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as an independent set of regions.

Key words: 3D face recognition, multi-instance, component-based recognition, biometric,
expression variation, range image

∗ Corresponding author. Telephone: (574) 631-9978. Fax: (574) 631-9260
Email addresses: tfaltemi@nd.edu (Timothy C. Faltemier), kwb@nd.edu (Kevin

W. Bowyer), flynn@nd.edu (Patrick J. Flynn).

Preprint submitted to Elsevier 5 December 2007



1 Introduction

In recognition experiments, the gallery contains labeled images of known subjects

to be identified, and a probe image is matched to the gallery for purposes of iden-

tification. Many 3D face recognition experiments have explicit or implicit assump-

tions about the type of facial expression expected for the gallery image. A neutral

expression is often used because it is generally accepted that the subject will be

cooperative in the enrollment phase. However, a neutral expression may not match

a non-neutral expression from the same subject as well as it matches a neutral ex-

pression images of other subjects [1].

The Iterative Closest Point (ICP) registration algorithm [2] is often used in 3D face

recognition [1, 3, 4, 5, 6, 7]. ICP iteratively attempts to align the probe to the gallery

by estimating a rigid transformation. Non-neutral expressions or occlusion in the

probe or gallery images can result in a poor match. One of our hypotheses is that by

using multiple 3D images to enroll a subject, and varying the expressions among

the gallery images, we will be able to achieve a better overall recognition rate.

Component-based recognition works by splitting a probe image into many small

pieces which are independently matched to complete images present in the gallery.

The scores from the component matching results are fused, and a final decision

is made. Component-based approaches have been explored in both 2D [8, 9] and

3D [4, 5, 10] face recognition and found to improve performance. In particular,

it has been proposed as a method of dealing with expression variation between

the enrolled image and the image to be recognized [10]. We compare the multi-

instance enrollment scheme explored here against state-of-the-art component based

approaches [10, 5, 4].
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Multi-instance enrollment has been found to improve performance, both in 2D face

recognition and 3D face recognition [11, 12], but has not previously been evalu-

ated as a means to deal with expression variation. This paper uses the ND-2006 3D

face data set [13], containing 13,450 total 3D images and their corresponding 2D

images, to explore multi-instance enrollment as a means to deal with expression

variation in 3D face recognition. The performance of a multi-instance enrollment

approach is evaluated against a state-of-the-art component-based recognition algo-

rithm [10, 5] and found to demonstrate superior performance.

The paper is organized as follows. Section 2 gives an overview of related prior work

in 3D face recognition and the use of multiple images in the gallery. Section 3 dis-

cusses experimental data sets and preprocessing methods. Next, section 4 presents

the experimental design in addition to the results found by adding and varying the

images contained in the gallery. Finally, section 5 provides conclusions regarding

the work presented in this paper.

2 Related Work

A recent broad survey of face recognition research is given in [14] and a survey

focusing specifically on face recognition using 3D data is given in [15]. This sec-

tion focuses on face recognition using multiple enrollment images, multiple expres-

sions, and on component-based approaches.

Hesher et al. [11] used multiple range images per subject with a principal compo-

nent analysis (PCA) based matcher to allow a greater possibility of matching. Once

the sensor acquires the range images and they are normalized, PCA is used to re-

duce the dimensions of the image representation and facilitate matching. Noise and

background information were documented as factors that degraded performance.
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The authors perform experiments on a 3D face database containing 222 scans of

37 unique subjects containing a total of 6 facial expressions. They report a range

of identification percentages based on the size of the training and testing sets. For a

training set containing 185 scans and a testing set containing 37 scans, a maximum

identification rate of 94% is reported.

Lu et al. [3] created a method for face recognition that uses a combination of 2.5D

scans to create a single 3D image for gallery enrollment. For their experiments, the

authors employed 598 2.5D probe models of various poses and expressions that

were matched to 200 3D gallery models collected at the authors’ institution. The

authors found that by using the full 3D image of a subject in the gallery and imple-

mentations of the ICP and Linear Discriminant Analysis (LDA) algorithms, they

were able to achieve a 90% rank one recognition rate using a data set consisting

of arbitrary poses. Of the errors reported, nearly all were caused by a change in

expression between the probe and the gallery images. In [16], Lu et al. present an

algorithm for matching 2.5D scans in the presence of expressions and pose vari-

ation using deformable face models. A small control set is used to synthesize a

unique deformation template for a desired expression class (smile, surprise, etc.).

A thin-plate-spline (TPS) mapping technique drives the deformation process. The

deformation template is then applied to a neutral gallery image to generate a sub-

ject specific 3D deformation model. The model is then matched to a given test scan

using the ICP algorithm. The authors report results on three different types of ex-

periments. The first data set contains 10 subjects with 3 different poses and seven

different expressions. Rank one results of 92.1% are reported when deformation

modeling is used compared to 87.6% when it is not. The second data set consists of

90 subjects in the gallery and 533 2.5D test scans and similar results are reported.

Data for the first two experiments was gathered at the authors’ institution. The data

for the final experiment was taken from the FRGC v2 data set and consisted of 50

4



randomly chosen subjects in the gallery and 150 2.5D test scans. When deforma-

tion modeling is employed a rank one recognition rate of 97% is reported compared

to the 81% when it is not.

Yacoob et al. [17] use data sets containing 2D images of 20 subjects and 60 sub-

jects to demonstrate that using a single non-neutral expression (such as a smile) for

both the probe and the gallery images in a biometric experiment has more discrim-

inatory power than a neutral expression. The experiments use the PCA algorithm

for comparison and the authors define a metric called “discrimination power” to

capture the relationship between the within-class and between-class scatters of the

images in subspace. This work used the AR database of 2D images.

