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ABSTRACT

Although covariance structure analysis is used increasingly to analyze nonex-
perimental data, important statistical requirements for its proper use are fre-
quently ignored.  Valid conclusions about the adequacy of a model as an
acceptable representation of data, which are based on goodness-of-fit test
statistics and standard errors of parameter estimates, rely on the model estimation
procedure being appropriate for the data. Using analogies to linear regression
and anova, this review examines conditions under which conclusions drawn
from various estimation methods will be correct and the consequences of
ignoring these conditions. A distinction is made between estimation methods
that are either correctly or incorrectly specified for the distribution of data being
analyzed,  and it is shown  that valid conclusions are possible even under
misspecification. A brief example illustrates the ideas. Internet access is given
to a computer code for several methods that are not available in programs such
as EQS or LISREL.
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INTRODUCTION

Most psychological data are multivariate in nature. An important approach to
understanding such data is to develop and evaluate a model of how the data
might have been generated. In the case of experiments, the explanatory vari-
ables are design variables whose values are controlled. By their nature, these
variables are presumed to be understood. The dependent variables, on the other
hand, typically are  best understood with  help  of  a model. If interest  lies
primarily in the means of these variables, the standard linear model and its
statistical implementation via analysis of variance (anova) or its multivariate
version provide good insight. Of course, assumptions need to be made, such as
independence of observations, linearity and additivity of effects, homogeneity
of variances, normally distributed errors, etc. There is substantial agreement
on the performance characteristics of these methods when the assumptions are
met, as well as, to a lesser extent, on the consequences of violation of assump-
tions. The same cannot be said for methods in the analysis of nonexperimental
data. This chapter addresses some of the consequences of violation of assump-
tions in covariance structure analysis, and relates a few results to the compara-
ble situation from anova or regression. Although most of the results reviewed
here are very old, they have not yet permeated the practice of covariance
structure analysis.

Nonexperimental data are inherently more difficult to analyze and under-
stand because various variables may have different effects and directions of
influence, their effects may not be independent, observed variables may be
influenced by unmeasured latent variables, omitted variables may bias the
observed effects, and so on. To understand such influences, typically one
considers a general linear structural model for ap-variate vector of variables x~
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as , where the matrixA = A(γ) is a function of a basic vectorγ of
parameters, and the underlyingk (k ≥ p) generating variablesξ may represent
measured, latent, or residual variables (e.g. Anderson 1994, Bentler 1983a,
Satorra 1992). In typical applications of anova, one can assume the model is
correct, and the statistical problem is to isolate true nonzero (i.e. significant)
effects from zero effects. In contrast, in nonexperimental contexts the basic
model setup itself may be a source of contention. That is, the matrixA or its
parametersγ may be misspecified; an inappropriate or incomplete set of vari-
ablesξ may be hypothesized; or the moments, i.e. means or covariances, of
theseξ variables may be incorrectly specified. Hence an important part of the
methodology involves evaluating the quality of the model as a representation
of the data. The standard questions of parameter significance are important
only if the model itself is plausible. In this chapter we review issues in model
and parameter evaluation, though we accept the basic model setup, which, of
course, in some contexts may itself be questioned. For example, one could
question the linearity assumption or the absence of nonlinear or interaction
terms (e.g. Jöreskog & Yang 1995, Kenny & Judd 1984, Mooijaart & Bentler
1986), though the most popular model variants assume simple linear relations
among variables. Nonlinear relations  arise  naturally with categorical data
models (e.g. Jöreskog 1994, Lee et al 1992, 1995, Muthén 1984), but for
simplicity we deal only with continuous variable models. Other interesting
questions, such as causality (see e.g. Bullock et al 1994, Sobel 1995, Steyer
1993), equivalent models (e.g. Bekker et al 1994, Lee & Hershberger 1990,
MacCallum et al 1993), or model modification (e.g. MacCallum et al 1992)
also are not addressed.

As just noted, under a linear structural model, understanding the observed
variables hinges on understanding the parametersγ and the generating
variablesξ. In practice, one is satisfied with knowing how the means and the
covariances (i.e. variances and correlations) among the x~ variables are gener-
ated. Under the model, this requires estimating and testing for significance the
parametersγ and the means and covariances of the generatingξ variables. That
is, if the means and covariances among the x~ variables are given byµ andΣ, an
appropriate model would be based on a more basic set of parametersθ, such
that µ = µ(θ) andΣ = Σ(θ). Theq parameters inθ represent elements ofγ as
well as the intercepts, regression coefficients, or variances and covariances of
theξ variables. Specific versions of such models are given by the equations of
the confirmatory factor analysis (Jöreskog 1969, Lockhart 1967), factor ana-
lytic simultaneous equation (Jöreskog & Sörbom 1993, Wiley 1973), Bentler-
Weeks (1980), or RAM (McArdle & McDonald 1984) models. These models
have a wide range of application, from individual growth modeling (Willett &
Sayer 1994) to decomposition of trait and method variance (e.g. Dudgeon
1994).  They  can be  taken as mean and covariance structure models  (e.g.

x~ = Aξ

x~
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Browne & Arminger 1995, Satorra 1992), though more general models, in
which higher-order moments are also of concern, have been developed (Ben-
tler 1983a) but are only rarely studied (Mooijaart 1985, Mooijaart & Bentler
1986).

In this review we concentrate on the most typical applications, those of
covariance structure models. In such models,µ is unstructured and hence can
be estimated (in practice, at the sample mean), which allows the parameters of
the covariance structure,Σ = Σ(θ), to be treated separately. Covariance struc-
ture models have become extremely popular in psychology and other social
sciences  since  the  previousAnnual Reviewchapter on  this topic  (Bentler
1980). Widely known computer programs, such as LISREL (Jöreskog & Sör-
bom 1993), EQS (Bentler 1995, Bentler & Wu 1995a,b), and others (see
Browne & Arminger 1995, pp. 241–42; Ullman 1995), have made the models
easily accessible to applied researchers, and good general introductory texts on
the topic now exist (e.g. Bollen 1989, Byrne 1994, Dunn et al 1993, Hoyle
1995, Loehlin 1992). Steiger (1994) and Faulbaum & Bentler (1994) provide
perspective overviews. A new journal,Structural Equation Modeling,covers
recent developments.

As noted above, covariance structure models are typically motivated by
linear models in hypothesized variablesξ. The distribution of theξ variables
affects the distributions of the measured variables x~. Typically, one assumes
that ξ and hence x~ are multivariate normally distributed. This assumption
simplifies the statistical theory. A test of the model structure and of hypotheses
on particular parameters thus are easy to obtain. However, in practice, the
normality assumption will often be incorrect. For example, Micceri (1989)
reported that among 440 large-sample achievement and psychometric meas-
ures taken from journal articles, research projects, and tests, all were signifi-
cantly nonnormally distributed. Yet, as noted by Breckler (1990) and Gierl &
Mulvenon (1995), practitioners generally do not bother to evaluate this very
strong assumption and simply accept normal theory statistics as if the data
were normal. As a result, conclusions that are drawn about model adequacy
(from the goodness-of-fit test statistic) and parameters (fromz-statistics based
on standard errors) are often liable to be incorrect as well. This is an alarming
state of affairs in view of the increasing reliance on covariance structure
models for understanding relationships among nonexperimental data.

