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Abstract— Over the past decade, independent evaluations
have become commonplace in many areas of experimental
computer science, including face and gesture recognition. A
key attribute of many successful independent evaluations is a
curated data set. Desired things associated with these data sets
include appropriateness to the experimental design, a corpus
size large enough to allow statistically rigorous characterization
of results, and the availability of comprehensive metadata that
allow inferences to be made on various data set attributes.
In this paper, we review a ten-year biometric sampling effort
that enabled the creation of several key biometrics challenge
problems. We summarize the design and execution of data
collections, identify key challenges, and convey some lessons
learned.

I. INTRODUCTION

The creation of designed and curated data sets for grand
challenges and independent evaluations has been an impor-
tant driving force behind progress in biometrics over the last
two decades. Data sets distributed to the research community
foster the development of new algorithms and technologies,
and they allow independent evaluations of the state-of-the-
art. Data sets also contribute to the identification of future
research directions, especially if the data is available to the
research community with minimal restrictions on its use.
This paper describes a decade-long data collection effort that
collected approximately 1 million biometric samples. The
biometrics data collected supported seminal grand challenges
in still and 3D face recognition and iris recognition that were
key steps in fielding face and iris recognition systems.

Much of the collected data is available by license to the
research community, and some data set components have
been downloaded hundreds of times. The collection team
continues to receive many requests per month. These data
sets can serve as an ”on-ramp” for new research groups
entering the field. Since data sets are associated with ex-
perimental designs, new algorithms can be evaluated in a
context that is well established and considered canonical by
the research community. However, research groups can also
identify new biometrics problems by examining data sets and
experimental results using them.

The focus of this paper is the design and execution
of biometric data collection. Our goals are: (i) to provide
guidance to prospective collectors; (ii) to highlight the key
challenges that arise when planning and executing such an
activity; and (iii) to highlight the research advances that
resulted from our work.

II. MOTIVATION

Before telling a story of sustained large-scale data collec-
tion and curated data set assembly, we provide the motivation
for undertaking this task and highlight the key issue of
metadata collection and management.

The notion of replicability is foundational to almost every
field that employs experimental/empirical research. Scholarly
communities tend to prize research that is disseminated in pa-
pers with a level of detail sufficient to enable replication, with
confidence that the follow-on experiments are faithful copies
of the original experiment. Conversely, research papers that
omit key experimental details or provide vague descriptions
that allow multiple interpretations are not as highly prized.
We consider the organized collection of data using an explicit
plan, followed by comprehensive curation efforts, followed
by distribution to the teams conducting experiments, culmi-
nating in public release of results and licensed distribution
of data, as a gold standard for management of experimental
data.

The broad usefulness of a data set is strongly dependent
on the amount, type, and quality of metadata accompanying
the data itself. In the context of biometrics experiments,
the most important item of metadata is the identity tag.
Other items of metadata in common use for face recognition
include gender, age, appearance characteristics (e.g., hair
color, eye color), face pose, expression, light sources in use,
and others. Metadata management and, in particular, error
detection/correction are key challenges in data collection at
scale, as metadata errors are unavoidable in most circum-
stances.

III. RELATED BIOMETRIC DATA COLLECTIONS

The Face Recognition Technology (FERET) evalua-
tion [35], [32] was the first significant effort in face recogni-
tion to distribute a common data set along with an established
standard protocol. Since then a variety of data sets, competi-
tions, evaluations, and challenge problems have contributed
to the face recognition field. Here we highlight a few.

The Carnegie Mellon University (CMU) Pose Illumination
and Expression (PIE) face database [13] was collected in
such a way as to support excellent empirical explorations
of controlled interactions between illumination and pose.
The Extended Multimodal Face Database (XM2VTS) and
Banca Databases [1] were each released with associated
evaluation protocols and competitions were organized around
each [18], [20]. The European BioSecure project represents a



major coordinated effort to advance multi-modal biometrics,
including face [24].

The Labeled Faces in the Wild (LFW) dataset consists
of images downloaded from the web, along with a website
that curates current performance results [17]. The YouTube1

Faces dataset consists of videos of people collected in the
spirit of LFW [38].

