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Abstract

We propose a learning framework that actively explores cre-
ation of face space(s) by selecting images that are comple-
mentary to the images already represented in the face space.
We also construct ensembles of classifiers learned from such
actively sampled image sets, which further provides improve-
ment in the recognition rates. We not only significantly re-
duce the number of images required in the training set but
also improve the accuracy over learning from all the images.
We also show that the single face space or ensemble of face
spaces, thus constructed, has a higher generalization perfor-
mance across different illumination and expression condi-
tions.

Introduction
Quoting from the Government Security Newsletter: “It turns
out that uncooperative subjects, poor illumination and the
difficulty of capturing comparable images often make it
difficult for face recognition systems to achieve the ac-
curacy that government officials might seek in large-scale
anti-terrorism applications.” We want to be able to con-
struct a face space that has an effective generalization capac-
ity across subjects, illumination and expression variations.
In addition, the substantially increasing number of images
available for training require scalable methods for learning
and evaluation.

It is very likely that subjects can have multiple images en-
rolled in a database, albeit with an expression, illumination
or temporal variance. Hence, it becomes pertinent to be able
to appropriately select the subset of the available images that
leads to a performance improvement. This brings us to the
important question:How do we select the most useful sub-
set of a set of images for training a face recognition system?
The question motivates the requirement of a methodology
that can filter the “redundant” images of a subject.

Our Contributions Face recognition classifiers typically
use all the images for either constructing a single classi-
fier or an ensemble of classifiers (Draper & Baek 1998;
Lu & Jain 2003; Wang & Tang 2004; Luet al. 2006;
Chawla & Bowyer 2005). Most of the work in ensembles
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has looked at re-sampling and random subspaces. (Luet
al. 2006) apply boosting with LDA for face recognition,
wherein they develop a weakness analysis theory to work
with both weak and strong learners. On the contrary, in this
work we use active learning to learn a single classifier and
ensemble to establish improvements in face recognition with
PCA and the nearest neighbor classifier. (Hewitt & Belongie
2006) also apply active learning for face recognition, albeit
from a video stream and in a limited setting; we will eluci-
date the key differences between our and their work in the
next section. Figure 1 summarizes the main related works.
We would also like to point out that our testbed is more com-
prehensive and diverse than other related work.

The fundamental research questions that we address in
our paper are: a) Can we select an appropriate and rele-
vant subset for training classifier(s) to achieve a compara-
ble, if not better, rank-one recognition rate than the classifier
trained with all the available images? b) Can these classi-
fier(s) give consistent performances across different expres-
sions and/or illumination conditions? c) How does the en-
semble of such classifiers perform as compared to an ensem-
ble constructed from randomly sampled images?

Experimental Scenarios
Temporal aging in the images: There is a time lapse between
the images used in the training, gallery, and probe sets.
Varying expression and illumination conditions: We con-
sider different combinations of expressions and illumina-



tions for training and evaluation (gallery and probe).
Unique subjects in gallery and probe: The subjects and im-
ages in the training set are mutually exclusive of the gallery
and probe sets.
Streaming data: The images arrive in a conceptually stream-
ing fashion. We start from the first data acquisition session,
build a classifier, and then actively mine from subsequent
sessions.

Typically in biometrics, theprobesare the set of testing
images, and thegallery is the set of images of the subjects
that the probe images are matched against.

Actively Creating Face Spaces
Active learning trains a classifier by starting with an in-
tial set of labeled training examples, and selecting addi-
tional examples based on their “effectiveness” score (Se-
ung, Opper, & Sompolinsky 1992; Lewis & Gale 1994;
Abe & Mamitsuka 1998; Roy & McCallum 2001; Iyen-
gar, Apte, & Zhang 2000; Saar-Tsechansky & Provost 2004;
Cohn, Atlas, & Ladner 1994). (Hewitt & Belongie 2006)
use active learning for face recognition in video. We dif-
fer from their work in multiple ways. Firstly, we work in a
general setting of 2-D face recognition, wherein the images
have an element of temporal, illumination, and expression
variation. Secondly, they build a face model by using an-
notated facial features, and use the model’s error to select
frames. We use PCA and nearest neighbor approach with
the notion of “dissimilarity” to select images. Our algorith-
mic approach to active learning is very different. Thirdly,
they have a small dataset of only six subjects, thus mitigat-
ing significant conclusions. We perform a much larger and
comprehensive evaluation in a practical setting. Lastly, we
also demonstrate performance improvements by learning en-
sembles after active learning.

