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Data sets in social and behavioural sciences are seldom normal. In� uential cases or
outliers can lead to inappropriate solutions and problematic conclusions in struc-
tural equation modelling. By giving a proper weight to each case, the in� uence of
outliers on a robust procedure can be minimized. We propose using a robust
procedure as a transformation technique, generating a new data matrix that can be
analysed by a variety of multivariate methods. Mardia’s multivariate skewness and
kurtosis statistics are used to measure the effect of the transformation in achieving
approximate normality. Since the transform ation makes the data approximately
normal, applying a classical normal theory based procedure to the transformed data
gives more ef� cient parameter estimates. Three procedures for parameter evalua-
tion and model testing are discussed. Six examples illustrate the various aspects
with the robust transformation.

1. Introduction

As one of the major tools for studying the relationships among latent constructs, structural
equation modelling (SEM) has been used extensively in social and behavioural sciences. This
is re� ected in the dramatic increase in the literature on SEM in the past decade (see Austin &
Calderón, 1996; Austin & Wol� e, 1991; Bentler & Dudgeon, 1996; Tremblay & Gardner,
1996). The classical statistics associated with SEM are based on the assumption of multi-
variate normality (Bollen, 1989; Jöreskog, 1969). Since data sets in social and behavioural
sciences are seldom normal (Micceri, 1989), Browne (1984) developed a generalized least-
squares (GLS) approach which is asymptotically distribution-f ree (ADF). The normal theory
maximum likelihood (ML) and the ADF methods are the two main approaches to SEM and
hence are implemented in major SEM software programs such as LISREL (Jöreskog &
Sörbom, 1993) and EQS (Bentler, 1995). These approaches can give consistent parameter
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estimates for a variety of distributions. However, for typical data sets with excess kurtosis in
the social and behavioural sciences, estimates by these methods are generally not ef� cient. It
is known that the sample covariance matrix S is ef� cient only when data are normal. With
in� uential cases or outliers in a sample, S will be inef� cient or biased. Actually, not just the
normal theory and ADF methods, but any methods based on S will inherit the problem of
inaccurate model evaluation, such as biased parameter estimates and incorrect test statistics.
There are at least two types of approaches to dealing with this problem. The � rst involves the
use of transformations to achieve multivariate normality, and the second involves the use of
robust statistics. In this paper, we combine these two approaches.

In pioneering work, Mooijaart (1993) proposed the use of univariate Box–Cox transfor-
mations of badly distributed variables to achieve better performance in structural modelling,
and showed that the method could be implemented effectively through ML. He concluded
that optimally transforming the variables could lead to substantially different, and presum-
ably better, models. It is likely that Mooijaart’s approach could be improved if it were
possible to replace the separate univariate transformations by multivariate transformations,
and if outliers could also be handled within the methodology . In the context of multivariate
analysis, Velilla (1995) explored a generalization of the Box–Cox transformation family to
the multivariate case. In theory, SEM can proceed based on the transformed data in a way
parallel to that pioneered by Mooijaart. However, transformation to normality based on Box–
Cox transformations requires the estimation of many extra parameters besides the mean and
covariance matrix. More importantly, a conceptual issue is that with the Box–Cox
transformation it is hard to know what the relationship is between the covariance structure
of the transformed data and that of the original data which are of primary interest.

For a data set with outliers, robust estimation of the population covariance matrix has been
studied and recommended by a variety of authors in the statistical literature (Hampel,
Ronchetti, Rousseeuw, & Stahel, 1986; Huber, 1981; Wilcox, 1997). Besides diminishing the
in� uence of outliers, a robust covariance is generally more ef� cient than the sample
covariance for a data set from a distribution with heavy tails. Yuan and Bentler (1998a,
1998b) recently proposed several robust methods for SEM. Compared with the classical
approaches, these robust approaches have the following advantages. First, robust approaches
can still give reasonable solutions with problematic data, while classical approaches lead to
inappropriate solutions such as Heywood cases. Second, by downweighting the in� uence of
outliers, robust approaches lead to smaller chi-square statistics which give more support to a
theoretically interesting model. Third, for data sets that are approximately normal, both the
classical and robust approaches lead to basically the same conclusions. Based on the above
comparisons, and considering that data collection procedures in the social and behavioural
science are susceptible to outliers, robust methods should be at least as relevant to SEM as
they are to regression, where a variety of robust procedures have been developed.

In this paper, by comparing the formula for a robust covariance with that of the ordinary
sample covariance, we propose using the robust estimation process as a data transformation
procedure. Comparing this transformation to the Box–Cox transformation, there is no need to
estimate any extra transformation parameters besides the mean vector and the covariance
matrix. Since the sample covariance of the transformed data is just the robust covariance
matrix, as showed in Yuan and Bentler (1998b), the covariance structure of the transformed
sample will be the same as the covariance structure of the original sample when the data are
approximately elliptically distributed and the model structure is invariant under a constant
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scaling factor (ICSF) (Browne, 1982). In order to operationalize our approach, we will use
Mardia’s multivariate skewness and kurtosis statistics to evaluate the degree of normality of
the transformed data. As we shall see in some of the examples, outliers create skewness and
kurtosis in the sample, and a robust transformation makes the data approximately normal.
After the transformation, any procedures that could be applied to the original sample can also
be applied to the transformed sample. Since the transformed sample approximately follows a
multivariate normal distribution, standard normal theory based procedures should provide
quite ef� cient parameter estimates and reliable model evaluation. For comparison purposes
and in cases when the transformed sample may still not be normally distributed, we also apply
two rescaled test statistics and sandwich-type standard errors (Satorra & Bentler, 1988, 1994;
Yuan & Bentler, 1998b) to the transformed sample.

2. Robust transformation to normality

The multivariate normal distribution has been the key assumption for almost all of the
classical multivariate techniques in data analysis (Anderson, 1984). This assumption also
justi� es the use of the sample covariance matrix S because it is the most ef� cient estimate of
the population covariance matrix S when data are normally distributed. Since data sets in
practice may not follow multivariate normal distributions, various attempts to generate
multivariate non-normal distributions have been made (Fang, Kotz & Ng, 1990; Olkin, 1994).
Among the generalizations to multivariate non-normal distributions, the class of elliptical
distributions has been well studied and found applicable in many different circumstances
(Kano, Berkane, & Bentler, 1993; Lange, Little, & Taylor, 1989; Little, 1988).