It is not that there are no alternatives to normal theory statistics. Several
have been developed and have been available for some time in certain com-
puter programs, especially in EQS. Others have been developed but are not yet
available to applied researchers. In general, software publishers have fallen
substantially behind the theoretical developments. For example, a distribution-
free test [see Equation (10) below] developed by Browne about 15 years ago
(Browne 1982, 1984) is not available in any extant computer program, includ-
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ing Browne’s own program RAMONA (Browne et al 1994). Similarly, a test
based  on heterogeneous kurtosis theory  was published a  half decade  ago
(Kano et al 1990), yet it has not been incorporated into any programs, includ-
ing Bentler’s EQS program. Several other valuable statistics are similarly
unavailable. Therefore, in addition to reviewing and discussing the alterna-
tives, we provide a high-level code that can be accessed via the Appendix to
implement some of the newer statistics.

THE MODELING PROCESS

Two aspects of the modeling process are important in understanding judg-
ments about the adequacy of models and the significance of parameters. One,
as touched on already, is the distributional assumptions made about the vari-
ables forming the model—this is the main focus of the review. The other is
more  fundamental to  the  process  itself  and  has to  do  with  models being
approximate rather than exact representations. We examine this aspect briefly
now because it places the first in a broader context. Consider the most popular
covariance structure model, the confirmatory factor model. In this model,

+ � explains the measured variables x~ as a linear combination with
weightsΛ of common factorsξ and unique variates (“errors”)�. Factors are
allowed to correlate with covariance matrixε(ξξ′) = Φ, errors are uncorrelated
with factors, i.e.ε(ξ�′) = 0, and various error variates are uncorrelated and
have a diagonal covariance matrixε(��′) = Ψ. As a result,Σ = Σ(θ) = ΛΦΛ′ +
Ψ, and the elements ofθ are the unknown free parameters in theΛ, Φ, andΨ
matrices. The distribution of the variablesξ and� is an important part of the
specification  of the model, but these are typically unknown and only the
distribution of the measured variables x~ is available for evaluation. As shown
below, misspecification of the distribution of x~ affects inferences on the null
hypothesisΣ = Σ(θ) as well as onθ. Although assuring that the parameters inθ
are  identified is not a minor matter, to avoid getting sidetracked on this
important problem we assume that uniqueness of parameter specification is
not an issue so that for two possibly different parameter vectorsθ1 and θ2,
Σ(θ1) = Σ(θ2) ⇒ θ1 = θ2. Thus equality of the two covariance matrices implies
equality of the parameters that generate them.

Let S represent thep × p sample covariance matrix obtained from
x~′ (=x1,...,xp) variables, each independently observedN = n + 1 times. There
are situations in which the assumption of independent observations is implau-
sible, in which case special methods are needed (see e.g. Lee 1990, Muthén &
Satorra 1989, Weng & Bentler 1995). However, independence generally can
be reasonably assumed, and we can estimate the values of the parameters inθ
from Sand in some circumstances test the fit of the modelΣ(θ), by minimizing
some scalar functionF = F[S, Σ(θ)] which indicates the discrepancy betweenS

x~ = Λξ
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and the covariance matrixΣ(θ) reproduced from the fitted model. Discrepancy
functions have the following properties: (a) the value ofF will be greater than
or equal to zero; (b) F will only equal zero ifΣ(θ) = S; and (c) F must be twice
differentiable with respect to bothS andΣ(θ). The parameter estimates, signi-
fied by , are obtained at the minimum ofF, signified by ,
where the matrix (or more conveniently signified by ) indicates the
covariance matrix reconstructed from the estimated parameters of the specified
model. Normal theory maximum likelihood (ML) and generalized least
squares (GLS) provide typical examples of discrepancy functions. For now, it
is not important to give the full expression for these functions; they are given
later in the paper.

A primary aim of covariance structure analysis is to specify enough restric-
tions in Σ(θ) so that, substantively, it becomes a sufficiently simple and ac-
ceptable representation for the theoretical or interpretative issue being investi-
gated (McDonald 1989). Technically, also, the model should improve preci-
sion, i.e. reduce variance in the parameter estimator, at the expense of little or
no bias in the estimator (de Leeuw 1988, Kano et al 1993). Even in the
implausible situation in which we know the population covariance matrixΣ,
sayΣo, the onus would still be on us to specify some simplifying modelΣ(θo)
for representing the relationships in that matrix, otherwise “there is no point in
using a model” (McDonald 1989, p. 101). Although in reality we employ a
sample covariance matrixS as a consistent estimator ofΣο, it is useful to
consider briefly this implausible situation, for it helps make the problem of
choosing a discrepancy function clear. Ideally, we would like to define a
unique set of parameter valuesθo for our structural model such that

Σ(θo) = Σo. (1)

This implies that for our known population covariance matrix we also (implau-
sibly) know the true model that generated the covariance matrix. In this in-
stance all overidentifying restrictions in the model are correctly specified, and
as a consequence these restrictions (and therefore the model) hold exactly. If
we fit this model toΣo, then at the minimum of the ML, GLS, or any other
function meeting the three requirements just defined, we would find that

and therefore .
In reality we will never knowΣ(θo). But let us still continue to assume that we
know Σo. Then in these circumstances the results in Equation (2) will no
longer  necessarily  hold.  Although we  could  fit  some  hypothesized model
Σ(θφ) with different parametersθφ by minimizing some function F[Σo, Σ(θφ)],
the conjectured true modelΣ(θφ) would not necessarily equal the actual true

$θ $ [ , ( $ )]F F= S Σ θ
Σ( $ )θ $Σ

F o oΣ Σ, $θe j = 0

$θ θo o=

(2)

568 BENTLER & DUDGEON



Σ(θo). While we still regard the set of true parameter valuesθo as the value of
θφ acquired at the minimum,Σ(θφ) would in all probability be an approxima-
tion toΣ(θo). Because the ideal defined by (1) no longer necessarily occurs, we
would now find that

although this relationship would almost invariably be a strict inequality. More
importantly, we would also find that the values of both the (approximated) true
parameters in and the minimum discrepancy function value
would vary according to the particular discrepancy function used.1

In practice we estimate our models from the sample covariance matrix S
rather than fit them toΣo, and this introduces additional discrepancies besides
that arising from (3). Cudeck & Henly (1991) provide a very good discussion
of the various forms of discrepancy involved  in fitting models (see  also
Browne & Cudeck 1993 for ways to evaluate those discrepancies). While the
details of Cudeck and Henly’s paper are outside our present scope, the impor-
tant point to be made here about the modeling process is that the choice of a
discrepancy function will influence the assessment of models and parameter
estimates not only because we work with sample data that are often nonnor-
mal, but also because the null hypothesis (1) never holds. As such, our models
are only approximate rather than exact representations of the reality being
envisaged. A statistical basis for making an appropriate choice is therefore
needed.

Test Statistic on Model Hypothesis

If we make the right choice of discrepancy function, and if the modeling
assumptions  are correct and  the  sample  size  is  large enough, then  at the
minimum, is distributed under the null hypothesis (1) as a goodness-
of-fit χ2 variate with (p* − q) degrees of freedom,2 wherep* = p(p + 1)/2. T
can be used as a test statistic to evaluate the null hypothesis. The null hypothe-
sis is rejected ifT exceeds a critical value in theχ2 distribution at anα-level of

F Σ Σo, $θφe j ≥ 0

$θφ F[ , ( $ )]Σ Σo θφ

T nF= $

(3)
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This can be shown easily by fitting any model in LISREL or EQS and saving the reproduced

covariance matrix (it does not have to be a particularly good fit). If we then refit the same model,
but now to the reproduced covariance matrix rather than to the sample covariance matrix, then the
fitting function value will always be zero and the parameter estimates and standard errors will be
the same for, say, ML or GLS estimation. If we change the model slightly to some different
specification of parameters, but still use the reproduced covariance matrix, then the fitting function
value, the  parameter  estimates, and the  standard errors will vary according to ML or GLS
estimation.
2

More generally, the degrees of freedom are further increased by one for each independent
equality restriction that might be imposed (Lee & Bentler 1980), but for simplicity in this paper we
assume that there are no equality restrictions.



significance. Otherwise, the model cannot be rejected, and the null hypothesis
is accepted.

