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Abstract

The estimated accuracy of an algorithm is the most im-
portant element of the typical biometrics research publica-
tion. Comparisons between algorithms are commonly made
based on estimated accuracies reported in different publi-
cations. However, even when the same dataset is used in
two publications, there is a very low frequency of the pub-
lications using the same protocol for estimating algorithm
accuracy. Using the example problems of face recognition,
expression recognition and gender classification, we show
that the variation in estimated performance on the same
dataset across different protocols can be enormous. Based
on these results, we make recommendations for how to ob-
tain performance estimates that allow reliable comparison
between algorithms.

1. Introduction
The estimated accuracy of an algorithm plays a central

and essential role in every biometric problem. The accuracy
goal is simple – the higher, the better. We know that the ac-
curacy of an accepted biometric recognition system should
be a number close to 100%. If we read in a paper on face ex-
pression recognition that the accuracy obtained by the pro-
posed method was 97.3%, we could believe that 97.3% of
the expressions that a person makes –whatever that means–
will be correctly recognized. However, how confident is
this value for the dataset used in the paper? Moreover, how
generalizable is the proposed method for a wider variety
of conditions? And can this 97.3% be compared with the
98.5% reported in another paper for expression recognition
experiments on the same dataset?

When we attempt to answer such questions, we typically
focus on the ‘what’ elements of the dataset: What is the
number of images in the dataset? (Larger is better.) What
kinds of expressions were taken into account? (A greater

variety is generally better.) What are the illumination con-
ditions in the images? (A broader range is generally better.)
What is the gender, age and racial sampling of the data?
(Greater balance on these dimensions is generally better.)
Such questions are good and important, although many pa-
pers are published without such properties of the dataset be-
ing detailed. Nevertheless, the generalizability issue should
also raise questions about ‘how’ the images are used to es-
timate accuracy, as well as ‘what’ is represented in the im-
ages: How is the accuracy estimated? (Mean? weighted
mean?) How is the experimental protocol defined? (Leave-
one-out? Half-Half? 10-fold cross-validation?) How are
the images divided into train and test portions? (Randomly?
EveryN -th image? According to time of acquisition?) How
is the data sampled from the underlying original data col-
lection? (Is any data that was originally collected not used?
If so, is this documented?) How is the person-specific na-
ture of the data captured? (Are train and test splits person-
disjoint (unmixed)?) Is an estimate of the variance in the
estimated accuracy reported? (How is it computed?) All
of these considerations directly impact whether or not it is
possible to make a valid comparison between performance
figures published in different papers.

Detailed analyses of methods of statistical testing for
machine learning algorithms can be found in the literature;
for example, in Demsar’s well-known work [7]. But the
common practice in biometrics research is not at this level.
There is recognition of the need for improved practice in
the biometrics research community, as evidenced by papers
on this topic in recent conferences [18], [31]. In this pa-
per, we want to show how the experimental methods that
the biometrics research community has been following in
practice can lead to wrong conclusions. Thus we focus
on a narrower issue than [18], [31], and attempt to outline
how two different publications can follow a similar enough
methodology that their accuracy estimates can reliably be
compared.



In this paper, we explore the problems that a researcher
can have when experimenting on image databases (e.g.
faces, iris, fingerprints, etc.) in terms of ‘how’ the images
were used. We review the literature on three typical face
image analysis challenges, and we discover that in each one
there are so many experimental protocols that it is nearly
impossible to make fair comparisons across the published
literature. Moreover, many times a protocol is so intricate
and so insufficiently detailed that is not possible to be confi-
dent in repeating it. Our paper is focused on face databases,
but we believe that the same issues arise for all biometric
modalities.

We claim that these two problems –no standard proto-
col, and ill-defined protocols– undermine the research on
biometrics because they lead to confusing differences in
strength of protocol with differences in estimated accuracy
of algorithms. Based on these results, we make recom-
mendations for how to obtain performance estimates that
allow reliable comparison between algorithms. Thus, we
propose the “EPD” methodology: [E] Experiments: Wher-
ever a subject-disjoint train-and-test split would be possible,
it should be used. [P] Protocol: The protocol should ide-
ally be to report the mean and standard deviation of some
number of randomized 10-fold cross-validation (10f CV)
trials. Reviewers should accept accuracy reported on a sin-
gle hold-out (HO) trial only if there is a clear justification
made. [D] Data: Any downsampling from the collected
dataset should be described and justified. Wherever possi-
ble, results should be presented with and without the down-
sampling, so that reviewers can judge its effect.