A number iris image data sets are available from research
groups across the world. The Institute for Automation at
the Chinese Academy of Sciences (CASIA) distributes the
CASIA-IRIS-V4 data set2. The components of this data set
include iris-at-a-distance images, handheld sensor images,
images acquired using a novel illuminator design, and syn-
thetic iris images.

The University of Beira Interior Iris (UBIRIS) database
consists of two distinctive datasets containing noisy images
of the iris captured in the visible wavelengths [36]. Smart
Sensors, an United Kingdom corporation, distributes a set of
near infrared (NIR)-illuminated iris images collected with a
high quality sensor3.

IV. OVERVIEW OF DATA COLLECTION

For convenience, we will discuss our data collection
activities as a set of three epochs, each of which aligns
roughly to a group of U.S. Government sponsored eval-
uation activities. The first epoch is from 2002 through
2006; the data collected in this period supported the Face
Recognition Grand Challenge (FRGC), Face Recognition
Vendor Test (FRVT) 2006, and Iris Challenge Evaluations
2005 and 2006 [29],[34],[25]. The second epoch ran from
2007 through 2010, and supported the Multiple Biometrics
Grand Challenge (MBGC) [28] and the Multiple Biometric
Evaluation (MBE) 2010 [14]. The third epoch ran from 2010
through 2012, and data collected in this period supported the
Intelligence Advanced Research Projects Activity’s (IARPA)
Biometrics Exploitation Science and Technology (BEST)
Program; data from the epoch supported the the Point and
Shoot Face Recognition Challenge (PaSC) [4], [7].

The decade long effort collected data from nine individ-
ual modalities (excluding a few modalities from boutique
collections). The overall collection protocol was organized
by academic year or semester, during which it changed
minimally if at all. During a semester or academic year, the
same core biometric modalities were collected. The stability
of the core modalities collected resulted in multi-modal
biometric collections, including identity-linked multimodal
collections.

Subjects were generally allowed to report for data collec-
tion once in each week of data collection operations. Each
week of acquisition was considered a session of collection,
and the biometric samples of a subject collected in his or

1The identification of any commercial product or trade name does not
imply endorsement or recommendation by NIST.

2http://www.cbsr.ia.ac.cn/china/Iris\
%20Databases\%20CH.asp

3http://www.smartsensors.co.uk/products/
iris-database/

her weekly appearance is referred to as a subject session.
Upon reporting to the collection site, a subject would proceed
through a set of stations. At each station, a set of biometric
samples were collected. For example, a session could consist
of four stations, the first collecting three-dimensional (3D)
scans of the face, the second collecting iris images, the third
collecting still images of the face in a studio environment,
and the fourth station collecting face and body imagery
(video and stills) outdoors. The number of stations and the
set of biometric samples collected at each station varied over
the decade but was fixed within a semester of collection. A
set of biometric samples from a person is multi-modal if all
the samples were collected in the same session. A collection
is multi-modal if all the subject sessions are multi-modal and
each subject session has samples of the same modes.

With the exception of one small collection, all still images
and videos in the visible spectrum were taken with consumer
cameras. The 3D face images consists of both range and
texture images and the iris images were collected in the NIR.
The nine modalities collected are

• still images of the face,
• still images of the face and body,
• videos of the face and body,
• 3D scans of the face,
• long wave infrared (thermal) imagery of the face,
• iris images collected with a iris sensor designed for

cooperative subjects,
• iris images as people walked through a portal or fol-

lowing a walk, stop, and walk protocol (as referred to
as iris at a distance),

• still images with a profile view of the face and ear, and
• 3D scans that contained the ear and a profile image of

the face.
The three epochs resulted in three large multi-modal

collections. The modes in each of the multi-modal collections
are

• still face, 3D face, and iris (FRGC/FRVT/ICE),
• still face, video face and body, iris, and iris at a distance

(MBGC), and
• still face, still face and body, video face and body, iris,

and iris at a distance (BEST).
Acronyms in parentheses identify the U.S. Government ef-
forts that each multi-modal collection supported.

