SHACC with the Linear Constrained Vector Quantization
Error (LCVQE) [32] algorithm. LCVQE extends the classic
k-means approach by incorporating information into the ob-
jective function and cluster updating procedure.

Similar to AHACC, the SHACC technique attempts to find
a Minimum Spanning Forest (MSF) that best satisfies the
constraints using a variant of Kruskal’s algorithm [33]. The
MSF is extracted from a graph G = (V,E) with a set of
vertices V corresponding to the patterns and a collection
of edges E connecting each pair of vertices. Every edge
is weighted with the constrained distance between its pat-
terns. SHACC computes the MSF consisting of the minimum
spanning trees for k connected components of G. The k
connected components are treated as clusters in the AHACC
and SHACC schemes. SHACC differs from AHACC insofar
as it can alleviate the impact of noisy constraints as it finds
the connected components.

The constrained distance effectively pulls the points con-
nected by must-link constraints together and pushes patterns
with cannot-link constraints apart. The link relationship be-
tween patterns xi and xj is quantified with σij . If the patterns
are connected by a cannot-link constraint, σij = 1

2 ; σij = 2
if they share a must-link constraint; otherwise, σij = 1. The
constrained distance is given by

dc(xi, xj) = d(xi, xj)
σij , (1)

where d(xi, xj) is the min - max normalized Euclidean dis-
tance between the patterns.

Just as in Kruskal’s algorithm [33], the MSF F is initially
set to (V, ∅). All of the weighted edges are ordered in a
priority queue QE . While QE still contains more edges and
F contains more than k connected components, SHACC
iteratively removes the minimum weight edge from QE . The
edge is added to F if it lies between vertices in separate
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connected components that share more must-link constraints
than cannot-link constraints. This step essentially merges pre-
viously disconnected clusters as long as the constraints provide
evidence in support of the merge.

The edge restrictions can potentially prevent the formation
of k components. A similar problem, referred to as a dead-
end, can arise for hard constrained algorithms such as AHACC
[34]. A dead-end occurs when additional cluster merges will
result in a constraint violation, even though a smaller cluster-
ing that satisfies the constraints exists. The SHACC algorithm
can retrieve a specified number of clusters because it operates
on soft constraints. If there are kc > k components by the time
QE is empty, F is filled with the kc−k edges connecting the
components that would have the fewest constraint violations
between their patterns. This step ensures that there are k
components at the cost of increasing the number of violated
constraints. Clusters are then created from the k connected
components.

The SHACC method incorporates measures for addressing
noise at the pattern and clusters levels. The constrained
distance provides robustness to exceptionally harmful types
of noise by changing the ordering of how components are
connected. Noisy must-link constraints placed between widely
separated patterns will cause a hard constrained algorithm such
as AHACC to assign patterns from incomparable classes to
the same cluster. The clusters that lie between the constrained
pairs may subsequently be merged in error. When erroneous
cannot-link constraints connect patterns located within the cen-
ter of a cluster, a hard constrained algorithm will incorrectly
split the cluster. The constrained distance enables SHACC
to prioritize the cluster assignments of neighboring points
over distant pairs of spuriously must-linked patterns. Likewise,
neighboring patterns with incorrect cannot-link constraints
can still be merged into the same cluster before SHACC
terminates.

Comparing the numbers of must-link and cannot-link con-
straints connecting merge candidates can prevent inconsis-
tent constraints from impacting accuracy. Correct constraints
should occur more frequently than incorrect constraints if we
expect to gain an advantage from human-in-the-loop process-
ing. If this condition holds, the correct constraints will tend
to provide evidence in support of accurate merging decisions
while preventing problematic merges.

In contrast, LCVQE [32] builds on k-means by shifting
cluster centers to accommodate violated constraints. The orig-
inal k-means algorithm begins by selecting k cluster centers
{µa for a = 1 . . . k}. Every pattern xi is assigned to a cluster
with the aim of minimizing the overall objective function, the
distortion:

k∑
a=1

∑
xi∈Ca

‖xi − µa‖2. (2)

The centers are updated after the patterns are assigned to the
clusters:

µa =
1

|Ca|
∑
xi∈Ca

xi. (3)

The assignment and update steps alternate iteratively until a
stopping criterion is satisfied. For example, we may iterate

T times. The final clustering constitutes the output of the
algorithm.

LCVQE proceeds similarly, but constraint violations drive
the cluster centers in directions that can increase the fidelity of
the clustering. In the case of a violated must-link constraint,
we have assigned patterns xi and xj to different clusters,
Ca and Cb, yet they should belong to the same cluster. The
cluster center updates can shift µa towards xj and/or move µb
towards xi to improve the clustering. A cannot-link constraint
violation entails the assignment of two faces to the same
cluster Ca when they should be in separate clusters. This error
is mitigated by finding the pattern x ∈ {xi, xj} that is farthest
from µa. The closest center to x besides µa is then moved
towards x.

The LCVQE objective function measures the cost of unsat-
isfied constraints in terms of the distances between patterns.
The cost of violating a must-link constraint is the total of
the distances between xi and µb and between xj and µa. For
an unsatisfied cannot-link constraint, the pattern that is the
farthest from the center is determined. The distance between
this pattern and its second closest cluster center serves as the
violation cost. The objective function incorporates the overall
distortion in addition to the violation costs.

