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Abstract
Results are presented for the largest experimental study to
date that investigates the comparison and combination of
2D and 3D face recognition. To our knowledge, this is also
the only such study to incorporate significant time lapse be-
tween gallery and probe image acquisition, and to look at
the effect of depth resolution. Recognition results are ob-
tained in (1) single gallery and a single probe study, and
(2) a single gallery and multiple probe study. A total of 275
subjects participated in one or more data acquisition ses-
sions. Results are presented for gallery and probe datasets
of 200 subjects imaged in both 2D and 3D, with one to thir-
teen weeks time lapse between gallery and probe images of
a given subject yielding 951 pairs of 2D and 3D images.
Using a PCA-based approach tuned separately for 2D and
for 3D, we find that 3D outperforms 2D. However, we also
find a multi-modal rank-one recognition rate of 98.5% in a
single probe study and 98.8% in multi-probe study, which
is statistically significantly greater than either 2D or 3D
alone.

1. Introduction
The identification of the human face in 2D has been investi-
gated by many researchers, but relatively few 3D face iden-
tification studies have been reported[1, 2, 3, 4, 5]. One of
the main motivations of 3D face recognition is to overcome
the problems in general 2D recognition methods resulting
from illumination, expression or pose variations.

This study deals with face recognition using 2D and 3D.
Each modality captures different aspects of facial features,
2D intensity representing surface reflectance and 3D depth
values representing face shape data. Even though each
modality has its own advantages and disadvantages depend-

ing on certain circumstances, there is often some expecta-
tion that 3D data should yield better performance. How-
ever, no rigorous experimental study has been reported to
validate this expectation. The experiments reported in this
study are aimed at (1) examining the spatial / depth resolu-
tion needed for 3D face recognition (2) testing the hypothe-
sis that 3D face data provides better biometric performance
than 2D face data, using the PCA-based method, and (3) ex-
ploring whether a combination of 2D and 3D face data may
provide better performance than either one individually in
both a single probe study and a multiple probe study.

This is an extension of our earlier work [6]. We have
expanded the size of the dataset and have improved the
method of geometric normalization used in the 2D and 3D
PCA algorithms, resulting in improved recognition perfor-
mance, both individually and in combination. We have also
examined the effect of depth resolution on performance of
3D recognition.

2. Previous Work
In this section, methods that use multiple types of biometric
sources for identification purposes, multi-modal biometrics,
are reviewed. The term “multi-modal biometrics” is used
here to refer to the use of different sensor types without nec-
essarily indicating that different parts of the body are used.
The important aspects of these multi-modal studies are sum-
marized in Table 1. Due to the effectiveness of combining
multiple biometrics, such studies are included as well to re-
view their data fusion methods, types of biometric sources
and the size of experimental dataset. In addition to recog-
nition methods based solely on the human face, there are
other recognition methods using multiple biometric sources
in addition to face data. One commonality of the studies
described in Table 1 is that identification based on multiple
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Table 1: Multi-biometrics studies for personal identification

Source Biometric Fusion Set
(year) sources methods size
Wang Face, metric- 90

(’03) [7] Iris based
Chang Face, pixel- 111

(’03) [8] Ear based
Shakhnaro- Face, metric- 26

vich(’02) [9] Gait based
Ross Face, Hands metric- 50

(’01) [10] Fingerprint based
Frischholz Face, Voice, metric- 150
(’00) [11] Lip Movement based

Ben-Yacoub Face, metric- 37
(’99) [12] Voice based

Hong Face, metric- 64
(’98) [13] Fingerprint based

Bigun Face, metric- 40
(’97) [14] Voice based

Kittler Face, Profile metric- 37
(’97) [15] Voice based
Brunelli Face, metric- / 89

(’95) [16] Voice rank-based

Studies that integrate multiple types of facial data
Chang 2D frontal& metric- 278

(’03) [6] 3D shape based
Wang 2D frontal metric- 50

(’02) [17] & 3D shape based
Beumier 2D frontal metric- 120
(’00) [18] & 3D profiles based

Achermann 2D frontal& metric-/ 30
(’96) [19] 2D profile rank-based

sensors / biometrics sources provides overall performance
improvement.