There is one special collection that does not neatly fit into
the modality nomenclature, which is the Twins data set. The
Twins data set was acquired at the Twins Days Festivals
in Twinsburg, Ohio in 2009 and 2010. The twins data set
contains both face and iris images.

Face imagery was collected under a diverse set of condi-
tions. These conditions reflect the wide range of potential
applications for automated face recognition. We modeled
this range of applications by five collection scenarios. In all
conditions, both frontal and non-frontal faces were collected.
The scenarios are

• still images taken in a studio environment with a digital
single lens reflex (DSLR) camera,



Fig. 1. An example of the types of images used in the FRCG and FRVT 2006 and the ICE 2005 and 2006. The two left frontal images in the top
row were taken under controlled illumination with neutral and smiling expressions. The two left images in the bottom row were taken under uncontrolled
illumination with neutral and smiling expressions. The two right images in the top row show the shape channel and texture channel pasted on the shape
channel for a 3D facial image. The two right images in the bottom row show right and left iris images. All samples are from the multi-biometric dataset.
Courtesy of Phillips et al. [34].

• still images taken under ambient lighting in hallways,
atriums, and outdoors with a DSLR camera,

• still images taken under ambient lighting in hallways,
atriums, and outdoors with handheld digital point and
shoot cameras (e.g., cell phones),

• videos taken under ambient lighting in hallways, atri-
ums, and outdoors with a tripod mounted video camera,
and

• videos taken under ambient lighting in hallways, atri-
ums, and outdoors with handheld digital point and shoot
cameras.

Fig. 1 shows samples used in the FRGC, FRVT 2006, and
ICE 2005 and 2006. Fig. 3 and 4 show samples from the
MBGC. Fig. 5, 6, 7, and 8 show samples collected in the
BEST epoch.

To answer specific questions or investigate special topics,
we conducted smaller ‘boutique’ collections. One strength of
the maintaining the large collection infrastructure was that
the marginal cost of collecting the boutique data sets was
minimal.

Over the decade, we collected and enrolled in our data
management system 986,246 samples, which does not in-
clude samples from a limited number of boutique collections.
Therefore, the actual total number of samples collected
was approximately 1 million. Figure 2 breaks out number
of biometric samples collected and enrolled in our data
management system by academic year. From the start of
the effort in 2002 through June 2005, we collected 284,401
samples. At the time this was the largest laboratory data
collection activity by over an order of magnitude. From
November 2010 through May 2012, 423,587 samples were
collected. This data was collected three days a week for
20 weeks. On average 20,648 samples per week, 6,882
per day, were collected. This increase in the number of
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Fig. 2. Number of biometric samples collected broken out by academic
year.

biometric samples that could be collected and processed
reflected improvements in our collection infrastructure. The
infrastructure included management of hardware, software,
and laboratory personnel.

The data set consists of biometric samples from 3,145
subjects. The demographics of the subjects are females 49%
and males 51%; the self declared race is Caucasian 77%,
Asian 14%, and other or unknown 9%. The majority of the
subjects were undergraduate students.

One of the overarching design goals of the data collection
effort was measuring the impact of time lapse between



(a) (b)

(c)
Fig. 3. Example of imagery collected as a subject walks through the
portal. The image in (a) is a full 2,000 by 2,000 pixel NIR frame acquired
by the IoM and (b) is the left ocular region from the frame in (a). There
are approximately 120 pixels across the iris in (a) and (b). The images in
(c) are three frames from an high definition video sequence of a subject
walking through the portal. Courtesy of Phillips et al. [28].

acquisitions. Because of the continual change in the student
population, there are constraints on the size of longitudinal
studies readily supported [2], [10], [11]. The longest time
lapse between a subject’s first and last acquisition was 3666
days (10 years). The mean time lapse was 266 days and the
median was 87 days.

V. PURPOSE FOR DATA COLLECTION ACTIVITIES

The data collection effort was not a monolithic activity
directed to a single long-term goal. The motivation and goals
of the collection activities changed over time. The changes
were driven by multiple factors.

• As research in biometrics continues, performance im-
proves, performance goals increase, and the amount of
data needed to estimate performance changes.