Formally, the LCVQE objective function is
∑k
a=1 Ja,

where

Ja =
1

2

∑
xi∈Ca

‖xi − µa‖2

+
1

2

∑
mij∈VM,Lt(xi)=a

‖xj − µa‖2

+
1

2

∑
mij∈VM,Lt(xj)=a

‖xi − µa‖2

+
1

2

∑
cij∈VC,N(cij)=a

‖FLt(xi)(cij)− µa‖
2, (4)

Fa(cij) =

{
xi if ‖xi − µa‖2 > ‖xj − µa‖2
xj otherwise, and (5)

N(cij) = argmin
a=1...k,a 6=Lt(xi)

‖FLt(xi)(cij)− µa‖
2. (6)

Lt is the cluster labeling at iteration t; Fa(cij) returns the
pattern from cij that is furthest from center µa; and N(cij)
outputs the label of the nearest cluster to FLt(xi)(cij) besides
Lt(xi).

The SHACC and LCVQE clustering algorithms both offer
some level of robustness to constraint noise. They differ in
the manners in which they process patterns. Whereas SHACC
must perform a sequence of nf −k cluster merges to produce
k clusters, LCVQE only needs to iterate once to create a fixed
number of clusters. LCVQE can therefore update an existing
clustering in response to new constraints. Conversely, LCVQE
computes the distances between patterns and cluster centers
every iteration. Its runtime is dependent on the dimensionality
of the patterns as result. SHACC does not suffer from this
drawback since it can employ a pre-computed distance matrix.
SHACC can also continue merging a set of previously formed
connected components when a collection of clusterings with
difference sizes is required.
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SHACC and LCVQE also have distinct biases with respect
to the geometric characteristics of the clusters they retrieve.
SHACC often produces elongated, chain-like clusters since
it greedily merges nearby clusters without regard to the
global effects on the clustering. As a generalization of k-
means, LCVQE will tend to form compact, spherical clusters.
These biases make each approach appropriate for different
data distributions and cause the algorithms to form distinct
clusterings from the same data.

2) Initialization: We bolster additional diversity within the
ensemble through variations in the number of clusters, k, and
by randomizing cluster initialization. FACE instantiates nb > 1
base clustering algorithms at the outset. The algorithms are
specified by the set β ⊆ {SHACC,LCVQE}. The instances
are divided evenly amongst the clustering algorithms listed in
β into collections of nk = nb

|β| members. Additional ensemble
diversity is induced by varying the number of clusters for
the instances within {kmin, . . . , kmax}. Instance bi is set to
create ki = ibkmax−kmin

nk+1 c+kmin clusters, where i = 1 . . . nk.1

Further, every LVQE instance is initialized with a different set
of cluster centers selected randomly from the input data.

Additional initialization steps are performed to accelerate
subsequent computations. The SHACC instances depend on
a distance matrix D. Entry dij is set to d(xi, xj), i.e. the
min - max normalized Euclidean distance between xi and xj .

Our active learning method submits pairs of neighboring
faces as queries to the user. The determination of which
pairs of faces constitute mutual neighbors can be costly from
a computational standpoint, especially since FACE submits
multiple queries over a series of T iterations. We alleviate this
issue by pre-computing an nf×nf−1 ranking matrix R to aid
neighborhood lookups. For each pattern xi, we rank the other
patterns in increasing order of their respective distances to xi.
Rank 1 corresponds to the closest pattern, whereas rank nf−1
is associated with the farthest pattern. Component ril = j if
pattern xj has rank l for xi.

3) Ensemble Clustering: The FACE algorithm invokes the
base clustering algorithms over the course of T iterations.
During iteration t, instances of LCVQE pass through the
assignment and update stages one time. Instances of SHACC
re-initialize and perform a complete sequence of merges. The
partitionings produced by the base clustering algorithms are
combined via an nf × nf consensus matrix P t. Element pij
measures the proportion of the ensemble with faces fi and fj
assigned to the same cluster. There is not a clear consensus
amongst the clusterings when pij = 0.5, so the faces may
or may not share a common identity. The faces should be
assigned to the same cluster if pij is near one, and they should
be assigned to different clusters if pij is near zero. Hence,
P t provides useful information for selecting query pairs and
fusing the ensemble clusterings.

A single aggregated clustering Ct is created by performing
classical single-link Hierarchical Agglomerative Clustering
(HAC) on P t. This algorithm takes a similarity matrix such

1A single instance of SHACC can merge clusters from a partitioning with
ki components to form a clustering with ki−1 components, effectively acting
as multiple instances for our purposes. We simplify the discussion by referring
to SHACC as though it has multiple instances, except where otherwise noted.

Input:
• Pattern matrix X;
• the set of base clustering algorithms β;
• the number of base clustering algorithm instances nb;
• the bounds on the number of clusters kmin and kmax;
• the number of queries per iteration nq; and
• the number of iterations T .

Output: Face labelling LT with nf cluster assignments.
1: B = ∅
2: nk = nb

|β|
3: for all β ∈ β do
4: for i = 1 . . . nk do
5: k = ibkmax−kmin

nk+1 c+ kmin

6: Initialize β instance b to create k clusters
7: Let Lb express the cluster assignments of b
8: Add b to B
9: Compute distance matrix D

10: Compute ranking matrix R
11: for t = 1 . . . T do
12: Let the consensus matrix P t = 0
13: for all b ∈ B do
14: Lb = b(X,D,L,Lb)
15: for all fi and fj with Lb(fi) = Lb(fj) do
16: pij = pij + 1

|B|

17: Get current labels Lt and clusters Ct using HAC
18: if t < T then
19: Let Qu be the set of unconstrained face pairs
20: Q = GET-QUERY(Qu,P t,Lt,Ct,R, nq)
21: Update constraint set L with responses Q
22: return LT

Fig. 3. The FACE algorithm

as P t as input and outputs a tree D called a dendrogram.
The leaves of D represent singleton clusters consisting of
individual faces, whereas the root is associated with a single
cluster that contains all of the faces. Every level within D
corresponds to one or more pairs of merged clusters. Clusters
that are merged together near the leaves are more likely
to represent the same person than clusters that are merged
together near the root.