Because a numerical value forT is computed and printed out by all com-
puter programs, there is a strong tendency to treat it as aχ2 variate whether or
not that is its actual distribution. In fact, except for unusual circumstances
associated with the specialized “asymptotic robustness theory” (see below),
whenT is based on the assumption of multivariate normality of variables but
the data are not normal (the typical case in practice as noted above),T will not
be χ2 distributed. As a result, incorrect conclusions about model adequacy
often are obtained. And, as shown by Hu et al (1992), asymptotic robustness
theory is not robust to violation of its assumptions, so it cannot be used to
justify an inappropriate choice of fit function and test statistic.

Statistics on Parameter Hypotheses

Once a model null hypothesis is accepted, typical practice involves interpret-
ing the relative size and significance levels of particular parameter estimates

to see if they differ significantly from zero. Typically, this involves evaluat-
ing the hypothesisθi = 0 using the statistic where the
denominator is an estimate of the standard error. In practice, computer pro-
grams calculate this standard error estimate from the square root of the appro-
priate element from the inverse of the “information matrix.” Unfortunately,
aside from tests on regression coefficients that may be correct due to asymp-
totic robustness theory—which cannot be relied upon to apply to a given data
analysis situation—this is the correct expression only when the distributional
assumption used in defining the discrepancy function is correct. Thus, tests of
parameters based onz will be incorrect in the typical case where a normal
theory method is used, but the data are not normal. As a result, incorrect
substantive conclusions about the meaning of a model may well be drawn. The
situation is the same when sets of parameters are evaluated simultaneously
using the Wald test (e.g. Bentler & Dijkstra 1985; Dijkstra 1981, Theorem 8;
Lee 1985). Similar problems occur when missing parameters are evaluated
using the Lagrange Multiplier test (e.g. Bentler 1995). Satorra (1989) provides
an excellent general discussion.

To gain some insight into this situation, consider the regression model =
Xβ + � with dependent variable and fixed design matrixX. When the errors
� are independent, normal, and homoscedastic, as in typical applications of
anova, the information matrix of is proportional to (X′X). Thus the standard
errors of are given, up to a constant that involves sample size, by the square
roots of the diagonal elements of the inverse (X′X)−1 of this information
matrix. These are the standard errors given by available regression and anova
programs. Unfortunately, when the assumptions are not true, this formula does
not give the correct standard errors (see, e.g. Arminger 1995). It is likely that

$θ i
Z i i i= −( $ ) / ( $ ),θ θ θSE

y
~

y
~

$β
$β
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many applications of regression thus give incorrect tests on parameters, as do
many covariance structure applications. We shall use the regression analogy
several times.

Theoretical or Empirical Robustness to Violation of
Assumptions

We see, then, that the typical requirements for a covariance structure statistic
to be trustworthy under the null hypothesisΣ = Σ(θ) are that the parameters of
the model are identified; the observations or scores for different subjects are
independent; the sample size is very large; and either a discrepancy function
consistent with the actual distribution of variables is optimized, or a method of
model and parameter testing is chosen that is robust to violation of certain of
these assumptions. Unfortunately, these several conditions are often difficult
to meet in practice. As noted above, we do not discuss identification or
independence; we simply assume these conditions since they can often be
arranged by design. The other points bear some discussion prior to developing
the technical details.

Sample size turns out to be critical because all of the statistics known in
covariance structure analysis are “asymptotic,” that is, are based on the as-
sumption thatN becomes arbitrarily large. Since this situation can rarely be
obtained, except perhaps by large national testing services and censuses, it
becomes important to evaluate whetherN may be large enough in practice for
the theory to work reasonably well. Different data and discrepancy functions
have different robustness properties with respect to sample size. Basically,
sample size requirements increase as data become more nonnormal, models
become larger, and more assumption-free discrepancy functions are used (e.g.
Chan et al 1995, Chou et al 1991, Curran et al 1994, Hu et al 1992, Muthén &
Kaplan 1992, West et al 1995, Yung & Bentler 1994).

In principle, if one matches a discrepancy function to the distribution of
variables, the resultingT andz test statistics should be well behaved. However,
some of these functions cannot be applied with large models because the
computational demands are simply too heavy. Also, some provide test statis-
tics that do not work well except at impractically large sample sizes. Thus
alternatives have been developed that may potentially work in more realistic
sized samples, i.e. be robust to violation of the asymptotic sample size require-
ment of all known methods. Unfortunately, not much is known about their
actual performance in practice. These topics are discussed below.

Ideally, one could specify conditions under which even the technically
wrong method could lead to correct statistical inferences. This is the hope of
researchers who use normal theory methods when their data are nonnormal.
The only known theoretical justification for such a practice is that of asymp-
totic robustness (e.g. Browne 1987), which we illustrate but do not review in
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detail. Anderson & Amemiya (1988) and Amemiya & Anderson (1990) found,
for example, that the asymptoticχ2 goodness-of-fit test in factor analysis can
be insensitive to violations of the assumption of multivariate normality of both
common and unique factors, if all factors are independently distributed and the
elements of the covariance matrices of common factors are all free parameters.
With an additional condition of the existence of the fourth-order moments of
both unique and common factors, Browne & Shapiro (1988) and Mooijaart &
Bentler (1991) also demonstrated the robustness of normal theory methods in
the analysis of a general class of linear latent variate models. Satorra & Bentler
(1990, 1991) obtained similar results for a wider range of discrepancy func-
tions, estimators, and test statistics. Browne (1990) and Satorra (1992) ex-
tended this theory to mean and  covariance  structure models, and  Satorra
(1993) to multiple samples. Unfortunately, asymptotic robustness theory can-
not be relied upon in practice, because it is practically impossible to evaluate
whether its conditions are met. Thus we cannot use this theory to avoid taking
a more detailed look at the statistics of covariance structure analysis, to which
we now turn.

STATISTICS BASED ON CORRECTLY SPECIFIED
DISTRIBUTIONS

Ideally, there would be many classes of multivariate distributions that are
realistic and practical models for data analysis, but this is not the case (Olkin
1994). In covariance structure analysis, only three types of specific distribu-
tions have been considered: multivariate normal, elliptical, and heterogeneous
kurtotic. In this section we provide basic definitions for these cases and define
the test statistics and parameter estimator covariance matrices that result from
the correct specification of distributional forms.

To simplify matters, we note that the distribution of the data induces a
distribution of the sample statistics under consideration in covariance structure
analysis, namely the distribution of the elements of the sample covariance
matrixS. Hence, we can focus on the distribution ofS instead of, or in addition
to, the distribution of the raw data. SinceS contains redundant elements, we
need only be concerned with the nonduplicated elements. Let s~ andσ(θ) bep*
× 1 column vectors formed from the nonduplicated elements ofS and Σ(θ),
respectively. We are interested in the asymptotic distribution of

. We shall assume that typical regularity conditions hold and
that the model is correct, so that asymptotically is multivariate
normally distributed with a mean of zero and a covariance matrix given by

(4)

n[~ ( )]s − σ θ
n[~ ( )]s − σ θ

acov sn ~ − =σ θa fn s Γ
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The notation “acov” means asymptotic covariance, i.e. asn becomes arbitrar-
ily large. It implies that the covariance matrix of the data s~, based on a sample
of sizeN, is given byΓ ⁄ n, where the divisor reflects the typical reduction of
variances with increasing sample size. Now the specific form ofΓ, that is, the
detailed mathematical expressions for the elements of this matrix, depends
upon the distribution of the variables x~ that are being modeled. Let us ab-
stractly consider these matrices to be given byΓN, ΓE, andΓHK for normal,
elliptical, and heterogeneous kurtotic distributions. Explicit expressions are
given below.