3. Methods and Materials
3.1. 2D and 3D Face Recognition Using PCA
Extensive work has been done on face recognition algo-
rithms based on PCA, popularly known as “eigenfaces”
[20]. A standard implementation of the PCA-based algo-
rithm [21] is used in the experiments reported here.

3.2. Normalization
The main objective of the normalization process is to min-
imize the uncontrolled variations that occur during the ac-
quisition process and to maintain the variations observed in

facial feature differences between individuals. The normal-
ized images are masked to omit the background and leave
only the face region (see Figure 1). While each subject is
asked to gaze at the camera during the acquisition, it is in-
evitable to obtain data with some level of pose variations
between acquisition sessions.

The 2D image data is typically treated as having pose
variation only around the Z axis, the optical axis. The PCA
software [21] uses two landmark points (the eye locations)
for geometric normalization to correct for rotation, scale,
and position of the face for 2D matching. However, the
face is a 3D object, and if 3D data is acquired there is the
opportunity to correct for pose variation around the X, Y,
and Z axes.

A transformation matrix is first computed based on the
surface normal angle difference in X (roll) and Y (pitch) be-
tween manually selected landmark points (two eye tips and
center of lower chin) and predefined reference points of a
standard face pose and location. Pose variation around the
Z axis (yaw) is corrected by measuring the angle difference
between the line across the two eye points and a horizontal
line. At the end of the pose normalization, the nose tip of
every subject is transformed to the same point in 3D relative
to the sensor (see Figure 2). The geometric normalization in
2D gives the same pixel distance between eye locations to
all faces. This is necessary because the absolute scale of the
face is unknown in 2D. However, this is not the case with a
3D face image, and so the eye locations may naturally be at
different pixel locations in depth images of different faces.
Thus, the geometric scaling was not imposed to 3D data
points as it was in 2D. We found that missing data problems
with fully pose-corrected 2D outweighed the gains from the
additional pose correction [6], and so we use the typical
Z-rotation corrected 2D. Problems with the 3D are allevi-
ated to some degree by preprocessing the 3D data to fill in
holes and remove spikes (see Figure 3). This is done by
median filtering followed by linear interpolation using valid
data points around a hole.

3.3. Data Collection
A gallery image is an image that is enrolled into the sys-
tem to be identified. A probe image is a test image to be
matched against the gallery images. Images were acquired
at the University of Notre Dame between January and May
2003. Two four-week sessions were conducted for data col-
lection, approximately six weeks apart. The first session is
to collect gallery images and the second session is to collect
probe images for a single probe study in mind. For a study
with multiple probes, an image acquired in the first week
is used as a gallery and images acquired in later weeks are
used as probes. Thus, in the single probe study, there are at
least six and as many as thirteen weeks time lapse between
the acquisition of gallery image and its probe image, and at
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A study of one gallery with four probes

A study of one gallery with three probes

Figure 1: Examples of masked images in 2D and 3D

least one and as many as thirteen weeks time lapse between
the gallery and the probe in the multiple probe study. All
subjects completed an IRB-approved consent form prior to
participating in each data acquisition session. A total of 275
different subjects participated in one or more data acquisi-
tion sessions. Among 275 subjects, 200 participated in both
a gallery acquisition and a probe acquisition. Thus, there
are 200 individuals in the single probe set, the same 200 in-
dividuals in the gallery, and 275 individuals in the training
set. The training set contains the 200 gallery images plus
an additional 75 for subjects whom good data was not ac-
quired in both the gallery and probe sessions. And for the
multiple probe study, 476 new probes are added to the 200
probes, yielding 676 probes in total. The training set of 275
subjects is the same as the set used in the single probe study.