2. Protocols
This section presents the definition of various protocols

that are commonly used in biometrics research papers for
evaluating the accuracy of a classifier. An important ele-
ment of this is the definition of the ‘training data’ and the
‘testing data’1. In general, there is a set D that contains
all collected data. The original raw data is typically a face
image, iris image, fingerprint, or other biometric sample.
The data used in estimating accuracy of a classifier is typ-
ically not the raw data, but rather the set of feature vectors
and labels derived from the raw data. For each element of
raw data, there is a feature vector and one or more corre-
sponding labels. The labels are “meta-data” that specifies
the identity of the person, the facial expression being made,
the gender of the person, or other properties of the raw data.
Often in biometric studies, from the set D of all data col-
lected, a subset X ⊂ D is selected out for some reason. For
example, data may be dropped from the study because the
person’s eyes are closed in the image, or the person wore

1A good practice to split the data into three groups, namely training,
validation (for parameter tuning), and testing, but only a few numbers of
the reported papers in this area use them.

glasses, or some other reason. It is important that any se-
lection out of the original dataset be described and justified
in the experimental context. We will call subset X the ‘used
data’ because it is used to evaluate the accuracy of a classi-
fier. Set X is {X,d}, i.e., it consists of i) a matrix X of size
N × p, for N samples and p features for each sample; and
ii) a vector d of N elements with the labels (one label per
sample). The general protocol to estimate the accuracy of a
classifier is as follows:
1) Select training (Xtrain,dtrain) and testing data (Xtest,
dtest) from X. In some biometric contexts, e.g. expres-
sion recognition, an algorithm may be trained on images
of some set of subjects and then tested on unseen subjects,
i.e. a subject-disjoint train-and-test data selection2 is used
in order to estimate the accuracy in a more realistic way.
2) Train a classifier using training data (Xtrain,dtrain):

Θ = ClassifierTrain(Xtrain,dtrain) (1)

where Θ is a vector that contains all parameters of the clas-
sifier that was trained. For instance, in a simple classifier
like Euclidean minimal distance we store in Θ only the cen-
ters of mass of each class in the training set.
3) Predict the labels of each testing sample using the fea-
tures of the testing data Xtest, the learned classifier and its
parameters Θ. Store the prediction in vector ds of Ntest
elements: ds = Classify(Xtest,Θ). In this step it is not
allowed to use the labels of the testing data dtest.
4) Compute the accuracy of the testing data defined as

ηi =
# test samples correctly predicted

Ntest
, (2)

where the numerator corresponds to the number of elements
of dtest and ds that are equal.
5) Repeat steps 1–4 n times (using index i and some data
selection criterium) and compute the final estimation by av-
eraging over n times: η = 1

n

∑
i ηi

In the following, we summarize details of the typical pro-
tocols used in the literature3.
• Hold-out: We take a percentage S of X for training and
the rest for testing. In our general methodology, this proto-
col corresponds to n = 1 in (??). This is the simplest way to
evaluate the accuracy. In the tables and text in the remain-
der of the paper, we will refer to instances of this protocol
as ‘(S)-(100-S) HO’, e.g. for S = 80% it is ‘80-20 HO’.
•Cross-validation: The data is divided into v folds. A por-
tion S = (v − 1)/v of the whole data is used for training
and the rest (1/v) for testing. This experiment is repeated

2This selection of samples is also known as ‘unmixed’.
3Bootstrap has been used in some biometric problems, see for example

[40], however, it is not included in our work because in the cases we studied
bootstrap is not common.



v times rotating train and test data to evaluate the stability
of the classifier. The estimated accuracy, η, is calculated as
the mean of the v individual accuracies of the true classifi-
cations that are tabulated in each case, i.e. n = v in Step
5). We call this protocol ‘vf CV’, e.g. for v = 10 it is ‘10f
CV’. An extended cross-validation can be computed by re-
peating a v-fold cross-validation k times, with the samples
randomly selected each time. The estimated accuracy is the
average over the k estimations. We call this protocol ‘k×vf
CV’, e.g. for k = 20 and v = 10 it is ‘20×10f CV’.