The main goal of our work is to select a subset of relevant
images that are representative and informative of the avail-
able images/subjects in the domain, without making any as-
sumptions of the environment in which the images were ac-
quired. We adopt active learning to enable an efficient search
of the image space; we use the broad definition of active
learning that gives the learning program control on the in-
puts on which it trains, contrasting with random selection of
inputs (Cohn, Atlas, & Ladner 1994). The selected images
should be “sufficient” for the recognition task and be gener-
ally applicable to different subjects or images captured under
different environments. An accompanying goal is to reduce
the computational complexity of recognition by significantly
reducing the number of images required for recognition.

Learning Face Spaces
Two-dimensional face images are usually represented as
high-dimensional matrices, where each matrix cell holds a
gray-level intensity value. These raw feature vectors can
be very large and highly correlated. For example, a 150
× 130 image (as typically used) can be unwrapped and
represented by a vector of size 19,500. To counter this
curse of dimensionality and highly correlated features, Prin-
cipal Component Analysis (PCA) (Turk & Pentland 1991) is

applied after performing geometric normalization and his-
togram equalization on the face images. This PCA trans-
formed space is called theface-space. For classification pur-
poses, we generate the projections of the face-space to the
Mahalanobis space by whitening the PCA dimensions (unit
variance transformation). Then, we use the Mahalanobis
Cosine-based (MahaCosine) distance metric for the near-
est neighbor classifier to perform recognition. Formally, the
MahaCosinemeasure between the imagesi and j with pro-
jectionsa andb in the Mahalanobis space is computed as:
MahaCosine(i, j) = cos(θij) = |a||b|cos(θij)

|a||b| (Beveridge
& Draper ).

The general procedure for classifying images is as fol-
lows. We assume that there areng gallery images inG, np

probe images inP , and each probe image is indicated by
p. A probe image is matched against each gallery image by
computing the distanceδ using theMahaCosinemeasure.
For each probe image, we sort the gallery images by decreas-
ing δ. The closest gallery image (or the 1-nearest neighbor)
will be at the rank 0, and the furthest gallery image will be
at rankng − 1. The classifier correctly recognizes a person
if the probe image and the top ranked image in the gallery
are of the same person. We define a rank-indicator function
r(p, G) that returns the first successful match (k) of a probe
image in the gallery. For instance,r(p,G) = 3 implies that
the match for a probe image is at the fourth-nearest neigh-
bor. We are primarily interested in the number of correct
matches at 1 nearest neighbor:r(p,G) = 0.

Having defined the procedure for training the face space
and matching, we now describe the active sampling process.
Before we proceed, we would again like to point out that we
assume the distribution is known and the labels of all im-
ages are readily available at zero cost. Thus, we relax the
definition of active learning given known distribution and
concepts (Cohn, Atlas, & Ladner 1994). Our main goal is
to find a smaller, but consistent, training set by allowing the
classifier to selectively sample the most relevant and com-
plementing set of images. We generate an initial training (or
gallery) setL by randomly selectingn images from a pool
of available data of sizeT . The remainder,T − L, forms
the “unlabeled” (or probe) setUL. Note thatUL is not re-
ally unlabeled, but we call it unlabeled for testing purposes
and to distinguish it from the training set. We construct a
face-space fromL. The nearest neighbor classifier provides
the distance (δ) between the images inUL and the images
in L. The distances are indicative of the quality of match
between an image inUL and an image inL, and result in
a rank-ordering of images inUL. A sampling distribution
Ds is derived from this rank-ordering as r(p,L)P