The density of an elliptical distribution is given by

f (x) 5 | S | 2 1/2h{(x 2 m) 9 S 2 1(x 2 m)}, (2.1)

where h(.) is a scalar function that does not depend on m and S . The multivariate normal
distribution corresponds to h(r) 5 (2p ) 2 p/2 exp( 2 r/2). By choosing different h(.), a variety of
distributions with heavier or lighter tails than those of a normal distribution can be obtained
(Fang et al., 1990). Notice that the sample covariance matrix is not the most ef� cient estimate
of S unless the distribution is normal.

Within the family of elliptical distributions, several methods have been proposed to
estimate m and S . For a p-variate sample X1 , . . . , XN , let

d 2(Xi, m, S) 5 (Xi 2 m) 9 S 2 1(Xi 2 m)

be the Mahalanobis distance and u1(t) and u2(t) be non-negative scalar functions. Maronna
(1976) de� ned the robust M-estimator (m̂, Ŝ ) by solving the equations

m̂ 5
XN

i5 1

u1 d(Xi, m̂, Ŝ )
n o

Xi/
XN

i5 1

u1 d(Xi, m̂, Ŝ)
n o

(2.2a)

and

Ŝ 5
XN

i5 1

u2 d 2(Xi, m̂, Ŝ )
n o

(Xi 2 m̂)(Xi 2 m̂) 9 /N . (2.2b)

Different weight functions lead to different estimators. When u1(d ) 5 u2(d 2) 5 1, then (2.2)
de� nes the classical sample mean and sample covariance. When u1(d ) 5 u2(d 2) 5 ( p 1 m)/
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(m 1 d 2), then the solution to (2.2) is the maximum likelihood estimate (MLE) based
on a p-variate t distribution with degrees of freedom m. More generally, when
u1(t) 5 u2(t

2) 5 2 2 dh(t 2)/h(t 2), where dh(.) is the derivative of h(.), then (2.2) de� nes the
MLE corresponding to distribution (2.1). The well-known Huber-type M-estimator will be
obtained with

u1(d ) 5
1, if d # r,

r/d, if d > r,

±
(2.3)

and u2(d
2) 5 {u1(d )}2/t (Tyler, 1983), where r2 is given by P(x2

p > r2) 5 a, a is the
proportion of outliers one wants to control assuming the massive data cloud follows a
multivariate normal distribution, and t is a constant such that E{x

2
pu2(x

2
p)} 5 p which makes

the estimator Ŝ unbiased if sampling from a p-variate normal distribution. Within the family
of elliptical distributions , theoretical properties of m̂ and Ŝ have been studied extensively by
various authors (Huber, 1977; Maronna, 1976; Tyler, 1983, 1987). Even though data sets in
practice may not exactly follow an elliptical distribution, robust methods have shown their
effectiveness in applications such as principal components (Ammann, 1989; Devlin,
Gnanadesikan, & Kettenring, 1981), canonical correlation (Campbell, 1980, 1982), discri-
minant analysis (Kharin, 1996), SEM (Huba & Harlow, 1987; Yuan & Bentler, 1998a,
1998b), and repeated measures (Lange et al., 1989; Little, 1988). As we shall see in our
applications, the robust transformation can reduce kurtosis as well as skewness in the original
sample.

The solution to (2.2) needs an iterative procedure. For example, letting m( j ) and S
( j ) be the

j th-stage solutions, the solutions at the ( j 1 1)th stage are given by

m̂( j1 1) 5
XN

i5 1

u1 d(Xi, m
( j ), S

( j ))
Ÿ  

Xi/
XN

i5 1

u1 d(Xi, m( j ), S
( j ))

Ÿ  
(2.4a)

and

Ŝ
( j1 1)

5
XN

i5 1

u2 d 2(Xi, m( j ), S
( j ))

Ÿ  
(Xi 2 m( j ))(Xi 2 m( j )) 9 /N. (2.4b)

The estimates m̂ and Ŝ are obtained at the convergence of this process. The iterative process
(2.4) is the well-known iteratively reweighted least squares (IRLS) algorithm whose
convergence properties have been studied by Holland and Welsch (1977), Rubin (1983)
and Green (1984). The sample mean and sample covariance matrix provide convenient initial
estimates. Our experience with a variety of real data sets is that the process converges in only
a few steps.

Now we are ready for our key proposal. Let u2i 5 u2{d 2(Xi, m̂, Ŝ )} and

Xbi 5
������
u2i

p
(Xi 2 m̂). (2.5a)

Then we can rewrite (2.2b) as

Ŝ 5
XN

i5 1

XbiX 9
bi/N, (2.5b)
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which is just the sample covariance matrix of the transformed sample Xbi. When
u1 5 u2 5 1.0, (2.5a) corresponds to the centred sample Xai 5 Xi 2 X̄. As mentioned earlier,
if the sample comes from (2.1) and we have used u1(t) 5 u2(t 2) 5 2 2 dh(t 2)/h(t 2) in (2.2), Ŝ

would be the most ef� cient estimate for the population S . It is known that the sample
covariance matrix is the most ef� cient estimate of the population covariance matrix only
when the sample is from a normal distribution. This implies that we will get an almost normal
sample Xbi if weights u1(t) and u2(t) in (2.2) are correctly chosen. In practice, we do not know
the distributiona l form of h(t). However, as will be demonstrated in Section 4, an
approximately normal sample Xbi will be obtained if u1(t) and u2(t) are properly chosen.
So we may regard (2.2) as a transformation to achieve near-normality.

As with other transformation procedures, we may treat the Xbi as raw data for any given
statistical application. This approach can be compared with treating the typical deviation data
Xai 5 Xi 2 X̄ as raw data. Even though the Xbi or the Xai are not independent samples, the
correlation among the individual cases is only in the magnitude of 1/N. We may also think of
u2i and m as transformation parameters which are somewhat like the power parameters in the
Box–Cox transformation (Velilla, 1995). Besides treating Xbi as transformed data, we may
also regard the u2i and m as nuisance parameters. The nuisance parameters in weight u2i are
for downweighting the outliers, while the parameter m is the location vector which does not
in� uence the covariance parameter estimates. Treating the weight parameters as � xed at the
value of convergence in the IRLS estimation in (2.4) has been suggested by Huber (1973) and
Gross (1977) in the context of robust estimation and by Lee and Jennrich (1979) in the context
of covariance structure analysis.

