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Abstract

We present results of the largest experimental inves-
tigation of ear biometrics to date. Approaches consid-
ered include a PCA (“eigen-ear”) approach with 2D in-
tensity images, achieving 63.8% rank-one recognition; a
PCA approach with range images, achieving 55.3%; Haus-
dorff matching of edge images from range images, achiev-
ing 67.5%; and ICP matching of the 3D data, achieving
98.7%. ICP based matching not only achieves the best
performance, but also shows good scalability with size of
dataset. The data set used represents over 300 persons,
each with images acquired on at least two different dates.
In addition, the ICP-based approach is further applied on
an expanded data set of 404 subjects, and achieves 97.5%
rank one recognition rate. In order to test the robustness
and variability of ear biometrics, ear symmetry is also in-
vestigated. In our experiments around 90% of people’s right
ear and left ear are symmetric.

Keyword: biometrics, ear biometrics, 3-D shape, prin-
cipal component analysis, Iterative closest point, Hausdorff
distance, ear symmetry.

1 Introduction

Researchers have suggested that the shape and appear-
ance of the human ear is unique to each individual and
relatively unchanging during the lifetime of an adult [11].
Therefore, the ear has been proposed for use in biometrics
[4, 11, 5, 10]. In fact, the ear may already be used infor-
mally as a biometric. For example, the United States Immi-
gration and Naturalization Service (INS) has a form giving
specifications for the photograph that indicates that the right
ear should be visible [INS Form M-378 (6-92)].

Moreno et al. [12] experiment with three neural net ap-
proaches to recognition from 2D intensity images of the
ear. Their testing uses a gallery of 28 persons plus an-
other 20 persons not in the gallery. They find a recogni-
tion rate of 93% for the best of the three approaches. They
consider three methods of combining results of the differ-
ent approaches - Borda, Bayesian, and weighted Bayesian

combination- but do not find improved performance over
the best individual method.

PCA (Principal Component Analysis) on 2D intensity
images for ear biometrics has been explored by Victor [18]
and Chang [5]. The two studies obtained different results
when compared with the performance of facial biometrics.
Both ear and face show similar performance in Chang’s
study, while ear performance is worse than face in Victor’s
study. Chang explained that the difference might be due to
differing ear image quality in the two studies.

Yuizono [22] implemented a recognition system for 2D
intensity images of the ear using genetic search. In the ex-
periment they had 660 images from 110 persons, with 6 im-
ages per person. They reported that the recognition rate for
the registered persons was approximately 100%, and the re-
jection rate for unknown persons was 100%.

Bhanu and Chen presented a 3D ear recognition method
using a local surface shape descriptor [3]. The local sur-
face patches are defined by the feature point and its neigh-
bors, and the patch descriptor consists of its centroid, 2D
histogram and surface type. There are four majors steps
in the method: feature point extraction, local surface de-
scription, off-line model building and recognition. Twenty
range images from 10 individuals (2 images each) are used
in the experiments and a 100% recognition rate is achieved
for their dataset. We implemented their method from the de-
scription in [3]. Slight differences were determined experi-
mentally: (1) Due to the noisy nature of range data, the fea-
ture points are determined by the shape index type instead
of the shape index value. (2) Considering the computation
time required, comparison of the two local surfaces was
done only when their Euclidean distance was less than 40
pixels. This assumption is valid in our dataset. Using two
images each from the first 10 individuals in our dataset, we
also found a 100% recognition rate. But when we increased
the dataset to 202 individuals, the performance dropped to
33% (68 out of 202). The computation time required for
this technique was also larger than that for PCA-based and
edge-based techniques that we investigated.

In [7], Chen and Bhanu used two-step ICP on a dataset
of 30 subjects with 3D ear images. First, the ear helix is au-
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tomatically detected using the 3D depth value. Then initial
rigid transformation is computed from a coarse alignment
between test ear helix and model ear helix. And finally the
root mean square registration error is obtained from the sec-
ond step by using all the points from the ear. They claimed
that the experimental results with 2 incorrect matches out of
30 pairs of ear are reached.