Martinez [8] uses multiple local region patches to perform 2D face recognition in

the presence of expressions and occlusion. He believes that different facial expres-

sions influence different parts of the face more than others. His algorithm addresses

this belief by weighting areas that are less affected by the current displayed emo-

tion more heavily. The weighting scheme uses training data labeled with subject

and expression information and can be used on either the same subjects or subjects

that display similar levels of expressions. The author states that when large cul-

tural differences exist in the testing or training expressions, the weights should be

recalculated each time. Reported results show that up to 1/6th of the face can be

occluded without a loss in recognition, and 1/3rd of the face can be occluded with

a minimal loss. This work also used the AR face database of 2D images.

Heisele et al. [9] demonstrates a novel approach for face recognition that combines

the techniques of 3D morphable models and component-based recognition. The

authors use three 2D face images to generate a 3D head model of each subject. That

subject is then rendered under varying illumination and pose conditions to build

a large gallery of synthetic images. Recognition is performed on a single global
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image as well as 35 individual facial components. Results show that fusing results

from the individual components performs better than the single global image. For

this experiment, results were reported on 2000 images (10 subjects, 200 images per

subject) collected at the authors’ institution.

Chang et al. [4] investigate the effects of using three overlapping nose regions to

improve the performance of 3D face recognition. These regions include a circle

centered at the nose, an ellipse centered at the nose, and a region composed of just

the nose itself. This method uses the ICP algorithm to perform image matching. 2D

skin detection is performed for automated removal of hair and other non-skin based

artifacts on the 3D scan. They perform four experiments on a superset of the FRGC

v2 experiment 3 data containing 4,485 total scans, 2,798 neutral image sets (449

subjects), and 1,590 non-neutral expression sets (355 subjects). They report results

of 97.1% rank one recognition on a neutral gallery matched to neutral probes and

87.1% rank one recognition on a neutral gallery matched to non-neutral probes.

The product fusion metric was used to process the results from multiple regions.

In the neutral gallery matched to the neutral probe set, maximum performance was

reported when only two of the three regions were combined. The author mentions

that increased performance may be gained by using additional regions.

Gökberk et al. [18] perform a comparative evaluation of five face shape represen-

tations, (point clouds, surface normals, facial profiles, PCA, and LDA) using the

well known 3D-RMA data set [19] of 571 images from 106 subjects. They find

that the ICP and LDA approaches offer the best average performance. They also

perform various fusion techniques for combining the results from different shape

representations to achieve a rank-one recognition rate of 99.0%.

Mian et al. [7] propose an expression invariant approach to 3D face recognition that

reports results on the FRGC v2 data set [20]. The authors automatically detect the
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nose, perform pose correction and normalization in both 2D and 3D, create a re-

jection classifier to reduce the overall processing time, and finally segment the 3D

images into two regions (nose and eye/forehead) and match them independently

to increase the overall recognition rate. They report verification rates of 98.5% at

0.1% FAR and rank one identification rates of 96.2% based on a neutral gallery and

a probe set comprising the remaining images using their R3D algorithm. In addi-

tion, the authors report that the eye/forehead and nose regions of the face contain

maximum discriminating features necessary for expression invariant face recogni-

tion.

Cook et al. [21] present a novel method for accomplishing expression insensitiv-

ity in 3D face recognition based on Log-Gabor Templates. The authors apply 18

Log-Gabor filters on 49 windows to generate 147 feature vectors comprising 100

dimensions. After matching is performed, they report results using the FRGC v2

data set [20]. When the 4007 x 4007 similarity matrix is calculated, the authors

report a 92.31% verification rate at 0.1% FAR. In the identification scenario, the

authors employ the first image of a subject in the gallery set (466 images) and the

remainder in the probe set (3581) for a rank one recognition rate of 92.93%. The

authors also discuss how the best performance is achieved when using windows

surrounding the upper nose area while the inclusion of outer areas adversely affects

the accuracy of the system.

In this paper, Experiment 3 compares the performance of the Multi-Instance Enroll-

ment approach to the previously developed Region Ensemble for FacE Recognition

(REFER) algorithm [10]. The REFER algorithm exploits the presence of subre-

gions on the face that are relatively expression-invariant and uses a committee of

classifiers based on these regions to improve performance. Each region matches in-

dependently to a gallery surface using the ICP algorithm [2], resulting in 28 unique

7



(a) Image number 04514d324

Fig. 1. Image number 324 of subject 04514 displaying the location of the 28 centroids
used by the REFER algorithm during the region of interest (ROI) selection. Each number
corresponds to the region location information in Table 1. The circles show the relative size
and coverage of the three spheres for the selected location.

error distances for a single probe to gallery comparison (which is increased from the

14 regions used in [5]). The component-based analysis of a probe image matched

to an enrolled image has been used successfully in 2D face recognition [8, 9], and

now also in 3D face recognition [4, 7, 22].