A formal index is needed to evaluate the success of the transformation. Mardia (1970,
1974) developed two statistics for measuring the skewness and kurtosis of a multivariate
distribution, which are respectively

b1, p 5
1

N2

XN

i, j5 1

{(Xi 2 X̄) 9 S 2 1(Xj 2 X̄)}3

and

b2,p 5
1

N

XN

i5 1

{(Xi 2 X̄) 9 S 2 1(Xi 2 X̄)}2 .

When the sample is from a multivariate normal distribution, the asymptotic distributions of
the standard versions of these two statistics were given by Mardia (1970) as

M1 5 Nb1, p/6 ~ x
2
f , f 5 p(p 1 1)(p 1 2)/6 (2.6a)

and

M2 5
{b2,p 2 p(p 1 2)}

{8p(p 1 2)/N}1/2 ~ N(0, 1). (2.6b)

We will rely on these two statistics to evaluate the multivariate normality of a sample. If our
proposed transformation is successful, the data Xbi should be approximately normal.

To implement the transformation procedure, a speci� c weight function needs to be chosen.
A variety of weight functions exist, as listed in Table 11-1 of Hoaglin, Mosteller, and Tukey
(1983), and only minor practical differences exist among these different functions (Yuan &
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Bentler, 1998b). In Section 4, we use the Huber-type weight function as in (2.3) because of its
� exibility in controlling the tails. For example, by choosing the parameter a in the Huber-
type weight function, we can control the protection against the proportion of outliers in the
sample. As discussed by Huber (1981, p. 3), 1–10% gross errors may often exist in practical
data sets. For data sets with only slightly heavy tails, we may choose a 5 0.01; for a sample
with relatively heavy tails, we may choose a 5 0.1. We may also increase a to an even larger
number such as 0.20, if necessary. The a plays the role of a tuning constant similar to the
power parameter in the Box–Cox transformation. An advantage here is that we do not need to
estimate a and that the results are often quite insensitive to its precise value. The effect of
different weighting schemes can be evaluated through Mardia’s statistics.

After the transformation, we can proceed with a multivariate procedure based on the
transformed sample. We will mainly deal with SEM here. When treating Xbi as a sample, any
methods for SEM that could be applied to the Xi can also be used on the Xbi. Because the Xbi

approximately follows a multivariate normal distribution, we will only recommend the
normal theory MLE. Even when just based on the MLE, there are still many inference
procedures (Yuan & Bentler, 1997, 1998c). In the next section, we only outline three of them,
which will be adequate for parameter evaluation and model testing in most practical
situations.

3. Inference with transformed data

Inferences with robust procedures are generally more complicated than those with classical
procedures. As discussed by Huber (1973), Gross (1977) and Carroll (1979), there is no
unique best solution to the problems of standard errors and test statistics even for the simplest
one-dimensional robust location estimator. Some of the proposed procedures are based on
asymptotics, some on IRLS or GLS treating the weights at convergence as � xed, and some
others on mixture formulae with components from both the asymptotic expansion and the
GLS. After comparing four different standard error estimation methods through extensive
empirical studies, Gross (1977) found only slight differences among them. In the literature of
mean and covariance structure analysis, standard errors and test statistics are not unique
either. For example, for the normal theory MLE, both standard errors based on the
information matrix and a sandwich-type covariance matrix give consistent estimates (Yuan
& Bentler, 1997). In addition, there are a variety of statistics for evaluating a model structure
that may or may not perform equivalently in all situations (Curran, West, & Finch, 1996; Hu,
Bentler, & Kano, 1992; Yuan & Bentler, 1998c) with the same estimation method.

In the following, we outline three procedures for inferences. These are respectively the
standard normal theory procedure, a GLS approach treating the transformation parameters as
being � xed, and a procedure based on asymptotic expansion. We need to introduce some
standard notation for this section. For a p 3 p symmetric matrix A, let vech (A) be the
p 5 p(p 1 1)/2-dimensional vector by stacking the columns of A, omitting the elements
above its diagonal, and Dp be the duplication matrix as de� ned in Magnus and Neudecker
(1988). Denote s 5 vech(S ) and

W 5 2 2 1D 9
p(S

2 1 Ä S 2 1)Dp.

We use a dot on top of a function to denote the derivative (e.g., ds(u) 5  s(u)/ u 9 ). We may
omit the argument of a function when evaluated at the population value (e.g., s 5 s(u0)).
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The standard normal theory procedure is motivated by the fact that the transformed sample
approximately follows a multivariate normal distribution. In this method, parameter
estimates û are obtained by minimizing

F(Sn, S(u)) 5 tr{S 2 1(u)Sn} 2 log | S 2 1(u)Sn | 2 p, (3.1)

where Sn 5 Ŝ is a robust covariance matrix. This method also implies using

TML 5 nF(Sn, S(û)) ~ x2
p 2 q

for model testing, where q is the number of unknown parameters in u and n 5 N 2 1. The
asymptotic covariance matrix of û can be obtained by inverting the corresponding
information matrix

���
n

p
(û 2 u0) N L N(0, P), (3.2)

where P 5 ( ds 9 W ds) 2 1 . Standard error estimates of û follow from (3.2) by replacing the
unknown parameters in P by û.

Even though the transformed sample generally follows a multivariate normal distribution
more closely than does the original sample, multivariate normality as judged by the Mardia’s
statistics may be only an approximation. Motivated by the GLS approach studied by Gross
(1977), we may treat the weights u2i and m̂ in (2.5b) as being � xed. Then Xbi is just an
ordinary sample with sample covariance matrix Ŝ . Let sn 5 vech(Ŝ). The central limit
theorem implies

���
n

p
(sn 2 s) N L N(0, C). (3.3)

Based on (3.3), we have
���
n

p
(û 2 u0) N L N(0, V), (3.4)

where V 5 P( ds9 WCW ds)P. Let Yi 5 vech [(Xbi 2 X̄b)(Xbi 2 X̄b) 9 ] and SY be the sample
covariance matrix of Yi, where X̄b is the sample mean of Xbi. We may use the sample
fourth-order moment matrix SY to estimate its population counterpart C. Let

U 5 W 2 W ds( ds9 W ds) 2 1 ds 9 W

and ĉ1 5 tr( ˆUSY)/(p 2 q). Satorra and Bentler (1988, 1994) proposed using

TSB 5 TML /ĉ1 ~ x2
p 2 q (3.5)

for model inference and using

V̂
(1)

