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a b s t r a c t

Face recognition is one of the most active areas of research in computer vision. Gabor features have been
used widely in face identification because of their good results and robustness. However, the results of
face identification strongly depend on how different are the test and gallery images, as is the case in
varying face pose. In this paper, a new Gabor-based method is proposed which modifies the grid from
which the Gabor features are extracted using a mesh to model face deformations produced by varying
pose. Also, a statistical model of the scores computed by using the Gabor features is used to improve
recognition performance across pose. Our method incorporates blocks for illumination compensation by
a Local Normalization method, and entropy weighted Gabor features to emphasize those features that
improve proper identification. The method was tested on the FERET and CMU-PIE databases. Our
literature review focused on articles with face identification with wide pose variation. Our results,
compared to those of the literature review, achieved the highest classification accuracy on the FERET
database with 2D face recognition methods. The performance obtained in the CMU-PIE database is
among those obtained by the best methods published.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Face recognition has a wide range of possible applications from
person identification and surveillance to electronic marketing and
advertising for selected customers. Face recognition in real time is
a topic of active research, and several methods have been
proposed to perform this task [1–4].

Most studies focus on frontal face recognition, reaching high
accuracy on internationally available face databases. An important
number of studies have focused directly on face recognition under
the assumption that the face has already been localized [5,6].

Among the most widely cited methods for face recognition
based on feature extraction are Eigenfaces [7], based on Principal
Component Analysis (PCA), Fisherfaces [8], based on Linear Dis-
criminant Analysis (LDA), and methods based on Independent
Component Analysis (ICA) [9,10]. In [11], the Local Binary Pattern
(LBP) method was proposed, in which the face image is divided
into square windows where a binary code is generated whenever a

pixel exceeds the value of the average within the window. Also
some papers report addressing the problem of face recognition in
low resolution images [12]. This method uses a multidimensional
scaling approach where low resolution images are embedded in a
Euclidean space which is used to perform the matching between
gallery and test images. Gabor wavelets [13–16] have been used to
extract local features achieving outstanding results in face
recognition.

Among the methods based on Gabor Wavelets are the Elastic
Bunch Graph Matching (EBGM) method [17], the Gabor Fisher
Classifier (GFC) [18], the Local Gabor Binary Pattern Histogram
Sequence (LGBPHS) [19], the Histogram of Gabor Phase Patterns
(HGPP) [20], Local Gabor Textons (LGT) [21], Learned Local Gabor
Pattern (LLGP) [22], Local Gabor Binary Pattern Whitening PCA
(LGBPWP) [23], and the Local Matching Gabor method (LMG)
[24–27]. In [28], the face was divided into patches without overlap,
and then the best patches were selected and weighted with an
LDA strategy in a greedy search. Finally, the local scores of the
patches were combined with a global score obtained from the low
frequency components of the FFT applied to the whole face,
including its external boundary. Magnitude and phase Gabor
features were combined in [29]. The LBP operator was used on
the Gabor magnitude features and the LXP operator (Local Xor
Pattern) on the Gabor phase features. Then, the face was divided
into regions, and histograms of each region were computed on
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LGBP and LGXP features. Every region dimensionality was reduced
using LDA, and finally the regions were compared with cosine
distance. In [30], Gabor features in face images at higher and lower
resolutions were used.

Face recognition under varying pose continues to be an area of
active research. There are various approaches to solving this
problem using 2D as well as 3D methods. Some methods use a
single face as input and build a 3D model called the 3D Morphable
Model [31–33]. The 3D Morphable Model is based on a vector
space representation of faces built using vectors of shape and
texture. The parameters of the models are computed using a set of
Eigen vectors obtained previously by training with images from 3D
scans. A fully automatic face frontalization method using a 3D
model was introduced in [34]. It works for poses varying up to
7451 on the yaw axis and 7301 on the tilt axis. In [35], an
automatic method was developed to find correspondences
between 2D facial feature points and a 3D face model. The 3D
face model built was then rotated to generate the frontal view.

In our literature review, we focused on 2D methods because
they are widely used and are applicable in real time. Nevertheless,
the goal of this work is to develop a more accurate recognition
method for rotated faces, not to create the fastest possible
implementation. There are several methods that use 2D techni-
ques to perform face recognition across pose. A method that
performs frontalization by dividing the face into different compo-
nents is presented in [36]. Several methods use Active Appearance
Models (AAM) to frontalize the face [37–39] and perform the
match with a frontal face from a gallery set. In [40] the image is
divided into non-overlapping patches and then a statistically
aligned model is built for each patch to perform a warping in
the region. Using the same idea of patches, the image is divided
into non-overlapping patches and a statistical model is con-
structed on each one at the score level [41]. This method models
how the matching score varies when the input face pose is at a
certain angle. A face recognition Gabor-based method using a
regressor with a coupled bias-variance tradeoff is proposed in [42].
In this method, a statistical model is built at the score level, as in
[41]. Some methods use face representations in a latent space to
perform the recognition [43,44]. In [45] a dictionary learning
method designed for face recognition is presented.

Several recent papers have shown that the Local Matching
Gabor (LMG) method [24] and its variants [25,26] reach the best
results for frontal face recognition. In the LMG method, a total of
4172 Gabor jets are employed to extract features at five different
spatial resolutions and eight different orientations. A Borda count

method is used to compare the inner products between the Gabor
jets from the input face image and the Gabor jets from faces in the
gallery [46]. In our previous work based on Gabor-feature face
classification [26], faces are normalized using the eye position for
coronal axis rotations (on the same face plane). Also, our pre-
viously proposed method included weights for the Gabor jets
using an entropy measure and a preprocessing step with Local
Normalization (LN) yielding results that are among the best face
classification results reported on the FERET and AR databases
[25,26,47]. Our method performed competitively with other pub-
lished methods on face occlusions and in the presence of noise.
Nevertheless, for face poses with increasing angles out of the face
plane, the face normalization step loses the correction effect and,
as in most 2D face recognition methods, performance declines
significantly. For example, methods reaching near 100% for frontal
face recognition may drop by up to 40% with pose variations 7601
[40].

In this paper, a new method for face recognition under pose
variation is proposed. This method uses Active Shape Models
(ASM) [48] to reposition Gabor jets on the face according to face
pose. Because of local changes in the 2D face image with varying
pose, we also use a local statistical model [41] to compensate for
face pose. These new extensions to our previous LMGEW method
that uses entropy-weighted features and fusion among LMG and
LBP features [26] yield significant improvements in face recogni-
tion under varying pose. We tested our method and its variants
using the FERET and CMU-PIE databases, which are among the
most used databases to evaluate methods of face recognition
across pose. The FERET database has pose variation between
7601, and has been used in many recent publications of face
recognition across pose [33–35,41–43,49]. According to our litera-
ture review, our method reached the highest classification perfor-
mance published in the FERET database with 2D face recognition
methods. The CMU-PIE database has pose variations near 7901
and also has been used in most recent publications of face
recognition across pose [33–35,42,43,49–51]. The performance of
our method on the CMU-PIE database is among those that reached
the highest classification performance.

2. Methodology

Our proposed model for face recognition based on local
matching Gabor consists of three main modules [24]: image
alignment using ASM, feature extraction through Gabor jets

Fig. 1. The proposed method consists of three main modules: image alignment based on ASM, feature extraction through Gabor jets computation, and classification using
entropy weights and statistical model matching.
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computation, and classification using a statistical model, as shown
in Fig. 1.

In the first module, an ASM is used to align the face and to
determine its shape with the goal of extracting features from
corresponding points relative to the gallery image. Also, an
illumination compensationmethod called Local Normalization (LN)
is used in the normalized image, as was shown to improve results
in [47].