Note that any specific discrepancy functionF[S, Σ(θ)] applied to a covari-
ance structure model is associated with two matrices:

1. , which is a consistent and unbiased estimator of some population weight
matrix W having the property that, except possibly for a constant, the matrix
of expected values of the second derivatives is given by

This could be called the information matrix (adopting a standard usage from
maximum likelihood theory) for a saturated model.W is fixed by the estima-
tion method chosen, that is, the specific discrepancy functionF[S, Σ(θ)] to be
optimized. Although data may be used to estimateW, via , this matrix does
not necessarily depend on the actual distribution of the data variables x~, which
may be different from that assumed.
2. Γ, the true covariance matrix of the sample covariances, which depends on
the actual distribution of the data. Under specific distributions, this can be
denoted asΓN,ΓE, or ΓHK, depending on the actual distribution of the variables
that generates the sample s~. Although there is a single true (typically unknown)
Γ, different choices of estimators (e.g. ) imply different discrepancy func-
tions.

As a result, to be more precise, we shall now define the particular discrep-
ancy function chosen for analysis asF[(S, Σ(θ)) | W,Γ]. With this notation,
following Browne (1984) we can define a discrepancy function for a correctly
specified distribution as one in whichW = Γ−1, i.e. the class of functionsF[(S,
Σ(θ)) | W = Γ−1,Γ]. These functions are called asymptotically optimal by
Satorra (1989). For all such functions and data, test statistics have a simple
form.

If we estimateθ so as to minimizeF[(S, Σ(θ)) | W = Γ−1,Γ], at the mini-
mum we have . For such correctly specified discrep-
ancy functions, if the sample size is large enough, under the model hypothesis
we have

$W

ε ∂
∂θ∂θ θ σ

2F

′

F

H
GG

I

K
JJ =

=
W.

$W

$ΓN

F[( , ( $ )) | , ]S WΣ Γ Γθ = −1

(5)
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Thus there exists a simple test of the model. In addition, the estimators are
asymptotically efficient, i.e. have the smallest possible sampling variances
among estimators using the same information from the data. The covariance
matrix of is given by the inverse of the optimal information matrix (adopting
this name from ML theory), namely

where is the matrix of partial derivatives of the model
with respect to the parameters. Standard errors are then the square roots of the
diagonal elements of (7). In practice, consistent estimators of the matrices in
(7) are used.

To make (7) a bit more intuitive, consider again the linear regression model.
For that model, the covariance matrix of the residual�, up to a constant, isΓ =
Ι, and with∆ = X, the matrix in (7) is proportional to (X′X)−1. This is the usual
result, but it also holds more generally. Suppose in regression that the covari-
ance matrix of the� is Γ, not I , and that GLS with weight matrixΓ−1 is used
rather than least-squares estimation. Then the covariance matrix of the estima-
tor is (7), i.e. proportional to (X′Γ−1X)−1. However, as we shall see, when the
distribution of variables is misspecified,  (7) does not give the covariance
matrix of . Unfortunately, in practice, researchers seem to use Equation (7)
whether or not it is the correct formula to use.

STATISTICS BASED ON MISSPECIFIED DISTRIBUTIONS

Now we consider the more general case, in which the discrepancy function
used in an analysis is misspecified, yet we desire to compute correct statistics.
We define a misspecified function as one in which W≠ Γ−1, i.e. the class of
functionsF[(S,Σ(θ)) | W ≠ Γ−1,Γ]. Perhaps the most typical example is one in
which . That is, a normal theory method is used, but the
data are not normally distributed. In such a case, (6) and (7) do not hold.
Specifically, T is not χ2 distributed, and the matrix (7) is not relevant nor
computed. It also means that the estimator generally is not asymptotically
efficient, i.e. it will not have the smallest possible sampling variability. This
might be an argument for using discrepancy functions that are correctly speci-
fied, but this may be impractical. As noted by Bentler & Dijkstra (1985),
Dijkstra (1981), Shapiro (1983), and especially by Satorra & Bentler (1986,
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1988, 1994), the general distribution ofT is in fact notχ2, but rather a mixture
i2, but rather a mixture

where αi is one of thedf (degrees of freedom) nonnull eigenvalues of the
matrix UΓ, τi is one of thedf independent variates, and, when there are no
constraints on free parameters,

U = W − W∆(∆′W∆) −1∆′W (9)

is the residual weight matrix under the model and the weight matrixW used in
the estimation.3 Even though the distribution (8) has been known for over a
decade, its usage has been considered impractical, and to our knowledge, the
test statistic (8) was first used in covariance structure analysis by Bentler
(1994). It is not available in any extant program.

Another test statistic that should hold generally, yet has not become avail-
able in any program, is the general quadratic form test statistic of Browne
(1984, Proposition 4, Equation 2.20). Unlike tests based onT (see Equation 6),
the test statistic

is distributed. Here, is given by the matrix defined in (9), andW = Γ−1

is based on the asymptotically distribution free (ADF—see Equation 14 be-
low) estimated weight matrix. This test statistic can be used without any
assumption that the matrix used in a minimum discrepancy function (see
Equation 5) has been correctly specified. Browne (1984, p. 82) noted that
although Equation (10) is theoretically correct, it lacked empirical investiga-
tion. Remarkably, this is still true today. Its chief appeal lies in it enabling the
more tractable ML or GLS estimation methods to be employed for obtaining
the parameter estimates. Whether (10) suffers from the problems of poor
performance  in small samples, like the  ADF  test statistic  (see  below), is
unknown but is certainly a possibility. As noted by Browne (1984, p. 70),
Bentler’s (1983b) linearized ADF estimator yields aχ2 test that is an alterna-
tive to (10). It is the default ADF method and statistic in EQS.

Although not strictly relevant to this section, we should note that a version
of the quadratic form test statistic based on that of Browne (1984) was devel-
oped by Bentler for use with normal theory least-squares estimation. Since the

T df
i i

o → Σ1 α τ ,

χ1
2

T nF nQF QF s s= = − ′ −$
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$ $
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typical test statistic (6) is not available, he used a variant of (10) based on
normal theory, namely, where

and is given by the matrix defined in (9) with based on the
normal theory estimated weight matrix. Applied to least-squares estimation,
this test has been in EQS and its documentation since 1989 (Bentler 1995).
Similar tests hold, of course, for elliptical and heterogeneous kurtotic distribu-
tions by suitable use of . Tests of this form also were
discussed by Satorra & Bentler (1990). Satorra & Bentler (1994) showed in a
small study that the test could work quite well. Of course, tests such as (11)
require correct distributional specification, which Browne’s test (10) was de-
signed to avoid.