A single clustering C ′l can be retrieved by cutting D at
level l. A cluster is formed from the leaves of each tree in the
forest resulting from the cut. We choose a clustering under the
assumption that kmin and kmax are rough estimates. If kmax is
far larger than the true number of clusters in the data, a parti-
tioning of size kmax will arbitrarily divide intrinsic clusters. A
partitioning of size kmin will merge intrinsic clusters together
if kmin is too small. Another complication is that comparing
the qualities of clusterings can be computationally demanding.
We consequently treat clusterings with k near either of the
extremes as outliers, and take the simple approach of choosing
the clustering of median complexity:

Ct = argmedian
C′l∈D:kmin≤|C′l|≤kmax

|C ′l| (7)
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Input:
• The set of unconstrained face pairs Qu;
• consensus value matrix P ;
• face labelling L;
• clustering C;
• ranking matrix R; and
• the number of queries per iteration nq .

Output: List Q of face pairs selected as queries
1: Let Qb be an empty set of ambiguity value bins
2: for all (fi, fj) ∈ Qu do
3: Insert (fi, fj) into Qb(|pij − 0.5|)
4: Let A be the ambiguity values for Qb
5: Let the mutual neighbor matrix K = 0
6: for i = 1 . . . nf do
7: Let N be a |C| × |C| matrix of zeros
8: Let a = L(fi)
9: for l = 1 . . . nf − 1 do

10: Let j = ril
11: Let b = L(fj)
12: nab = nab + 1
13: if nab ≤

√
|Ca ∪ Cb| then

14: kij = 1

15: for i = 1 . . . nf do
16: for j = i+ 1 . . . nf do
17: kij = kji =

⌊
kij+kji

2

⌋
18: for all α ∈ A do
19: for all (fi, fj) ∈ Qb(α) do
20: if kij = 1 then
21: Insert (fi, fj) into Q
22: if |Q| = nq then
23: return Q

24: return Q

Fig. 4. The GET-QUERY algorithm.

In the event that the number of clusters k is known prior to
execution, the dendrogram is simply cut at the level with k
clusters.2 The final face labeling is produced from CT .

4) Query Selection: Useful queries should complement the
information from the facial dissimilarity metric. We require
human feedback when a pair of faces is ambiguously matched
according to the ensemble. The constraints should also pertain
to neighboring points that can define cluster boundaries. As
a result, the GET-QUERY algorithm chooses nq pairs of
neighboring faces that will reduce the overall uncertainty
about the cluster assignments. Figure 5 motivates this selection
procedure.

The match/non-match decision for a pair of faces can be
modelled as a Bernoulli trial. Entry pij from the consensus
matrix P t can be interpreted as an estimate of the probability

2There are nb possible values for each element in P t, so there are no
more than nb dendrogram levels. Multiple cluster merges would need to
be performed in the level for some consensus value if nb < nf . A level
consisting of nm merges would have 2nm associated clusterings of various
sizes because we can ignore some merges. When k is provided and the
dendrogram must be cut at such a level, we randomly select a clustering
of size k from that level for the sake of efficiency.

A B 
G H • • • • 

C D 
• • E • • F 

Fig. 5. Potential queries for two clusters. We argue that the constraints should
connect neighboring points with ambiguous consensus values. Enforcing
constraints between neighboring points A, B, C and D would further
define the boundaries between the clusters. The certainty about the cluster
assignments for these points would also be weak, so constraints that link these
patterns would be informative. By comparison, the ensemble would likely
reach the consensus that points E and F belong to the same cluster since
they lie at the center of a densely populated region. Noisy constraints drawn
between the interior patterns and faraway points G and H would potentially
cause the clustering algorithm to merge or split the true clusters in error.

that faces fi and fj have the same identity, and 1 − pij can
be treated as an estimate of the probability that the faces
don’t match. The uncertainty regarding the match/non-match
decision can be measured in terms of entropy. The entropy of
a Bernoulli trial with probability p is

H(p) = p log2(p) + (1− p) log2(1− p). (8)

The maximum value of H(p) is reached at p = 0.5, so the
uncertainty about the match/non-match decision is greatest
when pij = 0.5. The uncertainty increases as pij approaches
0.5 from the left or right. Hence, |pij − 0.5| can serve as a
measure of the ambiguity in the match/non-match decision.

GET-QUERY uses the ambiguity to rank candidate query
pairs. Given a clustering of the faces that was constructed
using the previously collected constraints, GET-QUERY bins
the unconstrained face pairs according to the ambiguity in their
match/non-match decisions. Every unconstrained pair of faces
fi and fj is assigned to the bin for value |pij − 0.5|.

All of the pairs are then analyzed to recover pairs of faces
that are mutual neighbors. We account for the distribution
of the patterns within the feature space by defining mutual
neighbors in terms of clusters: A candidate pair of faces fi
and fj either belong to the same cluster or they belong to
different clusters. In the case where both faces are assigned
to cluster Ca, they are mutual neighbors if fi is among the√
|Ca| nearest neighbors of fj from cluster Ca, and vice versa.