For recognition experiments, the REFER algorithm uses the Borda Count (BC)

method [23, 24, 25, 18, 26] for score based decision fusion. We use a modified

version of the BC method. Unlike the standard BC method that provides a rank

score (1st place, 2nd place, 3rd place, ..., nth place) to each component-to-gallery

similarity score entry in the set from 1..n where n is the number of gallery images,
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Table 1
ICP Probe Region Information - The X and Y parameters determine the offset values (in
mm) for the new sphere center in relation to the origin

Region X Y SphereRadius Region X Y SphereRadius

1 0 10 25 15 30 20 45
2 0 10 35 16 40 10 45
3 0 10 45 17 0 30 40
4 0 0 25 18 0 30 45
5 0 0 45 19 0 40 40
6 0 -10 25 20 0 40 35
7 0 -10 35 21 0 40 45
8 0 20 35 22 -15 30 35
9 0 20 45 23 15 30 35

10 -20 0 25 24 -40 30 45
11 -15 15 45 25 40 30 45
12 -40 10 45 26 30 40 45
13 -30 20 45 27 -30 40 45
14 15 15 45 28 0 60 35

we only give a rank score to the first α (in our experiments α = 4) entries in

the gallery. The traditional BC method takes the sum of the ranks to determine a

final score. Our version distributes points such that the first place gets (α)2 points,

second gets (α− 1)2 points, until the number of points equals 0. This modification

yielded experimentally higher results than the traditional BC method. We believe

this result is due to the larger weight given to rank-one matches.

Figure 1 shows the centroid location of the 28 overlapping sphere regions used

by the REFER method [5, 10]. Table 1 shows the cropping parameters used to

generate each region. X and Y determine the offset values for the new sphere center

in relation to the origin and SphereRadius determines the new sphere radius. By

selecting multiple regions, any small inconsistencies found in a single model can

be overcome when combining the different views. Further details of this algorithm

and implementation are discussed in our previous work [5, 10].
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3 Data Sets and Preprocessing

3.1 The ND-2006 Data Set

Images for the experiments performed in this paper are a superset of the FRGC v2

data set [20] named ND-2006. The FRGC v2 data set only contains 66 subjects that

display all of the 5 expression types (N, H, Sp, D, and Sd) and at least one additional

probe image. Of these 66 subjects, all of the additional probe images are only com-

prised of neutral expressions. In the context of testing a multi-gallery enrollment

approach, this does not provide enough diversity of expressions in the probe set.

For this reason, we chose to use the larger ND2006 data set for comparisons. The

ND-2006 data set contains a total of 13,450 images containing 6 different types of

expressions (Neutral, Happiness, Sadness, Surprise, Disgust, and Other) as seen in

Figure 2. A total of 888 distinct persons, with as many as 63 images per subject, are

available in the ND-2006 data set. A table containing the number of images based

on expression type is shown in Table 2. While the “Neutral” category contains the

largest number of images, expressions account for more than a quarter of the data

set. The “Other” expression listed in Table 2 consists of a variety of expressions

that did not fit into a predetermined category (such as a face displaying a whistling

expression, cheeks puffed out, and others). These expressions are only included in

experiments as probe images due to their non-specific categorization. Information

about obtaining a copy of this data set will be available soon [13].

The images were acquired with a Minolta Vivid 910 range scanner [27]. The Mi-

nolta 910 scanner uses a laser stripe projector and triangulation to build a 3D model

of the face. The image is initially in a range image format of 640x480 with a flag

field indicating 0 if a 3D point was not sensed and 1 if it was. Color texture (r, g, b)

and 3D location (x, y, z) are produced, but not perfectly simultaneously, as the laser
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(a) Neutral (N)-
2D

(b) Happiness
(H)-2D

(c) Sadness
(Sd)-2D

(d) Surprise
(Sp)-2D

(e) Disgust
(D)-2D

(f) Neutral (N)-
3D

(g) Happiness
(H)-3D

(h) Sadness
(Sd)-3D

(i) Surprise
(Sp)-3D

(j) Disgust (D)-
3D

Fig. 2. Different types of expressions gathered for subject 04514 and their associated texture
and 3D images.

(a) 04475d114 (b) 04812d42 (c) 04749d72

(d) 04760d76

Fig. 3. Examples of images that contain artifacts in the ND-2006 data set. Images (a) and
(b) show large holes in the mesh, and images (c) and (d) show distortion due to movement
during acquisition.
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Table 2
Types of expressions in the ND-2006 data set

Expression Number of Images

Neutral (N) 9889
Happiness (H) 2230
Disgust (D) 205
Sadness (Sd) 180
Surprise (Sp) 389
Other (O) 557

stripe requires a few seconds to cross the face and the color image is taken after the

shape is acquired. Subject movement can result in texture misregistration or mesh

distortion, examples of which can be seen in Figure 3. None of the images in the

ND-2006 data set were excluded from the experimental data sets in this paper due

to artifacts or holes in the images. The number of 3D points on a frontal face image

taken by the Minolta camera is typically around 112,000, and depends on the lens

used as well as standoff. Example images from this sensor can be seen in Figure 2.

3.2 Data Preprocessing

Our algorithm operates automatically using only the 3D shape from a frontal view

of the face. First, small holes in the range image are filled by locating “missing”

points that are surrounded by 4 or more “good” points. The x, y, and z coordinates

of the missing point are interpolated from its valid neighbors. Boundary points are

initially determined by a row-wise sweep through the range image row by row to

find the first and last valid 3D point. This process is repeated until no additional

points are created. Once hole filling is performed, a final pass over the range image

with a 3x3 median filter smooths the data and removes spikes in the z-coordinate.

The process of hole filling and filtering is illustrated in Figure 4.

Finally, the nose tip point is detected using a consensus of three methods [5]. The
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(a) Original Image - 02463d546 (b) Image after hole filling

(c) Result of surface smoothing

Fig. 4. Preprocessing steps used on the ND-2006 data set.

(a) Cropped Gallery Image (100mm) (b) Cropped Probe Image (40mm)

Fig. 5. Gallery and Probe images used in the Multiple Instance Experiment.