• As research in biometrics continues, knowledge of the
conditions where techniques perform poorly becomes
more detailed, sophisticated, and nuanced. As a result,
data collection plans can begin to target challenging
conditions revealed by new experiments.

• Few research groups had any experience in large-scale
biometric data collection in 2001, especially involving a
large number of human subjects. As collection activity
continued, a base of experience and mature supporting
infrastructure was developed and led to a number of
efficiencies in later years.

• Improvements in sensing, storage, distribution, and
computation technology as well as process improve-
ments allowed data collection scale to increase over time
without a corresponding scale-up in personnel and cost.

The start-up or scale-up of a data collection activity
followed a pattern that was executed many times over the
years. The initial collection effort mounted in support of

(a)

(b)
Fig. 4. Example frames from video sequences. The image in (a) is from a
video sequence of a subject walking towards the cameras in an atrium and
(b) is a subject performing a non-frontal activity outdoors.

Fig. 5. Examples of images in the PaSC taken during four sessions. Note
that locations were varied between sessions, while sensor, distance to camera
and pose were varied within sessions. Courtesy of Beveridge et al. [4].

Fig. 6. Cropped face images extracted from still images in the PaSC. These
images demonstrate some of the complications that arise in point-and-shoot
images, lighting, motion blur and poor focus. Courtesy of Beveridge et
al. [4].



Fig. 7. Four snapshots from one video showing a subject carrying out an
action, in this case blowing bubbles. Courtesy of Beveridge et al. [4].

Fig. 8. Sampled portions of video frames from PaSC videos indicating
some of the situations that make recognition challenging. Courtesy of
Beveridge et al. [7].

the FRGC and FRVT 2006 specified the collection of high-
resolution facial images from 200 subjects once per week
for an academic year, with repeat visits by the same subjects
encouraged. The corresponding research study enabled by
this collection was investigation of short-term time lapse
effects on face recognition. Subsequent sponsor interest in
3D face scans and iris images triggered a sensor/vendor
selection process, a protocol modification, and a pilot col-
lection focused on sensor usability and post-collection data
management workflow, to provide a base of experience for
subsequent large-scale collections with the new sensors. By
defining a process for collection operations changes, the
amount and types of data collected, and types of sensors
used, and the sophistication and capability of our data
management system matured fairly smoothly over the years.

VI. ORGANIZING THE DATA COLLECTION

Our team collected, processed, ground-truthed, and pre-
pared for distribution an average of 100,000 biometric
samples per year. Since the daily average collection load
increased over the years of collection in response to program-
matic commitments, we evolved the key resources needed to
operate this collection activity without being overwhelmed
by complexity and scale at its inception. These key resources
include the following items.

At all times, there was a key person responsible for

planning the collection, scheduling the collection events,
procuring necessary sensors and supplies, delegating collec-
tion tasks, and verifying that post-collection activities were
done, including the final delivery of data and packaging of
data sets for distribution. A characteristic property of this
role is the need for a person with strong organizational skills
including management of many details and unanticipated
matters. The key person in this role, and the exact scope
of the role changed over the years: initially, one of the Notre
Dame principal investigators (PI) was the organizer. For a
few years, a talented graduate student performed some of the
tactical components of the role while a PI was responsible for
more strategic elements of the impending collection. During
the 2008-2012 collection interval, a broadly skilled staff
member was placed in charge of data collections, overseeing
everything except initial collection design. This staff member
was aided by a second staff member for the final two years
of the project; this second person oversaw the ingestion of
collected data into the Biometric Research Grid (BXGrid)
system [8]. Our experience is that the choice of a good
collection manager and the specification of very detailed and
clear plans is the key to success of sustained large-scale data
collection.

For all years of our large-scale collection activity, the col-
lection venues were staffed primarily by students, and usually
undergraduates. There were many reasons for this initial
design decision and our experiences have amply justified
the choice. Undergraduates readily absorbed the necessary
task-specific training (camera operation, use of the BXGrid
system for ground truth recording, data subsetting for specific
research tasks, etc.). We were able to employ some of our
most talented undergraduates for multiple years in roles with
increasing amounts of responsibility, providing continuity to
operations. Some of these students initiated original research
projects and some of those led to publications in the refereed
literature.