i∈UL r(i,L) . The

higher the rank of an image inUL, the higher the proba-
bility of selection. The intuition behind it is that we want
to target the “difficult” images, where difficulty is defined
by the lack of a representative in the training set. We then
remove the selected images fromUL without replacement,
attach the true labels, add them into the training setL, and
re-create the face space. Thus,L keeps increasing andUL
keeps shrinking over the iterations. Note that once an im-
age is removed fromUL and added toL, it is not evaluated



on again. The goal here is to actively maximize the cover-
age with most representative images for a person or subject.
We only need to capture those images of a person that maxi-
mally differ from each other. This distinguishes us from the
boosting algorithm as well.

The procedure continues for a prescribed number of it-
erations or until a stopping criterion is met. We introduce
a heuristic for deciding the stopping criterion: the sum of
ranks inUL should be within a thresholdm. Recall, that
the rank of an image goes from 0 tong − 1, whereng is
|L|. A rank 0 for an image inUL will imply that person is
already in the training database. We did not notice any sig-
nificant difference as we variedm from 30 to 100. Thus, we
setm = 50. We will call this approachActiven, wheren
indicates the starting sample size of the training set (L). It is
summarized as follows.

• Input: pool of imagesT ; size of samplen andns.

• Randomly selectn images fromT to create the initial
training setL. SetUL = T − L.

• For (i=1; until stopping criterion; i++)

– Construct a face space fromL (PCA transformation).
– Compute the distances for each (transformed) image in

UL to each image inL.
– Compute the rank-ordering of the images inUL. Con-

vert the ranks to a distributionDs.
– Based onDs sample without replacementns images

from UL and add toL. UpdateUL = UL − ns; L =
L + ns.

• Output: The final setL.

Data Collection
We acquired the collection B database from the University
of Notre Dame (Flynn, Bowyer, & Phillips 2003). The sub-
jects participate in the acquisition repeatedly (at most once
in a week) over a period of time. Images of the subjects are
captured with two side lights on (LF ) and two side lights
and a center light on (LM ). In addition the subjects are im-
aged with two expressions: neutral (FA) and smile (FB).
There is a total of 82 subjects in Spring’02, 333 subjects in
Fall’02, and 334 subjects in Spring’03. There is a total of
487 unique subjects across the three semesters. Note that
we guaranteed that all the images are different among the
training, gallery, and probe sets.For the purposes of our ex-
periments, we constructed three variants of training, gallery,
and probe sets with different number of subjects/images and
temporal/expression/illumination variations.
Experiment-1 Data: We randomly selected 121 subjects
with four images each for the training set. We chose not to
select all the subjects to maintain the difficulty of recogni-
tion: having a set of unique subjects in the gallery and probe
sets. Then, we considered all the subjects that had at least
three acquisition sessions over the course of the semester.
The second session of acquisition for those subjects became
the gallery set and the last session became the probe set.
We used the longest possible time-gap between enrolling a
gallery image and the subsequent probe image, thus permit-
ting the greatest possible natural variations in the subjects’

images. This gave us 381 subjects (381× 4 images) in each
gallery and probe set. We tried to mimic a setting that may
be used in a face recognition system — a) the subjects en-
rolled in the gallery may not always be in the training data;
b) the images of the subjects in the gallery or probe set will
have an element of time-lapse from the training set images;
and c) the probe set images will have a time-lapse from the
gallery images.
Experiment-2 Data: There are a total of 487 unique sub-
jects in the collection. For this experiment, we retained all
the subjects along with one image from each of FA-LF, FA-
LM, FB-LF, FB-LM, thus giving us a total of 1948 images
in the training set. A similar approach to constructing the
gallery and probe sets was followed for Experiment-2, re-
sulting in 381 subjects in the probe and gallery sets.
Experiment-3 Data: We split the Spring’02 and Fall’02
data intom sessions, wherem is the maximum number of
times one of the subjects appeared. More subjects come for
fewer sessions. There are 333 subjects in Fall’02 that partic-
ipate in at least one session, and subsequently the number of
subjects who come over all the multiple sessions in Fall’02
declines. We then provided the images in a (conceptually)
streaming fashion, ordered by time of acquisition, to actively
sample from. We split up the sessions for each of the expres-
sion and illumination combinations. This allowed us to eval-
uate the temporal aging of images without any illumination
and expression variations. We constructed the gallery and
probe sets from the Spring’03, resulting in 333 subjects in
both gallery and probe sets. This permitted an “out-of-time”
testing as no acquisitions of Spring’03 were included in the
training set. Table 1 summarizes the datasets’ sizes.