13



first method finds the curvature and shape index [28] of each point on the face to

find nose tip candidates labeled cn. The next method aligns the input image to a

template, using the ICP algorithm, where the position of the nose tip is the highest

Z value in the image (assuming that spikes and holes are removed) and is labeled

pn. If the candidate nose tip points found in these methods are within 20mm, then

the average of pn and cn is reported as the final nose tip location. If this is not

the case, a tiebreaker step is performed. The position of the nose tip is known on

the template image and when properly aligned, this point should be the nose tip of

the input image as well and is labeled mn. Distances between mn, pn, and cn are

calculated and the pair that contains the smallest distance is averaged and reported

as bn, the best nose tip.

If the image is being used to enroll a person in the gallery, the points located within

a 100mm radius sphere centered at the nose tip are extracted for use as the gallery

image. If the image is a probe for our multiple gallery experiment, a sphere con-

taining a 40mm radius centered at the nose tip is extracted. A significantly smaller

surface is used for the probe than the gallery to ensure that the the probe image

will always be a subset of the gallery image. Another benefit of using a smaller

probe region is that the area subject to variation across expressions (i.e. the cheek

and nose bridge) is limited. Examples of gallery and probe images can be seen in

Figure 5. The number of vertices in a gallery image is typically 60,000 while the

number of vertices in a probe image is only 10,000.

4 Experimental Design and Results

This section reports the results of three main groups of experiments. One group of

experiments looks at multi-instance galleries containing up to five different facial
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expressions per subject. A second group of experiments looks at multi-instance

galleries of up to five happy or neutral expression images per subject. A third set

of experiments compares the results of our multi-instance gallery approach to the

result of using the algorithm by Chang et al. [4], to the results of the component-

based REFER algorithm [5, 10], and to using a single frontal image for enrollment.

The core matching engine is an implementation of the iterative closest point (ICP)

algorithm [2]. The ICP algorithm iterates until the difference in successive RMS

scores is less than 0.0001 or until reaching a limit of 100 iterations. Provided that

the initial alignment is good, convergence typically occurs in less than 30 itera-

tions. The RMS of the final alignment is reported as the matching value between a

probe image and a given gallery image. For a multi-instance gallery representation

of a person, the minimum RMS of the probe to any one of the multiple instances is

reported as the matching value for that person. Based on experimental results, we

determined that the ICP algorithm is sensitive to initial alignment. The experimen-

tal results suggest that degraded performance can result if the starting position is

misaligned by more than 10mm in the X or Y directions.

4.1 Multi-Instance Gallery Using Varied Expressions

In this first set of experiments, the size of the gallery is varied from one to five

images, and the different possible combinations of one of each of up to five different

expressions are used. The probe set is the same for each of the 31 different sub-

experiments in this overall experiment. It contains 2500 neutral-expression images

and 791 images with varying facial expression, with from 1 to 50 probe images for

each of the 112 subjects in the gallery.
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Table 3
Experiment 1 - Multiple Expression Experiments (3921 Probe Images) - Overall Results

Sub-Exp Gallery # of Gallery Rank One TAR
# Type Images Recognition at 0.1% FAR

1 N 112 82.8 63.5
2 H 112 85.1 61.3
3 Sp 112 89.8 70.2
4 D 112 66.5 44.8
5 Sd 112 91.0 73.1

6 N+H 224 90.6 75.4
7 N+Sp 224 94.8 80.5
8 N+D 224 87.9 61.7
9 N+Sd 224 94.5 81.9

10 H+Sp 224 94.9 78.8
11 H+D 224 87.6 68.4
12 H+Sd 224 95.5 83.1
13 Sp+D 224 91.2 74.7
14 Sp+Sd 224 97.4 85.4
15 D+Sd 224 91.9 76.6

16 N+H+Sp 336 95.8 84.8
17 N+H+D 336 92.8 77.2
18 N+H+Sd 336 96.9 87.6
19 N+Sp+D 336 94.9 81.3
20 N+Sp+Sd 336 97.9 (ns) 88.4
21 N+D+Sd 336 95.2 83.7
22 H+Sp+D 336 94.7 79.8
23 H+Sp+Sd 336 97.7 (ns) 87.9
24 H+D+Sd 336 95.7 83.1
25 Sp+D+Sd 336 97.7 (ns) 86.2

26 N+H+Sp+D 448 95.9 84.5
27 N+H+Sp+Sd 448 98.0 89.2
28 N+H+D+Sd 448 96.8 86.3
29 N+Sp+D+Sd 448 97.9 (ns) 88.5
30 H+Sp+D+Sd 448 97.8 (ns) 88.4

31 N+H+Sp+D+Sd 560 98.0 91.0

The accuracy of the nose-tip feature detection gives an approximate practical limit

to the recognition accuracy. This is because if the nose tip detection is inaccurate,

the probe region may be inaccurately cropped from the probe image and. The ac-

curacy of the automatic nose tip was checked by comparing to manually marked

nose tip location, and 97.9% of the automatically determined nose tip points were

within 20mm of the manually-marked point.
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Results of this set of experiments are summarized in Table 3. Results are reported in

terms of both a rank-one recognition rate appropriate to an identification scenario,

and a true accept rate (TAR) at fixed false alarm rate (FAR) value appropriate to a

verification scenario. The particular FAR point chosen is 0.1%, which is the value

used in the Face Recognition Grand Challenge program [20].