5 P( d̂s 9 ŴSYŴ d̂s)P̂ (3.6)

to estimate standard errors of û. Empirical studies support this procedure for a variety of
distributions (Curran et al., 1996; Hu et al., 1992; Yuan & Bentler, 1997, 1998c). Recent
results in Yuan and Bentler (1999) imply that (3.5) may still asymptotically follow x

2
p 2 q even

for a highly skewed sample.
Another approach to inference is large sample theory, which was used in Yuan and Bentler

(1998a, 1998b). Here we will give a brief outline of this procedure. Notice that the solution to
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equation (2.2) satis� es the generalized estimating equation

1

N

XN

i5 1

G(Xi, m̂, Ŝ ) 5 0,

where

G(x, m, S ) 5
u1{d(x, m, S)}(x 2 m)

u2{d 2(x, m, S )}vech{(x 2 m)(x 2 m) 9 } 2 s

© ª
.

According to the theory of generalized estimating equations (Liang & Zeger, 1986; Yuan &
Jennrich, 1998),

���
n

p m̂ 2 m0

ŝ 2 s0

© ª
N L N(0, V),

where V 5 H 2 1BH 9 2 1 with

H 5 E{ dG(X,m0, S0)}, B 5 E{G(X, m0 , S 0)G 9 (X, m0, S 0)}.

A consistent estimate V̂ can be obtained by using consistent estimates for H and B; these are
given by

Ĥ 5
1
N

XN

i5 1

dG(Xi, m̂, Ŝ ), B̂ 5
1
N

XN

i5 1

G(Xi, m̂, Ŝ)G 9 (Xi, m̂, Ŝ).

Let V̂22 be the submatrix of V̂ corresponding to s. Then V̂22 is another estimate of C . Let
ĉ2 5 tr(ÛV̂22)/(p 2 q). Yuan and Bentler (1998b) suggested the rescaled statistic

TR 5 TML /ĉ2 (3.7)

for model testing and

V̂
(2)

5 P̂( d̂s9 ŴV̂22Ŵ d̂s)P̂ (3.8)

to estimate V in (3.4).
Inference based on (3.7) and (3.8) is essentially the procedure developed in Yuan and

Bentler (1998b). Notice that the above three procedures depend on the same parameter
estimate û—differences are only in standard errors and test statistics. If a transformed sample
closely follows a mutlivariate normal distribution, these procedures will be asymptotically
equivalent, and numerical differences among them are only due to � nite sample behaviour. If
a transformed sample is still not normally distributed, then the normal theory based method
may not perform satisfactorily. In such a case, the methods based on the two different
estimates of the C matrix may perform better. As remarked earlier, these three methods are
not the only methods that can be applied to a transformed sample. For a transformed sample
that is still far away from normally distributed, the various versions of ADF methods as in
Browne (1984) and Yuan and Bentler (1998c), or the minimum chi-square method as in Yuan
and Bentler (1998a), may be more appropriate.

4. Applications

We use the Huber-type weight function with a 5 0.05 for each of the samples and evaluate
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the normality of the transformed sample by Mardia’s statistics. A larger a is used if the
transformed sample is still signi� cantly different from normality. Notice that the sample size
N is used in the denominator on the right-hand side of (2.2b) and (2.5). While this is
appropriate, in order to adhere to the common practice of using unbiased estimators, in this
section the denominator n 5 N 2 1 will be used when calculating the sample covariance
matrices of the transformed samples. Two types of standard error estimate are reported when
the normal theory method is applied to a raw sample. One is based on the information matrix
(StdI) as in (3.2), the other is based on the sandwich-type covariance matrix (Std(1)

SW ) as in
(3.6). When the normal theory method is applied to a transformed sample, standard errors
(Std(2)

SW ) based on (3.8) will also be reported in addition to StdI and Std(1)
SW . Corresponding to

the three types of standard errors, we have test statistics TML , TSB and TR , which are also
reported below the standard errors.

Our � rst example is based on the data set in Table 2.5 of Bollen (1989, pp. 30–31). This
data set consists of three estimates of percentage cloud cover for 60 slides. It was introduced
for outlier identi� cation purposes and was further used by Bollen and Arminger (1991) to
study observational residuals in factor analysis. An unusual feature of this data set is that
using the sample covariance matrix to � t a one-factor model leads to an improper solution
with a negative error variance. Mardia’s statistics for the original sample are respectively
M1 5 0.06 and M2 5 5.09. This indicates that the data may come from a distribution with
tails heavier than those of a normal distribution when referring the statistics to distributions
x2

10 and N(0, 1), respectively. Mardia’s statistics for the transformed sample are M1 5 0.05
and M2 5 0.23, so we may regard the transformed data as from an approximately normal
distribution. Estimates based on the transformed data will generally be more ef� cient.
Applying the ML method to the transformed data also leads to a set of reasonable solutions.
Bollen and Arminger (1991) suggested removing the three most in� uential cases, X52 , X40

and X51 , which also leads to a set of reasonable solutions.
Parameter estimates and their standard errors are given in Table 1, where we refer to the

data set with the three outliers removed as the OR data. Factor loading estimates based on the
three samples are comparable. However, there exists a large difference for error variance
estimates. Carefully examining the parameter estimates, we may notice that all the parameter
estimates based on H (0.05) data lie between corresponding parameters based on the raw data
and the OR data. This re� ects the degree of in� uence of these three cases. In the raw data the
three cases are given weights 1.0; their weights are 0 in the OR data, and somewhere between
0 and 1 in the H (0.05) data. Standard error estimates for factor loadings are also more
comparable than those for error variances. There is a large discrepancy between StdI

and Std(1)
SW within the raw sample, especially for yi . These two types of standard error are

much more comparable within the OR data. The StdI and Std(1)
SW within the H(0.05) data are

also quite comparable, but Std(2)
SW gives relatively large standard errors for yi, especially y2.

Even though ŷ3 is negative based on the raw sample, when evaluated by either of the standard
errors it is not signi� cant. However, ŷ3 is signi� cant at level 0.05 with the OR data. Thus,
although there are differences among the three types of standard errors with H(0.05) data,
evaluation for signi� cance of parameters is about the same for any of them. For example, ŷ3

is not signi� cant, when evaluated by any of the standard errors in H(0.05). Because there are
zero degrees of freedom, no test statistic is available.