The second module performs the Gabor jet computation to
extract face features. The spatial position for the computation of
each Gabor jet is defined using the ASM adjusted to the face pose.
A grid of Gabor jets is placed over the face using the eye positions
as references as described in [24]. The grid is deformed using the
ASM adjusted to the face. In this way, the position of the Gabor jets
with respect to the face features (eyes, nose, mouth, etc.) is closer
to the original position in the frontal face when the pose
changes (see Fig. 4).

The third module carries out face classification. At this stage,
entropy weights are introduced to weight each jet. A Borda count
method is used [26] for classification and a local statistical model
is employed to address pose change [41]. This local statistical
model learns how the face texture varies as the face changes in
pose. The model divides the face into several regions and the
texture variation is computed for each region as the pose changes.

2.1. Pose detection and face alignment

2.1.1. Detection of face deformation by ASM
A deformable model is adjusted to the face in order to take pose

changes into account. A linear statistical shape model called ASM
is used [48]. This type of deformable model uses a linear
transformation in a vector space, which takes the main configura-
tions of the modeled shape in a set of examples taken into
account. The model uses a Point Distribution Model (PDM), where
the shape of the object is defined by a vector with the coordinates
of a set of points:

S¼ x1; y1; z1; x2; y2; z2…; xl; yl; zl
� �T ð1Þ
The shape S of a new object can be expressed as a mean shape

S0 deformed by the linear combination of basis vectors that
represent the principal modes of variation of the object in a set

of examples, and linearly deformed by an affine transformation.
The shape S of a face in an image can be expressed as

S¼ T ðs;R; T ; S0þΨ ipÞ ð2Þ
where p is a vector of parameters for the basis Ψ ¼ S1 jS2 j…j Sn½ � of
n vectors, and T ðs;R; T ; �Þ is a rigid transformation that performs a
rotation by the rotation matrix Rðα;ϕÞ, scaling s, and translation by
the vector T ¼ ½tx; ty�T , i.e., if T ðs;R; T ; �Þ is applied to a point ½x; y�T :

T ðs;R; T ; ½x; y�T Þ ¼ sR
x

y

" #
þT ð3Þ

The basis Ψ is built by a Principal Component Analysis (PCA) of
a set of training shapes. Before performing the PCA, the training
shapes are normalized by an iterative Procrustes analysis [52] to
remove global variations, such as translation and rotation, and
therefore taking into account only the non-rigid local variations in
the PCA. The PCA provides a set of orthogonal modes of variation
or eigenvectors, and its eigenvalues. The eigenvalues represent the
importance of the corresponding eigenvector within the modes of
variation across the training shapes. Among the eigenvectors,
those with larger eigenvalues are selected to build the basis Ψ.
Thus, a model that can generate large variations in shape using
few parameters is obtained.

In order to fit the deformable model to the image, a particular
type of ASM named Constrained Local Model (CLM) is used
[53,54]. This CLM uses patches where local features are computed
to search landmarks in the image. The position of each landmark is
related to a point of the PDM. A set of training images is used to
build a model that incorporates local features associated with each
anatomical landmark. In order to fit the shape S to a test image by
the CLM, the parameters of T ðs;R; T; �Þ and the vector of para-
meters, p, of the basis Ψ, are optimized (3). The optimization
minimizes the difference between features computed in the
patches at each point of S and the features of the model built
using the training images. The image features are extracted from
patches of the raw gray image, the image gradient, and local
binary patterns (LBP).

The features computed in the test images are compared with
the features of the training images by using the normalized
correlation coefficient. Then, the method uses a non-parametric
approach based on the mean-shift [55] mode seeking algorithm to

Fig. 2. Example of the mesh used to detect facial features by using the CLM method of Saragih et al. [54].
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optimize the position of the points in the PDM by minimizing the
difference between the training and test features. The result is a
shape fitted to the facial features (Fig. 2). For a completely
automatic face recognition system, pose and landmarks should
be obtained automatically. However, for experimentation pur-
poses, we assume them to be known beforehand, a common
practice followed in several previous studies [24,31,37,40–43].
Therefore, the shapes adjusted by the ASM that did not fit
correctly for large pose variations were adjusted manually to
evaluate the expected performance of our proposed method.

2.1.2. Face alignment
Before computing the Gabor features, the images are normal-

ized to a size of 300� 400 pixels using the shapes adjusted to the
face and a mean face shape. Fig. 3 shows the face mean shape (in
blue lines) that is positioned on the face as follows: The vertex of
the mean shape representing the position of the columella's base
of the nose is positioned on the horizontal center of the image and
at 1=3 of the height of the image. The columella is the tissue that
links the nasal tip to the nasal base, and separates the nares. It is
the inferior margin of the nasal septum. The eyes are localized on
the same horizontal line and their separation between centers is
set to 68 pixels. The separation between the eyes controls the scale
of the aligned mean shape and has the same scale used in [24]. In
the alignment step, the images are rotated to set the eyes on the
same horizontal line, scaled such that the width of the adjusted
shapes is equal to the width of the aligned mean shape, and
translated so that the center of the triangle formed by the center of
each eye and the vertex at the columella of the nose coincide
between the mean shape and the shapes adjusted to the faces. This
alignment allows comparisons between gallery and test faces in
similar positions, improving the performance of the method [26].
If the face pose has a large rotation (yaw rotation) and one side is
occluded, the vertex at the upper part of the nose is used instead
of the occluded eye. Fig. 3 shows a normalized image of the FERET
database with the adjusted shape in green and the mean shape
in blue.

2.2. Gabor features extraction with grid deformation

Gabor jets are computed on selected points, using five different
grids with spatial scales defined by 0rνr4. Our original method

[26] used the grids defined in [24], where the images are normal-
ized to 203� 251 pixels with the eyes in fixed positions (67, 125)
and (135, 125). Fig. 4(a) shows an image where the grid with
spatial scale ν¼ 3 is superimposed. Corresponding to the grid size,
the Gabor filters have five spatial scales in the following equation:

Ψν;μðx; yÞ ¼ exp �j k!j 2 j r!j 2
2σ2

0
@

1
Aexp i k

!� r!
� �

ð4Þ

where vectors r!¼ x
y

h i
and k

!¼ ðπ=2f νÞ cos ðμπ=8Þ
sin ðμπ=8Þ

h i
, and constants

f ¼
ffiffiffi
2

p
and σ ¼ 2π [16]. The spatial scale is equivalent to

λA 4;4
ffiffiffi
2

p
;8;8

ffiffiffi
2

p
;16

n o
in pixels [24].

At each point pνðiÞ ¼ ½x; y� on the grid corresponding to the scale
ν, the Gabor wavelet has eight different orientations 0rμr7 in
(4). For the eight orientations, a set of Gabor features is extracted
at each point on the grid and each set is called a jet:

GμðpνðiÞÞ ¼ Ψν;μnI
� �ðpνðiÞÞ; ð5Þ

where n is the convolution operator and I is the image. These jets
are normalized as

GμðpνðiÞÞ ¼
GμðpνðiÞÞ
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP7
μ ¼ 0 GμðpνðiÞÞ

�� ��2q ; ð6Þ

where �j j is the modulus of a complex number. Therefore, a jet can
be represented by a vector of length 8 for each point pνðiÞ.