One interesting point from the results in Table 3 is the performance obtained us-

ing the “sad” and “surprise” expression images in the gallery. Of the five differ-

ent expressions used as single-instance galleries - neutral, happy, surprise, disgust,

and sad - the highest performance was obtained using the sad expression images

and the second-highest performance was obtained using the surprise expression

images. This is true even though the probe set contains very few images repre-

senting either of these two expressions. None of the 791 non-neutral expression

images in the probe set represent the sad expression, and only 65 represent sur-

prise. The results across the two-instance gallery representations reinforce this re-

sult. The highest performance of the ten different two-instance gallery representa-

tions is with the gallery containing sad + surprise expressions. Similarly, the three

highest-performing three-instance galleries are the ones that contain sad and sur-

prise, along with each of the other three expressions. And the highest-performing

four-instance galleries are ones that contain both the sad and surprise expressions.

These two facial expressions have not previously been recognized as being partic-

ularly good expressions for enrollment when the probe set contains other varying

expressions.

To investigate why these two expressions caused such high performance, we took

10 people who have at least one image containing each one of each of the five

expressions (N, H, Sp, D, and Sd). For each subject we selected the first image

of each expression type to include in this experiment (for a total of 50 images).
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After performing an “All vs. All” experiment, where each image is matched to the

remaining images, the following RMS averages were extracted from the scenarios

listed in Table 4. Based on the experimental results in this table, we see that the

RMS distance is not the only factor that determines the quality of the match.

Table 4
Neutral, Sadness, and Surprise RMS average decomposition.

Probe Gallery RMS
Expression Expression Average

Neutral Neutral 0.488
Happiness Neutral 0.426
Surprise Neutral 0.376
Disgust Neutral 0.551
Sadness Neutral 0.480

Neutral Surprise 0.490
Happiness Surprise 0.407
Surprise Surprise 0.317
Disgust Surprise 0.562
Sadness Surprise 0.491

Neutral Sadness 0.587
Happiness Sadness 0.514
Surprise Sadness 0.424
Disgust Sadness 0.463
Sadness Sadness 0.395

One of the possible reasons the Surprise and Sadness galleries perform better than

the other gallery expressions may be that the surprise and sadness expressions are

much more reproducible in terms of prompted expressions. When a subject is asked

to display a neutral expression, often times they may simply display the expression

that is on their face at that time, which may vary from session to session. This is in

contrast to the images containing surprise and sadness expressions. After manually

examining images containing these expressions, we saw a much more consistent

resulting image. In addition, after preprocessing, we did not see a source of signifi-

cant noise that would cause the regions to be mismatched for any other reason than

expression. Another reason why the Surprise and Sadness gallery expressions per-

form better than the Neutral expression gallery may be due to a uniqueness factor.
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For our multiple expression experiments in this paper, we used a small region of

interest containing only the nose area. Nose regions across neutral expressions of

non-matching images had a lower RMS score than nose regions across surprise and

sadness expressions of non-matching images. These results suggest that the nose

regions of neutral images are more similar to each other than those of the surprise

and sadness nose regions.

Another interesting point from the results in Table 3 is that the “disgust” expres-

sion leads to particularly poor performance. This suggests that facial movement

caused by the disgust expression is very dissimilar to the rest of the expressions.

It could also be explained by an increase in difficulty in obtaining the expression

itself. During acquisition, many subjects questioned exactly what an expression of

disgust looked like. This confusion could cause the subject to attempt to do some-

thing significantly different with their face than is normal. Still, even adding this

expression of disgust (which performed poorly by itself) to any other image caused

an increase in recognition rate. This implies simply that the disgust image resulted

in a different permutation of the facial features and yielded another opportunity for

correct matching.

The rank-one recognition rates for sub-experiments 20, 23, 25, 27, 29, and 30 are

not statistically significantly different from each other, using a z test at the 0.05

level. However, the rank-one recognition rates for these sub-experiments are sta-

tistically significantly greater than for the other sub-experiments in this group. The

result variation for one-image galleries is 70.2 - 44.8 = 25.4, for two-image galleries

23.8, three-image galleries = 10.7, and four image galleries is 4.7. This suggests that

the variability is less for a larger and more heterogenous gallery, or that the types

of expressions are less important as the size of the gallery increases.
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Table 5
Experiment 1 - Multiple Expression Experiments (3921 Probe Images)

Sub-Exp Gallery N H Sp Other
# Type (2500) (507) (65) (219)

1 N 2043 444 58 180
2 H 2081 479 56 187
3 Sp 2237 474 63 184
4 D 1608 366 42 173
5 Sd 2291 450 58 196

6 N+H 2231 495 62 196
7 N+Sp 2373 476 65 196
8 N+D 2171 464 59 200
9 N+Sd 2362 484 63 202
10 H+Sp 2345 490 63 195
11 H+D 2137 490 58 199
12 H+Sd 2381 497 62 205
13 Sp+D 2254 484 64 201
14 Sp+Sd 2444 493 64 205
15 D+Sd 2294 473 58 201

16 N+H+Sp 2394 495 65 201
17 N+H+D 2292 497 62 205
18 N+H+Sd 2420 501 64 206
19 N+Sp+D 2366 490 65 204
20 N+Sp+Sd 2455 497 65 205
21 N+D+Sd 2375 489 64 206
22 H+Sp+D 2350 500 64 203
23 H+Sp+Sd 2448 500 64 205
24 H+D+Sd 2380 499 63 208
25 Sp+D+Sd 2447 497 64 209

26 N+H+Sp+D 2392 497 65 205
27 N+H+Sp+Sd 2455 501 65 207
28 N+H+D+Sd 2414 501 65 208
29 N+Sp+D+Sd 2451 498 65 209
30 H+Sp+D+Sd 2447 501 64 209