Our second example is based on the data of Holzinger and Swineford (1939). This classic
data set consists of mental ability tests scores of seventh- and eighth-grade children from two
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different schools. There are 24 variables and 145 subjects from the Grant-White school.
Jöreskog (1969) used 9 of the 24 variables in studying the correlation structure with normal
theory ML: (1) visual perception, (2) cubes, (3) lozenges, (4) paragraph comprehension, (5)
sentence completion, (6) word meaning, (7) addition, (8) counting dots, (9) straight-curved
capitals. We will also use these same variables in our application. Mardia’s statistics for these
nine variables are M1 5 0.77 and M2 5 3.04, which indicates that the data may come from a
distribution with slightly heavier tails than those of a normal distribution when referring these
statistics to x

2
165 and N(0, 1), respectively. On the other hand, Mardia’s statistics for the

transformed data with a 5 0.05 are M1 5 0.91 and M2 5 2 0.53, both far from signi� cant. So
it is more appropriate to apply the normal theory method to the transformed sample.

In the original report of Holzinger and Swineford (1939), variables 1, 2 and 3 were
designed to measure spatial ability, variables 4, 5 and 6 were designed to measure verbal
ability, and variables 7, 8 and 9 were designed to measure a speed factor in performing the
tasks. Let X represent the nine observed variables. Then the con� rmatory factor model

X 5 Lf 1 e cov(X) 5 LWL 9 1 W , (4.1)

with

L 5

l11 l21 l31 0 0 0 0 0 0

0 0 0 l42 l52 l62 0 0 0

0 0 0 0 0 0 l73 l83 l93

0

B@

1

CA

9

, W 5

1.0 w 12 w 13

w 21 1.0 w 23

w 31 w 32 1.0

0

B@

1

CA,

(4.2)

represents the hypothesis of the original design. We assume the measurement errors are
uncorrelated, with W 5 cov(e) being a diagonal matrix. There are q 5 21 unknown
parameters, 9 of which are factor loadings. The model has 24 degrees of freedom.

Parameter estimates, their standard errors as well as the associated test statistics for both
samples are given in Table 2. Estimates of factor correlations and error variances based on the
two samples are quite similar, so, to save space, we do not report these. The parameter
estimates based on the transformed sample are about the same as those obtained from the
original sample; so are the various standard error estimates. There exist minor differences
among the test statistics for this example. Even the smallest TR 5 46.47 is still highly
signi� cant for test statistics based on H (0.05) data. All statistics yield the same conclusion
regarding model � t.
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Table 1. Parameter estimates and standard errors for the cloud cover data from Bollen (1989)

Raw data OR data H(0.05) data

u û StdI Std(1)
SW û StdI Std(1)

SW û StdI Std(1)
SW Std(2)

SW

l1 32.43 3.68 2.88 31.99 3.34 2.96 32.27 3.33 2.81 2.90
l2 31.46 4.10 3.59 36.57 3.86 2.00 34.98 3.78 2.42 2.80
l3 38.15 3.46 2.35 35.91 3.56 2.42 36.34 3.41 2.23 2.32
y1 248.77 61.21 113.32 105.80 28.52 42.28 135.67 34.61 47.30 63.58
y2 473.78 95.23 163.70 157.29 39.88 42.74 237.60 51.84 61.35 117.70
y3 2 51.44 56.97a 80.37a 58.15 27.89 27.32 28.52 31.08a 31.67a 41.05a

a z-scores not signi� cant at level a 5 0.05.



Since model (4.2) does not � t the sample, Jöreskog (1969) proposed a variety of alternative
models. One of these models is

L 5

l11 l21 l31 0 0 0 0 l81 l91

0 0 0 l42 l52 l62 0 0 0

0 0 0 0 0 0 l73 l83 l93

0

B@

1

CA

9

, W 5

1.0 w 12 0

w 21 1.0 w 23

0 w 32 1.0

0

B@

1

CA.

(4.3)

Both the original sample and the transformed one are used for this model. As can be seen from
Table 3, there is little difference for parameter and standard error estimates among the various
methods. All the model test statistics are far from being signi� cant. For example, the p-value
for TML 5 25.75 with the original sample is about 0.31. Because the transformation reduces
the kurtosis, the statistics based on the transformed data give more support for model (4.3).
However, the � t statistics are only minimally smaller.

This data set has only slightly heavier tails as compared to normal data. With a 5 0.05 in
the transformation, the kurtosis changed from 3.04 for the original sample to 2 0.53 for the
transformed sample. This implies that a smaller a will be good enough to make M2 non-
signi� cant. Because of the near-normality of the original sample, there exist only minor
differences for parameter estimates and test statistics before and after the transformation.

Our third data set is from the EQS manual (Bentler, 1995, p. 117). This 6-variable and 50-
case arti� cial data set was introduced to demonstrate the effect of outliers on the classical
model � tting procedure. The � rst 49 cases were generated from a multivariate normal
distribution and the 50th case is an outlier. Mardia’s statistics for this data set are
M1 5 206.28 and M2 5 6.82, and when referred to x

2
56 and N(0, 1) both are highly signi� cant.

Without prior knowledge about this data set, we might have regarded it as representing a
skewed distribution with long tails. Mardia’s statistics for the transformed sample are
M1 5 7.25 and M2 5 2 1.04. Neither is signi� cant when referred to x

2
56 and N(0, 1),

respectively.
As in the EQS manual, we � t both samples using a two-factor model with three indicators

Robust transformation 41

Table 2. Parameter estimates, standard errors and test statistics (df 5 24) for the
psychological data from Holzinger and Swineford (1939)

Raw data H(0.05) data

u û StdI Std(1)
SW û StdI Std(1)

SW Std(2)
SW

l11 4.68 0.62 0.70 4.72 0.62 0.65 0.72
l21 2.30 0.41 0.38 2.22 0.40 0.37 0.38
l31 5.77 0.75 0.73 5.55 0.74 0.70 0.73
l42 2.92 0.24 0.25 2.84 0.23 0.24 0.26
l52 3.86 0.33 0.33 3.87 0.33 0.33 0.34
l62 6.57 0.57 0.57 6.36 0.55 0.53 0.57
l73 15.68 2.00 1.84 15.65 2.00 1.85 1.88
l83 16.71 1.75 1.78 16.09 1.66 1.58 1.65
l93 25.96 3.11 3.09 24.83 3.03 2.78 2.91