• Leave-one-out: It is essentially an extreme version of the
cross-validation technique, with N folds, where N is the
number of samples of X. In each experiment, one sample
is used for testing and the rest (N − 1 samples) are used
for training. After repeating the experiment N times, every
sample is selected as test data once. We call this protocol
‘LOO’. A variation of LOO protocol that reduces the com-
putational time can be computed as follows. M < N ran-
dom samples are taken for training, and one random sample
(that was not included in training stage) is used for test-
ing. This process is repeated n = K < N times, and the
estimated accuracy is the average over the K estimations.
We call this protocol ‘LOO(M,K)’, e.g. for M = 100 and
K = 500 it is ‘LOO(100,500)’. In some face biometric

problems, when we are interested in recognizing a facial
attribute (gender, expression, etc.), an unmixed version of
leave-one-out can be used, that is subjects that appear in the
training set do not appear in the testing set. In this case, the
protocol is called ‘leave-one-subject-out’ or ‘LOSO’.

3. Literature review

In this Section, we review the literature on some relevant
databases: (a) face recognition on AR database [30], (b)
face expression recognition using the JAFFE database [28],
and (c) gender recognition using the FERET database [39]4

(see a summary of each review in Tables 1, 2 and 3 respec-
tively). These particular datasets are of course not the only
ones that can be used in these problems5, but they are ones
that have been widely used, and the issues illustrated are not
dependent on the particular dataset.
•AR – Face recognition: The AR database [30] consists of

4A Google Scholar search shows that AR, FERET and JAFFE have on
average 274, 364 and 71 citations per year, respectively, since 2010.

5Some databases such as LFW [16] do not have the mentioned prob-
lems because the majority of the reported results have followed the original
protocol. There are however some exceptions, see for example the use of
hold-out on LFW using 10 images per face for training and the rest for
testing [51].

Table 1: Review on face recognition (AR)

Method Year η Subjects Images/sub. Illum. Sunglass Scarf Evaluation
01) LPOG [37] 2015 99.1 134 13 yes yes yes 1-12 HO∗, single sample per person
02) NFLS-I [38] 2015 99.0 120 14 yes no no LOO
03) LC-KSVD [20] 2013 97.8 100 26 yes yes yes 20-6 HO∗

04) PLECR [10] 2015 98.2 100 26 yes yes yes 10×13-13 HO∗

05) DKSVD [54] 2010 95.0 100 26 yes yes yes 3×20-6 HO∗

06) LC-KSVD [20] 2013 97.8 100 26 yes yes yes 20-6 HO∗

07) SSRC [9] 2013 98.0 100 26 yes yes yes 10×13-13 HO∗

08) DLRR [5] 2014 89.7 100 26 yes yes yes 3×9-17 HO∗, training: no disguise, sunglass, scarf
09) SSRC [9] 2013 90.0 100 26 yes yes yes 3×9-17 HO∗, training: no disguise, sunglass, scarf
10) ASR+ [32] 2014 100.0 100 20 yes yes yes LOO(200,10000)
11) MLERPM [48] 2013 98.0 100 20 yes yes no 14-6 HO∗, training: no disguise, testing: disguise
12) MLERPM [48] 2013 97.0 100 20 yes no yes 14-6 HO∗, training: no disguise, testing: disguise
13) SSRC [9] 2013 90.9 100 20 yes yes no 3×8-12 HO∗, training: no disguise, sunglass
14) SSRC [9] 2013 90.9 100 20 yes no yes 3×8-12 HO∗, training: no disguise, scarf
15) DLRR [5] 2014 91.4 100 20 yes yes no 3×8-12 HO∗, training: no disguise, scarf, sunglass
16) DLRR [5] 2014 90.2 100 20 yes no yes 3×8-12 HO∗, training: no disguise, scarf, sunglass
17) ASRC [46] 2014 75.5 100 14 yes no no 2-12 HO∗