In each acquisition session, subjects were imaged using
a Minolta Vivid 900 range scanner. Subjects stood approx-
imately 1.5 meter from the camera, against a plain gray
background, with one front-above-center spotlight lighting
their face, and were asked to have a normal facial expression
(“FA” in FERET terminology [22]) and to look directly at
the camera. Almost all images were taken using the Mi-
nolta’s “Medium” lens and a small number of images was
taken with its “Tele” lens. The height of the Minolta Vivid
scanner was adjusted to the approximate height of the sub-
ject’s face, if needed. The Minolta Vivid 900 uses a pro-
jected light stripe to acquire triangulation-based range data.
It also captures a color image near-simultaneously with the
range data capture. The result is a 640 by 480 sampling of
range data and a registered 640 by 480 color image.

(a) X-Y plane (b) Y-Z plane
Initial pose of a subject in 3D space

(a) X-Y plane (b) Y-Z plane
Corrected pose of a subject in 3D space

Figure 2: Pose normalization

3.4. Distance Metrics
2D data represents a face by intensity variation whereas 3D
data represents a face by shape variation. It is obvious that
the “face space” could be very different between modalities.
Thus, during the decision process, certain metrics might
perform better in one space than in the other. In this experi-
ment, the Mahalanobis distance metric was explored during
the decision process for the gallery matching [23].

3.5. Data Fusion
The pixel level provides perhaps the simplest approach to
combining the information from multiple image-based bio-
metrics. The images can simply be concatenated together
to form one larger aggregate 2D-plus-3D face image. Met-
ric level fusion combines the match distances that are found
in the individual spaces. Having distance metrics from two
or more different spaces, a rule for combination of the dis-
tances across the different biometrics for each person in the
gallery can be applied. The ranks can then be determined
based on the combined distances.

One of the early tasks in data fusion is to normalize the
scores that result from the metric function. Scores from
each space need to be normalized to be comparable. There
are several ways of transforming the scores including linear,
logarithm, exponential and logistic [19]. The scores from
different modalities are normalized so that the distribution
and the range are mapped to the same unit interval.
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(a) (b)
Processing missing data points in range data

(c) (d)
Processing spike noise in range data

Figure 3: Preprocessing in 3D data points

There are many ways of combining different metrics to
achieve the best decision process, including majority vote,
sum rule, multiplication rule, median rule, min rule, average
rule and so on. Depending on the task, a certain combina-
tion rule might be better than others. It is known that the
sum rule and multiplication rule generally provide plausi-
ble results [24, 19, 9, 7, 6, 18].

In our study, a weight is estimated based on the distri-
bution of the top three ranks in each space. The motivation
is that a larger distance between first- and second-ranked
matches implies greater certainty that the first-ranked match
is correct. The level of the certainty can be considered as a
weight representing the certainty. The weight can be ap-
plied to each metric as the combination rules are applied.
The multi-modal decision is made as follows. First the 2D
probe is matched against the 2D gallery, and the 3D probe
against the 3D gallery. This gives a set of N distances in
the 2D face space and another set of N distances in the 3D
face space, where N is the size of the gallery. A plain sum-
of-distances rule would sum the 2D and 3D distances for
each gallery subject and select the gallery subject with the
smallest sum. We use a confidence-weighted variation of
the sum-of-distances rule. For each of 2D and 3D, a “con-
fidence” is computed using the three distances in top ranks
as (second distance - first distance) / (third distance - first
distance). If the difference between the first and second
match is large compared to the typical distance, then this
confidence value will be large. The confidence values are

used as weights in distance metric. A simple product-of-
distances rule produced similar combination results, and a
min-distance rule produced slightly worse combination re-
sults.