T 51.19a 49.37a 49.40a 51.02a 46.47a

a Signi� cant at level a 5 0.01.



for each factor. To save space, we only report the factor loading estimates and their standard
errors in Table 4 together with the test statistics. There is a relatively large difference between
parameter estimates based on the original sample and those based on the transformed sample.
Actually, because of the in� uence of the outliers, parameter estimates for l31 and l62 based
on the original sample are not even signi� cant as evaluated by either StdI or Std(1)

SW . On the
other side of the table are the results based on the transformed sample. All the l i j are
signi� cant when evaluated by any of the three types of standard errors. Parameter estimates
and their standard errors based on the transformed sample are very comparable to those based
on the OR data in which the 50th case is removed. There is also a large difference between the
test statistics based on the raw sample and the other two samples. However, there is little
difference among the test statistics within either the OR data or the H (0.05) data. With
TML 5 16.69 referring to x

2
8 , the corresponding p-value is about 0.03. For this small sample
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Table 3. Parameter estimates, standard errors and test statistics (df 5 23) for the psycholo-
gical data from Holzinger and Swineford (1939)

Raw data H(0.05) data

u û StdI Std(1)
SW û StdI Std(1)

SW Std(2)
SW

l11 5.03 0.59 0.63 5.08 0.58 0.59 0.64
l21 2.17 0.40 0.37 2.09 0.39 0.37 0.38
l31 5.53 0.72 0.68 5.33 0.71 0.64 0.68
l81 6.17 1.63 1.61 5.85 1.54 1.43 1.50
l91 20.82 2.93 3.16 19.99 2.87 2.84 3.03
l42 2.90 0.24 0.25 2.82 0.23 0.24 0.26
l52 3.85 0.33 0.33 3.86 0.33 0.32 0.33
l62 6.51 0.57 0.57 6.31 0.55 0.53 0.57
l73 19.95 2.45 2.53 19.73 2.39 2.32 2.41
l83 13.98 1.92 1.84 13.49 1.80 1.70 1.74
l93 16.62 2.89 2.88 16.50 2.82 2.74 2.83

T 25.75 24.73 22.86 23.80 21.54

Table 4. Parameter estimates, standard errors and test statistics (df 5 8) for the arti� cial data
from the EQS manual

Raw data OR data H(0.05) data

u û StdI Std(1)
SW û StdI Std(1)

SW û StdI Std(1)
SW Std(2)

SW

l11 1.56 0.35 0.64 0.69 0.17 0.20 0.72 0.18 0.20 0.20
l21 0.49 0.17 0.14 0.51 0.15 0.13 0.54 0.15 0.14 0.14
l31 0.19 0.18a 0.37a 1.02 0.19 0.17 0.94 0.19 0.18 0.23
l42 0.67 0.16 0.21 0.43 0.15 0.13 0.44 0.15 0.13 0.14
l52 0.88 0.16 0.16 0.81 0.18 0.18 0.82 0.18 0.18 0.20
l62 0.18 0.14a 0.24a 0.46 0.15 0.13 0.44 0.14 0.13 0.14

T 16.69b 13.93 2.70 3.16 2.77 3.20 2.24

a z-scores not signi� cant at level a 5 0.05.
b Signi� cant at level a 5 0.05.



size we should get a larger p-value, as discussed in the EQS manual. On the other hand, all the
statistics based on the transformed sample de� nitely imply that the two-factor model is a
correct model.

Even though both M1 and M2 are highly signi� cant in the original sample, they are caused
by only one outlier. The transformation with a 5 0.05 greatly reduces the effect of this
outlier. The negative M2 for the transformed data may imply that a smaller a value may work
equally well in transforming the original sample to approximate normality. This example also
demonstrates that the robust transformation makes the data more symmetric as well.

Our fourth example is based on the alcohol and psychologica l symptom data set from
Neumann (1994). This data set consists of 10 variables and 335 cases. The two variables in
X 5 (x1, x2) are respectively family history of psychopathology and family history of
alcoholism, which are indicators for a latent construct of family history. The eight variables
in Y 5 (y1 , . . . , y8) are respectively the age of � rst problem with alcohol, age of � rst
detoxi� cation from alcohol, alcohol severity score, alcohol use inventory, SCL-90 psycho-
logical inventory, the sum of the Minnesota Multiphasic Personality Inventory scores, the
lowest level of psychosocial functioning during the past year, and the highest level of
psychosocial functioning during the past year. With two indicators for each latent construct,
these eight variables are respectively measuring: age of onset, alcohol symptoms, psycho-
pathology symptoms, and global functioning. Neumann’s (1994) theoretical model for this
data set is

X 5 LXj 1 d, Y 5 LYh 1 e, (4.4a)

and

g 5 Bg 1 Cj 1 f , (4.4b)

where

LX 5
l1

l2

© ª
, LY 5

1 l3 0 0 0 0 0 0

0 0 1 l4 0 0 0 0

0 0 0 0 1 l5 0 0

0 0 0 0 0 0 1 l6

0

BBB@

1

CCCA

9

, (4.4c)

B 5

0 0 0 0

b21 0 0 0

b31 b32 0 0

0 b42 b43 0

0

BBB@

1

CCCA, C 5

c 11

0

0

0

0

BBB@

1

CCCA, (4.4d )

and e, d and f are vectors of errors whose elements are all uncorrelated.
The parameter estimates and test statistics based on the raw sample are given in Table 5.

With model degrees of freedom being 29, the p-values for TML 5 48.96 and TSB 5 47.34 are
respectively about 0.01 and 0.02, indicating that model (4.4) is not statistically acceptable.
Mardia’s statistics for the raw sample are M1 5 76.06 and M2 5 14.76; when referred to x

2
220

and N(0, 1) respectively, M2 is highly signi� cant, indicating that the data set comes from a
distribution with heavy tails. In contrast, Mardia’s statistics for the H(0.05) transformed
sample are M1 5 3.26 and M2 5 2.25. Parameter estimates for this transformed sample,
shown in Table 5, are about the same as those based on the original sample. However, the two
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test statistics decrease to TML 5 42.42 and TSB 5 45.66 with p-values 0.05 and 0.03. In
particular, TR 5 41.17 corresponds to a p-value of 0.07, indicating that model (4.4) is
marginally acceptable.