18) ASRC [46] 2014 94.7 100 14 yes no no 7-7 HO∗

19) DLRR [5] 2014 93.7 100 14 yes no no 7-7 HO∗, training: session 1, testing: session 2
20) DICW [47] 2013 99.5 100 14 no yes no 8-6 HO∗, training: no disguise, testing: disguise
21) DICW [47] 2013 98.0 100 14 no no yes 8-6 HO∗, training: no disguise, testing: disguise
22) ASR+ [32] 2014 100.0 100 13 yes yes yes LOO(1300,10000)
23) Mod LRC [36] 2010 95.5 100 10 no no yes 8-2 HO∗, training: no disguise, testing: disguise
24) LRC [36] 2010 96.0 100 10 no yes no 8-2 HO∗, training: no disguise, testing: disguise
25) `struct [19] 2012 92.5 100 10 ? yes no 799-200 HO∗∗, training: no disguise, testing: disguise
26) `struct [19] 2012 69.0 100 10 ? no yes 799-200 HO∗∗, training: no disguise, testing: disguise
27) ASR+ [32] 2014 97.0 100 9 yes yes yes LOO(900,10000)
28) ASR+ [32] 2014 99.0 100 8 yes yes yes LOO(800,10000), training: no disguise, testing: disguise
29) ASR+ [32] 2014 95.0 100 5 yes yes yes LOO(500,10000)
30) ASR+ [32] 2014 98.0 100 7 yes yes yes LOO(700,10000)
31) SSAE [12] 2015 85.2 80 13 yes yes yes 1-79 HO∗, single sample per person
32) ASR+ [32] 2014 100.0 80 13 yes yes yes LOO(1040,8000)
33) ESRC [8] 2012 95.0 80 13 yes yes yes 1-12 HO∗, single sample per person

x-y HO∗: Training: x images per subject. Testing: y images per subject.
x-y HO∗∗: Training: x images. Testing: y images per subject.



Table 2: Review on expression recognition (JAFFE)

Method Year η Evaluation
01) LP-LBP [11] 2007 93.8 20 × 10-f CV (14 images/class for

training, 21 images/class for training)
02) Boosted-LBP [41] 2009 81.0 10-f CV
03) Ensamble [53] 2013 96.2 10-f CV
04) PDM-Gabor [21] 2008 90.2 10-f CV
05) SH-FER [43] 2015 96.3 10-f CV
06) SFP [15] 2015 91.8 10-f CV
07) Hybrid Filter [24] 2010 96.7 10-f CV
08) ASR+ [34] 2015 96.7 10-f CV
09) SFRCS [23] 2010 85.9 LOSO+

10) Ensamble [53] 2013 70.0 LOSO+

11) DSNGE [22] 2015 65.6 LOSO+

12) GP [6] 2010 55.2 LOSO+

13) HLAC [42] 2004 69.4 LOSO+ (nine women)
14) BDBNJ [26] 2014 91.8 LOSO+

15) KCCA [55] 2006 77.1 LOSO+

16) BDBNJ+C [26] 2014 93.0 LOSO+ (CK+ & JAFFE)
17) ASR+ [33] 2014 94.3 LOO(203,350)
18) SFRCS [23] 2010 96.7 LOO
19) KCCA [55] 2006 98.4 LOO
20) GP [6] 2010 93.4 LOO
21) ALBP [25] 2006 88.3 HO∗

22) Tsallis [25] 2006 85.4 HO∗

23) ALBP+Tsallis [25] 2006 91.9 HO∗

24) NLDAI [25] 2006 94.6 HO∗

25) GSNMF [56] 2011 91.0 HO∗

26) Boosted-LBP [41] 2009 41.3 +Training: CK+ Testing: JAFFE
27) BDBN [26] 2014 68.0 +Training: CK+ Testing: JAFFE

HO∗: Training: 2 samples of each facial expression for each person. Testing:
remaining images. + Unmixed evaluation: subject-disjoint train-and-test split.