The grids without deformation to locate Gabor jets as defined
in [24] have very good performance in frontal faces [26]. Never-
theless, as in all 2D methods, the performance decreases signifi-
cantly as the face varies in pose. A new method to correct the
position of the Gabor jets for faces with varying pose is presented
in this paper. First, the images are aligned as described in Section
2.1.2. Then, the positions of the Gabor jets are adjusted to compute
them at the same relative position with respect to the facial
features detected in each image by the adjusted shapes. The mean
shape, S0, is used to adjust the positions of the Gabor jets. The
grids of Gabor jets are placed in the same position with respect to
the mean shape for the aligned images of our original method [26].
In other words, the mean shape is a face normalized within a
203� 251 pixel image, and the grids are positioned over it to be
translated to the actual position of the mean shape in the
alignment described in Section 2.1.2.

Fig. 4(a) shows an image of the FERET database with the mean
face shape and the grid with ν¼ 3 superimposed. Then, the grids
are deformed by using the adjusted shape to change the positions
at which the jets are computed in each image. A field of deforma-
tions Dðx; yÞ ¼ ½x0; y0� is computed using the Thin Plate Splines
method [56] on the vertex of the model and adjusted shapes. This
deformation field is the spatial transformation between the mean
shape and the adjusted shapes, and it is used to deform the grid in
such a way that the jets are computed at the same relative position
with respect to the adjusted shapes of each image. Therefore, the
positions of the points in the deformed grids are p0νðiÞ ¼DðpνðiÞÞ.
Fig. 4(b) shows the grid with ν¼ 3 deformed using this method.
Fig. 4(c) and (d) shows deformed grids in a frontal and rotated
face, respectively. As these figures show, the positions of the Gabor
jets have the same relative position with respect to the face
features in both images. If one side of the face is occluded because
of the rotation, only the vertices and jets on the side of the face
that is exposed are used to compute the deformation field and the
Gabor features, respectively. The method assumes that a gallery is
available with faces of the persons to be identified. For each face in
the gallery, the Gabor jets are computed off-line and stored in a
database for later on-line identification.

Fig. 3. Image from the FERET database normalized before using the face recogni-
tion method. The image is aligned using a mean face shape (blue/darker) and the
shape adjusted to the face (green/lighter). The image is rotated to place the eyes on
the same horizontal line, scaled such that the width of the adjusted shape is equal
to the width of the mean shape, and translated so that the center of the triangle
formed by the center of each eye and the vertex at the columella of the nose
coincide. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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2.3. Classification

2.3.1. Borda count
The third module, the Borda count matching, performs a

comparison between the set of Gabor jets computed on the input
face image and each set of Gabor jets stored in the gallery. The
inner product between the input and gallery Gabor jets, which are
vectors of length eight at each point of the five grids, is used in the
comparison. The result of the inner products is a matrix of
dimensions N �M called C, where N is the number of face images
in the gallery and M is the number of jets. The final classification is
performed using the Borda count method [46] which selects the
identified face from the gallery according to a vote among all jets.
Borda count is a voting method in which every voter ranks all the
candidates in order of preference. Then, a sum of all voter ranks is
performed to obtain the candidate scores. In our case, the voters
are the Gabor jets, and the ranking is performed according to the
inner products stored in C. Therefore, a ranking matrix, O¼ BCðCÞ,
is built using the values in each column of C. Finally, the
identification score of the j-th gallery image with respect to the
input image is

Sj ¼
XM
i ¼ 1

Oji ð7Þ

The input image is classified using the highest classifi-
cation score.

2.3.2. LN image computation
A preprocessing step is performed using our Local Normal-

ization (LN) algorithm [47] on the images to obtain another set of
Gabor features (Fig. 1). The LN algorithm is based on the work
presented in [57], and the resulting normalized image is given by
(8), where Im�m

meanðx; yÞ denotes the mean of a neighborhood of m�
m pixels around (x,y), and Im�m

std ðx; yÞ is the standard deviation in
the neighborhood:

Iln x; yð Þ ¼ I x; yð Þ� I9�9
mean x; yð Þ

I9�9
std x; yð Þþ0:01

ð8Þ

The comparison matrix and ranking matrix for LN images are
called Cln and Oln, respectively.

2.3.3. Borda Count Threshold
A Borda Count Threshold (BTH) is used to eliminate scores from

Gabor jets with low values that act as noise in the identification
procedure. A modified ranking matrix, Qln

j;i , is created by (9), where
Th is the threshold that eliminates noisy scores. This noisy score
elimination has yielded significant improvements in classification

results [25,26]:

Qln
j;i ¼

Oln
j;i if Cln

j;iZTh;

0 if Cln
j;ioTh:

8<
: ð9Þ

Based on our previous work [25,26] the threshold was set to
Th¼0.85. The identification scores Sj are obtained using Qln instead
of O (Eq. (7)), and the highest score denotes the person's identity.

2.3.4. Entropy weights
An entropy strategy [26,27] is used to emphasize the best

performance features. An entropy vector E is computed using the
comparison matrix C. The basic idea behind this computation is
that, for a given jet, a probability, Pj;i, is defined in proportion to
the comparison values with each enrolled person in the database
as follows:

Pj;i ¼
Cj;iPN

k ¼ 1 Ck;i

; ð10Þ

Shannon entropy of the i-th jet is computed using these prob-
abilities as

Ei ¼ �
XN
j ¼ 1

Pj;i log 2Pj;i ð11Þ

The entropy is computed for each jet, creating the entropy
vector, E. Because the values Ei are not uniformly distributed, the
histogram of E is equalized. Then E is normalized to the range [0,1],
and used to weight the ranking matrix in the computation of the
identification score:

Sj ¼
XM
i ¼ 1

Qln
ji Ei; ð12Þ

2.3.5. Statistical model
Although the position where the jets are computed is corrected

by deformation fields, the image is still 2D. Therefore, the Gabor
features computed in images of the same person but with varying
pose are different, mainly for large rotation angles. This variation
of the Gabor features with respect to the angle can be modeled as
follows: First, the probability distribution functions of the scores Sj

with respect to the rotation angle are computed in different blocks
defined in the grids. A training set of images is used to compute
this probability. Then, the estimated probability is used to correct
the scores Sj computed in an input image depending on its
rotation angle.

The image is divided into V � H blocks as shown in Fig. 5, and a
local probability model is built for each one. Instead of using all

Fig. 4. Example of the deformation of the grids used to compute the Gabor jets. (a) Initial grid (yellow) and mean face shape (blue). The grid is set as if the mean face shape
were a face normalized as described in [26]. (b) Deformed grid (yellow) and adjusted face shape (green). The original grid is deformed to have the same relative position with
respect to the adjusted shape that the original grid has with respect to the mean shape. By using this deformation, the position of the Gabor jets has the same relative
position with respect to the face features in different images. Figures (c) and (d) show the position of the Gabor jets in a frontal and rotated face, respectively. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

L.A. Cament et al. / Pattern Recognition 48 (2015) 3371–3384 3375



jets in the Borda count method, the Borda count is computed for
each block individually in this approach. Thus, for the r-th block
the comparison matrix Cr is extracted and the ranking matrix
Or ¼ BCðCrÞ is computed. The matrix Cr is a subset of the compar-
ison matrix C that contains the inner product of the jets inside the
r-th block. Note that if LN images are used, the matrices C and O
are replaced by Cln and Oln, respectively. The identification score of
the j-th gallery image in the r-th block Sr

j ¼
PMr

i ¼ 1 O
r
ji, where Mr is

the number of jets in the r-th block, is used as the input of the
statistical model. The training and recognition are performed as
follows:

Training: The prior distribution, P, of the identification scores
Sr with respect to a pose and matching label is computed for each
block r. The pose label is the rotation angle ϕp, and the matching
label w can take two values: same if the input and gallery images
are of the same person, and dif if they are of different persons.
Thus, the prior distribution is

P Sr jw;ϕp

� 	
;wA same;dif


 � ð13Þ

The prior distribution is modeled by using a normal distribu-
tion as in [41]:

P Sr jw;ϕp

� 	
¼ 1ffiffiffiffiffiffi

2π
p

σr
w;p

exp �1
2

Sr�μr
w;p

σr
w;p

 !2
2
4

3
5 ð14Þ

where μr
w;p, and σr

w;p are, respectively, the mean and the standard
deviation of the scores Sr for the r-th block, and across all the
training images with rotation angle ϕp and matching label w. To
obtain these values the training database must contain a gallery
set and test sets labeled with angles ϕp. The Borda count scores Sr

are computed for all test images, and the labels w and ϕp are
assigned to compute μr

w;p and σr
w;p.