Table 1: The size reflects the aggregate number of images
across the expression and illumination variations.

Data Training
Set Size

Gallery
Set Size

Probe
Set Size

Experiment-1 484 1,524 1,524
Experiment-2 1,948 1,524 1,524
Experiment-3 10,564 1,332 1,332

Experiments
We set up our experiments to answer the questions set out in
the Introduction. We will report on each of the pre-defined
experiments individually, given the different objectives and
properties. We established the following common classifica-
tion schemes as benchmarks for each of the experiments, in
addition to their respectiveActiven runs. We report average
rank-one recognition rates and standard deviations, includ-
ing statistical test of significance, where applicable.

1. Single specializedface space: This is the face space
trained on a particular expression and illumination combi-
nation, and only tested on the corresponding combination.

2. Complete face space (All): This is constructed on the
complete training set consisting of all the images with il-
lumination and expression variations. The only exception



Table 2: Rank-one recognition rate of various approaches
for Experiment-1.Specialized is denoted bySp.

Activen=50 Randomk=250 All Sp.
FA-LF 67.7± 0.8 65.8± 0.9 67.9 66.1
FA-LM 72.6± 1.2 70.3± 1.3 72.7 69.5
FB-LF 73.0± 0.9 70.9± 1.2 72.4 70.3
FB-LM 75.5± 1.0 72.2± 1.7 74.0 72.2

to this is Experiment-3, where we considered each illu-
mination and expression combination separately (thespe-
cializedcase). The goal of Experiment-3 is to evaluate the
temporal aging scenario.

3. Randomk: As a primary benchmark, we randomly sam-
pled approximately the same number of images (k) as se-
lected (on an average) by theActiven methodology. This
was also performed 10 different times. The purpose was
to see if the randomly selected set of images can achieve
the same rank-one recognition rate as compared to the
“selected” set.

4. Ensemble approaches: We also voted the scores (using
sum rule) from each of the 10 random runs for both
Randomk andActiven. Our thesis is that the actively
learned classifiers will potentially be more diverse than
the randomly generated classifiers. Hence, we expect
the ensemble generated from actively learned classifiers
to outperform the ensemble generated from classifiers
learned from randomly selected images. We will call the
ensemble approachesEnsembleA and EnsembleR for
active and random, respectively. TheActiven based en-
semble,EnsembleA, is in a similar theme as boosting.
However, unlike boosting, it does not include all the pos-
sible images (training set examples) in subsequent itera-
tions. Secondly, each subsequent iteration ofActiven is
sampling without replacement: when images are selected
they are removed from theUL set and are not evaluated
on again for “correctness” or “incorrectness”.

Experiment-1
We considered the data outlined for Experiment-1. Using
n = 50 for Activen, we ran the experiment 10 different
times. The choice of the initial 50 images can trigger a dif-
ferent exploration space. Thus, each face space can have
a potentially different representational bias. On an average
theActiven procedure resulted in a selection of less than or
equal to 250 images.This is less than 50% of the original
number of images.

Table 2 compares the performance of the various outlined
approaches. The individual face spaces constructed from
Activen outperformRandomk, wherek = 250 (resul-
tant number of images fromActiven); theSpecializedface
space; andAll. Note that none of the face spaces in Table 2
have been tuned by dropping the eigen vectors from front
or behind. Activen=50 outperformsRandomk=250 for all
the illumination and expressions combinations. This differ-
ence isstatistically significant, using the paired t-test for
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Figure 2: Rank-one recognition rate of Ensembles for
Experiment-1. The ensembles are compared with the well-
tunedAll classifier.

means over the 10 random runs, for the FA-LM and FB-LM
conditions.