Table 3: Review on gender recognition (FERET)

Method Year η M/F∗ Evaluation
01) SVM-RBF [35] 2002 96.6 1044/711 5-f CV
02) AdaBoost [52] 2006 93.8 ? 5-f CV
03) AdaBoost [3] 2007 94.4 1495/914 5-f CV+

04) AdaBoost [3] 2007 97.1 1495/914 5-f CV
05) ASR+ [34] 2015 94.1 600/440 5-f CV+

06) Fusion (L6) [2] 2010 99.1 212/199 5-f CV+

07) Fusion [45] 2013 99.1 212/199 5-f CV+

08) Fusion (L6) [45] 2013 97.8 211/199 5-f CV+

09) 2DPCA-SVM [27] 2009 94.8 400/400 5-f CV
10) DIF [14] 2014 96.8 1722/1007 5-f CV (unclear)
11) ASR+ [33] 2014 95.0 602/448 LOO(880,400)+

12) MA [29] 2008 87.1 212/199 74-26 HO+

13) AAFD [13] 2010 88.9 1713/1009 80-20 HO+

14) needle-map [50] 2010 84.3 100/100 70-30 HO+

15) ERBF2/C4.5 [44] 2000 96.0 1906/1100 20 × HO, 30 male and
30 female for training

16) AdaBoost [52] 2006 92.0 3529? HO+, training:
Chinese database

17) LDP [17] 2010 95.1 1100/900 not mentioned
∗ M: number of male images and F: number female images
+ Unmixed evaluation: subject-disjoint train-and-test split.

26 different images of each of 50 women and 50 men. The
26 images represent different facial expressions, illumina-
tion conditions, and occlusions with sunglasses and scarf.
The characteristics of this database (occlusion/no occlusion,
facial expressions/neutral, etc.) allow a large number of dif-
ferent experiments. Thus, it is very difficult to make fair

comparisons when the protocols are not exactly the same.
For the 33 papers on AR database listed in Table 1, there
appear to be 3 pairs of papers that used effectively the same
protocol: lines 3 and 6, 4 and 7, and 8 and 9.
• JAFFE – Expression recognition: The JAFFE database
[28] contains 7 expressions (‘neutral’ and six basic emo-
tions: ‘fear’, ‘happiness’, ‘sadness’, ‘surprise’, ‘anger’ and
‘disgust’) captured from 10 Japanese women. For each sub-
ject, there are 3–4 face images for the non-neutral and one
for the neutral expressions, i.e., the database consists of
213 images. There are 27 different publications on JAFFE
database represented in Table 2, and at least 13 different
evaluation protocols. As a group, the papers that reported
the HO and LOO protocols reported the highest estimated
accuracies, 88.3% to 96.7%. The papers that used some
variation of the CV protocol reported the next highest ac-
curacies, 81% to 96.7%. And the papers that used some
variation of the LOSO protocol reported the lowest accu-
racies, 55.2% to 93%. Probably the most important single
piece of information in the Table is the ‘unmixed’ evalua-
tion (‘+’), indicating whether the train and test division was
person-disjoint.
• FERET – Gender recognition: The FERET database
[39] contains more than 3,500 face images from women
and men (with different races) involving different expres-
sions and illumination conditions. There are many different
experimental protocols reported in the literature, The proto-
cols vary based on different number of images, number of
females and males, and ‘mixed’ or ‘unmixed’ datasets. For
the 17 papers on FERET database listed in Table 3, there is
only 1 instance where a pair of papers used the same train-
test protocol, including gender distribution and number of
images: lines 6 and 7.

4. Experiments
In this Section, we show experimental results that

demonstrate how widely the comparison of two algorithms’
performance can vary based on the experimental protocol
that is followed. We use two well-known recognition meth-
ods as examples: 1) LBP: local binary pattern features [1]
with 6 × 6 partitions with a Naı̈ve Bayes Nearest Neigh-
bor (NBNN) classifier [4], and SRC: a sparse representa-
tion classifier [49] where the images were sub-sampled to
22 × 18 pixels. All face images of the galleries were re-
sized to 110 × 90 pixels. We experiment on three different
databases to show the accuracy in face recognition problems
(AR) and face attributes recognition (JAFFE for expressions
and FERET for gender).
Face recognition: In AR, training and testing images are
selected randomly from the 26 available images. Results
on galleries of 50 and 100 subjects, summarized for 50 ran-
domized runs, are tabulated in Table 4 for 26 images per
subject. A similar behavior is obtained when 20 and 10



images per subject are used (due to space considerations
the tables are not shown), however, the greater the num-
ber of training images per subject, the greater the accuracy.
One clear point from the results in Table 4 is that, for this
dataset and these algorithm implementations, LBP consis-
tently outperforms SRC. For each given number of images
per subject, number of subjects, and train-and-test instance,
the mean accuracy for LBP is always greater than that for
SRC. However, for each of the HO instances, the maximum
accuracy across the 50 SRC trials is regularly greater than
the minimum across the 50 LBP trials. This shows that a
single HO trial, even if paired for the same size of the train-
test split, is not a sufficient basis for a comparison of algo-
rithms. Comparison based on a single 2f or 3f CV trial can
show an incorrect comparison, but comparisons based on a
single 10f or 5f CV trial are consistent.