Recognition. To perform the recognition for the r-th block the
Bayes rule is used:

P samejSr ;ϕp

� 	

¼
P Sr j same;ϕp

� 	
P sameð Þ

P Sr j same;ϕp

� 	
P sameð ÞþP Sr jdif ;ϕp

� 	
P difð Þ

ð15Þ

If the entropy is used in the classification, the weighting is not
applied to each jet as in our LMGEW [26] method. In this case, an
entropy is computed for each block. The entropy of the r-th block,
Er, is computed as the mean of the entropy of all jets inside the
block. To use P in the computation of the identification score of
the j-th gallery image with respect to the input image, the rotation
angle, ϕp, of the input image is also needed. This angle can be
considered as known for each input image, or computed by using
the shape S adjusted to the face. Finally, the identification score of
the j-th gallery image with respect to the input image is computed
as

SjðϕpÞ ¼
1
VH

XVH
r ¼ 1

ErP samejSr ;ϕp

� 	
ð16Þ

3. Database and experiments

The FERET and CMU-PIE databases were used to evaluate our
method. Fig. 6 shows figures from PIE (top) and FERET (bottom)
databases for negative angle poses. A brief description of the
databases is given below.

Fig. 5. Division in blocks for the statistical model. The five spatial scales used are shown. The white lines represent the different blocks and the þ signs represent the spatial
position where a Gabor jet is computed.

PIE c22 c02 c25 c37 c05 c09 c27

FERET bb bc bd be ba

Fig. 6. Examples of face images taken from different view points for PIE (top) and FERET (bottom) databases. Images c25 and c09 taken with the camera located at an angle
above the face. The other face images taken with a camera at the same height of the face. Face poses are shown only for left side rotation, right side rotation is analogous.
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3.1. The FERET database

The FERET database is the most widely used benchmark for
face recognition methods [24]. It has a large number of images
with different gesticulations, illumination, significant amount of
time between pictures taken, and different face pose from �601 to
þ601. The FERET database is organized in 5 sets with frontal face
images: the gallery is Fa, and the test sets are Fb, Fc, Dup1, Dup2. In
the Fa set there are 1196 face images of different people. To test
faces with varying pose, 8 sets from bb through bi were taken with
the specific intention of investigating pose angle effects. Specifi-
cally, bf–bi are symmetric analogs of bb–be. The sets are bb, bc, bd,
be, bf, bg, bh, and bi with pose angles 601, 401, 251, 151, �151,
�251 �401 and �601 respectively. The gallery set which has
images in frontal pose was ba. Each of these sets has 200 images of
200 different people. Face images for FERET database, bb, bc, bd,
be and ba sets, are shown in Fig. 6; Opposites sets, bf, bg, bh and bi,
are analogs to those showed in Fig. 6.

3.2. The CMU-PIE database

The CMU-PIE database [58] is also one of the most commonly
used databases for face recognition across pose variation. This
database is composed of images of 68 different people. The images
were acquired in 13 different poses, under 43 different illumina-
tion conditions, with 4 different expressions, and while the
subjects were talking. To test our face recognition method, the
13 poses of each subject were used, corresponding to cameras 22,
02, 25, 37, 05, 09, 27, 07, 29, 11, 31, 14 and 34. Images with frontal
illumination (flash 11) were used. Face images for PIE database, 22,
02, 25, 37, 05, 09 and 27 sets, are shown in Fig. 6; Opposites
sets, 07, 29, 11, 31, 14 and 34, are analogs to those showed in
Fig. 6.

3.3. Experiments

3.3.1. Grid deformation
The effectiveness of the ASM to deform the grid of Gabor filters

to take into account pose variations was measured by the follow-
ing experiments:

� Face identification performing only a face alignment, without
using the grid deformation, as described in Section 2.1.2 and
shown in Fig. 4(a).

� Face identification performing grid deformation, as described
in Section 2.2 and shown in Fig. 4(b).

Both experiments were performed without any additional
improvement of the LMG method so that only the improvement
due to the grid deformation was measured. Then, the experiments

were repeated using two different variants of our method to
measure the improvement achieved by using each of them. These
variants were introduced in our previous work [25–27,47], and the
methods involved were presented in the previous section. The first
variant includes a Borda count threshold (BTH) and an Entropy
weighting (E), both presented in [25,26]. The BTH eliminates very
small value scores that act as noise for the Borda count computa-
tion. The E weighting is used to emphasize the Gabor jets with the
best performance. The second variant, in addition to BTH and E,
includes the Local Normalization (LN) introduced in [47], which is
used to compensate for illumination conditions.

3.3.2. Statistical model
The statistical model was trained for each block. Each of the

FERET eight pose sets (bb, bc, bd, be, bf, bg, bh, bi) contains 200
images, including the gallery set. Each set was partitioned into two
subsets, the first to train the model, and the second for testing. The
training subsets were built by randomly choosing 100 images of
the corresponding set, and the remaining 100 images were used to
test the model. A cross-validation was performed exchanging the
training and test sets, i.e., training with the second partition and
testing with the first one. In the CMU-PIE database, an analogous
procedure was carried out. Each of the 13 pose sets of the PIE
database contains 68 images; therefore, 34 were randomly
selected for the training set and 34 for the testing set to perform
the cross-validation. The combinations of grid deformation, LN,
BTH, and E with best performance in the previous experiments
(Section 3.3.1), were used to evaluate the performance of the
statistical model in each database. The method was tested
using different numbers of blocks for the statistical model (see
Fig. 5).

In order to measure the performance of the statistical model
(P) in combination with the other methods used in our system, a
set of experiments similar to those presented in Section 3.3.1 was
performed. Face identification performing only a face alignment,
or also using grid deformation, was carried out using P, and
combinations of BTH, E, and LN.

3.3.3. Gallery sets with different pose angles
In order to measure the robustness of the method when images

of rotated faces are used as gallery, different pose sets were
enrolled. The sets bc, bd, be, bf, bg and bh of the FERET database
were enrolled as gallery. The sets bb and bi were not used as
gallery because one side of the face is usually not visible in these
images due to the large rotation (7601). In the CMU-PIE database,
the sets of cameras 37, 05, 09, 27, 07, 29 and 11 were used as
gallery, and the sets 22, 02, 25, 31, 14 and 34 were not used
because of their large rotation. This experiment also allows
comparison with other published methods in which the results
are presented using rotated faces as galleries.

Table 1
Rank-1 results on the FERET database. The results of using only alignment (A), or grid deformation (GD) to compute the position of the Gabor jets were tested. These two
methods were tested without including any other improvement, and using two variants of the LMG method. A first variant of our method includes Borda count with
threshold (BTH) and Entropy weighting (E) of the Gabor jets. A second variant additionally includes a Local Normalization (LN) for illumination compensation.