The face space trained on all the images,All, is compara-
ble toActiven. Interestingly, thespecializedclassifier does
not lead to any performance improvement. That is, there is
really no gain in evaluating the probe point using the classi-
fier specifically trained for that probe space. This adds evi-
dence to our conjecture that there is natural variation in ex-
pression and illumination, and we want diversity in our face
space to increase the recognition rate.

Figure 2 shows the performance of the ensembles of ac-
tively learned classifiers,EnsembleA, and the ensemble of
classifiers from random selection of images,EnsembleR.
The results agree with our conjecture that the diversity in
the choice of the training images through active learning
provides a significant improvement over random ensembles.
We also compare to the performance achieved by the well-
tuned All, where tuning was performed via dropping of
eigen vectors from front and behind and evaluating directly
on the testing set. Thus, the tuned face space is essentially
an empirically observed upper limit on the recognition rate
achieved byAll. Ideally, any tuning should be performed on
a validation set.EnsembleA just constructed from 10 clas-
sifiers, without any individual tuning of a face space, easily
achieves the performance attained by the well-tuned single
face space.

Experiment-2
Experiment-2 considered the second larger dataset of 1948
images. For consistency, we again used the starting point
of n = 50 images forActiven. We again ran 10 random
runs for bothActiven andRandomk. Based on the number
of images discovered by active learning — approximately
550 out of 1948 images on an average over 10 runs — we
randomly selected the same number of images.

Table 3 includes the performance of various approaches
on the Experiment-2 data.Activen=50 statistically signfi-
cantly outperformsRandomk, using paired t-test for means
at 95% confidence, for all the four expression and illumina-
tion variations.It is noteworthy that the actively generated



Table 3: Rank-one recognition rate of various approaches for Experiment-2.All − 1160 is the classifier with the default tuned
face space (60% of the vectors are dropped from behind).

Activen=50 Randomk=550 All All − 1160 All − 389 Specialized
FA-LF 77.47± 0.96 75.28± 0.93 70.6 72.7 76.90 77.69
FA-LM 77.69± 0.84 75.67± 0.93 68.24 71.39 76.37 77.69
FB-LF 79.58± 0.32 77.09± 1.09 69.29 75.06 78.21 79.00
FB-LM 80.29± 0.73 78.29± 1.27 71.35 75.59 79.79 80.57

face space from 28% of the total number of images outper-
forms the face space constructed from all the images.The
classifier learned on the entire training set,All, significantly
under-performs. Potentially, the multiple images of subjects
are contributing to the low energy and low variance eigen
vectors. To evaluate this, we dropped 60% of the vectors
from behind, which are typically associated with the low
variance (Chawla & Bowyer 2005). This dropped the num-
ber of eigen vectors to 1160, and resulted in a significant im-
provement in performance. However, this “default-tuned”
face space still was not competitive to active learning ap-
proach.

To further explore the face space learned from all the
images, without any active learning, we implemented a
wrapper-based dimension selection approach. We carefully
tuned the face space by dropping eigen vectors and evaluat-
ing directly on the testing set. We retained only 389 dimen-
sions from the original 1947 dimensions in the face space.
Interestingly, once the number of eigenvectors was reduced
down to 389, the performance significantly improved, al-
most to the level ofActiven. We hasten to add that without
any tuning whatsoever,Activen is able to achieve and even
overcome the empirical upper bound of the recognition rate
obtained by the single face space trained on all the images.
It resonates with the premise for active learning: ignoring
the redundant information.

Figure 3 includes the performance of the ensemble meth-
ods and the well-tuned single classifier. For clarity in com-
parisons, we only include the performance of the ensemble
methods and the single face space (All) that is tuned directly
on the testing set. The comparisons to other individual face
spaces can be done by juxtaposing with the results in Ta-
ble 3.EnsembleA significantly improves performance over
all the techniques, includingActivek. EnsembleR, while
improving overRandomk, does not provide any significant
improvements overActivek. That is, the single face space
constructed from actively exploring the image space is com-
parable to the ensembles generated from randomly selected
images. It is not very surprising thatEnsembleA outper-
forms theEnsembleR as each individual member of former
has its own selection bias towards sampling various images
in the training set.