There are three main points to observe from the face
recognition results on AR summarized in Table 4. The first
point is simply that the accuracy estimate made by either the
HO or the CV protocol increases as an increased proportion
of the data is used for training. As the HO shifts from 50-50
to 80-20, and as the CV shifts from 2f to 5f, the estimated
accuracy of each algorithm increases. This reflects the sim-
ple fact that as more data is used for training, the average
accuracy increases. If this trend did not occur, it would sug-
gest that the algorithm and/or the dataset is atypical in some
important respect. The second point to note is that, if the
mean of the 50 randomized trials is used to compare the
two algorithms, the comparison is entirely stable. For each
of the six train-and-test methods (columns in the table), and
for either gallery size (50 or 100), the mean accuracy over
50 randomized trials is higher for LBP than it is for SRC.
For these algorithm implementations and this dataset, LBP
is clearly better than SRC. The third point to observe is that
it is very easy, when not comparing algorithms based on the
mean accuracy over 50 trials, or when comparing across dif-
ferent n-fold CV or different HO, to get an incorrect com-
parison. For the 100-subject gallery, comparing the 5f CV
mean accuracy of SRC, which is 96.8%, to the 2f CV mean
accuracy of LBP, which is 97.2%, might lead to the (wrong)
conclusion that there is relatively little difference between
the algorithms. The same could happen on comparing the
80-20 HO accuracy of SRC to the 50-50 HO accuracy of
LBP. For the 50-subject gallery, the 80-20 HO accuracy of
SRC is actually even slightly better than the 50-50 HO ac-
curacy of LBP, 98.1% to 98%. This emphasizes that even
when considering the mean accuracy across 50 trials, it is
also essential that the size of the train-test split be the same
in order to get a fair comparison.

The problem is even greater if the comparison between
algorithms is based on the accuracy of a single HO trial. For
the 50-subject gallery, the maximum single-trial SRC accu-
racy of a given HO split is always greater than the minimum

Table 4: Experiments on face recognition (AR)

(Subjects) 80-20 67-33 50-50 5f 3f 2f
Method HO HO HO CV CV CV
(100) max 100.0 99.8 98.9 99.9 99.5 98.0
LBP mean 99.6 99.1 97.3 99.7 99.1 97.2

min 98.8 98.1 95.5 99.4 98.5 96.0
std 0.28 0.36 0.69 0.10 0.23 0.46

(100) max 98.4 96.6 92.0 97.4 95.5 92.1
SRC mean 97.0 94.5 90.8 96.8 94.7 90.8

min 95.6 92.7 89.1 96.0 93.3 89.2
std 0.69 0.81 0.80 0.30 0.44 0.61

(50) max 100.0 100.0 99.7 99.9 100.0 99.5
LBP mean 99.8 99.3 98.0 99.7 99.3 98.0

min 99.2 97.8 94.6 99.5 98.7 95.9
std 0.27 0.57 0.93 0.13 0.31 0.64

(50) max 100.0 98.2 95.5 98.7 97.7 95.2
SRC mean 98.1 96.4 93.5 97.9 96.5 93.4

min 95.2 93.6 90.9 96.0 94.8 91.9
std 0.91 1.09 1.04 0.52 0.67 0.76

Table 5: Experiments on expression recognition (JAFFE)

90-10 80-20 50-50 10f 5f 2f
Method HO HO HO CV CV CV LOSO

LBP max 100.0 100.0 90.5 93.0 90.6 82.8 72.7
mean 90.7 86.7 69.6 90.7 86.7 69.6 45.4
min 66.7 54.8 54.6 87.0 80.8 59.2 25.0
std 7.02 6.33 6.27 1.47 2.41 5.16 17.78