Method Set

bb (601) (%) bc (401) (%) bd (251) (%) be (151) (%) bf (�151) (%) bg (�251) (%) bh (�401) (%) bi (�601) (%) Mean (%)

A 34.5 84.0 96.5 99.5 100.0 98.5 74.0 36.5 77.9
GD 59.5 88.5 98.5 99.5 100.0 98.0 86.5 53.5 85.5
AþBTHþE 43.5 95.0 99.5 100.0 100.0 99.5 88.5 47.0 84.1
GDþBTHþE 71.0 94.5 99.0 99.5 100.0 99.5 94.5 67.5 90.7
AþLNþBTHþE 46.0 97.5 99.5 100.0 100.0 100.0 90.5 48.0 85.2
GDþLNþBTHþE 77.5 97.5 100.0 100.0 100.0 100.0 95.5 71.5 92.8
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3.4. Results

3.4.1. Grid deformation results
Table 1 shows the Rank-1 results on the FERET database using

only face alignment, or face alignment with grid deformation, and
three different conditions. Both methods were tested without any
other improvement of the LMG method, and then using the
variants of the LMG which include BTH, E, and LN. As shown,
the best results reach 100% for face pose near frontal, �251 to 251.
However, for larger pose changes, 401 or more, the identification
results decrease significantly and differences among different
variants of our method become evident. For example, when only
alignment is used in images with pose variation of 601, the correct
identification rate is 34.5%. Using grid deformation, results
improve to 59.5%. As shown in Table 1 the results obtained with
grid deformation are significantly better than those obtained with
only alignment. This improvement can be explained because with
the grid deformation, the extracted features are closer to the
features extracted in the frontal face enrolled in the gallery. This
effect is especially noticeable in faces with large pose variation. If
we combine BTH, LN, and E [26,47] with face alignment and grid
deformation, the recognition rate improves significantly achieving
the highest results. This improvement can be seen in Table 1,
particularly for the 7401 and 7601 rotation angles. For example,
the results using grid deformation (GD) increase 10% for the 7401
(GDþLNþBTHþE), and 32% for the 7601, if LN, BTH and E
are used.

Table 2 shows the results of the same experiments described
above but carried out using the PIE database. In same way as in the
FERET database, the results are 100% for the near frontal poses (05,
09, 07, 29). However, for larger rotation angles the performance
decreases. Results obtained using grid deformation are always
better than those with alignment only. The best performance was
obtained using grid deformation with BTH and E, in this database.
The performance did not improve when LN was used. For example,
the performance obtained using grid deformation increased
approximately 43.5% for the largest rotation angles (sets 22 and
34) when BTH and E were used, but it increased only 28.2% if BTH,
E and LN were used.

3.4.2. Statistical model results
Table 3 shows the results of the classification performance on

the FERET database for different arrays of blocks used to test the
statistical model. The best result was reached with an array size of
20� 25, therefore this size was selected for further testing of the
statistical model. Table 4 shows analogous results on the CMU-PIE
database. The best result for the PIE database was achieved with
an array size of 8� 10, accordingly this size was selected for
further testing on the PIE database.

Table 5 shows the results of face identification using only face
alignment, or face alignment with grid deformation, with P and
combinations of BTH, E, and LN in the FERET database. Results

show that the use of the statistical model improves the recognition
rate significantly, as can be seen by comparison with those in
Table 1. The recognition rates reach 100% for near frontal images,
and nearly 99% for 7401 pose angles. For 7601 pose angles the
improvement is roughly 16% of the best result shown in Table 1.

Table 5 shows that the results using GD are always better than
those using A. The best result was achieved by the combination
DGþPþBTHþLN, with a mean performance of 96:470:2%. How-
ever, this performance was very close to that obtained by the
combinations DGþPþBTH, DGþPþBTHþE and DGþPþBTHþ
LNþE. The results show that the improvement in the performance
is similar using only BTH, or combinations of BTH, E and LN.

The performance obtained in the FERET database by our
previous work [26] is shown in Table 5 with the options
AþBTHþE. The mean performance increases from 84% to 96%
using our new method. The improvement is greater if the extreme
poses are considered. For example, taking into account the poses
with 7601 the performance increases from 45.4% to 86.8%.

Table 6 shows the results of using P and combinations of BTH, E
and LN on the CMU-PIE database. In the same way as on the FERET
database, the results improved significantly by using the statistical
model. Considering the experiments with better average results in
Tables 2 and 6, the performance improvement in the largest
rotation angles (sets 22 and 34) is 53% when the statistical model
is used. Also the results using GD are always better than when
using A.

The best performance was achieved using GDþPþBTH on the
CMU-PIE database, with a mean performance of 87:171:5%
(Table 6). The performance of combination GDþPþBTHþE was
close to this result, nevertheless, the combinations using LN did
not improve the results.

Comparing our previous method (Table 6, options AþBTHþE)
with the new one in the CMU-PIE database yields a mean
performance improvement that goes from 73.4% to 87.4%. Compar-
ing the extreme poses (sets 22 and 34), the performance increases
from 28% to 54.5%.

3.4.3. Gallery sets with different pose angle results
Table 7 shows the results of enrolling sets of images with

various pose angles, between �401 and 401, as gallery in the
FERET database. Results show that the highest recognition perfor-
mance was reached consistently for faces with pose closest to the
enrolled face angle. Even if faces with a small pose variation are
used as gallery, the recognition rate of faces with large pose
variation improves significantly. Using galleries with just 7151,
the average result in the test sets with 7601 of rotation in the
same direction is 94.6%.

Table 8 shows the results of using images with different pose
angles as gallery in the CMU-PIE database. Also, the highest
recognition rates were consistently reached for faces with pose
angle closest to the enrolled faces. Using the sets of cameras 37

Table 2
Rank-1 results on the CMU-PIE database. The results of using only alignment (A), or grid deformation (GD) to compute the position of the Gabor jets were tested. These two
methods were tested without including any other improvement and using two variants of the LMG method. A first variant of our method includes Borda count with
threshold (BTH) and Entropy weighting (E) of the Gabor jets. A second variant additionally includes a Local Normalization (LN) for illumination compensation.

Method Set

22 (%) 02 (%) 25 (%) 37 (%) 05 (%) 09 (%) 07 (%) 29 (%) 11 (%) 31 (%) 14 (%) 34 (%) Mean (%)

A 25.0 54.4 51.5 95.6 100.0 100.0 100.0 100.0 69.1 55.9 38.2 22.1 67.6
GD 26.5 64.7 60.3 98.5 100.0 100.0 100.0 100.0 97.1 69.1 61.8 20.6 74.9
AþBTHþE 30.9 70.6 67.6 100.0 100.0 100.0 100.0 100.0 80.9 54.4 51.5 25.0 73.4
GDþBTHþE 42.6 79.4 76.5 98.5 100.0 100.0 100.0 100.0 98.5 72.1 57.4 25.0 79.2
AþLNþBTHþE 27.9 73.5 64.7 100.0 100.0 100.0 100.0 100.0 75.0 58.8 44.1 26.5 72.5
GDþLNþBTHþE 33.8 70.6 75.0 98.5 100.0 100.0 100.0 100.0 98.5 69.1 67.6 26.5 78.3
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Table 3
Performance of the statistical model on the FERET database using different array sizes of H � V blocks. The grid deformation, LN, BTH, and E were used in the tests.