Experiment-3
We divided the subjects in Spring’02 and Fall’02 into as
many sessions, in chronological order, as they appeared
over the course of two semesters. This resulted in 23 ses-
sions over two semesters. This division was performed for
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Figure 3: Rank-one recognition rate of Ensembles for
Experiment-2.All − 389 is the single face space tuned di-
rectly on the testing set, resulting in only 389 dimensions.

each individual pair of illumination and expression condi-
tions. Given the much larger number of images, we did not
construct a single face space from all of the approximately
10,564 images as that became computationally prohibitive
with its memory requirements. Note that we did not run any
ensemble experiments for this data, as we were more inter-
ested in constructing a single classifier from a streaming set
of images.

Experiment-3 evaluated the effect of temporality in selec-
tion, keeping expression and illumination constant. Since,
the first session was comprised of 82 images, we setn = 82
for Activen. We compareActiven with Randomk andSpe-
cialized. Also, we only selected the same number of random
images as approximately discovered byActiven. Our re-
sults demonstrate that theSpecializedclassifier constructed
from all the corresponding images performs poorly as com-
pared to both active and random selections. Default tuning
improved the performance for thespecialized classifiers,
but it is still lower thanActiven. We only used the default
tuning, as the computational cost of searching the optimal
dimensions quickly became prohibitive with the much larger
number of images in Experiment-3.

Figure 4 shows the results. Again, using the very differ-
ent data setting for active learning, there is a definite advan-
tage of using active learning to select the reduced number of
images and improve the performance. While the probe and
gallery sets had the same illumination and expressions as the
trained face space, learning the specialized classifier still did
not improve the performance. Once again, active learning



permits asignificant reduction in the number of required
images. We are able to select less than 20% of the images
on average, and still perform better than the specialized clas-
sifier (19.35% for FA-LF; 23.13% for FA-LM; 18.63% for
FB-LF; and 15.11% for FB-LM).
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Figure 4: Rank-one recognition rate for Experiment-
3. Specialized is denoted bySp. and default tuned
Specialized is denoted bySp− Tuned.

Conclusions
We summarize our conclusions, in the light of the questions
posited in the Introduction.

• Actively created face spaces allow a substantially smaller
set of images to achieve the same performance as the
larger unsampled set. The resultant face spaces also gen-
eralize effectively across a variety of expression and illu-
mination conditions.Using a variety of scenarios, we ro-
bustly demonstrated that it is indeed possible to actively
sample a small subset images for training a classifier. we
selected 50% of the available images for Experiment-1;
28% of available images for Experiment-2; and on an av-
erage 19% of images for Experiment-3.Activen also
generalizes well across different sets of images, without
any explicit assumption, thus mitigating the need of spe-
cialized and tuned classifiers. We were able to easily
achieve or exceed the performance of a classifier (All)
with face space tuned directly on the probe set. We
showed that most of the improvements across different
expression and illumination conditions werestatistically
significant at 95% confidence level using paired t-test, as
compared to random selection. Our observations estab-
lish that by addressing the relevance of selected images
with respect to the other images leads to an improvement
in generalization performance of the classifier(s).

• Ensembles from actively learned face spaces give a better
performance than a single face space that is well-tuned
directly on the testing set.We also showed that the ensem-
bles,EnsembleA, constructed from theActiven frame-
work outperform the other ensemble methods as well as
the single well-tuned classifier (All) optimized directly
on the probe set. Note that the well-tuned performance is

actually an empirical upper bound as it is optimized di-
rectly on the testing set.EnsembleA constructed from
just 10 classifiers, without any individual tuning of a face
space, easily overcomes the performance attained by that
well-tuned single face space. We believe that adding more
diverse members in the ensemble should further improve
the performance.
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