SRC max 100.0 100.0 85.2 93.4 93.4 82.6 72.7
mean 90.6 88.3 72.4 90.6 88.3 72.4 44.9
min 66.7 71.4 59.0 84.2 83.6 61.5 19.1
std 6.05 5.33 5.22 1.67 2.05 4.50 16.27

Table 6: Experiments on gender recognition (FERET)

90-10 80-20 50-50 10f 5f 2f
Method HO HO HO CV CV CV

LBP max 90.0 87.5 83.2 82.1 82.4 82.7
mean 81.2 81.2 81.1 81.2 81.2 81.1
min 71.0 74.5 78.0 80.5 80.1 79.9
std 3.36 2.53 1.18 0.44 0.61 0.67

SRC max 98.0 93.0 90.4 90.1 90.7 88.9
mean 88.6 88.7 87.3 88.7 88.7 87.3
min 80.0 82.0 83.8 87.2 86.8 85.3
std 3.21 2.16 1.34 0.69 0.86 0.74

single-trial LBP accuracy, making it possible to generate an
incorrect comparison result.

The conclusion from this example dataset and problem
is that the most meaningful result to report for a possible
comparison of algorithms is a 10f CV result averaged over
some number (e.g., 50) of randomized trials.

It is well known that in face recognition, the estimated
accuracy is strongly dependent on the number of subjects
of the gallery and the number of face images per subject
that are used in the training. This conclusion is evident
in our experiments on AR: the greater the number of sub-
jects to be recognized the lower the estimated accuracy; and
the greater the number of training images per subject, the



greater the accuracy. If a paper reports ‘we obtain more than
95% accuracy on X database’, it does not contain enough
information about the conditions of the experiment to be
able to compare to other published results. There are certain
databases that allow so many experimental alternatives (e.g.
the AR database) that is mandatory to report the details of
the experiment. In addition, it is highly recommended that
the experiments on known databases should use a known
experimental protocol, in order to make fair comparisons
possible from the literature. Reviewers should in general
not accept a paper that presents results based on a single HO
trial, without an explicit justification for why this is neces-
sary. The highest standard of reliability would come from
10f CV averaged over some number of randomized train-
test splits.
Expression recognition: Table 5 summarizes results on
JAFFE of the two algorithmic approaches across 3 instances
of H0 train-and-test, 3 instances of CV train and test, and
the leave-one-subject-out (LOSO) variant of HO. Again, 50
randomized splits are generated for each train-and-test in-
stance for each of the two algorithms.

As might be expected given the relatively large variation
in the mean accuracy, the comparison of the two algorithms
is not straightforward. Setting aside the LOSO result for the
moment, LBP has higher mean accuracy than SRC for one
of the HO instances and one of the CV instances, and SRC
has higher mean accuracy than LBP for the other 2 HO in-
stances and the other 2 CV instances. But this pattern is also
correlated with the fraction of data used for training. For the
HO and CV splits where less data is used for training, SRC
has higher mean accuracy, and for the splits where more
data is used for training, LBP has higher mean accuracy.
This illustrates the danger in comparing algorithms based
on performances obtained with different train-and-test in-
stances. It also illustrates the danger in a comparison based
on train-and-test instance that is chosen to economize on
computational requirements rather than one chosen to max-
imize competency of the algorithms.

The most important point to take away from this ex-
periment is the fundamental and huge difference between
LOSO results and any instance of traditional HO or CV.
With LOSO, the mean accuracy of both algorithmic ap-
proaches is basically 45%, whereas the minimum for either
algorithm across all the HO and CV approaches is approx-
imately 70%. The HO and CV instances of the algorithms
trained with the largest fraction of training data, as shown
in Table 5, obtain about 91% accuracy.

In a problem definition such as expression recognition,
where an algorithm may be trained on images of some set
of subjects and then applied to unseen subjects, a subject-
disjoint train-and-test methodology inherently gives a more
realistic estimate of accuracy. And LOSO is the instance
of subject-disjoint that allows the maximum size of train-

ing data. In this example experiment, using an inappropri-
ate train-and-test method could lead one to expect that the
problem is solved with 91% accuracy, when in fact the per-
formance for new persons will be about 45% accuracy.

