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Abstract

Existing 3D face recognition algorithms have achieved
high enough performances against public datasets like
FRGC v2, that it is difficult to achieve further significant in-
creases in recognition performance. However, the 3D TEC
dataset is a more challenging dataset which consists of 3D
scans of 107 pairs of twins that were acquired in a single
session, with each subject having a scan of a neutral ex-
pression and a smiling expression. The combination of fac-
tors related to the facial similarity of identical twins and
the variation in facial expression makes this a challenging
dataset. We conduct experiments using state of the art face
recognition algorithms and present the results. Our results
indicate that 3D face recognition of identical twins in the
presence of varying facial expressions is far from a solved
problem, but that good performance is possible.

1. Introduction
We conduct a study on the performance of state of the

art 3D face recognition algorithms on a large set of iden-
tical twins using the 3D Twins Expression Challenge (“3D
TEC”) dataset. The dataset contains 107 pairs of identical
twins and is the largest dataset of 3D scans of twins known
to the authors.

Recently, there have been some twin studies in biomet-
rics research. Phillips et al. [1] assessed the performance of
three of the top algorithms submitted to the Multiple Bio-
metric Evaluation (MBE) 2010 Still Face Track [2] on a
dataset of twins acquired at Twins Days [3] in 2009 and
2010. They examined the performance using images ac-
quired on the same day, and also using images acquired a
year apart (i.e., where the face images acquired in the first
year were used as gallery images and the face images ac-
quired in the second year as probe images). They also ex-
amined the performance with varying illumination condi-
tions and expressions. They found that results ranged from
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approximately 2.5% Equal Error Rate (EER) for images ac-
quired on the same day with controlled lighting and neu-
tral expressions, to approximately 21% EER for gallery and
probe images acquired in different years and with different
lighting conditions.

Sun et al. [4] conducted a study on multiple biometric
traits of twins. They found no significant difference in per-
formance when using non-twins compared to using twins
for their iris biometric system. For their fingerprint biomet-
ric system, they observed that the performance when us-
ing non-twins was slightly better than using twins. In ad-
dition, their face biometric system could distinguish non-
twins much better than twins.

Hollingsworth et al. [5] examined whether iris textures
from a pair of identical twins are similar enough that they
can be classified by humans as being from twins. They con-
ducted a human classification study and found that people
can classify two irises as being from the same pair of twins
with 81% accuracy when only the ring of iris texture was
shown to them.

Jain et al. [6] conducted a twins study using fingerprints.
They found that identical twins tend to share the same
fingerprint class (fingerprints are classified into whorls,
right/left loops, arches, etc.) but their fingerprint minutiae
were different. They concluded that identical twins can be
distinguished using a minutiae-based automatic fingerprint
system, with slightly lower performance when distinguish-
ing identical twins compared to distinguishing random per-
sons.

To date, there have been no studies conducted in 3D face
recognition that focused mainly on twins. The only 3D
face recognition study known to the authors that mentioned
twins was Bronstein et al. [7], where they tested the perfor-
mance of their 3D face recognition algorithm on a dataset
of 93 adults and 64 children which contained one pair of
twins, and stated that “our methods make no mistakes in
distinguishing between Alex and Mike”.

2. The Dataset

The Twins Days 2010 dataset was acquired at the Twins
Days Festival in Twinsburg, Ohio [3]. Phillips et al. [1] pro-
vides more details about the overall dataset. It contains 266
subject sessions, with the 3D scans in the dataset contain-
ing two scans: one with a neutral expression and another
with a smiling expression. There were 106 sets of identi-
cal twins, one set of triplets, and the rest were non-twins.



Figure 1: Images of two twins acquired in a single session. The top row shows the images obtained from one twin and the bottom row,
the other twin. The left two images contain the neutral expression. The right two are of the smiling expression. (The texture images were
brightened to increase visibility in this figure.)

Three pairs of twins came in for two recording sessions and
the other twins for only a single session. The twins in this
database declared themselves to be identical twins; no tests
were done to prove this.