Since M2 5 2.25 is still signi� cant for the H(0.05) sample, we further use the transforma-
tion H(0.10). This leads to M1 5 2.30, M2 5 2 0.11, and TML 5 40.98, TSB 5 45.31,
TR 5 40.15 corresponding to p-values 0.07, 0.03 and 0.08. Thus, � tting the model (4.4) to
the sample using H(0.10) leads more support to the theoretically justi� ed model (4.4). Even
though there exist noticeable differences among the three test statistics within a transformed
sample, the differences are not substantial, and all of the statistics imply that (4.4) is a
reasonable model.

Standard errors within either of the samples are very comparable. There are very few
differences in parameter estimates and standard errors among the different samples. It will be
seen that parameter b31 is not statistically signi� cant, when evaluated by any of the standard
errors within any of the samples.

Our � fth data set is from a longitudinal study of adolescent development conducted by
Newcomb and Bentler (1988) and Stein, Newcomb, and Bentler (1996). This data set consists
of 12 variables and 350 cases. The four variables in X 5 (x1, x2 , x3 , x4) 9 are respectively
relation with parents, self-acceptance, depression (negatively scored), and relation with
family measured during years 4–5 of the study. They are the indicators of a relationship
construct. There are eight subsequent dependent indicators in Y 5 (y1 , . . . , y8). Variables y1

to y4 are measures of licit drug use at years 6–9 of the study, and variables y5 to y8 are
measures of deviancy also at years 6–9 of the study. The substantive theory suggests the
model

X 5 LXj 1 d, Y 5 LYg 1 e (4.5a)

Ke-Hai Yuan et al.44

Table 5. Parameter estimates, standard errors and test statistics (df 5 29) for the alcohol data
from Neumann (1994)

Raw data H(0.05) data H(0.10) data

u û StdI Std(1)
SW û StdI Std(1)

SW Std(2)
SW û StdI Std(1)

SW Std(2)
SW

l1 0.77 0.13 0.15 0.70 0.12 0.12 0.13 0.68 0.12 0.11 0.12
l2 1.69 0.26 0.26 1.43 0.21 0.19 0.21 1.40 0.21 0.18 0.20
l3 0.99 0.10 0.10 1.02 0.10 0.10 0.10 1.03 0.10 0.10 0.10
l4 1.27 0.11 0.10 1.26 0.10 0.10 0.10 1.25 0.10 0.09 0.10
l5 0.15 0.02 0.02 0.15 0.02 0.02 0.02 0.15 0.02 0.02 0.02
l6 0.93 0.18 0.19 0.94 0.19 0.19 0.20 0.95 0.19 0.19 0.20
b21 2 0.65 0.09 0.09 2 0.67 0.09 0.10 0.10 2 0.68 0.09 0.09 0.10
b31 0.51 0.40a 0.42a 0.49 0.40a 0.40a 0.41a 0.48 0.41a 0.40a 0.43a

b32 2.42 0.34 0.36 2.46 0.34 0.35 0.36 2.46 0.34 0.35 0.37
b42 2 0.08 0.04 0.04 2 0.08 0.03 0.03 0.04 2 0.08 0.03 0.03 0.03
b43 2 0.04 0.01 0.01 2 0.04 0.01 0.01 0.01 2 0.04 0.01 0.01 0.01
c 11 2 3.39 0.72 0.56 2 3.46 0.71 0.57 0.58 2 3.42 0.71 0.56 0.59

T 48.96b 47.34b 42.42 45.66b 41.17 40.98 45.31b 40.15
a z-scores not signi� cant at level a 5 0.05.
b Signi� cant at level a 5 0.05.



and

g 5 Cj 1 f, (4.5b)

where

LX 5 1 l1 l2 l3

— ˜
9 , LY 5

1 l4 l5 l6 0 0 0 0

0 0 0 0 1 l7 l8 l9

 !
9

, (4.5c)

C 5 c 11 c 21

— ˜
9 , cov(f) 5

y11 y12

y21 y22

 !

, (4.5d)

and where e and d are vectors of errors whose elements are all uncorrelated.
Mardia’s statistics for the original sample are M1 5 8.63 and M2 5 56.55, which indicates

that the sample comes from a distribution with quite heavy tails when referred to x2
364 and

N(0, 1), respectively. The transformation with a 5 0.05 yields M1 5 4.70 and M2 5 11.88, a
substantial improvement towards normality. The parameter estimates, their standard errors
and test statistics are given in Table 6. Parameter estimates and the various standard errors
within and between the two samples are quite similar. However, there exist some large
differences between the test statistics. In particular, the difference between TR for the
transformed sample and TML for the original sample is about 61.7. Unfortunately, TR , is still
highly signi� cant when referred to x

2
51 .

Since the sample with H(0.05) still has a quite signi� cant kurtosis (M2 5 11.88), it is
possible that the signi� cant statistics may arise from the heavy tails of the sample. We further
use a 5 0.20 in the Huber-type weight function. This results in M1 5 2.36 and M2 5 1.48;
neither is signi� cant when referred to x2

364 and N(0, 1), respectively. However, as can be seen
from the right-hand side of Table 6, all the test statistics are still highly signi� cant. This may
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Table 6. Parameter estimates, standard errors and test statistics (df 5 51) for the longitudinal
data with 12 variables

Raw data H(0.05) data H(0.20) data

u û StdI Std(1)
SW û StdI Std(1)

SW Std(2)
SW û StdI Std(1)

SW Std(2)
SW

l1 1.15 0.15 0.25 1.09 0.16 0.20 0.26 1.05 0.15 0.17 0.23
l2 0.89 0.12 0.23 0.74 0.12 0.16 0.22 0.65 0.11 0.13 0.19
l3 0.70 0.09 0.17 0.64 0.10 0.11 0.14 0.58 0.09 0.09 0.12
l4 1.09 0.11 0.14 1.18 0.11 0.13 0.15 1.20 0.11 0.12 0.14
l5 2 1.29 0.12 0.14 2 1.35 0.13 0.15 0.16 2 1.37 0.12 0.14 0.16
l6 1.20 0.13 0.09 1.20 0.14 0.10 0.10 1.19 0.14 0.09 0.10
l7 1.06 0.06 0.06 1.04 0.05 0.05 0.05 1.04 0.05 0.04 0.05
l8 1.05 0.06 0.06 1.05 0.05 0.05 0.05 1.03 0.05 0.04 0.05
l9 1.10 0.06 0.07 1.10 0.06 0.05 0.06 1.08 0.05 0.05 0.05
c 11 2 0.29 0.07 0.07 2 0.27 0.07 0.07 0.08 2 0.24 0.07 0.08 0.08
c 21 2 0.03 0.04a 0.03a