Although the majority of our operators were undergrad-
uates, we did assign some collection activity to graduate
students from 2002 through 2008, considering it one of the
mandatory duties of membership in the PI’s research group.
However, as collection activity scaled up in its final years,
we were confident in our ability to recruit a large number
(approximately fifty) of undergraduates to assume all sensor
operator roles, and graduate student labor was not needed
except in exceptional circumstances.

Data management infrastructure, both software and hard-
ware, is critical. Accurate collection of large data sets at
scale is only possible if there are systems that support
and facilitate the collection and curation workflow. The
sophistication of such systems scales in some sense with the
size and complexity of the data corpus. This was a hard-won
lesson for the collection team. The initial days of collection
employed a simplistic manual data management system with
metadata stored in simple text files along with data organized
in directories named for the collection date. An National
Science Foundation (NSF) funded research project in large-
scale data management systems led to the development



of BXGrid [8], a database-backed and web-enabled data
ingestion and management portal with redundant file storage
affording robustness to disk and server failures. BXGrid is
a key part of our ongoing research, as it allows subsets of
our data corpus to be selected using database queries, which
facilitates construction of targeted data sets for experiments.

One key to success in the large-scale data collections was
conducting pilot studies and having a process for adding new
sensors. Prior to starting large data collections, it is usually
necessary to have a pilot data collection. The first stage in
adding a new sensor is to conduct a pilot study to understand
the sensor and the data it collects. After the initial pilot
study, the sensor was integrated into an ongoing large-scale
collection activity.

Collecting large amounts of data purely for the sake of
collecting data will likely lead to wasted effort and resources.
Design of a data collection needs to be motivated by a goal,
or limited number of goals. Further, the goals need to be
articulated in the experiment design.

Anecdotal evidence suggests that an initial raw labeling er-
ror rate of around 1 in 3,000 can occur, and that incorporating
an explicit data curation stage can reduce the labeling error
rate to below 1 in 25,000. This was possible in our collection
for four reasons. The first two concern the ability to detect
suspected errors. The large number of samples per subject
in each mode and results from multiple algorithms made it
easy to detect suspected labeling errors. Third, there were
researchers that examined every single sample and provided
feedback when suspected errors were found. Fourth, the
audit trail in the acquisition process made it possible to
retrospectively confirm suspected errors.

In the U.S., collecting biometric samples for research
needs review by an Institutional Review Board (IRB) for
human subjects approval. There are issues beyond human
subjects that include legal, ethical, copyright, and institu-
tional risk. In evaluating these issues, it is good to remember
the phrase ”Just because it is legal, does not mean it is a
good idea.” In addition, human subjects, legal, and ethical
standards vary by country. Before using data for an experi-
ment, one needs to consider the following questions: Was the
data collected with appropriate human subjects approval? Is
the data allowed to be distributed? Is the use of the data
consistent with the human subjects approval and consent
form?

VII. ACCOMPLISHMENTS

A. Grand Challenges and Evaluations

The key novel accomplishments of the FRCG, FRVT 2006
and ICE 2005 and 2006 are:

• One key goal of the FRGC was an order-of-magnitude
decrease in the error rate on frontal still face images
taken under controlled illumination conditions over per-
formance reported in the FRVT 2002 [30]. The FRVT
2006 documented that this goal was achieved [34].

• The FRGC and FRVT 2006 established the first inde-
pendent performance benchmarks for 3D face recogni-
tion technology.

• The ICE 2005 and 2006 were the first grand challenge
and independent evaluation for iris recognition matching
technology.

• The FRVT 2006 and the ICE 2006 are the first technol-
ogy evaluations that compared iris recognition, high-
resolution still frontal face recognition, and 3D face
recognition performance.

• The FRCG and FRVT 2006 were the first competitions
that systematically compared human and machine face
recognition performance.

• Results from the FRVT 2006 formed the bases for the
Good, Bad, and Ugly challenge problem [27].