Pun and Moon [15] have surveyed the still-relatively-
small literature on ear biometrics. They summarized el-
ements of five approaches for which experimental results
have been published [5, 10, 3, 4, 22].

Hurley et al. [10] developed a novel feature extraction
technique by using force field transformation. Each im-
age is represented by a compact characteristic vector, which
is remarkably invariant to initialization, scale, rotation and
noise. The experiment displays the robustness of the tech-
nique to extract the 2D ear. No ear recognition experimental
results were reported in the paper.

The work presented in this paper is unique in several
points with respect to prior work. We report results from
the largest experimental dataset to date, in terms of number
of persons or number of images or number of algorithms
considered. Only one other work has considered 3D ear
recognition [3], and we compare three other approaches to
3D ear recognition, and find that all exceed the performance
of the previous proposed approach. Ours is the first work to
consider PCA-based recognition using 3D ear images. Also
because we use a large experimental dataset, we are able to
explore how the different algorithms scale with dataset size.

2 Data Acquisition

All the images used in this paper were acquired at the
University of Notre Dame between October 7, 2003 and
December 10, 2004. In each acquisition session, the subject
sat approximately 1.5 meters away from the sensor, with
the left side of the face facing the Minolta Vivid 910 range
scanner. One 640x480 3D scan and one 640 x 480 color
image are obtained nearly simultaneously.

The earliest good image for each of 302 persons was en-
rolled in the gallery. The gallery is the set of images that
a “probe” image is matched against for identification. The
latest good image of each person was used as the probe for
that person. A subset of 202 persons of data was used to
explore algorithm options in some initial experiments, and
the larger set of 302 persons is used for final experiments.
In addition, the ICP-based approach is further applied on
an expanded data set of 404 subjects. Images in the gallery
are enrolled into the system for identification. Images in the
probe set are applied to be matched against those images in
the gallery.

3 Preprocessing and Ear Extraction

Data normalization is applied separately on the 2D and
3D data. And the normalized images are used for the PCA
and edge-based approaches. The ICP-based approach does
not require such extensive normalization. Details of the
steps for normalization can be found in [20].

3.1 Landmark Selection

We have investigated three different landmark selection
methods. The first method is the two-point landmark de-
scribed in [5]. The upper point is called the Triangular
Fossa, and the lower point is called the Antitragus [11], see
Figure 1(a).

(a) Landmark1: Using Triangular Fossa and Antitragus

(b) Landmark2: Using Triangular Fossa and Incisure Intertragica

(c) Landmark3: Using Two Lines

Figure 1. Example of Ear Landmarks

The rationale for using landmarks is that the position of
the landmark is stable over time for a particular ear. How-
ever, these two points are not easily detected in all images.
For instance, many ears in our study have a small or subtle
Antitragus. The ambiguity in marking this landmark posi-
tion might affect the ear extraction. Two different points
from the Antitragus might be marked on the same ear on
two different dates. In order to solve this problem, two
other landmark methods were examined. The second one is



similar to the first two-point landmark, but we used the In-
cisure Intertragica instead of Antitragus as the second point,
shown in Figure 1(b). The orientation of the line connect-
ing these two points is used to determine the orientation of
the ear, and distance between them is used to measure the
size of the ear. But the size of the ear does not have a linear
relationship with the distance between these two points. In
order to maximize the cropped ear portion, we developed
the third method as the two-line landmark, shown in Fig-
ure 1(b). One line is along the border between the ear and
the face, and the other is from the top of the ear to the bot-
tom. Unlike the two-point landmark, the two-line landmark
promises to find most of the ear.