31 N+H+Sp+D+Sd 2453 501 65 209

For completeness, a breakdown of the number of probes correctly recognized at

rank one is given in Table 5. Here it is clear, for example, that the sad expression

is a better enrollment choice than the happy or neutral expression, even for pur-

poses of recognizing happy or neutral probes. The sadness (Sd) and disgust (D)

are not included in this table because no probes were available with either of those

expressions.
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Table 6
Experiment 2 - Neutral and Happiness Experiment (5968 Probe Images) - Overall Results

Sub-Exp Gallery Number of Rank One TAR at
# Type Gallery Images Recognition 0.1% FAR

1 N 259 80.2 69.1
2 H 259 79.9 68.8

3 N+N 518 89.2 80.4
4 H+H 518 89.0 77.3
5 N+H 518 89.4 81.6

6 N+N+N 777 93.1 83.8
7 N+N+H 777 93.5 85.1
8 N+H+H 777 93.9 85.4
9 H+H+H 777 92.4 83.4

10 N+N+N+N 1036 94.5 85.9
11 N+N+N+H 1036 95.0 88.2
12 N+N+H+H 1036 94.7 88.0
13 N+H+H+H 1036 96.9 (ns) 90.1
14 H+H+H+H 1036 94.0 84.7

15 N+N+N+N+N 1295 94.9 87.8
16 N+N+N+N+H 1295 96.0 89.5
17 N+N+N+H+H 1295 96.1 90.0
18 N+N+H+H+H 1295 97.2 91.5
19 N+H+H+H+H 1295 97.1 (ns) 90.1
20 H+H+H+H+H 1295 94.8 85.7

4.2 Comparison of Happy and Sad for Multi-Instance Gallery

Most face recognition studies to date have dealt only with neutral-expression im-

ages. The most common non-neutral expression has been a smile or happy expres-

sion. For this reason, we explore the use of these two expressions in more detail in

a second set of experiments. This set of experiments contains images from all sub-

jects in the ND 2006 data set that have at least five neutral-expression images, five

happy expression images, and additional images for use in the probe set. This leads

to a gallery containing 259 subjects, and a fixed probe set of 5,968 images, with

from one to 50 probes per person. The feature detection module successfully lo-

cated the nose tip (within 20mm of the manually annotated location) on 5872/5968

= 98.4% of the images for this experiment. We attribute the slightly higher feature
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location performance to the increased number of neutral expressions present in the

data set.

Results for this set of experiments are summarized in Table 6. The rank-one recog-

nition rates are only slightly higher for a pure neutral-expression gallery than for

a pure happy-expression gallery, and a mixed-expression gallery always gives the

highest performance for a given gallery size.

Experiment 2 contains a probe set that contains more than four times as many

neutral expressions than non-neutral expressions. This difference favors the neutral

gallery over the happy gallery for rigid matching, resulting in higher performance

for neutral expression matches. Table 7 provides a more detailed description of the

performance. Sub-experiments 1 and 2 show that a neutral gallery image performs

best when matched to a neutral probe image. Conversely, a gallery composed of a

happy expression performs better than a neutral gallery for every other expression.

This conclusion agrees with the findings of Yacoob et al. [17]. Based on experimen-

tal results, we found that when an equal number of probe images containing a happy

expression and probe images containing a neutral expression were compared, the

probe set containing happy expressions resulted in a higher overall recognition rate.

This suggests that it may be easier to reproduce a prompted happy expression than

it is to reproduce a prompted neutral expression. In addition, the individual probe

results in Table 7 for neutral and happy expressions show that for each gallery that

contains at least one happy expression, probes containing a happy expression will

demonstrate superior performance.

Table 7 shows a plateau in performance for non-neutral probe images with only

three gallery images (H+H+H). As additional gallery expressions are added, no sig-

nificant increase in rank one matches is produced. This conclusion would greatly
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Table 7
Experiment 2 - Neutral and Happiness Experiment (5968 Probe Images)

Sub-Exp Gallery N H Sp D Sd Other
# Type (4834) (507) (182) (95) (88) (262)

1 N 3975 400 129 59 53 170
2 H 3804 468 147 76 67 206

3 N+N 4348 443 164 75 74 223
4 H+H 4281 492 165 79 72 223
5 N+H 4313 485 164 79 72 224

6 N+N+N 4549 453 169 78 78 229
7 N+N+H 4532 486 169 82 75 236
8 N+H+H 4552 495 171 82 76 232
9 H+H+H 4455 500 171 81 79 228

10 N+N+N+N 4619 454 174 82 80 231
11 N+N+N+H 4613 487 173 82 79 237
12 N+N+H+H 4592 495 172 82 77 238
13 N+H+H+H 4710 500 176 82 80 236
14 H+H+H+H 4550 500 170 80 78 231

15 N+N+N+N+N 4648 456 170 80 79 232
16 N+N+N+N+H 4672 486 174 82 80 236
17 N+N+N+H+H 4666 495 174 82 79 239
18 N+N+H+H+H 4723 500 177 82 81 240
19 N+H+H+H+H 4720 501 177 82 80 237
20 H+H+H+H+H 4586 501 174 82 79 229

benefit from a larger more diverse data set containing additional images with non-

neutral expressions. Another observation from the results contained in Table 6 is

that expression variation in the gallery combined with an increase in the number of

images (or chances to match) provides the best opportunity for accurate recogni-

tion. Peak recognition performance (97.2%) is achieved with the gallery combina-

tion of N+N+H+H+H, however this is not a statistically significant difference from

using the 4 gallery combination N+H+H+H (96.9%). In addition, the results show

that for a given size gallery (e.g. 5), the heterogeneous galleries (4N+H, 3N+2H,