The experiments in this paper use the “3D TEC” subset
of the Twins Days dataset, which consists of 3D face scans
of 107 pairs of twins (two of the triplets were included as
the 107th set of twins) and only the scans acquired in the
first session were used for each subject. To our knowledge,
this is the only dataset of 3D face scans in existence that
has more than a single pair of twins. For information on
obtaining the 3D TEC dataset, see [8].

The scans were acquired using a Minolta VIVID 910 3D
scanner [9] in a controlled light setting, with the subjects
posing in front of a black background. For each pair of
twins, their neutral and smile images were taken in a 5 to
10 minute window of time.

The Minolta scanner acquires a texture image and a
range image of 480× 640 resolution. The telephoto lens of
the Minolta scanner was used since it gives a more detailed
scan. The distance of the scanner from the subject was ap-
proximately 1.2 m. A scan using the telephoto lens contains
70,000 to 195,000 points for the Twins 2010 dataset, with
an average of 135,000 points.

3. Algorithms

We describe the four algorithms employed in this study.
Table 1 shows the performance of these algorithms on the
FRGC v2 [10] dataset.

3.1. Algorithm 1

Faltemier et al. [11] performed Iterative Closest Point
(ICP) using an ensemble of 38 spherical regions and fused
the match scores to calculate the final score. McKeon [12]
has a number of optimizations over Faltemier et al. which
include: (i) the symmetric use of the two point clouds and
score fusion on the results, (ii) score normalization of the
match scores, and (iii) weighting the scores for the regions.
Algorithm 1 is a variation of McKeon. The major differ-
ence is the preprocessing step where the face is first roughly
aligned using the symmetry plane estimation method de-
scribed in Spreeuwers [13], and the image is then aligned to
a reference face using ICP.

Each region in the ensemble is created by selecting a
point in the probe image a certain offset from the origin, and
then cropping out all points a certain distance away from the
selected point. The nose-tip is set as the origin. Each region
of the probe image is matched using ICP against the en-
tire gallery image. The alignment errors for each region are
taken to be the region’s distance scores.

The scores are then fused as a linear combination of the
region’s distance scores. The integer weights for the linear
combination are trained against FRGC v2 using a greedy
algorithm that maximizes TAR at 0.1% FAR.

Let E(p1, p2) = ESFSW (p1, p2), be the match score of
point clouds p1 and p2. The ICP algorithm is not symmet-
ric, which means that E(p1, p2) 6= E(p2, p1) for almost all
cases. The two scores are fused using the minimum rule:
Emin(p1, p2) = min(E(p1, p2), E(p2, p1)).

The match scores are then normalized in two ways. First,
the match scores are normalized such that the normalized



score is

Epkn(p, gk) =
Emin(p, gk)∑N

j=1,j 6=k
Emin(gj ,gk)

N−1

(1)

where p is a probe image, gk are the gallery images, and N
is the number of gallery images.

Then we perform min-max normalization over the result-
ing match score from the first normalization, Epkn, so that
the final match score is

Eminmax(p, gk) =
Epkn(p, gk)−min(Vp)

max(Vp)−min(Vp)
(2)

where Vp = [Epkn(p, g1), Epkn(p, g2), ..., Epkn(p, gN )].
If we normalize against the gallery using Eminmax for

verification, then we would have to match the probe against
all images in the gallery. This would be very slow if we use
only a single processor. Thus we show the performance of
two variations of Algorithm 1: one using the distance scores
from Epkn and the second using Eminmax.

3.2. Algorithm 2

Algorithm 2 consists of two main steps: intermediate fa-
cial representation and Scale Invariant Feature Transform
(SIFT) based local matching. If local features are directly
extracted from smooth facial range images, it leads to a lim-
ited number of local features, or features with low discrim-
inative power. To solve this problem, intermediate facial
representation is used to highlight local shape changes of
3D facial surfaces in order to improve their distinctiveness.
In this paper, we evaluated three types of intermediate fa-
cial maps: Shape Index [14], extended Local Binary Pat-
terns [15] as well as Perceived Facial Images [16]. Figure 2
shows examples of these facial maps. The three types of
facial maps are described below.