When fi is assigned to cluster Ca and fj is assigned to cluster
Cb, fi must be among the

√
|Ca|+ |Cb| nearest neighbors of

fj from both clusters, and vice versa.
We find mutual neighbors by scanning the rows of the

ranking matrix R one-by-one. All the while, we track the
number of patterns we’ve encountered from each pair of
clusters in matrix N . Element ril of R provides the index
j of the lth closest face to fi overall. Suppose fi ∈ Ca
and fj ∈ Cb, where a may or may not match b. We use
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nab (nba) for determining whether fj (fi) is no farther than
the |

√
|Ca ∪ Cb| closest patterns to fi (fj) from Ca and Cb.

The faces are mutual neighbors if both of these conditions
hold. Matrix K ∈ Rnf×nf ultimately indicates which faces
are mutual neighbors.

The ambiguity bins are filtered for pairs of points that
are mutual neighbors, starting with the bin for the most
ambiguously matched pairs and proceeding toward the bin
containing the least ambiguous pairs. The querying process
ceases when nq pairs are gathered or when all of the remaining
unconstrained pairs have been considered.

B. Computational Complexity

The FACE scheme (Figure 3) passes through an initializa-
tion phase (Section III-A2), and then repeatedly iterates be-
tween the clustering (Section III-A3) and query selection (Sec-
tion III-A4) algorithms. We have nk LCVQE instances. Every
LCVQE instance requires O(ki) steps to select the cluster cen-
ters, where ki = ibkmax−kmin

nk+1 c+kmin and i ∈ {1 . . . nk}. The
combined time cost associated is thus O(nk ∗ (kmin + kmax)).
This cost is no worse than O(nf ) if we assume nk � nf and
kmin, kmax = O(nf ). On the other hand, SHACC only accepts
parameters during initialization, so the SHACC contribution is
negligible. The overall initialization runtime is dominated by
the creation of the distance and ranking matrices, D and R,
which spans Θ(n2f ∗ d+ n2f ∗ log nf ) operations.

The clustering process subsumes multiple high-level stages
that are repeated over the course of T iterations. The contribu-
tions of the LCVQE and SHACC instances vary significantly.
A single LCVQE instance executes O(k∗d∗ (nf + |L|)) steps
per iteration [35]. The LCVQE instances perform O(nf ∗ d ∗
(nf + |L|)) operations altogether at time t. The total LCVQE
runtime can degrade to O(n3f ∗d) in pathological cases where
|L| = O(n2f ). SHACC extends Kruskal’s algorithm [33], a
technique that incurs an O(n2f ∗ log nf ) cost that is dominated
by queueing operations. A single SHACC instance can pro-
duce clusterings of the required sizes by successively merging
the clusters of the largest partitioning. As a result, SHACC
only needs to executeO(n2f∗log nf ) operations every iteration.
Outside of the base clustering algorithms, FACE performs
O(nb ∗ n2f ) additions while maintaining the consensus matrix
P t along with O(n2f ) steps for aggregating the ensemble
matrices via single-link HAC [36]. The aggregate clustering
runtime is hence O(T ∗ (nf ∗ d ∗ [nf + |L|] + n2f ∗ log nf )).

Query selection (Figure 4) also occurs every iteration.
Binning the face pairs will take O(n2f ) steps in the worst
case; the mutual neighbor matrix K can be computed in
Θ(n2f ) steps; and the selected pairs can be aggregated in
O(n2f ) time. Query selection therefore has an O(T ∗n2f ) time
complexity. The overall computational complexity of FACE,
O(T ∗(nf ∗d∗[nf+|L|]+n2f ∗log nf )), is largely attributable to
the base clustering algorithms. The computational complexity
increases to O(T ∗(n3f ∗d)) when the constraint set approaches
its maximum size yet reduces to O(T ∗n2f ∗(d+log nf )) when
|L| = O(nf ).

C. Correctness
From a statistical standpoint, the correctness of a soft

constrained clustering algorithm concerns its ability to con-
verge on a clustering that satisfies as many constraints as
possible. This notion of correctness is at odds with earlier
analytical results introduced by Davidson et al. [12]. Unlike
soft constraints, which we employ in the FACE algorithm, hard
constraints cannot be violated. Davidson et al. showed that
it is not computationally feasible for a clustering algorithm
to determine whether a given set of hard constraints can
be satisfied when k is bounded. We build on this result by
demonstrating that the globally optimal value for the number
of violated soft constraints cannot be determined efficiently
if k is restricted to lie within (kmin, . . . , kmax). As a result,
a constrained clustering algorithm cannot efficiently apply a
general set of soft constraints to converge to the best clustering.

The hard constraint feasibility problem can be stated as
follows: For pattern set X and hard link constraints L, does
there exist a partitioning of X into k groups such that
k ∈ (kmin, . . . , kmax) and all constraints are satisfied [12]?
Davidson et al. proved that the hard cannot-link constraint
feasibility problem is NP-complete by reduction from the well-
known graph coloring problem. The hard constraint feasibility
problem, which can involve a mix of must- and cannot-link
constraints, is NP-complete by extension.