Arrays of block divisions Set

bb (601) (%) bc (401) (%) bd (251) (%) be (151) (%) bf (�151) (%) bg (�251) (%) bh (�401) (%) bi (�601) (%) Mean (%)

4� 5 87.0 99.2 100.0 99.5 100.0 100.0 97.8 81.9 95.7
8� 10 87.4 99.5 100.0 99.9 100.0 100.0 97.9 83.0 95.9
12� 15 87.5 99.5 100.0 99.8 100.0 100.0 97.7 84.3 96.1
16� 20 88.6 99.5 100.0 99.7 100.0 100.0 97.9 82.0 96.0
20� 25 89.3 99.3 100.0 100.0 100.0 100.0 97.9 84.2 96.3
24� 30 88.5 99.5 100.0 100.0 100.0 100.0 97.9 81.5 95.9
28� 35 87.9 99.5 100.0 100.0 100.0 100.0 98.5 82.4 96.0
32� 40 88.0 99.5 100.0 100.0 100.0 100.0 98.1 82.3 96.0
36� 45 87.4 99.4 100.0 100.0 100.0 100.0 98.2 81.0 95.8
40� 50 87.2 99.5 100.0 100.0 100.0 100.0 98.3 81.5 95.8
44� 55 86.6 99.4 100.0 100.0 100.0 100.0 97.8 81.6 95.7

Table 4
Performance of the statistical model on the CMU-PIE database using different array sizes of H � V blocks. The grid deformation, BTH and E were used in the tests.

Arrays of n1 blocks Set

22 (%) 02 (%) 25 (%) 37 (%) 05 (%) 09 (%) 07 (%) 29 (%) 11 (%) 31 (%) 14 (%) 34 (%) Mean (%)

4� 5 61.0 82.2 88.1 100.0 100.0 100.0 100.0 100.0 100.0 71.8 62.4 43.2 84.1
8� 10 64.1 89.9 91.6 100.0 100.0 100.0 100.0 100.0 100.0 76.0 74.3 46.2 86.8
12� 15 58.8 89.1 90.7 100.0 100.0 100.0 100.0 100.0 99.9 72.8 69.0 43.7 85.3
16� 20 59.6 88.5 91.2 100.0 100.0 100.0 100.0 100.0 99.6 75.4 69.0 42.8 85.5
20� 25 56.9 88.4 88.2 100.0 100.0 100.0 100.0 100.0 99.1 78.1 65.4 36.8 84.4
24� 30 57.5 88.1 87.2 100.0 100.0 100.0 100.0 100.0 99.0 77.5 64.4 39.1 84.4
28� 35 61.3 89.3 88.2 100.0 100.0 100.0 100.0 100.0 99.4 79.3 65.3 35.9 84.9
32� 40 57.6 87.5 86.8 100.0 100.0 100.0 100.0 100.0 99.0 79.0 62.8 34.4 83.9
36� 45 54.1 86.6 87.1 100.0 100.0 100.0 100.0 100.0 99.6 78.2 61.6 38.4 83.8
40� 50 54.3 88.1 86.6 100.0 100.0 100.0 100.0 100.0 99.6 74.9 59.6 32.9 83.0
44� 55 51.8 86.3 84.9 100.0 100.0 100.0 100.0 100.0 99.4 76.3 59.1 34.9 82.7

Table 5
Rank-1 results of the proposed methods in FERET database, using only alignment (A), or alignment with grid deformation (GD), with the statistical model (P) and
combinations of a Borda count with threshold (BTH), Entropy weighting (E), and Local Normalization (LN).

Method Set

bb (601) (%) bc (401) (%) bd (251) (%) be (151) (%) bf (�151) (%) bg (�251) (%) bh (�401) (%) bi (�601) (%) Mean (%)

AþP 56.2 96.2 100.0 100.0 100.0 100.0 95.0 56.9 88.0
GDþP 83.2 98.3 100.0 99.6 100.0 100.0 97.9 82.9 95.2
AþPþBTH 60.7 97.9 100.0 100.0 100.0 100.0 95.7 55.7 88.7
GDþPþBTH 87.4 98.9 100.0 99.7 100.0 100.0 99.0 83.4 96.0
AþPþBTHþE 58.8 97.7 100.0 100.0 100.0 100.0 96.1 55.3 88.5
GDþPþBTHþE 87.5 98.7 100.0 99.7 100.0 100.0 98.6 82.9 95.9
AþPþBTHþLN 58.8 98.7 100.0 100.0 100.0 100.0 95.7 59.9 89.1
GDþPþBTHþLN 89.0 99.5 100.0 100.0 100.0 100.0 98.1 84.6 96.4
AþPþBTHþLNþE 56.1 98.0 100.0 100.0 100.0 100.0 95.5 57.8 88.4
GDþPþBTHþLNþE 89.3 99.3 100.0 100.0 100.0 100.0 97.9 84.2 96.3

Table 6
Rank-1 results of the proposed methods in CMU-PIE database, using only alignment (A), or alignment with grid deformation (GD), with the statistical mode (P) and
combinations of a Borda count with threshold (BTH), Entropy weighting (E), and Local Normalization (LN).

Method Set

22 (%) 02 (%) 25 (%) 37 (%) 05 (%) 09 (%) 07 (%) 29 (%) 11 (%) 31 (%) 14 (%) 34 (%) Mean (%)

AþP 38.4 79.7 74.6 100.0 100.0 100.0 100.0 100.0 91.9 62.5 51.6 31.8 77.5
GDþP 56.6 86.9 85.6 100.0 100.0 100.0 100.0 100.0 100.0 80.7 76.3 46.8 86.1
AþPþBTH 40.4 82.1 76.0 100.0 100.0 100.0 100.0 100.0 87.8 67.4 58.1 34.6 78.9
GDþPþBTH 61.2 90.9 92.2 100.0 100.0 100.0 100.0 100.0 100.0 79.0 74.3 47.5 87.1
AþPþBTHþE 37.6 80.0 75.4 100.0 100.0 100.0 100.0 100.0 87.6 65.3 52.9 34.6 77.8
GDþPþBTHþE 64.1 89.9 91.6 100.0 100.0 100.0 100.0 100.0 100.0 76.0 74.3 46.2 86.8
AþPþBTHþLN 40.9 81.3 74.4 100.0 100.0 100.0 100.0 100.0 90.0 66.3 54.0 35.1 78.5
GDþPþBTHþLN 55.3 87.4 89.0 100.0 100.0 100.0 100.0 100.0 100.0 80.1 77.6 45.1 86.2
AþPþBTHþLNþE 37.8 80.1 74.0 100.0 100.0 100.0 100.0 100.0 87.4 63.1 53.8 33.4 77.5
GDþPþBTHþLNþE 53.7 86.3 87.9 100.0 100.0 100.0 100.0 100.0 100.0 80.4 74.9 47.9 85.9
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and 11 as gallery, the average result in the sets with largest
rotations is 86.1%.

3.5. Comparison with other methods

Our literature review focused on articles on face recognition
with pose variation in the FERET and/or CMU-PIE databases. We
extracted the results from those articles tables or figures. The best
results obtained by those other methods are shown in Tables 9–12.

Table 9 shows the performance of 7 different 2D methods and
our proposed method on the FERET database. Comparing the
results, it can be concluded that our method reaches the highest
overall classification performance.

Table 10 shows the performance of 5 different 3D methods and
our proposed method on the FERET database. Some methods
consider the set with 151 of rotation as the gallery. To perform an
equivalent comparison with these methods, the sets with 151 and
�151 of pose were used both individually and together as gallery.
Our method outperformed all the methods that use the set with 01
of pose as gallery. Only one of the methods that uses the set with
151 of pose as gallery had a performance that exceeded that of our
method, when we used the sets with 151 or �151 of pose as gallery

individually [33]. Nevertheless, the sets in which our method is
surpassed are only those with 7601 of face rotation. If we use both
sets together (151 and �151) as gallery, our method achieves the
best performance. To use two sets as gallery, the rotation angle of
the test face is computed by using the shape adjusted to the face,
and then the comparison is carried out using the gallery set with
the closest rotation angle.