In our experiments, the second method is adopted for
further ear extraction in the PCA-based and edge-based al-
gorithms, since it is good at blocking out background and
avoiding ambiguity. The two-line landmark is used in the
ICP-based algorithm. ICP uses the real 3D range data in the
matching procedure and the two matching surfaces should
overlap. The two-line landmark gives the opportunity to
extract the whole ear for matching, but at the same time,
it always includes some background, which increases the
background variation, and affects the PCA-based and edge-
based performance.

3.2 Ear Extraction

Ear extraction is based on the landmark locations on the
original ear images. The original ear images (640 x 480)
are cropped to (87x124) for 2D and (68x87) for 3D ears.
The 2D ear image has been scaled up for better experimen-
tal result, while no scaling is applied on 3D ear range im-
ages since the pixel size is constant over different images.
The normalized images are masked to “gray out” the back-
ground and only the ear is kept.

4 PCA for 2D and 3D Recognition

The PCA (Principal Component Analysis) based ap-
proach has been widely used in face recognition [16, 17, 14,
6]. It was also used by Chang [5] in evaluation of 2D ear
and face biometrics. In our experiments, a standard PCA
implementation [2] is used. Figure 2 shows an example of
the images we used for PCA.

For each of the 302 subjects, the earliest good quality
2D and 3D images are used for the 2D and 3D ear space
galleries, respectively. The latest good quality images are
used as probes. For PCA-based algorithms, eigenvalues and
eigenvectors are computed from the images in the training
set. In our experiment, the training set is the set of gallery
images. The “ear space” is picked out from the eigenvec-
tors corresponding to all the eigenvalues. The best rank-one
recognition rate for 2D ear data is 63.6% when dropping

(a) 2D intensity ear (b) 3D depth value ear

Figure 2. Ear Images As Used For PCA

first 2 and last 23 eigenvectors. The best performance for
the 3D ear data is 55.3% when dropping first two eigenvec-
tors. The Yambor Angle [8] distance metric is used. Eu-
clidean distance was tested but gave lower performance.

4.1 2D Ear Data

Two different scalings of the ear sizes are examined on
2D data. One is set as the actual size of the ear, and the
other is set at 1.25 times the size of ear. Effectively, this just
changes how much of the ear and background appear in the
images.

The PCA recognition rate is 66.9% when using 2D reg-
ular ear size for 202 subjects. Looking closely at the im-
ages created from the eigenvectors associated with 3 largest
eigenvalues, it was apparent that each of them had some
space behind the contour of ear. Scaling the ear to 1.25
times the original size, the performance increased from
66.9% to 71.4% when using 202 subjects. Using the en-
larged ear, the performance is at 63.6% when using 302
subjects, as shown in Figure 5.

Chang obtained 73% rank-one recognition with 88 per-
sons in the gallery and a single time-lapse probe image per
person [5]. Our rank one recognition rate for PCA-based
ear recognition using 2D intensity images with the first 88
persons is 76.1%, which is similar to the results obtained
by Chang, even though we used a different image data set
and different landmark points. Thus our 2D ear recognition
performance should be representative of the state of the art.

4.2 3D Ear Data

Two different experiments were conducted on the 3D ear
data. One is using the original ear range data, the other is
applying mean and median filters on the original data to fill
the holes of the cropped ear. The performance is improved
from 58.4% to 64.8% with hole filling when using 202 sub-
jects. This is still not very good in an absolute sense. One
possible reason is that the ear structure is quite complex,
and so using mean and median filter alone might not be



good enough to fill holes in the 3D range data. Applying
hole filling on the 302 subjects, the performance stays at
55.3% rank one recognition rate,and see Figure 5.

5 Hausdorff Range Edge Matching

Holes in the range data degrade the performance dramat-
ically in the PCA-based approach. Even after we fill holes,
the performance is still not as good as we hoped for. After
looking carefully at the 2D and 3D data, we noticed that the
edge structure in the 3D depth data looks much more stable
than in the 2D intensity data.