Under the correct model, but with distributional misspecification, the ma-
trix (7) also does not describe the variability of the estimator . The correct
large-sample covariance matrix is given by

This covariance matrix has been known to be the correct covariance matrix of
the estimator for almost 15 years (e.g. Arminger & Schoenberg 1989; Bentler
1983a; Bentler & Dijkstra 1985; Browne 1982, 1984; Chamberlain 1982;
Dijkstra 1981; Shapiro 1983; see also Kano 1993), but even today it seems to
be computed only in the EQS and LINCS (Schoenberg & Arminger 1990)
programs. In EQS, where (12) has been available since 1989, it is known as the
“robust” covariance matrix. In contrast, by default extant programs calculate

which is the inverse of the information matrix. Even though (13) does not give
correct standard errors, it is the formula used in typical practice, e.g. in ML
estimation without normal data.

Emphasizing again the parallel to linear regression withy = Xβ + �, the
information matrix (13) does not give the covariance matrix of the least-
squares estimator if cov(�) is not proportional to I. The correct covari-
ance matrix is given by (12), withW = I (due to least-squares estimation),∆ =
X, andΓ as the true covariance matrix of the�. More generally, if is the
generalized least-squares estimator based on the incorrect assumption that cov
(�) = W−1, the information matrix formula (13) does not give the standard
errors, whereas (12) does.

Although the  tests (8) and  (10) and  the covariance matrix  (12) define
statistics that are always correct, irregardless of the distribution of variables,
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they are not the only options, nor necessarily the best options in any given
situation. Chou et al (1991), Chou & Bentler (1995), and Finch et al (1995) did
find the robust covariance matrix to give good estimates of sampling variabil-
ity. Bentler (1994) found the mixture test (8) performed very well in most
instances, but was destroyed by a certain type of nonnormality. The source of
good or poor performance is not understood, but it is clear from the formulas
that poor estimates ofΓ may make these statistics behave badly in practice.
Since the various results summarized in this paper rely on large-sample theory,
it is also possible that these statistics can be outperformed in small samples by
other methods. Additional research is clearly needed.

If the distributional assumption is correct so thatW = Γ−1, the robust
covariance matrix given in (12) reduces to the usual inverse of the information
matrix as given in both (7)  and (13).  More generally, the  standard error
estimates obtained from (13) cannot be smaller than those of (12), because the
difference between (12) and (13) is nonnegative definite. This means that
using the usual and incorrect information matrix expression (13) under dis-
tributional misspecification will understate the variability of the estimator.
This bias can be substantial, as was clearly shown by Finch et al (1995). In
practice, this would make the parameter estimates appear to be more signifi-
cant inz-statistics than they really are. We now review the test statistics used
in practice and point to some problems and potentials.

SOME SPECIFIC TEST STATISTICS

If a distribution-free method can be used, the results will be optimal because
the discrepancy function would then always be correctly specified. This is the
ideal situation introduced into covariance structure analysis by the ADF
method of Browne (1982) and the minimum distance method of Chamberlain
(1982), which are identical. They proposed minimizing the quadratic form
discrepancy function in whichW = Γ−1

without any assumption on the distribution of variables. To implement this, an
old result was used, namely that

where

is the fourth-order multivariate moment of variables xi about their meansµi,
andσij is an element ofΣ. In practice, sample moment estimators

FQD s s= − ′ −[~ ( )] $ [~ ( )]σ θ σ θW

Γij k ijk ij k, ,l l l= −σ σ σ

σ µ µ µ µijk ti i tj j tk k tx x x xl l l= − − − −Eb gd ib gb g

s N x x x x x x x xijk ti i tj j tk k tl l l= − − − −−1
1ΣN b gd ib gb g

(14)
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and

are used to consistently estimateσijkl andσij to provide the elements of .
Alternative ADF estimators, based on linearization, also are available (Bentler
1983a,b, Bentler & Dijkstra 1985). The ADF methods for the first time pro-
vided a way of attaining theχ2 test of model fit (6) without an assumption on
the distribution of variables; they also provided for optimal and correct stand-
ard errors via (7). The standard ADF method is now available in most struc-
tural modeling programs under various names: arbitrary distribution general-
ized  least squares (AGLS) in EQS  and weighted least squares  (WLS)  in
LISREL. EQS gives the linearized ADF method by default.

Unfortunately, this great theoretical advance has not proven to be practi-
cally useful. Although theχ2 test of model fit (6) is in principle always
available via , the sample size may need to be impractically large
for the theory to work well in practice. For example, in the simulation study of
Hu et al (1992), at the smallest sample sizes the ADF test statistic virtually
always rejected the true model, and sometimes 5000 cases were needed to
yield nominal rejection rates. Discouraging results are typical (Chan et al
1995, Chou & Bentler 1995, Chou et al 1991, Curran et al 1994, Muthén &
Kaplan 1992). Yung & Bentler (1994) proposed some computationally inten-
sive modifications to the ADF test statistic, which improve but do not fully
cure its performance deficiency.

At the most restrictive end of the distributional continuum, the ML discrep-
ancy function based on the assumed normality of variables is

FML = log|Σ| − log|S| + tr(SΣ−1) − p.

As shown by Browne (1974), for this discrepancy function

whereKp is a transition matrix of known 0, 1/2, or 1 values that reduces thep2

× p2 matrix (Σ ⊗ Σ) to orderp*, and⊗ is the Kronecker product. Although it is
not obvious, implicitlyW = ΓN

−1, so, if the data are truly multivariate normal
meets (6). But if the data are not normal,TML is generally not aχ2

variate (though it may be so, e.g. via asymptotic robustness theory). Assuming
TML to be aχ2 variate is the typical mistake in applications of covariance
structure analysis. The vices and virtues of the ML statistics are shared by
normal theory GLS statistics based on minimizingFGLS = .5tr{[ S − Σ(θ)]
V−1} 2. If the data are non-normal, this function is always incorrectly specified,
and (6) cannot be guaranteed to hold. However, if the data are normal, this
function may or may not be correctly specified, depending on the choice of the

s n x x x xij ti i tj j= − −−1
1ΣN b gd i
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weight matrixV. The choice ofV = I , as in least-squares (LS) analysis, is
misspecified, so (6) will not hold. The typical choice of GLS isV = S; then,
W = ΓN

−1, and will meet (6). If is iteratively updated,
FGLS is the reweighted least-squares functionFRLS, yielding .
This also meets (6). In fact, Browne (1974) has shown that ifV converges in
probability to Σ (e.g. V = S or V = ) then GLS and ML estimators are
asymptotically equivalent.

Estimators and tests whose requirements fall between the normal and distri-
bution-free theory are given by elliptical and heterogeneous kurtosis theory. In
elliptical theory (Browne 1982, 1984), all marginal distributions of a multi-
variate distribution are symmetric and have the same relative kurtosis. This is
more general than normal theory, yet estimators and test statistics can be
obtained by simple adjustments to the statistics derived from normal theory
methods. Let be the common kurtosis parameter of a distri-
bution from the elliptical class. Multivariate normal distributions are members
of this class withκ = 0. The fourth-order multivariate momentsσijkl are related
to κ by

As a result of this simplification, theFQD discrepancy function for an elliptical
distribution simplifies to

where as before V is any consistent estimator ofΣ and

δ = κ ⁄ [4(κ + 1)2 + 2pκ(κ + 1)]

(Bentler 1983a). The selection ofV as a consistent estimator ofΣ and a
kurtosis estimator such as

leads, under the model and assumptions, to an asymptotically efficient estima-
tor of θ with TE = nF̂E meeting (6). If is iteratively updated, and the
model is invariant with respect to a constant scaling factor, at the minimum of
FE the second term drops out yieldingTE = TERLS(see Browne 1984, Shapiro
& Browne 1987).