4. Experiments
There are three main parts to this study. The first part is to
examine how the recognition performance is affected by the
X–Y in both 2D and 3D and depth resolution in 3D data.
The second part is to evaluate the performance of 2D and
3D independently in both single and multiple probe stud-
ies. Data fusion is considered, in the third part, to combine
results at the metric level with different fusion strategies.

The eigenvectors for each face space are tuned by drop-
ping the first M and last N eigenvectors to obtain an opti-
mum set of eigenvectors. Thus, in general we expect to have
a different set of eigenvectors 2D face space versus repre-
senting 3D face space. The cumulative match characteristic
(CMC) curve is generated to present the results.

4.1. Experimental Results: X–Y resolution
This experiment looks at the performance rate changes
while the spatial resolution is varied in texture and shape
images. One average pixel in X axis produced by the Mi-
nolta Vivid 900 covers 0.9765mm and one pixel in Y axis
covers 0.9791mm of surface area. A typical template size
that we initially used was 130 x 150 pixels (a face cov-
erage area of approximately 12.7cm x 14.7cm). Figure
4-(a) shows example of both 2D (top row) and 3D (bot-
tom row) images used for this experiment, starting from the
right most, 25%, 50%, 75%, 100% of the original dimen-
sion. Thus, every pixel is retrieved in the step of 3.97mm,
1.96mm, 1.31mm and 0.98mm from the original X and Y

data points in each image set.
The performance results are shown in Figure 4-(b). The

graph is plotted using the first rank match performance rate.
Both performance curves begin to drop at the resolution of
1.31mm in X–Y , (in 2D, 89.0% to 85.0%, and 94.5% to
89.5% in 3D). However, the spatial resolution changes at-
tempted in both 2D and 3D suggest that there is no sig-
nificant difference in performance rates from the original
resolution. We believe that performance degradation re-
sults from undersampling the face and missing differenti-
ating features. The stiff performance drop has been shown
in between 50% and 25% due to the insufficient facial fea-
tures to be differentiated between subjects in PCA method.

4.2. Experimental Results: Depth resolution
This experiment has a similar purpose as the previous one.
However, this examines the depth resolution required to
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(a) Example of images in different spatial resolutions
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(b) Different spatial resolutions

Figure 4: Experiment in spatial resolutions changes

maintain the performance rate from the original depth res-
olution. According to the Minolta Vivid 900 specification,
its depth accuracy level may be obtained at 0.35mm. One
way to vary the original resolution is to change the pre-
cision level in floating point values of the Z coordinate.
A lower limit on precision could be 10

−6
mm. However,

the camera-to-subject distance and lens combination used
in our acquisition likely support an actual depth resolution
of no better than about 0.5mm on average. Fourteen dif-
ferent resolutions were examined so that every pixel value
representing the actual coordinate is retrieved in the unit
of 10

−6
mm, 10

−5
mm, 10

−4
mm, 10

−3
mm, 10

−2
mm,

10
−1

mm, 0.5mm, 1mm, 2mm, 3mm, 4mm, 5mm, 6mm

and 7mm as shown in Figure 5-(a). As shown in Figure
5-(b), the overall performance rate decreases as the depth
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(a) Example of images in different depth resolutions (in mm)

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

R
an

k 
O

ne
 M

at
ch

1 2 3 4 5 610 10 10 10 10 10 0.5 7−6 −5 −4 −3 −2 −1 

(Unit : mm) 

3D Performance Results in Precision Changes 

Default Floating 
Precision Level
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Figure 5: Experiment in depth resolution changes

resolution gets coarser. It becomes prominent after 3mm.
However, it is interesting to note that the performance

rates between 0.5mm and 3mm maintain remarkably close
to the original resolution (within 2.5%). This may be par-
tially because as the resolution gets coarser, random noise
would be suppressed. As it gets even coarser, a face surface
becomes overly contoured and identification suffers from
such coarsely quantized surfaces.