The goal of the MBGC was to improve the performance of
face and iris recognition technology from biometric samples
acquired under unconstrained conditions. The MBGC is
organized into three challenge problems. Each challenge
problem relaxes the acquisition constraints in different di-
rections. The Portal Challenge focused on iris recognition
on the move. The goal of the Still Face Challenge was to
improve accuracy from frontal and off angle still face images
taken in ambient lighting indoors and outdoors. In the Video
Challenge, the goal was to recognize people from video in
unconstrained environments.

The data collected under the BEST program was the
basis for the Point and Shoot Face Recognition Challenge
(PaSC) [4]. To spur advancement in face and person recog-
nition the PaSC focuses on still images and video taken with
handheld digital point and shoot cameras. The challenge in-
cludes 9,376 still images of 293 people balanced with respect
to distance to the camera, alternative sensors, frontal versus
not-frontal views, and varying location. There are 2,802
videos for 265 people: a subset of the 293. The PaSC was the
bases for the Handheld Video Face and Person Recognition
Competition held in conjunction with the International Joint
Conference on Biometrics (IJCB) 2014 [7], and the Video
Person Recognition Evaluation held in conjunction with the
11th IEEE International Conference on Automatic Face and
Gesture Recognition [6].

B. Scientific Knowledge and Technical Advancement

The large and diverse data collection enabled scientific
investigation into fundamental properties of the biometrics.
Below is a sampling of scientific discoveries that the data
collections supported.

There are fundamental variations in face appearance in
long-wave infrared (LWIR) over time [9]. These variations
are as prominent as region A being brighter than region B in
an image taken at one time, but region A being darker than
region B in another image of the same face taken at another
time.

The twins data collected allowed for both face and iris
recognition studies. For faces, when images are taken in
mobile studios in the same collection session, it is possible
to distinguish twins; however, when face images are taken a
year apart, it is an extremely challenging problem [23]. Twins
do have similarity of iris texture, but it is not a similarity that



is seen in matching iris codes. This is one way in which iris
codes are not the same as the texture of the iris [16].

Iris template aging studies that compare, for the same
set of subjects, the false non-match rate for short-time-lapse
matches versus the false non-match rate (FNMR) for long-
time-lapse matches, find an increased FNMR with additional
elapsed time [2],[10]. This basic result has since been
reported by other research groups analyzing other datasets.

A change in pupil dilation between two images of the same
eye results in an increase in the false non-match rate [15].
This result has since been replicated by various research
groups.

Wearing contact lenses effects the performance of iris
recognition algorithms [3],[39]. For clear cosmetic contact
lenses there is a small increase in the FNMR. Algorithms
to detect the presence of cosmetic or textured lenses can be
specific to the lens brand.

In forensic comparison of iris images, humans can match
iris images with substantial accuracy, though not the same
accuracy on average and automated algorithms [19].

Starting with the FRGC, comparing human and algorithm
performance has been systematically included into chal-
lenges and evaluations. These studies show that for frontal
face images taken with DSLRs, algorithm performance is
superior [33]. Human performance is superior when recog-
nition requires fusing all identity cues present in an image
or video [37], [22]. In addition, fusing human and algorithm
matching score improves performance [21]. The observation
that algorithms developed in by research groups in Asia are
better at recognizing Asian faces and algorithms developed
by groups in the West are better at recognizing Caucasian
faces has practical implications [31].

Quantifying the effect of factors, covariates, and quality
measures on algorithm performance is essential for under-
standing biometric and face recognition algorithms. A series
of covariate analyses of face recognition algorithms showed
that simple measures can characterize algorithm performance
on a data set [5],[12]. Unfortunately, characterizations do not
generalize to new algorithms and data sets. Phillips et al. [26]
developed a technique for quantifying the existence of and
the best case effectiveness of quality measures.

VIII. CONCLUSION

By collecting a designed and curated data set of 1
million samples, we have enabled the advancement of both
the technology and science of biometrics. The resulting
understanding provides a solid basis for decisions on when
and how to field biometric systems. The resulting datasets
continue to be heavily used in research on still, video and
3D face recognition, iris recognition, and gait recognition.
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