Heterogeneous kurtosis (HK) theory (Kano et al 1990) defines a still more
general class of multivariate distributions that allows marginal distributions to
have heterogeneous kurtosis parameters. The elliptical distribution is a special
case of this class of distributions. Let represent a measure of
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excess kurtosis of thei-th variable, and the fourth-order moments have the
structure

whereaij = (κi + κj) ⁄ 2. If the covariance structureΣ(θ) is fully scale invariant
and the modeling and distributional assumptions are met, theFQD discrepancy
function can be expressed as , where ,
and * denotes the elementwise (Hadamard) product of the two matrices of
the same order. In practice, using the usual moment
estimators for each variable , with . [For another esti-
mator, see Bentler et al (1991).] The HK estimator is asymptotically efficient,
and the associated test statistic , at the minimum meets (6). An
attractive feature of the Kano et al theory is that fourth-order moments of the
measured variables do not need to be computed as they do in ADF theory,
because these moments are just a function of the variances and covariances
and the univariate kurtoses. As a result, the HK method can be used on models
with many measured variables. While ADF cannot be implemented with more
than about 30–40 variables due to the large size of its weight matrix, this is not
a limitation of the Kano et al HK method. Koning et al (1993) studied a
generalization ofFHK in which the matrix C is unrestricted but, unfortunately,
it must be related to an estimated ADF weight matrix.

Based on the general distribution (8), Satorra & Bentler (1986, 1988, 1994)
developed two modifications of any standard goodness-of-fit statistic testT
(TML, THK, etc.) so that its distributional behavior should more closely ap-
proximateχ2. The mean of the asymptotic distribution ofT is given bytr(UΓ),
whereU is defined in (9). Letting , where is a consistent
estimator ofU based on is an estimator based on the ADF matrix (14),
the Satorra-Bentler scaled test statistic is

T
__

= c−1 T. (15)

The scaling constant c effectively corrects the statistic T so that the mean of
the sampling distribution ofT

__
will be closer to the expected mean under the

model (see also Kano 1992). The scaled statistic that has been implemented in
EQS since 1989 is based on the use ofTML in (15). Chou & Bentler (1995),
Chou et al (1991), and Curran et al (1994) found the scaled statistic to work
well in simulation studies. In the study by Hu et al (1992), the Satorra-Bentler
scaled statistic performed best overall under a wide variety of conditions of
varied distributions and sample sizes, outperforming the ADF method at all
but the largest sample sizes, where it performed equally well. Even though
current evidence shows that the scaled statistic (15) performs better than others
currently available in modeling programs, in principle some of the alternative
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statistics, such as those based on (8) and (10) might perform better because
their sampling distributions are well-specified. However, Bentler (1994) found
(8) to break down under conditions where the scaled statistic remained well-
behaved, and essentially nothing is known about how (10) compares to (15).

Satorra & Bentler also reported the development of a test statistic that
adjusts not only the mean, but also the variance, of the statistic to more closely
approximate aχ2 distribution. The adjusted test statisticT

___
is obtained by

computing the integerd nearest tod′, defined by ,
and computing the statistic

The effect is to scale with a degrees of freedom adjustment, since (16) isχ2

distributed withd df. If facilities permitχ2 to be computed for nonintegerdf,
one can calculateT

___
= 


d′ ⁄ [tr(UΓ)]


 T and evaluate it with fractionaldf. Satorra

& Bentler (1994) showed with an illustrative example that their statistic (16)
can work well, but we are not aware of any systematic study of this statistic.

Because many of the potentially valuable statistics are not available in
standard computer programs, in the Appendix we show how a standard matrix
language available in SAS or SPSS can be used, along with extant programs
such as LISREL and EQS, to yield some of the potentially useful tests. We
now illustrate the similarities and differences with a short example.

AN EXAMPLE: TEACHER STRESS

In a study examining stress among school teachers, Bell et al (1990) used an
11 item measure of somatic complaints (e.g. dizziness, shortness of breath,
headaches, etc.). The questions were answered on a 5 point response scale for
frequency of occurrence (1 =rarely or neverto 5 = very often). The Pearson
correlation matrix for these 11 items, as well as their standard deviations and
measures of relative skewness (g1(i)) and relative kurtosis (g2(i)) are given in
Table 1 for 362 primary school teachers out of the total teacher sample of 956
from primary, technical, and secondary schools. The data are quite obviously
non-normal, with excessive kurtosis and skewness being evident for all items.
Although structural models can be fitted to data of this kind using polychoric
correlations, in applying such models one assumes that the underlying latent
distribution for responses to each item is normal. For the sorts of data being
considered in this example, the validity of that assumption may well be ques-
tioned.

The 11 items were fitted to a single factor model by LISREL using HK
estimation. Details on how this is done are in the Appendix: In essence we
minimize theFQD discrepancy function (i.e. WLS in LISREL nomenclature)

′ = ÷d tr U tr U[ ( )] [( ) ]Γ Γ2 2

T
d

tr U
T=

Γb g
. (16)
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but supply our own computed weight matrixW; W makes use of Browne’s
(1977) normal theory relationW = ΓN

−1, where , but
where the general matrixV is in this instance given by from HK
theory.

The HK parameter estimates and standard errors are displayed in Table 2.
For comparative purposes, the results of using both ML and ADF (i.e. WLS)
estimation are also provided in Table 2, along with the Satorra-Bentler scaled
test of fit (Equation 15) and robust standard errors (Equation 12) for maximum
likelihood. (Details of how these  robust procedures  can  be  computed  for
LISREL output are also given in the Appendix.)

The model test statistics for both ML (TML =79.89, p. < .001) and ADF
(TADF =66.82, p.=0.015) are considerably higher than either the HK (THK
=36.14, p.=0.794) or the scaled ML statistics (T

__
ML =45.89, p.=0.394). If we

assume that the null hypothesis of a single factor model holds exactly, then the
test statistics for both the HK estimator and the robust scaled ML estimator are
quite acceptable. The corresponding probabilities for ML and ADF estimation

ΓN p pK V V K= ′ ⊗2 ( )
$ $ *C = A Σ

Table 1 Correlation matrix of 11 somatic complaints items and measures of item distribution
(N = 362).

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

1. 1.000

2. 0.503 1.000

3. 0.375 0.388 1.000

4. 0.542 0.498 0.459 1.000

5. 0.444 0.471 0.451 0.472 1.000

6. 0.419 0.411 0.382 0.364 0.369 1.000

7. 0.291 0.302 0.272 0.262 0.274 0.380 1.000

8. 0.468 0.509 0.295 0.455 0.402 0.450 0.245 1.000

9. 0.274 0.224 0.230 0.270 0.285 0.232 0.173 0.256 1.000

10. 0.351 0.294 0.200 0.308 0.284 0.340 0.256 0.402 0.280 1.000

11. 0.396 0.399 0.399 0.445 0.382 0.409 0.342 0.394 0.290 .0.342 1.000

s.d. 0.648 0.809 1.210 0.809 0.837 1.005 0.917 0.877 1.045 0.671 1.224

g1(i) 2.949 2.148 0.757 2.466 2.260 1.584 1.115 2.170 2.127 2.717 0.588

g2(i) 9.229 4.547 -0.389 6.012 4.677 1.793 0.645 4.245 3.588 7.135 -0.641

Note: andg x x x x1
1 2

1
3
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are both less than 0.02, thereby indicating that the null hypothesis would have
been rejected if the latter two discrepancy functions had been employed in
practice. Interestingly, the adjusted ML statistic ( =51.07, p.=0.391), with
fractionaldf = 48.98, has almost exactly the same probability of acceptance as
the scaledT

__
ML statistic. The results here are consistent with those of Hu et al

(1992) who found that the HK estimator tended to slightly underestimate the
expectedχ2 statistic relative to the robust scaled ML statistic, but that the HK
test statistic was more correct than either the ML or ADF statistics, which were
inflated well above their expected values. If we inspect the parameter esti-
mates and standard errors in Table 2, we see that the HK and ML values are
more similar compared to the ADF estimates, although the difference is more
pronounced for factor loadings than for unique variances. The ML standard

TML

Table 2 Unstandardized parameter estimates and standard error values for the single factor
model of somatic complaints under different estimation methods (df = 44).