4.3. Experimental Results: 2D versus 3D face
- Single probe study

This experiment is to investigate the performance of indi-
vidual 2D eigenface and 3D eigenface methods, given (1)
the use of the same PCA-based algorithm implementation,
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Figure 6: Performance results in single probe study.

(2) the same subject pool represented in training, gallery
and probe sets, and (3) the controlled variation in one pa-
rameter, time of image acquisition, between the gallery and
probe images. A similar comparison experiment between
2D and 3D acquired using stereo-based system was also
performed by Medioni et.al.[25].

There can be many ways of selecting eigenvectors to ac-
complish the face space creation. In this study, at first, one
vector is dropped at a time from the eigenvectors of largest
eigenvalues, and the rank-one recognition rate is computed
using the gallery and probe set again each time, and con-
tinue until a point is reached where the rank-one recognition
rate gets worse rather than better. We denote the number
of dropped eigenvectors of largest eigenvalues as M. Also,
one vector at a time is dropped from the eigenvectors of the
smallest eigenvalues, and the rank-one recognition is com-
puted using the gallery and probe set again each time, and
continue until a point is reached where the rank-one recog-
nition rate gets worse rather than better. We also denote the
number of dropped eigenvectors of smallest eigenvalues as
N.

During the eigenvector tuning process, the rank-one
recognition rate remains basically constant with from one to
20 eigenvectors dropped from the end of the list. This prob-
ably means that more eigenvectors can be dropped from the
end to create a lower-dimension face space. This would
make the overall process simpler and faster. The rank-one
recognition rate for dropping some of the first eigenvectors
tend to improve at the beginning but it start to decline as M
gets larger.

After the eigenvectors are tuned, both 2d and 3D are co-
incided at M = 3, and N = 0 to create the face spaces. With
the given optimal set of eigenvectors in 2D or 3D, the re-
sults show that rank-one recognition rate is 89.0% for 2D,
and 94.5% for 3D (see Figure 6).
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Figure 7: Performance results in multiple probe study.

4.4. Experimental Results: Multi-modal bio-
metrics using 2D and 3D

The purpose of this experiment is to investigate the value
of a multi-modal biometric using 2D and 3D face images,
compared against individual biometrics. The null hypothe-
sis for this experiment is that there is no significant differ-
ence in the performance rate between uni-biometrics (2D
or 3D alone) and multi-biometrics (both 2D and 3D to-
gether). According to Hall [26], a fusion can be usefully
done if an individual probability of correct inference is be-
tween 50% and 95% with one to seven classifiers. From our
results in the previous experiment, it is reasonable to fuse
the two individual biometrics which meet this fusion crite-
ria. Figure 6 shows the CMC with the rank-one recogni-
tion rate of 98.5% for the multi-modal biometric, achieved
by combining modalities at the distance metric level. In
the fusion methods that we considered, the multiplication
rule showed the most consistent regardless of the particular
score transformation. However, the min rule showed lower
performance than any other rules in different score trans-
formations (see Figure 8). Also, when the distance metrics
were weighted based on the confidence level during the de-
cision process, all the rules result in significantly better per-
formance than the individual biometric. A McNemar’s test
for significance of the difference in accuracy in the rank-one
match between the multi-modal biometric and either the 2D
face or the 3D face alone shows that multi-modal perfor-
mance is significantly greater, at the 0.05 level.

4.5. Experimental Results: 2D face versus 3D
face in biometrics - multiple probe study

In these experiments, there will be one or more probes for
a subject who appears in the gallery, with each probe be-
ing acquired in a different acquisition session separated by
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Figure 8: Performance results of fusion schemes used.

a week or more. We are attempting to retrieve more practi-
cal use of face identification method by incorporating mul-
tiple probes to be matched against the gallery images. The
multiple probe dataset consists of 676 probes in total. Sub-
jects might have a different number of probes. For example,
there are 200 subjects with 1 or more probes, 166 subjects
with 2 or more probes and so on. In the probe dataset, the
number of probes can be up to 7 per subject. There might
be different rules to determine a correct match given several
probes to a gallery. In this experiment, a correct match is
measured based on an each individual probe rather than on
some function of all probes per subject.