(a) 2D intensity data (b) 3D Depth data

(c) Edge image of (a) (d) Edge image of (b)

Figure 3. Same ear’s 2D and 3D Ear Data and
Associated Edge Images. Canny Edge De-
tector Parameters are sigma = 1.0, Tlow =
0.5, Thigh = 0.5

Figures 3(a) and 3(b) show the 2D and 3D images taken
on two different days of the same person’s ear. The Canny
edge detector with the same parameters is applied to the 2D
and 3D ear data, and the edge images are shown in Figure
3(c) and 3(d). Here, single isolated edge pixels are elimi-
nated from the edge images. It is obvious that edge images
of the range image are much cleaner than for the 2D edge
images. This is the motivation to develop an edge-based
Hausdorff distance method for 3D ear recognition using the
range image.

Different parameters have been examined and the best
rank one recognition rate achieves 67.5%, which is signifi-
cantly better than the 3D PCA performance [20].

6 ICP Based Ear Recognition

Besl and McKay’s classic ICP algorithm has been im-
plemented [1]. Given a set of source points P and a set of

model points X, the goal of ICP is to find the rigid trans-
formation T that best aligns P with X. Beginning with a
starting estimate of the registration T0, the algorithm itera-
tively calculates a sequence of transformations Ti until the
registration converges. In a 3D face image, the eyes and
mouth are common places to have holes and spikes. 3D ear
images do exhibit some spikes and holes due to oily skin or
sensor error, but much less often than in the 3D face images.
Therefore in our experiment, an explicit outlier removal step
is not used. The iteration number is set as 50, and the cutoff
for the distance is 0.0001 mm.

At each iteration, the algorithm computes correspon-
dences by finding closest points, and then minimizes the
mean square error between the correspondences. A good
initial estimate of the transformation is required, and all
scene points are assumed to have correspondences in the
model. The centroid of the extracted ear is used as a start-
ing point in our experiments.

6.1 Ear Extraction

Ear extraction is based on the landmark lines located on
the original ear images. In the truthwriting process, two
lines are used to find the orientation and scaling of the ear
[21]. According to that, the mask is rotated and scaled, and
applied on the original image. The mask is used to select
a subset of the 3D data to be used in matching. Different
ear sizes result in variance in the amount of ear data after
extraction. Figure 4 shows an example of the original image
and mask, along with the appropriate mask and extracted
ear. The original profile face scan (640 x 480) is cropped to
(116x136) in size for the ear region.

(a) Original Image 1 (b) Original Image 2

(c) Mask of (a) (d) Extracted ear (e) Mask of (b) (f) Extracted ear

Figure 4. Ear Mask and Cropped 3D Data
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Figure 5. Performance of Different Approaches

6.2 Improved ICP

Our initial results using basic ICP reach 84.1% rank one
recognition rate. Various refinements were considered, sev-
eral of which were incorporated into an improved algo-
rithm. The amount of the ear shape used in the gallery
and probe representations was adjusted to reduce interfer-
ence from the background. A step to remove outlier point
matches was added to reduce the effects of incorrect cor-
respondences. Our improved algorithm produces substan-
tially better results. Using the 302-person dataset, with a
single 3D ear scan as the gallery enrollment for a person,
and a single 3D ear scan as the probe for a person, the new
algorithm achieves 98.7% rank-one recognition [21].

6.3 Extended Data Size

By including 102 more subjects we acquired from Fall,
2004, we obtain a dataset with 404 subjects, which is so
far the largest dataset for the ear biometrics in term of sub-
ject size. The image acquisition, landmark selection and
ear extraction are as described in the previous section. The
ICP-based approach yields 97.5% rank one recognition rate
on the 404-person data set.

7 Scaling with Dataset Size

It has been suggested that scaling of performance with
dataset size is a critical issue in biometrics [13, 14]. Some

techniques scale better to larger datasets than others. A
good algorithm should keep the performance within a rea-
sonable range when the data size expands. Table 1 shows
the scalability of the 3D ICP and 2D PCA with different
gallery sizes.