2N+3H, N+4H) all outperform the homogenous galleries (5N or 5H). These rank

one recognition results are effectively mirrored in the verification experiment (TAR

at 0.1% FAR) across the various gallery combinations. For verification, the optimal

gallery is number 18 (N+N+H+H+H) and has a 91.5% TAR with a FAR of 0.1%.
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Table 8
Experiment 3 - Multi-Instance vs. Single Gallery

Sub-Experiment Probe Rank One
Description Subset Recognition Rate

Multi-Instance Full - 5968 images 97.2%
REFER Full - 5968 images 96.2%
Chang et al. [4] Full - 5968 images 86.9%
Single Frontal Image Full - 5968 images 83.8%

Multi-Instance Neutral only - 4834 images 98.3%
REFER Neutral only - 4834 images 97.0%
Chang et al. Neutral only - 4834 images 91.9%
Single Frontal Image Neutral only - 4834 images 90.3%

Multi-Instance Non-Neutral only - 1134 images 95.1%
REFER Non-Neutral only - 1134 images 93.1%
Chang et al. Non-Neutral only - 1134 images 69.1%
Single Frontal Image Non-Neutral only - 1134 images 57.1%

Multi-Instance Happiness only - 507 images 98.2%
REFER Happiness only - 507 images 92.1%
Chang et al. Happiness only - 507 images 60.8%
Single Frontal Image Happiness only - 507 images 47.5%

4.3 Multi-Instance Gallery Versus Component-Based Approaches

This set of sub-experiments compares our multi-instance gallery approach against

two earlier component-based approaches to 3D face recognition [4, 5, 10], as well

as to a simple single-frontal-face-region approach. The probe set for this set of ex-

periments is the same as the set for the experiments in the previous section. We look

at performance for the overall probe set of 5,968 images, a neutral-only probe set

of 4,834 images, a non-neutral probe set of 1,134 images, and a happy-only probe

set of 507 images. The gallery for the multi-instance approach is the N+N+H+H+H

gallery from sub experiment 18 in the previous section. The gallery for the other

approaches is the first neutral-expression image for a given subject, which is the

typical convention for such approaches

The “baseline” performance result (labeled Single Frontal Image) is presented by
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performing ICP on a single whole frontal region of the face image used for gallery

enrollment and a smaller whole frontal region of another image is used as the probe.

This comparison technique has been used in several papers [20, 4, 1], and represents

the potential performance gain by using the alternative methods.

Table 8 shows a performance comparison of the best multiple instance results

achieved in Experiment 2 (sub-experiment 18 seen in Table 6 containing five gallery

images: two neutral and three happiness expressions), the results attained by the

REFER algorithm (using only a single neutral image for each subject), and a base-

line performance of a single neutral image in the gallery matched to a single frontal

image (a sphere cropped at 100mm from the nose tip) in the probe. The first two

rows show the overall similarity in terms of rank one performance between the two

approaches. Both techniques perform well except for the final test which employs

a probe set consisting of only images that display a happiness expression. In this

test, the disparity in the rank one recognition rate is due to the number of happiness

expressions present in the gallery. In the REFER setup, exact rigid matching is not

possible due to the forced expression variation between gallery (neutral) and probe

(happiness). In contrast, the Multi-Instance setup contains three images display-

ing a happiness expression, which equals three times the chance of encountering a

similar happiness variation in the gallery. The results in Table 8 also demonstrate

the poor performance of the baseline experiment (labeled Single Frontal Probe Im-

age). For a neutral gallery matched to a neutral probe, the rank one recognition rate

is comparable to the other two methods. However, when alternative expressions

are introduced to the probe set, the limitations of the single full frontal matching

method become apparent. Finally, each REFER and multi-instance pair of results

in Table 8 shows a statistically significant different rank one recognition rate. The

z-scores for these experiments can be seen in Tables 9 10 11 12. This allows us to

conclude that if multiple expressions are available for gallery participation, higher
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recognition rates can be achieved, especially if the probe images contain the same

expressions. However, if only a single neutral image is available, the performance

decrease is not substantial when using the REFER method.

Table 9
z-Scores: Multi-Instance vs. Single Gallery - Full - 5968 images

Multi REFER Chang et al. Single
Instance Frontal Image

Multi-Instance N/A 3.05 20.79 24.96

REFER N/A 18.26 22.57

Chang et al. N/A 4.78

Single Frontal Image N/A

Table 10
z-Scores: Multi-Instance vs. Single Gallery - Neutral only - 4834 images

Multi REFER Chang et al. Single
Instance Frontal Image

Multi-Instance N/A 4.21 14.57 16.96

REFER N/A 10.95 13.50

Chang et al. N/A 2.76

Single Frontal Image N/A

Table 11
z-Scores: Multi-Instance vs. Single Gallery - Non-Neutral only - 1134 images

Multi REFER Chang et al. Single
Instance Frontal Image

Multi-Instance N/A 2.02 16.14 21.21

REFER N/A 14.59 19.82

Chang et al. N/A 5.92

Single Frontal Image N/A

26



Table 12
z-Scores: Multi-Instance vs. Single Gallery - Happiness only - 507 images

Multi REFER Chang et al. Single
Instance Frontal Image

Multi-Instance N/A 4.52 14.75 18.15

REFER N/A 11.74 15.46

Chang et al. N/A 4.24

Single Frontal Image N/A

4.4 Statistical Significance

In order to determine statistical significance for experiments performed in this pa-

per, we use a standard Z-test, which has been used in similar situations by Yan et al.