ML ADF HK Robust ML

(S.E.)

λ1 0.453 (0.031) 0.289 (0.058) 0.403 (0.054) (0.069)

λ2 0.561 (0.039) 0.416 (0.056) 0.512 (0.058) (0.064)

λ3 0.702 (0.062) 0.632 (0.053) 0.751 (0.066) (0.056)

λ4 0.571 (0.039) 0.356 (0.060) 0.541 (0.060) (0.067)

λ5 0.542 (0.042) 0.425 (0.058) 0.531 (0.060) (0.068)

λ6 0.620 (0.051) 0.597 (0.064) 0.653 (0.063) (0.068)

λ7 0.411 (0.049) 0.373 (0.054) 0.459 (0.056) (0.062)

λ8 0.578 (0.043) 0.466 (0.061) 0.509 (0.063) (0.071)

λ9
0.418 (0.056) 0.388 (0.074) 0.414 (0.076) (0.078)

λ10 0.330 (0.035) 0.228 (0.048) 0.312 (0.054) (0.054)

λ11 0.762 (0.061) 0.661 (0.049) 0.795 (0.064) (0.050)

ψ1
0.215 (0.019) 0.167 (0.026) 0.209 (0.036) (0.031)

ψ2
0.340 (0.029) 0.281 (0.038) 0.325 (0.044) (0.047)

ψ3
0.971 (0.078) 0.839 (0.067) 0.855 (0.073) (0.074)

ψ4
0.329 (0.029) 0.194 (0.034) 0.295 (0.046) (0.050)

ψ5
0.407 (0.033) 0.302 (0.039) 0.382 (0.052) (0.056)

ψ6
0.626 (0.051) 0.439 (0.062) 0.551 (0.062) (0.075)

ψ7
0.672 (0.052) 0.571 (0.047) 0.611 (0.056) (0.059)

ψ8
0.434 (0.036) 0.325 (0.040) 0.384 (0.052) (0.064)

ψ9
0.918 (0.070) 0.734 (0.101) 0.879 (0.102) (0.117)

ψ10
0.341 (0.027) 0.198 (0.035) 0.302 (0.046) (0.052)

ψ11
0.916 (0.075) 0.829 (0.073) 0.861 (0.071) (0.075)

χi2 value 79.89 66.82 36.14 45.89

$ ( )θ S. E. $ ( )θ S. E. $ ( )θ S. E.
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errors are lower than corresponding ADF and HK values, whereas the latter
two are slightly lower on average than the robust ML standard errors.

It is also instructive to consider the effect of applying Browne’s (1984)
general quadratic test of fit (Equation 10) to the incorrectly specified ML
discrepancy function. Under maximum likelihood, this statistic is 70.11 and is
therefore an improvement on the inflated likelihood ratio statistic of 79.89.
However, it is still not comparable to the robust scaled statistic. The HK
estimator statistic under Browne’s general quadratic test of fit is much higher
at 68.23, compared with its correspondingTHK value. Using the robust scaled
ML  statistic as a  benchmark, these results  suggest that  Browne’s general
quadratic test of fit does not adequately correct for employing an inefficient
estimation method in this example. When the complete sample of 956 teachers
is analyzed (these results are not shown here), the ADF test statistic
(TADF=101.27) is now much closer to the scaled ML statistic (T

__
ML=96.90) and

the HK statistic (THK=76.02), compared to the ML statistic (TML=166.76).
Assuming from simulation studies such as those of Hu et al (1992) that the
robust scaled statistic is the least biased test of fit of those available, the ADF
estimator therefore appears to require a large number of cases to obtain rela-
tively accurate tests of fit even in the present instance of a small-to-moderate
number of variables.

DISCUSSION

It is remarkable that in spite of substantial technical innovation in the statistics
of covariance structure analysis during the past 15 years, only a few of these
developments have found their way into texts, commercial computer pro-
grams, or general knowledge among users. For example, one of the authors
inquired about the robust covariance matrix through the SEMNET special
interest internet user’s group and found only scattered awareness about its
existence. It seems that only the most dedicated methodologists will know
about the technical inadequacies in the methods routinely available for appli-
cation. This review aims at broadening the knowledge of proven and poten-
tially useful statistics for this field, and, with the code accessible via the
Appendix, permitting the applied researcher to incorporate some of the more
promising into their own favorite computer program. Although we have con-
centrated on methods for a single group, the same principles hold for multiple
population covariance structure models (e.g. Bentler et al 1987) and to mean
and covariance structure models (e.g. Browne & Arminger 1995, Satorra
1992). Some parallel results have been reported in the econometric literature
(Newey & McFadden 1994) and in the statistical literature on nonlinear re-
gression (Yuan 1995). Clearly, these newer  methods should prove  useful
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toward the more accurate evaluation of psychological theories with nonexperi-
mental data.

With a small number of variables to model, clearly there are several alterna-
tive test statistics that hold under potential misspecification. Currently, only
the Satorra-Bentler scaled statistic (15) is known to behave well empirically
under a wide variety of distributional misspecifications. Yet, there are other
potentially useful statistics that have hardly been studied, e.g. the mixture test
(8) and the quadratic form test based on (10). It is not clear why this should be
so. Of course, simulation work is time consuming and few theoretical statisti-
cians will undertake it, yet without such work we will never know the actual
performance of statistics under less than textbook conditions. Certainly, future
research should determine whether these ignored tests have any role to play in
real data analysis. In such situations, there seems to be little excuse for not
using the robust covariance matrix (12), at least until feasible and improved
alternatives become available. The  current practice  of  typically  using the
wrong formula (Equation 13) to evaluate parameter significance seems espe-
cially unfortunate because it tends to give misleadingly optimistic results.

The situation is more difficult for models based on say, 40 or more vari-
ables, where computer limitations make some estimators infeasible. Although
not enough research has gone into establishing the types of nonnormal distri-
butions that might be fruitfully modeled by the Kano et al (1990) HK ap-
proach, this method should be studied further in the future since it is one of the
few that holds any promise of handling models based on a huge number of
nonnormal variables. In such circumstances, methods that require computation
of a distribution-free estimate of the true covariance matrixΓ of the sample
covariances will become unavailable, and normal, elliptical, and HK theory (or
transformations to such — see Mooijaart 1993) seem to be the only alterna-
tives. Aside from asymptotic robustness theory, which if it could be applied
wisely would suggest when use of normal theory methods would work (see,
e.g. Hu et al 1992), HK theory would seem to be a promising alternative. In the
Appendix we describe a way to implement this method. It could be imple-
mented easily in other programs if software distributors followed Schoenberg
& Arminger’s (1990) LINCS program of permitting input of the matrix V in a
normal theory method, since this method can be adapted to yield the HK
method. The rationale for the HK method requires scale-invariant models (e.g.
Krane & McDonald 1978), so equality restrictions could create a problem in
practice (see also O’Brien & Reilly 1995). Extension of the theory to correla-
tion structure models would permit a wider range of models to be used. The
standard error estimates for the HK theory are easy to compute, though of
course they are only strictly correct under an HK distributional assumption.
Research will have to establish the robustness of the HK statistics to violation
of its assumptions. Certainly, because of the need to estimate a very largeΓ,
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the robust covariance matrix (12) will be difficult to compute. Perhaps com-
puter-intensive resampling methods will have to be used instead (e.g. Bollen &
Stine 1993, Ichikawa & Konishi 1995, Yung & Bentler 1995).