The soft constraint feasibility problem is defined similarly.
We are given a pattern set X , link constraints L = M ∪
C, and the total number of constraints that can be violated
V . We wish to determine whether X can be partitioned into
k ∈ (kmin, . . . , kmax) groups such that V = |VM| + |VC |.
This problem is just as computationally difficult as its hard
constraint counterpart.

Theorem 1. The soft constraint feasibility problem is NP-
complete.

Consult Appendix A for the proof.
The associated soft constraint optimization problem of find-

ing the global minima for V is NP-hard, since we would solve
multiple instances of the soft constraint feasibility problem
as we searched for the optima. This means that clustering
with soft constraints is computationally intractable, because
we cannot find the most accurate clustering with the minimum
number of violations if we cannot find a single clustering with
the minimum number of violations. We also can’t expect to
efficiently select a set of potential constraints that will result
in minimal violation cost on arbitrary data. These limitations
preclude the absolute correctness of SHACC, LCVQE and any
other soft-constrained clustering algorithm.

Constraint violations notwithstanding, the FACE algorithm
is still correct insofar as it can converge to the ideal identity
clustering. The ultimate output of the FACE method is created
with a constraint-agnostic algorithm, single-link HAC, that is
not susceptible to feasibility issues. More importantly, Topchy
[13] proved rigorously that the accuracy of a consensus clus-
tering improves with increasing ensemble size nb, provided
each ensemble member performs better than random.

An accurate ensemble must have members with uncorrelated
errors. Otherwise, there is no benefit to increasing its size.
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An ensemble of infinite size will naturally have great diver-
sity amongst its members, but we wish to achieve sufficient
accuracy and robustness in realistic scenarios. The empirical
analyses in the next section highlight the performance char-
acteristics of clustering ensembles acting on carefully chosen
constraints.

IV. EMPIRICAL RESULTS

We now consider how various parameters affect perfor-
mance, and how well the FACE technique compares to the
current state-of-art in active face clustering. We first show
the effects of varying the size of the ensemble and selecting
alternative combinations of base clustering algorithms. We
then evaluate the FACE framework alongside active clustering
algorithms that have been previously applied to face data,
including the state-of-the-art AHACC algorithm [16]. Our
assessments pertain to data that are difficult for face matching
algorithms yet appropriate for the unique recognition capabil-
ities of humans.

A. Data Sets

We performed our experiments on a point-and-shoot video
set, SN-Flip; a collection of images showing women before
and after makeup is applied, YouTube Makeup (YMU); and
the Twins data set. See Table I for a summary of these data
sets.

SN-Flip [26] consists of 28 point-and-shoot videos of
crowds interacting in distinct scenes. 19 of the videos were
acquired outdoors in sunny, snowy or overcast conditions. The
interocular distances of the located faces ranged from 4 to 70
pixels, with a median distance of 19 pixels. Video quality
varies across the set because the sequences were acquired
with two sensors. Both cameras were prone to focus issues,
especially in poorly lit scenes. The quality levels of some face
sequences are also affected by crowd occlusions and variations
in illumination, facial expression and pose.

The YMU [9], [37] images were extracted from YouTube
tutorials on applying makeup. There are four images per
subject, with two taken before and two taken after makeup
is applied. The makeup patterns range from light to heavy.
Although all of the individuals held a frontal head pose,
the illumination conditions and facial expressions differed
between most pairs of images. The primary difficulty for this
data is to assign the makeup covered and makeup-free images
of each subject to the same cluster.

Lastly, the Twins data set [38] contains images of nearly 100
pairs of identical twins photographed at the 2009 and 2010
Twins Days Festival in Twinsburg, Ohio. The images used for
the proposed experiments show frontal faces. The illumination
conditions were carefully controlled. Further, the majority of
the subjects held a neutral facial expression. The key challenge
for this data is to avoid placing images of identical twins into
the same cluster.

B. Data Pre-processing

A series of pre-processing steps must be completed prior
to face clustering. The faces are located and cropped from

TABLE I
DATA SET SUMMARY. THE NUMBER OF TRUE CLASSES

Data set Subjects Size Templates True classes
SN Flip 190 28 videos 777 183
YMU 151 604 images 444 146
Twins 187 577 images 576 187

(a) SN-Flip - Video frames with focus and illumination issues

(b) YMU - Each pair shows the same person with and without makeup

(c) Twins - Each pair shows images of identical twins

Fig. 6. Sample images from the experimental data sets.

the images or video frames, and then matched, yielding
a similarity score matrix. The algorithms for locating and
matching faces were treated as black boxes.

In the case of the SN-Flip video data set, we employed
a variety of algorithms from a Commercial Off-The-Shelf
(COTS) face recognition system for pre-processing. The COTS
face detector was used in tandem with an optical flow tech-
nique to extract sequences of face images or face tracks.
Face tracks were formed by detecting faces in each video
frame and connecting them with previously observed faces
that share common features. Feature points lying within the
face detection boundaries were followed across frames with
the Kanade-Lucas-Tomasi tracker [39]. Since adjacent frames
of video tend to be highly correlated, we sampled one frame
from every half second of video prior to matching. The COTS
face matcher was then employed to compute the maximum
similarity score between the remaining frames of each pair of
face tracks.

For each video in the SN-Flip data set, all subjects were
tracked in at least one interval of frames. 817 face tracks
were extracted from the video collection. Feature templates
were successfully extracted from 777 of the tracks by the
COTS software. The remaining tracks were not included
in subsequent performance analyses because their templates
were not available for matching. The removal of these tracks
resulted in the reduction of the size of the subject pool from
190 to 183 people.