Tables 11 and 12 show the results of our proposed method on
the CMU-PIE database compared with other 2D and 3D methods,
respectively. Since most publications show results in just some
sets of the CMU-PIE database, the mean performance of our
method is also shown considering only the sets used by each
method. Accordingly, the last three columns of Tables 11 and 12
show different mean results: The first mean column “Meana”

shows the published performance of each method, the second
mean column “Our meanb” shows the performance of our method
considering only the sets used in the indicated paper, and the third
column “Our meanc” shows the performance of our method when
the sets c11 and c37 are used as gallery and only the sets used in
the indicated paper are considered.

Table 11 shows the results of 10 different 2D methods and our
proposed method on the CMU-PIE database. Our method is

Table 7
Rank-1 performance for the method using galleries with different pose angles in FERET database. The GD, P, BTH and LN were used in the tests.

Yaw rotation of the gallery (deg) Set

bb (601) (%) bc (401) (%) bd (251) (%) be (151) (%) ba (01) (%) bf (�151) (%) bg (�251) (%) bh (�401) (%) bi (�601) (%) Mean
(%)

40 98.5 Gallery 99.5 99.5 99.2 99.0 92.8 77.0 34.4 87.5
25 99.3 99.5 Gallery 100.0 100.0 100.0 99.3 93.5 50.3 92.7
15 96.8 99.5 100.0 Gallery 100.0 100.0 99.1 96.5 66.2 94.8
0 89.0 99.5 100.0 100.0 Gallery 100.0 100.0 98.1 84.6 96.4
�15 69.2 99.3 100.0 100.0 100.0 Gallery 100.0 99.8 93.5 95.2
�25 49.0 93.5 98.8 99.3 100.0 100.0 Gallery 99.8 98.0 92.3
�40 25.5 76.8 89.0 96.3 96.4 99.0 99.5 Gallery 99.5 85.2

Table 8
Rank-1 performance for the method using galleries with different pose angles in the CMU-PIE database. The GD, P and BTH were used in the tests.

Gallery set Set

22 (%) 02 (%) 25 (%) 37 (%) 05 (%) 09 (%) 27 (%) 07 (%) 29 (%) 11 (%) 31 (%) 14 (%) 34 (%) Mean (%)

37 97.5 99.7 99.9 gallery 100.0 100.0 100.0 100.0 98.2 77.8 18.4 19.4 12.2 76.9
05 88.1 99.4 99.1 100.0 gallery 100.0 100.0 100.0 100.0 97.8 41.0 39.9 24.3 82.5
09 58.5 94.6 94.6 100.0 100.0 gallery 100.0 100.0 100.0 100.0 80.6 72.1 43.7 87.0
27 61.2 90.9 92.2 100.0 100.0 100.0 gallery 100.0 100.0 100.0 79.0 74.3 47.5 87.1
07 30.7 63.1 61.2 100.0 100.0 100.0 100.0 gallery 100.0 96.6 39.1 43.4 14.7 70.7
29 27.4 55.6 60.4 96.9 100.0 100.0 100.0 100.0 gallery 100.0 92.2 85.7 60.6 81.6
11 16.3 30.7 30.0 74.9 92.1 95.0 98.7 95.3 100.0 gallery 87.2 83.1 72.4 73.0

Table 9
Comparison of results with other 2D methods with face pose variations using the FERET database.

Method Set

bb (601) (%) bc (401) (%) bd (251) (%) be (151) (%) ba (01) (%) bf (�151) (%) bg (�251) (%) bh (�401) (%) bi (�601) (%) Mean (%)

Ashraf et al. [40]a 37.0 61.5 85.5 94.0 Gallery 97.0 88.5 67.0 40.0 71.3
Gao et al. [39] 44.0 81.5 93.0 97.0 Gallery 98.5 91.5 78.5 52.5 79.6
Gross et al. [59]a 20 38 46 – Gallery – 44 45 8 33.5
Li et al. [42]a 86.9 95.7 99 97.9 Gallery 95.9 96 90.9 78.1 92.5
Sarfraz and Hellwich [49]a 78 90 95 – Gallery – 87 84 80 85.7
Sharma et al. [43] 70.0 82.0 94.0 95.0 Gallery 96.0 94.0 85.0 79.0 86.8
Vu and Caplier [41]a 76.5 90.0 99.5 100.0 Gallery 100.0 99.0 95.5 87.0 93.4
Ours 89.0 99.5 100.0 100.0 Gallery 100.0 100.0 98.1 84.6 96.4

a Approximated values extracted from a graph.
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compared using the set with frontal faces (27) and also two sets
with rotated faces (37 and 11) as gallery. By using the frontal faces
as gallery, our method outperforms 6 of the 10 methods. This
overall performance is caused by poor recognition in the sets with
large rotation angles, although the performance in near frontal
faces is 100%. If two sets of rotated faces are used as gallery, the

performance of our method is increased, surpassing that of all the
comparison methods.

Table 12 shows the performance of 5 different 3D methods and
our method on the CMU-PIE database. The performance of our
proposed method is shown using one and two sets as gallery. If
only frontal faces are used in the gallery, our method outperforms

Table 10
Comparison of results with 3D methods with face pose variations using the FERET database.

Method Set

bb (601) (%) bc (401) (%) bd (251) (%) be (151) (%) ba (01) (%) bf (�151) (%) bg (�251) (%) bh (�401) (%) bi (�601) (%) Mean (%)

Asthana et al. [34] – 90.5 98.0 98.5 Gallery 97.5 97.0 91.9 – 95.6
Blanz and Vetter [31] 94.8 95.4 96.9 99.5 Gallery 97.4 96.4 95.4 90.7 95.8
Ding et al. [35] 89.5 97.0 98.5 99.0 Gallery 98.5 98.0 94.5 78.0 94.1
Ours 89.0 99.5 100.0 100.0 Gallery 100.0 100.0 98.1 84.6 96.4

Paysan et al. [33] 97.4 99.5 100.0 Gallery 99.0 99.5 97.9 94.8 83.0 96.4
Romdhani [32] 92.7 99.5 99.5 Gallery 96.9 99.5 95.8 89.6 77.1 93.8
Ours (151) 96.8 99.5 100.0 Gallery 100.0 100.0 99.1 96.5 66.2 94.8
Ours (�151) 69.2 99.3 100.0 100.0 100.0 Gallery 100.0 99.8 93.5 95.2
Ours (151 and �151) 96.8 99.5 100.0 Gallery 100.0 Gallery 100.0 99.8 93.5 98.5

Table 11
Comparison of results with other 2D Methods with face pose variations using the CMU-PIE database.