Figure 2: Some examples of intermediate facial representation.
The first row contains (a) original RGB image; (b) grayscale tex-
ture image; (c) original range image; (d) SI map; (e)-(h) eLBP
maps of different layers. The second row contains eight PFIs of
quantized orientations of facial range image. The third row con-
tains eight PFIs of quantized orientations of facial texture image.

Shape Index (SI) [14] was first proposed to describe
shape attributes. For each vertex p of a 3D facial surface,

its SI value can be calculated using

S(p) =
1

2
− 1

π
arctan

k1(p) + k2(p)

k1(p)− k2(p)
(3)

where k1 and k2 are the maximum and minimum principal
curvatures respectively. Based on the SI values of all the
vertices, we can produce the SI map of a given facial sur-
face.

In the Extended Local Binary Pattern (eLBP) [15] ap-
proach, a set of multi-scale eLBP maps are generated to
represent a given facial range image. eLBP maps consist of
four layers. Layer 1 is LBP, which encodes the gray value
differences between neighboring pixels into a binary pat-
tern. eLBP also considers their exact value differences and
encodes this information into Layers 2 to 4. The eLBP maps
are generated by regarding the eLBP codes of each pixel as
intensity values. As the neighborhood size of the given pixel
changes, multi-scale eLBP maps are formed.

Perceived Facial Image (PFI) [16] aims at simulating the
complex neuron response using a convolution of gradients
in various orientations within a pre-defined circular neigh-
borhood. Given an input facial image I , a certain number
of gradient mapsL1, L2, · · · , Lo, one for each quantized di-
rection o, are first computed. Each gradient map describes
gradient norms of the original image in an orientation o
at every pixel. The response of complex neurons is then
simulated by convolving its gradient maps with a Gaussian
kernel G, and the standard deviation of G is proportional
to the radius value of the given neighborhood area R; i.e.,
ρRo = GR ∗ Lo.

The purpose of the Gaussian convolution is to allow the
gradients to shift in a neighborhood without abrupt changes.
At a certain pixel location (x, y), we collect all the val-
ues of the convolved gradient maps at that location and
form the vector ρR(x, y), which is a response value of
complex neurons for each orientation o. So, ρR(x, y) =[
ρR1 (x, y), · · · , ρRO(x, y)

]t
where o = 1..O.

The vector ρR(x, y) is further normalized to a unit norm
vector ρR(x, y), which is called response vector. Thus, a
new Perceived Facial Image (PFI), Jo, is calculated where
Jo(x, y) = ρR

o
(x, y).

After the three types of intermediate facial representa-
tions are computed, a SIFT-based matching process [17] is
used to find robust keypoints from the facial representations.
We expect there to be more correlated keypoints between
facial maps of the same subject than those of different sub-
jects. Furthermore, since SIFT has good tolerance to mod-
erate pose variations and all the data in the 3D TEC dataset
are nearly frontal scans, we did not perform any registration
in preprocessing. All parameter settings of intermediate fa-
cial representations are presented in detail in [14, 15, 16].

In addition, SI maps and eLBP maps are mainly pro-
posed for 3D facial range images, while PFIs can be either



applied to facial range or texture images as done in Huang
et al. [16] for 3D face recognition using shape and texture.
Therefore, in this paper, we also tested the performance
based on 2D PFIs with SIFT matching for comparison.

3.3. Algorithm 3

Algorithm 3 converts the 3D image to a surface normal
representation, then discards data with less discriminatory
power and resizes the image. It then matches the images
using the Euclidean distance of the variance of the remain-
ing surface normals.

Surface normals have been shown to lend themselves
well to face recognition tasks [18]. We convert the depth
maps of 3D images to surface normal representations, ap-
plying median smoothing and hole filling to reduce noise.