We can conclude that when we are interested in recogniz-
ing a facial attribute like expression, it is very important that
subjects that appear in the training set do not appear in the
testing set. This is dramatically illustrated in the case of the
expression recognition on JAFFE database, where LOSO
(leave-one-subject-out) protocol separates the subject of the
testing from the subjects of the testing. It is then possi-
ble, that the reported accuracy could be 100% (see Table 5,
row ‘SRC-max’, column ‘80-23 HO’), and the reader could
think that this algorithm is perfect for expression recogni-
tion, whereas a more realistic value is only approximately
45% (see Table 5, row ‘SRC-mean’, column ‘LOSO’). In
this example, there is a difference of 55%!
Gender recognition: In our experiments, we used 1,000
unmixed subjects (600 males and 400 females) of FERET
database. Table 6 summarizes results of the two algorith-
mic approaches across 50 randomized splits for 3 instances
of H0 train-and-test, and 3 instances of CV train and test.
These splits are all unmixed, meaning that the train and test
portions of the data are subject-disjoint.

One point to note in these results is that the SRC algo-
rithm has a significantly higher mean accuracy compared to
the LBP algorithm. Across the 6 different train-and-test in-
stances, the mean accuracy of SRC varies in a relatively nar-
row band of 87% to 89%. In contrast, the mean accuracy of
LBP varies in a relatively narrow band of just over 81%. De-
spite the fact that the SRC algorithm clearly out-performs
the LBP algorithm on this problem, using a single trial of
a HO methodology to compare the algorithms could easily
lead to the opposite conclusion. For example, with a 90-10
HO split, the maximum LBP accuracy is 90% whereas the
minimum SRC accuracy is only 80%. This problem does
not occur across any of the 3 instances of the CV method-
ology. This result reinforces that reporting accuracy results
based on a single HO trial should generally be considered
unacceptable.

A final remark can be given: if we compare two different
algorithms, e.g. LBP and SRC, we could erroneously con-
clude –if we don’t use the same protocol– that one method
is much better than another (see in Table 6, 90% for LBP
selecting the maximal accuracy of 90-10 HO and 87.2% for
SRC selecting the minimal accuracy of 10-f CV). However,
if we had used the same protocol we could observe the op-
posite because in Table 6 SRC is always better than LBP
using the same protocol.

5. Conclusions
In our results, it is clear that the variation of the estimated

accuracy of an algorithm can be enormous. Using the same



classification algorithm, the estimated accuracy can be to-
tally different depending on i) the selection of training and
testing data, ii) the number of samples of the used dataset
and iii) the number of single accuracies used to estimate
the average of final accuracy (for instance in 10-fold cross-
validation the average of 10 single accuracies were used in-
stead of only one in case of hold-out protocol).

Based on the published literature, it is rare to find two
papers published on the same problem that use the same ex-
perimental protocol in all important elements. This is seen
clearly in the works summarized in Tables 1, 2 and 3.

For problems where a subject-disjoint train-and-test split
is essential in order to obtain a useful accuracy estimate, pa-
pers are often published using a non-disjoint split. This is
seen clearly in Tables 2 and 3. For problems of this type, a
leave-one-subject-out protocol would seem to be the default
recommendation for useful experimental results. When the
dataset is so large as to truly present computational chal-
lenges, a subject-disjoint LOO protocol might be used.

A single simple HO accuracy estimate, for example the
often-used 80-20 HO, does not result in an accuracy esti-
mate that allows confident comparison of two different al-
gorithms for solving the same problem on the same dataset.
This is clear in the results in Tables 4-6. In our experi-
ments, a 10f CV protocol generally results in an accuracy
estimate that would allow comparison of algorithms that use
the same protocol on the same dataset.

We believe that the research community is sometimes
over-focused on accuracy. But showing improved accuracy
is still perceived to be a major requirement for publication.
In a way, our results should help to shift the focus away
from purely accuracy, because many papers may not be able
to show statistically significantly improved accuracy using
a cross-validation protocol, and so would need to better jus-
tify the other advantages of their approach.

The quality of experiment results in the biometrics lit-
erature could be improved if authors, reviewers and editors
follow our EPD methodology and paid closer attention to
the details of the protocol used to obtain the reported accu-
racy estimates.
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