By using the same set of eigenvectors tuned in the single
probe study, we achieved similar results as in the previous
sections. While 3D performance dropped a little, 92.8%,
2D performance maintains slightly better than the previous
experiment, 89.5% (see Figure 7).

After combining these two biometrics in the multiple
probes, we also were able to obtain significantly better per-
formance, at 98.8%, than for either 2D or 3D alone. The
results of 2D and 3D combination show very similar perfor-
mance behavior as the single probe study. Product rule per-
forms better than minimum rule regardless of score trans-
formation (see Figure 8). Most combined methods consis-
tently perform significantly better than the single biomet-
rics. A McNemar’s test for significance of the difference
in accuracy in the rank-one match between the multi-modal
biometric and either the 2D face or the 3D face alone shows
that multi-modal performance is significantly greater, at the
0.05 level. Thus, significant performance improvement has
been accomplished by combining 2D and 3D facial data in
both single and multiple probe studies.

5. Summary and Discussion
The value of multi-modal biometrics with 2D intensity and
3D shape of facial data in the context of face recognition is
examined in a single probe study and a multiple probe study.
This is the largest experimental study (in terms of number
of subjects) that we know of to investigate the comparison
and combination of 2D and 3D data for face recognition. In
our results, each modality of facial data has roughly similar
value as an appearance-based biometric. The combination
of the face data from both modalities results in statistically
significant improvement over either individual biometric. In
general, our results appear to support the conclusion that
the path to higher accuracy and robustness in biometrics
involves use of multiple biometrics rather than the best pos-
sible sensor and algorithm for a single biometric.

We also have investigated the effect of spatial and depth
resolution on recognition performance. This was done by
producing successively coarser versions of the original im-
age. The original image has a depth accuracy at 0.35mm.
We found that performance drops only slightly in going to a
depth resolution of 0.5mm, but begins to drop drastically at
4mm. The pattern of results suggests that it would be inter-
esting to determine a sensor accuracy level needed to meet
a specific requirement of face recognition tasks. The accu-
racy requirement might be vary under different conditions
of subjects, such as facial muscle movement, or imaging
condition changes. This initial investigation in resolution
variation would bring a more explicitly decided resolution
level for further experiments.

The overall quality of 3D data collected using a range
camera is perhaps not as reliable as 2D intensity data. 3D
sensors in the current market are not as mature as 2D sen-
sors. Common problems with typical range finder images
include missing data in eyes, cheeks, or forehead as well as
several types of noise. These problems would lower the 3D
recognition rate in general even though there exist ways of
recovering some data in such areas.

The criteria used to decide which combination of eigen-
vectors to keep is the rank-one recognition rate on the
gallery and probe images. So, in a way, the gallery and
probe images are used in deciding what eigenvectors to use
for the space, and then the results are also reported on the
gallery and probe images, thereby “testing on training data”.
This can be addressed by having a validation set of images
to determine the set of eigenvectors to be used during the
identification process so that eigenvectors to keep before the
performance on the gallery and probe images are obtained.

It is generally accepted that performance estimates for
face recognition will be higher when the gallery and probe
images are acquired in the same acquisition session, com-
pared to performance when the probe image is acquired af-
ter some passage of time [27]. Most envisioned applications
for face recognition technology seem to occur in a scenario
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in which the probe image would be acquired some time af-
ter the gallery image. In this context, it is worth noting that
the dataset used here incorporates a substantial time lapse
between gallery and probe image acquisition.

The dataset used in the experiments reported here will be
made available to other research groups as a part of the Hu-
man ID databases. See http://www.nd.edu/˜cvrl/ for more
information about the dataset and the release agreement.
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