We ran the COTS face detector directly on the YMU and
Twins images. All of the faces from these data sets were
detected correctly. The COTS template extraction algorithm
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Fig. 7. SN-Flip: The distribution of the number of patterns per subject.
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Fig. 8. YMU: The distribution of the number of patterns per subject.

was particularly sensitive to heavy makeup, as only 444
templates were created on the YMU collection. The images
with templates spanned 146 subjects. A template was created
for 576 of the Twins photographs. Every Twins subject had at
least one template.

A pattern matrix X was computed for every data set by
applying multi-dimensional scaling to the matrix of COTS
similarity scores. We set d = 0.05∗nf in all cases. In this way,
face images and tracks can both be represented as vectors.
The pattern matrices can be retrieved from http://www3.nd.
edu/∼cvrl/CVRL/Data Sets.html. To ensure fairness in the
comparisons between instance- and metric-based clustering
algorithms, we computed a dissimilarity matrix for the metric-
based methods using the Euclidean distances between the
patterns.

In general, the pre-processed data sets were not well
balanced because of failures that occurred when the tem-
plates were created. Some subjects also were observed more
frequently than others in the SN-Flip and Twins imagery.
Figures 7 through 9 show the distributions of the number
of patterns per subject. For SN-Flip, one subject holds 5% of
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Fig. 9. Twins: The distribution of the number of patterns per subject.

the patterns and ten of the 183 classes contain more than 25%
of the patterns. Six of the SN-Flip classes each only have
one pattern. Ten of the 187 of the Twins classes comprise
more than 15% of the patterns and 20 of the classes consist of
one pattern apiece. The YMU data is better balanced since
it includes four images of each subject. Nevertheless, the
commercial face recognition software failed more frequently
on some subjects than on others, so 12 of the 151 classes are
singletons. These variations in the number of patterns per class
increased the difficulty of the clustering problem.

C. Experimental Protocols

We treat clustering as an information retrieval task, wherein
each cluster acts as a retrieval result for the patterns from some
face identity class. We desire sets of clusters that have a one-
to-one correspondence with the identity classes. Precision
and recall are two common information retrieval performance
metrics that, in combination, can measure the extent to which
a clustering adheres to this correspondence. We can express
precision as the proportion of patterns from a cluster with
a particular identity. Then recall denotes the proportion of
patterns for a given identity that were retrieved in a cluster.
The F-measure acts as a summary statistic by aggregating the
precision and recall measures.

We assess face clusterings in terms of a reference partition-
ing generated from the ground truth subject identifiers, and
assume that each cluster best retrieves the patterns from a
single identity class. Let {C∗b for b ∈ 1..k∗} represent the
identity classes formed from the manually created identifiers
for F . For cluster Ca and class C∗b , the precision and recall
are defined as

precision(a, b) =
|Ca ∩ C∗b |
|Ca|

, and (9)

recall(a, b) =
|Ca ∩ C∗b |
|C∗b |

. (10)

The F-measure F (a, b) for cluster Ca and class C∗b is the
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harmonic mean of the precision and recall scores:

F (a, b) = 2 ∗ precision(a, b) ∗ recall(a, b)
precision(a, b) + recall(a, b)

. (11)

The overall F-measure for the entire clustering is expressed
as

F =

k∗∑
b=1

|C∗b |
|F |

max
a=1...k

F (a, b). (12)

F , F (a, b), precision(a, b), recall(a, b) all vary with [0, 1],
where 1 corresponds to ideal performance. Our evaluations
center on the extent to which the F-measure varies as more
constraints are gathered.

Some clustering algorithms automatically select the size of
the partitioning when given a range of clustering sizes. Other
algorithms require the user to provide a single value for the
number of clusters as a parameter. Inferring the size of the
clustering introduces additional challenges to the problem at
hand. We employed two experimental protocols to ensure the
performance comparisons are clear and fair:

1) Fixed Clustering Size (FCS) - the algorithms evaluated
according to this protocol accepted a single value for
the number of clusters, k. We set k equal to the number
ground truth classes remaining after the imagery from
each data set was pre-processed (consult Table I for the
number of ground truth classes within the data sets).

2) Variable Clustering Size (VCS) - this protocol re-
quires an algorithm to accept a range of sizes within
[kmin, . . . , kmax], where kmin = 0.2 ∗ nf and kmax =
0.7∗nf . In all cases, this range included the true number
of identity classes that remained after pre-processing.

The evaluation protocols address the scenarios where all
of the constraints are correct and where randomly selected
constraints are incorrect, as human users typically make mis-
takes. Noise was introduced by flipping cannot-link constraints
to must-link constraints and vice versa with a probability
of 0.10. Each experimental configuration involving constraint
noise and/or a non-deterministic algorithm was evaluated 25
times. We report the average F-measure over the 25 trials and
present error bars representing one standard deviation about
the mean.

D. Parameterization

The behavior of the FACE framework can be controlled by
altering a number of parameters. The number of queries per
iteration nq was set to 10 and the number of iterations T was
fixed at 100. No more than, say, 500 active constraints would
be gathered after 50 iterations with these settings. Another
set of important parameters governs the complexities of the
clusterings produced for the ensemble or as output. For the
VCS protocol, the sizes of the output clusterings were selected
using Equation 7 from Section III-A3. For the FCS protocol,
we cut the dendrogram containing the fused clusterings at the
level with k clusters instead of applying equation Equation 7.
For both evaluation protocols, we set kmin = 0.2 ∗ nf and
kmax = 0.7 ∗ nf for the clusterings within the ensemble to
promote diversity and maintain parity with the VCS results.
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Fig. 10. LCVQE performance on SN-Flip
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Fig. 11. SHACC performance on SN-Flip

In the next section, we analyze the effects of altering the
ensemble size nb and the collection β of base clustering
algorithms used for creating the ensemble.