and Yambor et al. [29, 30] who based their use of the statistic after Devore and Peck

[31]. However, this test is valid only on assumption that the binomial distribution

converges to a normal distribution. Likewise, the rank one recognition and verifica-

tion rate comparisons can be viewed as a binomial distribution problem under the

assumption that the probability (p) of a correct match (either correctly identifying

or verifying a subject) is constant across all subjects. If p varied significantly the bi-

nomial assumption may be weak; however, empirical estimation of p from multiple

subsets showed p to be reasonably consistent across the subjects. Assuming this,

the probability of an incorrect match is (1 − p). It is assumed that if a sufficiently

large sample size (N ) is used, the binomial distribution will converge to a normal

distribution and therefore the population standard deviation can be approximated.

For a large enough sample size N , a binomial variable X is equal to N(Np, Npq).

Yan et al. [29] use the assumption that good comparative results are achieved when

Npq ≥ 3. In experiment 1, N = 3921, and in experiment 2, N = 5968. For each

set of results listed in Tables 3 and 6, Npq ≥ 3.
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For identification result comparisons, p̂ is the empirical (sample) estimate of p, the

probability that a subject is correctly identified from a gallery set. For verification

result comparisons, p̂ is the probability that a probe to gallery match results in a

true accept at a given false accept rate (i.e. 94.5% at a 0.1% FAR would result in

p̂ = 0.945 for that comparison). Verification experiments tend to have a higher

N as each comparison is included in the total number of samples. Identification

experiments only contribute a single sample for each probe to gallery set match.

This discrepancy causes experimental verification results to require a much smaller

difference than identification results to be statistically significant. Given two results,

with sample sizes N1 and N2, and the percentage of observed correct matches as p̂1

and p̂2 the test statistic for H0 : p1 = p2 using a 0.05 level of significance is:

z =
p̂1 − p̂2√

(N1+N2

N1N2
)(X1+X2

N1N2
)(1− X1+X2

N1N2
)

X1 = p̂1 ×N1, X2 = p̂2 ×N2

If z ≤ 1.64 then it is assumed that there is no statistically significant difference

between the pair of results and their associated sample sizes.

5 Conclusions and Future Work

In this paper, we examined the value of using multiple gallery images per subject

to increase the performance of 3D face recognition. This study employs the largest

3D face data set available to date with over 13,450 total images. Our experimental

results (seen in Tables 6, 3, and 8) support many conclusions. First, using multiple

images to enroll a person in a gallery can improve the overall performance of a bio-

metric system, at least up to the level of four or five images tested here. We have not

yet found a clear “plateau” in performance for the number of images used to enroll
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a person, however we saw a statistically significant difference between using any

single image compared to using multiple images in the gallery. Next, Experiments

1 and 2 demonstrated that when using multiple images to enroll a person, sampling

from different expressions (heterogeneous) improves performance over sampling

only the same expression (homogeneous). Finally, the results have shown that the

types of expressions in the gallery become less important as the gallery increases

in size.

The results in this paper show that a homogeneous gallery composed of images

containing neutral expressions outperforms a gallery containing the same number

of happy images in a verification experiment. In an identification experiment, no

statistically significant difference was found between either of the two gallery com-

positions. Finally, we show that a statistically significant difference in recognition

rate exists when using a single region from multiple galleries and using multiple

regions from a single neutral gallery for 3D face recognition. While the difference

is not substantial (97.2% vs. 96.2%), using a single region from multiple galleries

results in superior recognition performance.

In this paper we have shown how the performance of a recognition system can ben-

efit by varying the number and types of expressions in the gallery of real subjects. A

logical extension of this work would be to combine the REFER and multiple gallery

methods into a single technique. We have experimented with this fusion and have

found that we require a larger and more challenging data set in order to see statisti-

cally significant gains in recognition performance. With the ND-2006 data set, our

multi-instance approach is able to achieve a 97.2% rank one recognition rate and

REFER is able to achieve a 96.2% rank one recognition rate. When these methods

were combined, we saw gains in these results; however, none were of a statistically

significant margin. In addition, combining these algorithms results in a method that
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is 5 times slower than the original REFER algorithm, performing a total of 140 ICP

matches.

Another extension of this work is to determine how well images containing syn-

thetic expressions perform compared to real expressions. Lu et al. [16] propose a

method of using subject specific facial surface deformation models to synthetically

create 3D face images containing a variety of pre-trained expressions. This pro-

cess would reduce the need for subject enrollment cooperation and possibly boost

results over those attainable by any single image.

Although this paper reports results using the largest 3D face data set available,

these conclusions would benefit from further experimentation. The first problem is

the actual acquisition of images containing expressions. In a controlled setting, get-

ting prompted expressions is challenging. Variation between the same prompted ex-

pression can be caused by numerous things outside of the operators control (mood,

weather, or personal preference). One day the subject may interpret a prompted

expression in one manner, and the next day it may be different. One of the most

exciting avenues to further this line of research is through video recognition. By

capturing the changes in expressions, we would be able to determine all possible

ways that a region of interest can change. The experiments in this paper used per-

mutations of up to 5 different expression, however these were the final expressions

and did not represent the full range of motion in the face. For example, if a subject

starts with a small smile and slowly shifts into the largest possible grin, any future

image containing a smile should be recognized as part of the smile subset. This

would be done for other expressions to create what we determine as a total range of

facial motion. With this subject specific knowledge, recognition challenges stem-

ming from expression variation may be addressed.
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