PCA ICP
Gallery Size = 25 23 92% 25 100%
Gallery Size = 50 42 84% 49 98%
Gallery Size = 100 75 75% 99 99%
Gallery Size = 150 103 68.7% 149 99.3%
Gallery Size = 200 135 67.5% 199 99.5%
Gallery Size = 302 192 63.6% 298 98.7%

Table 1. PCA and ICP Performance Varied by
Data Size

When the gallery size is 25, PCA has 92% rank-one
recognition, and ICP is at 100%. As gallery size dou-
bles, there is around a 10% drop in the PCA performance,
and when the gallery has 302 subjects, the performance de-
creases to 63.8%. However, ICP shows a much better scal-
ability. When the gallery size doubles, there is less than 1%
drop in ICP performance, and it still reaches 98.7% rank
one recognition rate when the gallery size is 302 subjects.

Checking all the incorrect matches for different gallery
size, there is one image (shown as Figure 6(b)) that was
always mismatched. And of the new incorrect matches ap-
pearing in data size 302, two of them (shown as Figure 6(a)



and 6(g)) are new to all the other experiments using differ-
ent data size, one of them (shown as Figure 6(c)) drops from
rank one to rank two when the data size increases from 200
to 302.

(a) Hair Covered (b) Hair Covered (c) Hair Covered

(d) 2D of (a) (e) 2D of (b) (f) 2D of (c)

(g) Gallery (h) Probe

Figure 6. Four Incorrect Matches

8 Statistical Significance Testing

Four single-biometric experiments were explored exten-
sively in the previous sections, represented as a Cumulative
Match Characteristic (CMC) Curve in Figure 5. A CMC
curve indicates the probability that correct matches appear
within some specified candidate size. The faster the CMC
curve approaches 1, the better the matching algorithm is.
The ICP-based approach has the highest performance, fol-
lowed by the 3D edge-based approach, then followed by
PCA approach on 2D intensity images, and PCA on the 3D
range images. Another 3D ear recognition method due to
Bhanu and Chen [3] was initially considered but dropped
in favor of the other methods described. In order to ana-
lyze the performance differences between methods, statisti-
cal significance tests were conducted.

The rank one recognition rate can be addressed as a bi-
nomial distribution problem. The correct matching rate is
the probability of success p and incorrect matching rate is
the probability of failure q, where p + q = 1. When the

sample size becomes larger, the binomial distribution be-
gins to converge to a normal distribution. That is, for a
large enough sample size N, a binomial variable X is ap-
proximately to N(Np, Npq). Fairly good results are usu-
ally obtained when Npq ≥ 3. Here, p̂ is the proportion of
observed correct matches. p̂ value for each method is shown
in Table 2. In our circumstance, sample size N = 302, with
all Np̂q̂ ≥ 3.

ICP 2D PCA 3D PCA Edge-based
p̂ 0.987 0.636 0.553 0.675
q̂ 0.013 0.364 0.447 0.325
Np̂q̂ 3.87 69.91 74.65 66.25

Table 2. Proportion of Observed Correct
Matches

Given two methods, with sample size as N1 and N2, and
proportion of observed correct matches as p̂1 and p̂2, the
test statistic for H0 : p1 = p2 is

z =
p̂1 − p̂2√

(N1+N2

N1N2

)(X1+X2

N1+N2

)(1 −
X1+X2

N1+N2

)

whereX1 = p̂1 × N1 and X2 = p̂2 × N2.

Table 3 is constructed using the 0.05 level of significance.
It is well known that significance levels from the pairwise
comparisons might be misleading. Simply it means that
when too many comparisons are carried out, the result may
suggest statistically significant differences even if no differ-
ence exists [9]. The Bonferroni correction has been used
post hoc to determine the significance of multiple tests [9].
It basically multiplies each of the significance levels from
the z test by the number of tests performed. If this value is
greater than 1, a significance level of 1 is used.