Unnikrishnan [19] conceptualized an approach similar
to face caricatures for human recognition. In this ap-
proach, only those features which deviate from the norm
by more than a threshold are used to uniquely describe a
face. Unnikrishnan suggested using features whose devi-
ations lie below the 5th percentile and above the 95th per-
centile, thereby discarding 90% of the data. In a similar
vein, the algorithm that we present here is based on what
we call the “Variance Inclusion Criterion”. We can use the
surface normal variance at each pixel location as a distance
measure between images. If a pixel shows a large variance
across the dataset, then it can be used for recognition (as-
suming that variance within the class or subject is small).
Therefore, the standard deviation of each pixel is calculated
over all the images in the gallery. Whether or not a particu-
lar pixel location is used in recognition depends on whether
or not the variance is above a pre-determined threshold.

Another key step of this algorithm is resizing the im-
age. Sinha et al. [20] summarized a number of findings
indicating that humans can recognize familiar faces from
very low resolution images. We resize the surface normal
maps to 10× 10 pixels before applying the Variance Inclu-
sion Criterion to get the number of pixels used for recog-
nition down to just over 60 pixels. The reason for choos-
ing this value is due to experimentation on frontal and neu-
tral expression subsets of the FRGC v2 and Photoface [21]
datasets. In these experiments it was found that when re-
taining only 64 pixels for FRGC v2 data and 61 pixels for
Photoface data, rank-one recognition rates of 87.75% and
96.25% were achieved respectively (a loss of only 7% and
2% respectively from the baseline). This is taken as an in-
dication that the high variance pixel locations contain dis-
proportionately more discriminatory information than low
variance pixel locations.

Considering the two expressions used between gallery
and probe images in the 3D TEC dataset, it was felt that the
most variance would occur around the mouth region and
bottom half of the face. Therefore, we only performed the

variance analysis on the top half of the face.
Additional pre-processing is performed by aligning all

the images to the median left and right lateral canthus and
nose tip coordinates for the dataset. A tight crop around the
facial features is then applied to remove areas in a straight-
forward way that can be occluded by hair. Euclidean dis-
tance is used for classification.

It is envisaged that this algorithm be used as a means of
pruning the search space due to its computational efficiency
before applying more rigorous algorithms.

3.4. Algorithm 4

The UR3D algorithm proposed by Kakadiaris et al. [22]
consists of three main steps: (i) the 3D facial meshes
are aligned to a common reference Annotated Face Model
(AFM), (ii) the AFM is deformed to fit the aligned data, and
(iii) the 3D fitted mesh is represented as a three-channel
image using the global UV-parameterization of the AFM.
The benefit of representing the 3D mesh as a multi-channel
image is that standard image processing techniques can be
applied directly to the images. In this approach, the full
Walsh wavelet packet decomposition is extracted from each
band of the geometry and normal images and a subset of
the wavelet coefficients are selected as the signature of the
mesh. The signature can be compared directly using a
weighted L1 norm. Recently, Ocegueda et al. [23] pre-
sented an extension to UR3D that consists of a feature se-
lection step that reduces the number of wavelet coefficients
retained for recognition, followed by a projection of the sig-
natures to a subspace generated using Linear Discriminant
Analysis (LDA). The feature selection step was necessary
because the high dimensionality of the standard UR3D sig-
nature made it infeasible to apply standard algorithms for
LDA. However, by using the algorithm proposed by Yu and
Yang [24], we can directly apply LDA to the original UR3D
metric. We found that applying LDA to the original signa-
ture yields slightly better results. We will use this varia-
tion of the UR3D algorithm in our experiments. We used
the frontal, non-occluded facial meshes from the Bospho-
rus dataset developed by Savran et al. [25] as the training
set for LDA.

4. Experimental Design
We arbitrarily label one person in each pair of twins

as Twin A and the other as Twin B and perform verifica-
tion and identification experiments using the four different
gallery and probe sets shown in Table 2.