Method Set

22
(%)

02
(%)

25
(%)

37
(%)

05
(%)

09
(%)

27
(%)

07
(%)

29
(%)

11
(%)

31
(%)

4
(%)

34
(%)

Meana

(%)
Our meanb

(%)
Our meanc

(%)

Asthana et al. [50] – – – 89.4 95.5 98.5 Gallery 98.5 100.0 88.1 – – – 95.0 100.0 98.8
Castillo and Jacobs [51] 62 98 88 99 97 100 Gallery 99 99 97 91 93 60 90.2 87.1 94.1
Chai et al. [60] – – – 82.4 98.5 98.5 Gallery 98.5 100.0 89.7 – – – 94.6 100.0 98.8
González-Jiménez et al. [37] – – – 62 93 – Gallery – 93 75 – – – 80.8 100.0 100.0
Gross et al. [59]d 39 59 57 89 94 95 Gallery 88 56 89 56 70 48 70.0 87.1 94.1
Kanade and Yamada [61] 50 100 85 100 100 100 Gallery 100 100 100 81 81 25 85.2 87.1 94.1
Li et al. [42]d 73.5 100 88.3 100 100 100 Gallery 100 100 100 70.6 85.4 73.5 90.9 87.1 94.1
Prince et al. [62] 91 – – – 100 – Gallery – – – – – – 95.5 80.6 98.8
Sarfraz and Hellwich [49]d 36 78 80 86 88 92 Gallery 100 91 86 81 85 45 79.0 87.1 94.1
Sharma et al. [43] 79 88 85 100 100 100 Gallery 100 100 100 91 97 85 93.8 87.1 94.1
Ours 61.2 90.9 92.2 100.0 100.0 100.0 Gallery 100.0 100.0 100.0 79.0 74.3 47.5 87.1 – –

Ours (c37 and c11) 97.5 99.7 99.9 gallery 100.0 100.0 100.0 95.3 100.0 Gallery 87.2 83.1 72.4 94.1 – –

a Published mean performance of each method.
b Mean performance of our method considering the same sets as the comparison method.
c Mean performance of our method using the sets c37 and c11 as gallery and considering the same sets as the comparison method.
d Approximated values extracted from a graph.

Table 12
Comparison of results with 3D methods with face pose variations using the CMU-PIE database.

Method Set

22
(%)

02
(%)

25
(%)

37
(%)

05
(%)

09
(%)

27
(%)

07
(%)

29
(%)

11
(%)

31
(%)

14
(%)

34
(%)

Meana

(%)
Our meanb

(%)
Our meanc

(%)

Asthana et al. [34] – – – 97 100 100 Gallery 98.5 100 98.5 – – – 99.0 100.0 98.8
Blaz and Vetter [31]d 79.5 – – – 97.5 – Gallery – – – – – – 88.5 80.6 98.8
Ding et al. [35] – 85.5 – 100 100 100 Gallery 100 100 100 – 77.6 – 95.4 95.7 96.4
Paysan et al. [33]d 75.7 – – – 96.1 – 98.9

(Gallery)
– – – – – – 90.2 80.6 99.2

Romdhani [32]d 76 – – – 98 – 100
(Gallery)

– – – – – – 91.3 80.6 99.2

Ours 61.2 90.9 92.2 100.0 100.0 100.0 Gallery 100.0 100.0 100.0 79.0 74.3 47.5 87.1 – –

Ours (c37 and c11) 97.5 99.7 99.9 Gallery 100.0 100.0 100.0 95.3 100.0 Gallery 87.2 83.1 72.4 94.1 – –

a Published mean performance of each method.
b Mean performance of our method considering the same sets as the comparison method.
c Mean performance of our method using the sets c37 and c11 as gallery and considering the same sets as the comparison method.
d Values computed with ambient light (set “light”).
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only 2 of the comparison methods. Nevertheless, when two sets
are used in the gallery, our method outperforms 4 of the
comparison methods.

Our method was tested on a standard PC with Intel Core i7-
3770 CPU, 3.40 GHz � 8, and 16 Gb of RAM. The ASM and Thin
Plate Splines methods are implemented in Cþþ , and the other
parts of our method are implemented in Matlab. Table 13 shows
the computational time of our method with different configura-
tions for the recognition of one face in the FERET database images.
The statistical model uses the largest amount of time, followed by
the Entropy weighting. This computational time can be signifi-
cantly reduced by implementing the method in Cþþ instead of
Matlab. Moreover, parallel processing can be implemented using
GPU to reduce the computational time.

4. Conclusions

The LMG is a well-established method for frontal face identi-
fication with excellent performance. Nevertheless, as with most
face identification methods, LMG performance declines signifi-
cantly for large geometric deformations such as those produced by
varying pose. In this study, a new method based on LMG is
proposed using ASM to correct the position where Gabor jets are
computed with pose changes. Also, the method incorporates a
statistical model of the Borda count scores computed by using the
Gabor jets. The method includes illumination compensation by
Local Normalization, and an entropy weighting of the Gabor jets to
emphasize those features most relevant for identification.

Our method was tested using the FERET and CMU-PIE data-
bases, which are the most widely used international databases for
face identification across pose. The FERET database has a subset
with pose variations (þ601, þ401, þ251, þ151, þ01, �151, �251,
�401, �601) with 200 faces for each pose angle. Our method was
tested enrolling each pose angle as the gallery set. Consistently the
highest recognition performance was reached for faces with pose
closest to the enrolled face angle. Also, even if a gallery with a
small pose angle was used, the recognition rates of faces with high
rotation improved significantly. The mean recognition rate of faces
with 7601 of rotation increased from 86.8% to 95.2% if a gallery
set with only 151 of rotation in the same direction was used. The
mean improvement in the recognition rate of our method com-
pared to the classical LMG on the FERET database for pose
variation went from 77.9% to 96.4%.

As expected, the improvement was larger for significant face
pose variation. For example, the mean performance of the classical
LMG in faces with 7601 pose variation improved from 35.5% to
86.8% (144.5% improvement). The CMU-PIE database has 13 sub-
sets with different pose variations, each with 68 faces. The
recognition rate of faces with large rotation angles also improved
significantly if a gallery with pose angle was used in this database.
The recognition rate in the set with the largest rotation (set 22),
increased from 61.2% to 97.5% when set 37 is used as gallery.
Compared to the classical LMG, the mean performance in the

recognition rate of our method on the CMU-PIE database increased
from 67.6% to 87.1% when a gallery of frontal faces was used. The
recognition rate improvement for the sets with largest rotation
angles (22 and 34) was 130.8%.

Our results on the FERET database were compared to those of
12 different 2D and 3D state-of-the-art methods published pre-
viously. Our results were significantly better than all previous 2D
methods which used the set with 01 of pose as gallery. The best 2D
method [41] achieved a mean performance of 93.4%, while our
method reached 96.4%. This difference was greater in faces with
large pose variation angles. For example, the mean performance
obtained in [41] for faces with 7601 of pose was 81.8% while our
method results reached 86.8%. Only one of the 3D methods
obtained a better mean result than our method on the FERET
database [33]. This method uses the set with 151 of pose as gallery,
and our method yields better results if we use the sets with 7151
of pose together as gallery. The 3D methods require a greater
number of computations which can be interpreted as a disadvan-
tage compared to our method.

In the CMU-PIE database, our method was compared with 10
different 2D and 5 different 3D previously published methods.
Using the set with frontal faces as gallery the performance of our
method outperforms 6 of the 2D methods. Nonetheless, if two sets
with rotated faces (37 and 11) are used as galleries, the mean
result of our method surpasses the performance of all previously
published methods. If frontal faces are used in the gallery, the
mean performance of our method is better than the performance
of 2 of the 3D methods on the CMU-PIE database. Using the two
sets with rotated faces as galleries, the mean performance of our
method surpasses the results of 4 of the 5 methods.

Our proposed method has more consistent performance for the
same rotation on the two tested databases (FERET and CMU-PIE) than
the other comparison methods because methods that show highest
performance on CMU-PIE have lower performance on the FERET
database. The cause of this may be that our method is more robust to
changes in the general conditions regarding the image capture
procedure. This can be observed by comparing the sets with similar
rotations in the FERET and CMU-PIE databases.
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