The “reject” in Table 3 refers to rejecting the null hy-
pothesis of no significant difference. The performance of
the ICP-based algorithm is statistically significantly better
than the other three methods. The edge-based performance
is statistically significantly better than the 3D PCA-based
method.

9 Ear Symmetry Experiment

So far the ear data used in our experiments is of good
quality, and the gallery and probe images are basically
straight-on ear images, of the same ear, on different days.
We called this “controlled conditions”. It would be very in-
teresting to look at the experimental results from less con-
trolled conditions.

One less controlled approach is matching a mirrored left
or right ear, which means that for one subject we enroll his



Edge 2D PCA 3D PCA
ICP 11.03(Reject) 12.67(Reject) 10.23(Reject)
Edge 1.01(Accept) 3.08(Reject)
2D PCA 2.08(Accept*)

Table 3. Statistical Test of the Difference be-
tween Performance, Using 0.05 level of sig-
nificance. H0 :: There is no difference in per-
formance between the two methods. (*: after
Bonferroni adjustment)

(a) Right Ear (b) Left Ear

Figure 7. Image acquired for Ear Symmetric
experiments

right ear and try to recognize using his left ear. This ap-
proach assumes bilateral symmetry of the ear. Two different
angles of view have been examined. They are 30 degree off
the center and 45 degree off the center. The initial data pro-
cessing includes landmark ground truth and ear extraction,
which are the same as we described in previous sections.

The right ear of the subject is used as the gallery, and the
left ear is used as the probe, see Figure 7. For this initial
experiment, both ear images are taken on the same day. The
results are presented in Table 4.

number of subjects Performance
30 degree off 88 90.9%
45 degree off 119 89.1%

Table 4. Ear symmetry Experiments

By analyzing the results, we found that most people’s
left and right ears are at least close to bilaterally symmet-
ric. But some people’s left and right ears have different
shapes. Figure 8 shows an example of this. Thus it seems
that symmetry-based ear recognition cannot be expected to
be as accurate.

10 Summary And Discussion

We have presented experimental results for three differ-
ent approaches to 3D ear recognition and a PCA-based ap-
proach to 2D ear recognition. A fourth algorithm for 3D ear

recognition was also considered [3], but dropped in favor
of the other 3D approaches. Our results are based on the
largest experimental dataset to date for ear biometrics, with
2D and 3D images acquired for over 300 persons on two
different dates. This is the most comprehensive investiga-
tion of 3D ear recognition to be reported to date, the largest
experimental evaluation of 2D ear recognition, and the first
(only) comparison of 2D and 3D ear recognition.

Our 2D PCA ear recognition results are comparable to
the state of the art reported in the literature [5]. In our exper-
iments, the ICP-based approach to 3D ear recognition statis-
tically significantly outperforms the other approaches con-
sidered for 3D ear recognition, and also statistically signif-
icantly outperforms the 2D ear recognition result obtained
with a state-of-the-art PCA-based ear recognition algorithm
[5]. Thus it appears that ear recognition based on 3D shape
is more powerful than based on 2D appearance, although
other approaches to 2D ear recognition remain to be consid-
ered. It also appears that an ICP-based approach to 3D ear
recognition outperforms other approaches that used a range
image representation of the 3D data, although again other
approaches to 3D recognition using range images could be
considered. Interestingly, we find that the ICP-based ap-
proach to 3D ear recognition scales quite well with increas-
ing size of dataset. Our current improved ICP algorithm
achieves 98.7% rank-one recognition rate on the 302 sub-
ject dataset [21], and 97.5% rank-one recognition rate on
our expanded 404 subject dataset.

Several topics for additional work seem important and
promising. One is to consider methods of improving the
computation time required by ICP matching. Another is to
further investigate the scalability of 3D ear recognition per-
formance with increased data set size. A third topic is to
investigate possible performance improvement by combin-
ing 2D and 3D recognition for a multi-modal result [19].
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