Case I has all of the images with a smiling expression
in the gallery and the images with a neutral expression as
the probe. Case II reverses these roles. This models a sce-
nario where the gallery has one expression and the probe
has another expression. In the verification scenario, both
the match and non-match pairs of gallery and probe images



Algorithm Rank-1 RR VR (ROC III)
Alg. 1 98.0% 98.8%
Alg. 2 (SI) 91.8% 85.8%
Alg. 2 (eLBP) 97.2% 95.0%
Alg. 2 (Range PFI) 95.5% 90.4%
Alg. 2 (Text. PFI) 95.9%
Alg. 3 87.8%
Alg. 4 97.0% 97.0%

Table 1: Rank-one recognition rates and verification rates (TAR at
0.1% FAR) of the algorithms on the FRGC v2 dataset. For recog-
nition, the first image acquired of each subject is in the gallery
set and the rest of the images are probes. For the ROC III verifica-
tion experiment, the gallery set contains the images acquired in the
first semester and the probe set contains the images in the second
semester.

No. Gallery Probe
I A Smile, B Smile A Neutral, B Neutral
II A Neutral, B Neutral A Smile, B Smile
III A Smile, B Neutral A Neutral, B Smile
IV A Neutral, B Smile A Smile, B Neutral

Table 2: Gallery and probe sets for cases I, II, III, and IV. “A Smile,
B Neutral” means that the set contains all images with Twin A
smiling and Twin B neutral.

will have different expressions. In the identification sce-
nario, theoretically the main challenge would be to distin-
guish between the probe’s image in the gallery and his/her
twin’s image in the gallery since they look similar.

Case III has Twin A smiling and Twin B neutral in the
gallery with Twin A neutral and Twin B smiling as the
probe. Case IV reverses these roles. This models a worst
case scenario in which the system does not control for the
expressions of the subject in a gallery set of twins. In the
verification scenario, the match pairs would have opposite
expressions like in Cases I and II but the non-match pairs
that are of the same pair of twins would have the same
expression. In the identification scenario, theoretically the
main challenge would be to distinguish between the probe’s
image and his/her twin’s image in the gallery. This is more
difficult than Cases I and II since the probe’s expression is
different from his/her image in the gallery but is the same
as his/her twin’s image in the gallery.

5. Results and Discussion

We evaluate performance using the following character-
istics: True Accept Rate at 0.1% False Accept Rate (TAR
at 0.1% FAR), Equal Error Rate, and Rank-1 Recognition
Rate. Figures 3, 4, and 5 show the Receiver Operating Char-
acteristic (ROC) curves of the verification experiments for
Algorithms 1, 3, and 4.

Figure 3: ROC curves of the four cases for Algorithm 1. The
legend shows TAR at 0.1% FAR.

Figure 4: Verification performance of Algorithm 3.

Figure 5: Verification performance of Algorithm 4.

In the first two of our four cases, all subjects are enrolled
with a 3D face scan that has one expression, and all recogni-
tion attempts are made with the other expression. Thus, the
difference in expression between enrollment and recogni-
tion is the same for all subjects. In these two cases, we find
that 3D face recognition accuracy for twins exceeds 90% for



Algorithm True Accept Rate
I II III IV

Alg. 1 (Epkn) 79.0% 81.3% 54.2% 53.3%
Alg. 1 (Eminmax) 99.5% 97.7%
Alg. 2 (SI) 91.1% 89.7% 83.2% 81.8%
Alg. 2 (eLBP) 94.4% 95.3% 79.0% 78.0%
Alg. 2 (Range PFI) 93.5% 94.4% 68.7% 69.2%
Alg. 2 (Text. PFI) 96.7% 96.7% 93.0% 93.5%
Alg. 3 38.1% 41.0% 31.4% 34.1%
Alg. 4 98.1% 98.1% 95.8% 95.8%

Table 3: TAR at 0.1% FAR of the algorithms. All results are not
available for Alg. 1 (Eminmax) due to duplicate match scores.

Algorithm Equal Error Rate
I II III IV

Alg. 1 (Epkn) 1.2% 1.0% 1.4% 1.1%
Alg. 1 (Eminmax) 0.2% 0.5% 1.3% 0.9%
Alg. 2 (SI) 2.7% 3.7% 4.2% 4.5%
Alg. 2 (eLBP) 3.7% 3.3% 4.2% 4.2%
Alg. 2 (Range PFI) 4.1% 2.8% 4.7% 4.6%
Alg. 2 (Text. PFI) 2.7% 2.8% 3.3% 2.8%
Alg. 3 11.6% 11.8% 12.0% 12.2%
Alg. 4 0.8% 0.8% 0.8% 0.8%

Table 4: Equal Error Rate of the different algorithms.