In addition to distributional misspecification, and the number of variables
and parameters in a model, sample size is a major factor influencing the
quality of statistics in covariance structure models. Although projection of
asymptotic theory onto small sample data analysis is an old problem (Boom-
sma 1983, Tanaka 1987), it remains a continuing one: More and more statistics
rely on fourth-order moments of the data and these are unstable at the rela-
tively  low  samples sizes  that  characterize most  real data. Clearly,  further
research should be directed toward improving estimators of weight matrices
that require such moments.

A FINAL NOTE

Since this review went to press, Yuan and Bentler (1995) developed some new
test statistics for mean and covariance structure analysis. One of these can be
computed as a simple Bartlett-type correction to the ADF test statistic. Specifi-
cally, considering a model fitted under arbitrary distributions using optimal
ADF estimation, their corrected statistic can be computed as

TCADF = TADF / (1 +TADF / n).

In a small simulation study with a covariance structure model, they replicated
earlier results showing that the standard ADF test statistic is essentially unus-
able in small to intermediate sized samples. On the other hand, their corrected
statistic yielded a dramatic improvement in performance. It behaved close to
nominally at all sample sizes, though there was a tendency for the rejection
rate under the null hypothesis to be somewhat too small. As sample size gets
very large, as is obvious from the formula,TCADF → TADF, i.e., the Yuan-
Bentler statistic becomes equivalent to the Browne-Chamberlain statistic in
covariance structure analysis. This optimistic development clearly bears fur-
ther study.

APPENDIX

This Appendix contains an overview of several procedures that have been
written in the MATRIX command language of SPSS Release 4 (SPSS 1990)
for carrying out a number of the above test statistics which are not available
currently in structural modeling programs like LISREL or EQS. These proce-
dures can be readily adapted to other matrix programming languages such as
PROC IML (SAS Institute 1990) or GAUSS (Aptech Systems 1992) or incor-
porated into general matrix procedures for covariance structure analysis (see,
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e.g. Cudeck et al 1993). Files containing the MATRIX commands, as well as
detailed instructions and test data, are available on the Internet via anonymous
ftp at ftp.stat.ucla.edu in the directory /pub/code/statlib/csm or from either
author. For those unfamiliar with using ftp, brief instructions are provided at
the end of this Appendix. Further details concerning the use of the procedures
are provided in files at the ftp site.

Heterogenous Kurtosis Estimation

Heterogenous kurtosis estimation can be obtained from standard covariance
structure modeling programs if the program includes ADF estimation as an
option. To implement the HK estimator, we make use of the equivalence
between the normal theory GLS discrepancy function

and the quadratic discrepancy function

where in the latter

and is the Moore-Penrose inverse of Kp (see, e.g. Browne 1974, 1984). It
is useful to remember that in this instance, because the discrepancy
function is correctly specified. In any desired application of the HK discrep-
ancy function to a particular covariance structure model employing SPSS
MATRIX commands, we need to (a) calculate the estimates of

for the observed variables i = 1,...,p in the model, (b) calcu-
late the product , where , (c) compute the
required transition matrix Kp for the number of observed variables, and (d)
compute (A3), where we substitute forV and signify the resultant weight
matrix as . The LISREL or EQS user then minimizes the quadratic form
discrepancy function

for heterogenous kurtosis estimation by taking the lower symmetric form of
the resultant estimate of , and inputting it as the external weight matrix
file associated with WLS or AGLS estimation respectively. It should be noted
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that the weight matrix in both LISREL and EQS is inverted after it has been
read in from an external file, so the SPSS MATRIX commands produce the
noninverted form of (A3). Similar methods can be used to obtain estimates
under elliptical  distribution in LISREL or  to compare  the equivalence of
estimation under the ML discrepancy functionFML to that of the reweighted
least-squares functionFRLS.

Scaled Test Statistics and Robust Standard Errors

The Satorra-Bentler scaled test statistic and robust standard errors are available
already in EQS. To obtain these statistics for any covariance structure model
that has been fitted by programs such as LISREL, we require (a) the ADF
weight matrix, signified here as and based on sample estimators for (14), (b)
the appropriate consistent estimator of

using Equation (A3) for the particular estimation method being employed, (c)
the matrix of partial first derivatives, and (d) the test statisticT and degrees
of freedom (df) for the fitted model. The ADF weight matrix can be obtained
from PRELIS, where it is called the asymptotic covariance matrix, or it can be
computed directly using SPSS MATRIX commands. The matrix can be
computed by a SPSS MATRIX procedure using (A3), where we substitute for
V the appropriate sample matrix for the estimation method chosen in LISREL.
Finally, a numerical approximation can be obtained in SPSS MATRIX for the
matrix of partial derivatives using a forward finite-difference method (Ken-
nedy & Gentle 1980, Section 10.2.6). Leth be a small constant, for instance
10−5, and letci be a column vector of the same dimension asθ with a value of
unity in itsi-th element and zero values in all remaining elements. Then thep*
× 1 vector of partial derivatives for thei-th value ofθ is given by

The p* × q matrix can be derived from the concatenation of successive
columns of . The test statisticT can be found in the printout of the
model.

Let us assume, for example, that we have estimated a model using
maximum likelihood, and that we have calculated the three required matrices
noted above (i.e. , and ) and also obtained the values forTML
and thedf from the LISREL output. Then we can obtain (a) the Satorra-Bentler
scaled test statistic by simple substitution to obtainU in Equation (9) and
then solve Equation (15); and (b) robust standard errors by simple substitution
into Equation (12), in which and . The Satorra-Bentler ad-
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justed test statistic (16) can be readily obtained in a similar manner. Note that
SPSS MATRIX has aχ2 cumulative distribution function routine that takes
nonintegerdf values, so that it can compute the more precise form of (16).

Accessing the SPSS MATRIX files by FTP
For persons who have not used anonymous ftp (file transfer protocol) proce-
dures before, the following gives a few basic instructions. You will need
access to the Internet and appropriate software for performing ftp. The host-
name of the computer where the SPSS MATRIX files can be found is
ftp.stat.ucla.edu. The account name that you must give to gain access is
“anonymous” and the password is (usually) your email address. Once you
have gained access, go to the subdirectory /pub/code/statlib/csm where the
files are located (typically, this is done by typing “cd pub/code/statlib/csm”).
All files are in ASCII format and can be transferred to your own computer by
the appropriate commands for the particular ftp software implementation being
used (typically, this is by typing “mget *.*”). Some ftp software implementa-
tions utilize graphical user interfaces, and so there is no way of covering all the
possibilities of how to ftp the files, beyond the basic approach given here. It
would be best to consult your local computer advisory service if you are
uncertain about what to do.

Any Annual Review chapter, as well as any article cited in an Annual Review chapter,
may be purchased from the Annual Reviews Preprints and Reprints service.

1-800-347-8007; 415-259-5017; email: arpr@class.org
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