E. Varying Ensemble Sizes and Base Clustering Algorithms

We varied the ensemble size within {2, 4, 8, 16} as we
compared combinations of base clustering algorithms on the
SN-Flip data set. Figures 10, 11 and 12 show the results
for the VCS protocol; the trends for the FCS protocol are
nearly identical. Doubling the size of the ensemble from
two to four members increased performance for all of the
configurations. Increasing the ensemble size to eight members
resulted in significant improvements for the LCVQE and
LCVQE+SHACC based ensembles. The performance of the
LCVQE+SHACC combination rose slightly at some points
when the ensemble reached 16 members.

In all other cases, performance either plateaued or declined
when the ensemble grew in size. The deterministic SHACC
algorithm was particularly poor at creating sufficiently diverse
clusterings for the larger ensembles to yield higher quality



12 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. Y, MARCH 2015

0 200 400 600 800 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

Constraints

F
−

M
ea

su
re

 

 

Size 2/0% noise
Size 2/10% noise
Size 4/0% noise
Size 4/10% noise
Size 8/0% noise
Size 8/10% noise
Size 16/0% noise
Size 16/10% noise

Fig. 12. LCVQE+SHACC performance on SN-Flip

partitionings. By comparison, LCVQE clusterings vary in
response to random changes in the initial cluster centers.
The LCVQE+SHACC scheme was able to benefit from larger
ensembles because of this additional source of diversity in-
corporated into the LCVQE algorithm, along with the fact
that the LVQE and SHACC algorithms create clusterings with
disparate structures.

The impact of noise was not as significant for LCVQE
as it was for SHACC, even though SHACC performed sig-
nificantly better in general. SHACC accommodates the pair-
wise constraints locally, as it focuses on pairwise clustering
assignments as opposed to the global structure of the data.
LCVQE responds to constraints by shifting clustering centers
in directions that will eventually lead to fewer constraint
violations. SHACC consequently surpassed LCVQE when the
constraints were noise-free since it was more responsive.
LCVQE was less sensitive to noise though.

Using LCVQE and SHACC in tandem produced the best
results in both the noise-free and noisy regimes. The errors
committed by the base clustering algorithms tended to be
offsetting, which allowed the LCVQE+SHACC combination
to achieve the best results. The LCVQE+SHACC configuration
with 16 clusterings reached respective F-measures of 0.95 and
0.90 in the noise-free and noisy cases after querying 777
constraints, which is the operating point where there is no
more than one constraint per face on average. We refer to this
parameterization as the FACE algorithm for simplicity.

The clusterings from all of the configurations typically im-
proved as more constraints were gathered, whether or not the
responses to the queries were noisy. The changes induced by
100 constraints consistently increased the quality of the output
clustering. The performance degradations resulting from noise
were similar for most of the ensemble sizes and combinations
of base algorithms. Although the effects of noise were largely
negative, the ensembles tended to bolster the formation of
higher fidelity clusterings as the set of constraints expanded.

F. Active Clustering Algorithms

We evaluated the FACE framework on the SN-Flip, YMU
and Twins data sets alongside active clustering algorithms that
have been previously applied to face data. These algorithms
included the PCKMeans method [24], the ACE technique
[26] and the state-of-the-art AHACC algorithm [16]. Each
of these approaches has a readily available implementation.
PCKMeans, ACE and AHACC do not incorporate a means
of automatically selecting the number of clusters, so they
were assessed using the FCS protocol alone while FACE
was evaluated using the FCS and VCS protocols. Consult
Figures 13 and 14 for the results.

The performance trends are similar across data sets. All of
the approaches were able to benefit from increasingly large
constraint sets in the noise-free case. The algorithms that
exploit pairwise constraints generally outperformed constraint-
agnostic algorithms when all of the feedback was noise-free:
PCKMeans without constraints is equivalent to traditional k-
means, and the performance of AHACC at the zero-constraint
mark is representative of single-like HAC algorithms.

PCKMeans performed poorly. As the number of constraints
grew, PCKMeans failed to increase the fidelity of the clus-
tering at a rate as high as the other algorithms. The ACE,
AHACC and FACE schemes inform the selection of active
queries with outputs from the clustering algorithm(s). The
PCKMeans constraints are not necessarily correlated with the
pairs the clustering algorithm finds most difficult because all
of the constraints are gathered before clustering begins. Noise
is particularly harmful since PCKMeans enlarges an initial set
of constraints by applying the transitive closure over the must-
link set. Additional cannot-link constraints are added through
entailment: if a must-link constraint mij and a cannot-link
constraint cjk reside in the constraint pool, a cannot-link cik
is created. These steps propagate noise, causing the quality
of the PCKMeans clusterings to degrade below the quality of
the partitionings produced by k-means and the other active
clustering algorithms.