Algorithm Rank-1 Recognition Rate
I II III IV

Alg. 1 (Epkn) 93.5% 93.0% 72.0% 72.4%
Alg. 1 (Eminmax) 94.4% 93.5% 72.4% 72.9%
Alg. 2 (SI) 92.1% 93.0% 83.2% 83.2%
Alg. 2 (eLBP) 91.1% 93.5% 77.1% 78.5%
Alg. 2 (Range PFI) 91.6% 93.9% 68.7% 71.0%
Alg. 2 (Text. PFI) 95.8% 96.3% 91.6% 92.1%
Alg. 3 62.6% 63.6% 54.2% 59.4%
Alg. 4 98.1% 98.1% 91.6% 93.5%

Table 5: Rank-one recognition rates.

most of the algorithms. In the last two of the four cases, the
facial expression differs between the twins’ enrollment im-
ages and also between their images for recognition. In these
cases, 3D face recognition accuracy ranges from the up-
per 60% to the lower 80%, except for Algorithm 2 (Texture
PFI), which makes use of the texture information, and Al-
gorithm 4. An exception is Algorithm 3, which showed rea-
sonable performance on the FRGC v2 and Photoface [21]
datasets but vastly degrades in performance on the 3D TEC
dataset.

Why do some algorithms perform very well on this
dataset while others don’t? Algorithm 3, for example, dis-
cards a large amount of data by resizing and uses thresh-

olded Euclidean distance which is a fairly simple classifica-
tion method. Algorithm 1, on the other hand, discards al-
most no data: it matches using the original point cloud that
was scanned after some standard processing. The results
also show a stark difference in the performances in Cases I
and II compared to III and IV for some of the algorithms.
This difference could demonstrate how well an algorithm
deals with different expressions.

The 3D TEC dataset contains only “same session” data,
meaning that there is essentially no time lapse between the
image used for enrollment and the image used for recog-
nition. Phillips et al. [1] examined the performance of 2D
images of twins and found that results ranged from approx-
imately 2.5% EER for images acquired on the same day
with controlled lighting and neutral expressions, to approx-
imately 21% EER for gallery and probe images acquired
in different years and with different lighting conditions.
Therefore, any performance estimates from this data are bi-
ased to exceed those that can be expected in any practical
application.

This work is a collaboration by four research groups.
The dataset was acquired and the evaluation framework de-
fined by the Notre Dame group. Each of the groups collab-
orating on this work independently ran their own algorithm
on the dataset and provided their results and the description
of their algorithm. The final version of the paper was sub-
ject to edits by all co-authors.

6. Conclusion

3D face recognition continues to be an active research
area. We have presented results of different state of the art
algorithms on a dataset representing 107 pairs of identical
twins with varying facial expressions, the 3D Twins Expres-
sion Challenge (“3D TEC”) dataset. These algorithms have
previously been reported to achieve good performance on
the FRGC v2 dataset, which has become a de facto standard
dataset for evaluating 3D face recognition. However, we ob-
serve lower performance on the 3D TEC dataset. The com-
bination of factors related to the facial similarity of identical
twins and the variation in facial expression makes for an ex-
tremely challenging problem.

The 3D TEC Challenge is smaller and therefore compu-
tationally simpler than the FRGC v2 Challenge. It combines
a focus on fine discrimination between faces and handling
varying expressions. There have been claims in the litera-
ture of 3D face recognition algorithms that can distinguish
between identical twins. To our knowledge, this is the first
time that experimental results have been reported for 3D
face recognition involving more than a single pair of identi-
cal twins. The results demonstrate that 3D face recognition
of identical twins in the presence of varying facial expres-
sions remains an open problem.
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