The relative performance of the ACE method differed
between data sets. The performance degradation resulting from
constraint noise was small compared to all of the other algo-
rithms. It was the third most accurate technique on the YMU
data set, but the second least accurate algorithm on the SN-Flip
and Twins data sets. Similar to the FACE framework, ACE
performs consensus clustering. The application of ensemble
methods mitigated the impact of noise for both of these
algorithms. However, ACE only uses a single base clustering
algorithm, but FACE draws on disparate algorithms to increase
diversity within the ensemble. Another key difference is that
ACE selects query pairs solely in terms of the ensemble
consensus. FACE accounts for the ensemble consensus as it
finds neighboring pairs that may define the boundaries between
clusters. These differences lead the FACE algorithm to create
more accurate clusterings and solicit higher impact constraints.

AHACC reached similar levels of performance to the FACE
framework in the noise-free regime on the SN-Flip and YMU
data sets. AHACC also produced the most stable results on
noise-free constraints due to its deterministic nature. In the
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Fig. 13. Results with noise-free constraints.
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Fig. 14. Results with 10% noise in the constraints.

noisy regime, AHACC was able to improve the clustering as
more constraints were gathered, until the number of erroneous
constraints passed a threshold. This behavior is similar to that
of the related SHACC algorithm (see Section IV-E). SHACC,
however, was less sensitive to noise on the SN-Flip data set
since it operated in an ensemble setting.

AHACC is particularly responsive to constraints. The ad-
dition of some constraints can produce large changes in the
clustering. Moreover, the AHACC querying scheme explicitly
searches for the pair of faces that would produce the greatest
expected change. These characteristics can significantly am-
plify the effects of noise.

The FACE framework generally was the most accurate and
robust approach. FACE required a relatively small number of
constraints to achieve each level of performance, regardless of
whether the size of the clustering was selected automatically.
Providing the number of identity clusters as input, as in the
FCS protocol, frequently enabled FACE to outperform the
other algorithms by a wider margin. A clear trend for each
of the ensemble methods, FACE and ACE, is the general
tendency for the aggregated clustering to continue improving
as the number of noisy constraints increases. This robustness
was consistently exhibited by the clustering ensembles across
all three data sets. The FACE algorithm is thus well-suited for
typical face clustering applications, because it can successfully

exploit valuable yet noisy human feedback to offset the failures
of automatic face matching algorithms.

V. CONCLUSIONS

Active face clustering is a useful means of organizing
collections of face images, despite the current limitations of
face recognition technology. A clustering algorithm must be
responsive to user feedback yet robust to noise in order to be
of any practical use. The number of constraints required to
achieve a given level of performance must also be minimal.

This paper presents a number of key findings:
1) For bounded k, determining whether a given set of soft

constraints can be satisfied with a minimum number
of violations is computationally infeasible. An efficient
algorithm cannot find a single clustering that minimizes
the number of constraint violations, much less the best
clustering.

2) The results indicate that ensemble-based constrained
clustering algorithms are generally more robust to noise
than alternative approaches. These methods continue to
improve the quality clustering as the set of constraints
expands, even though the absolute number of constraint
errors increases.

3) Taking the transitive closure of the must-link constraints
and inferring cannot-link constraints is only useful in
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Fig. 15. Examples of correct clusters formed by the FACE algorithm.

contexts where the constraints are guaranteed to be com-
pletely accurate. This observation is based on the strong
impact noise has on PCKMeans, a soft-constrained
algorithm that applies these techniques to increase the
number of constraints. This result is in agreement with a
thorough empirical study that was recently conducted by
Covões et al. [35], who found that performing the tran-
sitive closure with noisy constraints was detrimental to
the constrained vector quantization error [12], LCVQE
and the metric PCKMeans [40] algorithms. Arbitrarily
increasing the number of noise-free constraints through
imputation is not guaranteed to improve performance
either [41].

4) The proposed FACE algorithm is accurate, robust and
parsimonious compared to the state-of-the-art. Pairs of
neighboring face patterns that are ambiguously matched
in terms of the ensemble consensus were shown to make
effective queries.

5) Human-in-the-loop face recognition can improve clus-
tering performance on challenging data sets. The FACE
algorithm successfully exploited noisy constraints on
point-and-shoot videos, images of women wearing heavy
makeup, and photographs of identical twins.

Our future work will expand on these results. An open
research problem is to determine whether or not a particular
constraint is erroneous. The “consensus of the crowd” could
serve as a tool for detecting noise, as could comparisons
with clusterings from the ensemble. The affiliation network
connecting the clusters of people who appear together fre-
quently could act as another source of information for val-
idating constraints. In the context of constraint sets that are
enriched through inference, this goal could be accomplished
by comparing the queried and imputed constraints to determine
which ones are likely to be incorrect. Further research will

center on increasing the efficiency of the framework through
the application of distributed computing and approximation
methods.

APPENDIX A
SOFT CONSTRAINT FEASIBILITY PROBLEM

The computational intractability of the soft constraint feasi-
bility (SCF) problem can be demonstrated by reduction from
the hard constraint feasibility (HCF) problem described in
[12].

Theorem 2. The soft constraint feasibility problem is NP-
complete.

Proof. The verification of a solution to an SCF instance can be
done in polynomial time by checking the number of clusters
and the number of violated constraints. The problem is thus in
NP. We prove that the SCF problem is NP-hard by reduction
from the HCF problem. Let Ih be an HCF instance with pattern
matrix X , hard constraints L =M∪C, and clustering bounds
kmin and kmax. X , L, kmin and kmax can be used as-is in the
corresponding SCF instance Is. Finally, we set V = 0. This
transformation can be carried out in constant time. It is also
clear that we have a solution to Ih if and only if we have a
solution to Is.
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