2 0.02 0.03a 0.02a 0.02a
2 0.02 0.03a 0.02a 0.02a

T 247.89b 184.01b 212.40b 233.85b 186.20b 203.90b 253.52b 196.62b

a z-scores not signi� cant at level a 5 0.05.
b Signi� cant at level a 5 0.001.



indicate that the problem with the bad � t is not due to poorly distributed data, but rather
because model (4.5) does not accurately re� ect the structural relationship in the population.
As with the other two samples, standard errors by the various methods are quite comparable.
In particular, c 21 is not statistically signi� cant, judged by any of the standard errors within
any of the samples.

Our � nal example is based on the industrialization and political democracy panel data
introduced by Bollen (1989), who proposed various models for this data set. Bollen and
Arminger (1991) also used this data set to study observational residuals in structural equation
models. This data set consists of eight political democracy variables Y 5 (y1 , . . . , y8) 9 and
three industrialization variables X 5 (x1 , x2 , x3) 9 in 75 developing countries during the 1960s.
The variables y1 to y4 are indicators of political democracy in 1960, and y5 to y8 are the same
indicators measured in 1965. Assuming that political democracy in 1965 is predicted by 1960
political democracy, and both are further predicted by 1960 industrialization, Bollen (1989)
proposed the model

X 5 LXj 1 d, Y 5 LYg 1 e (4.6a)

and

g 5 Bg 1 Cj 1 f , (4.6b)

where

LX 5 1 l1 l2

—
9̃ , LY 5

1 l3 l4 l5 0 0 0 0

0 0 0 0 1 l3 l4 l5

 !
9

, (4.6c)

B 5
0 0

b21 0

 !

, C 5
c 11

c 21

 !

(4.6d)

and again e, d and f are vectors of errors. Based on theoretical considerations, some error
terms in e are allowed to be correlated; see Bollen (1989) for details about the data and the
model.
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Table 7. Parameter estimates, standard errors and test statistics (df 5 38) Industrialization
and Political Democracy Data from Bollen (1989)

Raw data H(0.05) data

u û StdI Std(1)
SW û StdI Std(1)

SW Std(2)
SW

l1 2.18 0.14 0.14 2.17 0.14 0.14 0.15
l2 1.82 0.15 0.14 1.81 0.15 0.14 0.14
l3 1.19 0.14 0.13 1.19 0.14 0.13 0.13
l4 1.17 0.12 0.12 1.17 0.12 0.11 0.13
l5 1.25 0.12 0.12 1.24 0.12 0.12 0.13
b21 0.87 0.06 0.05 0.86 0.06 0.05 0.05
c 11 1.47 0.39 0.35 1.48 0.39 0.35 0.35
c 21 0.60 0.22 0.20 0.61 0.22 0.21 0.21

T 39.64 43.07 39.82 43.61 40.46



Mardia’s statistics for this data set are M1 5 8.23 and M2 5 2 1.22. Neither is signi� cant
when referred to x

2
286 and N(0, 1), respectively. Bollen and Arminger did not � nd any

statistically signi� cant residual with model (4.6). Thus, we would expect the normal theory
method with the raw data to give ef� cient estimates and reliable model evaluation. Actually,
both TML and TSB with the original sample support this model. It would be interesting to see
the effect of our transformation even if such a transformation is unnecessary. Mardia’s
statistics for the transformed data are M1 5 8.67 and M2 5 2 1.42, which are almost the same
as for the original sample. As can be seen in Table 7, parameter and standard error estimates
based on the transformed data are also almost identical to those based on the original sample.
The differences among the three test statistics within the transformed data are also
comparable to those between TML and TSB within the original sample. This example
demonstrates that transformation H(0.05) has almost no effect on a data set that is
approximately normally distributed.

5. Discussion

We propose using robust estimation as a data transformation procedure. The sample
covariance matrix of the transformed sample is just the robust covariance matrix. This
covariance matrix is generally more ef� cient than the sample covariance matrix when the
sampling distribution has heavier tails than those of a normal distribution. Since the
transformed data more closely follow a multivariate normal distribution, the classical
normal theory based procedure is more appropriate for the transformed data than for the
original data. Parameter estimates are more ef� cient and inference based on TML is also more
accurate in evaluating a model structure. Since the transformation is straightforward to
implement (an SAS IML program is available from the authors), there is no dif� culty in
implementing the standard normal theory based procedure with any SEM software. The
Satorra –Bentler procedure is implemented in EQS, and there is also no dif� culty in
implementing this procedure with the EQS software. Implementation of the procedure-
based (3.7) and (3.8) may require the user to master a programing language before this
procedure is implemented into commercial software.

Our examples show that for skewed samples with heavy tails, the transformed samples will
have less skewness and kurtosis. If the skewness and kurtosis are created by a few outliers, the
effect of these outliers basically disappears after the transformation. We have mainly used
a 5 0.05, the proportion of outliers to control, but a larger a may be necessary for data
showing heavy-tailed distributions , as in the fourth and � fth data sets in our applications.
Even though a smaller a may be enough for data sets with slightly heavier tails than the
normal distribution, our examples show that there is not really much difference between
the transformed sample with a 5 0.05 and the original sample if the original data set is
approximately normal. Considering the fact that data sets in social and behavioural sciences
are often characterized by skewness and extra kurtosis, it makes sense to recommend the use
of a 5 0.05 in the Huber-type weight function as a routine transformation for data sets to be
used in SEM applications. Of course, if the transformed sample is still signi� cantly non-
normal, it is necessary to increase the value of a. Importantly, at any stage we can use
methods such as Mardia’s statistics to evaluate the effect of the transformation in achieving
near-normality.

In many instances, SEM methodology is but one approach to data analysis with a given
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data set. An advantage of the current transformation approach over the previously proposed
robust methodology of Yuan and Bentler (1998a, 1998b) is that a new data matrix is created
that can be used for a variety of other analysis methods. For example, clustering of cases can
be accomplished with the transformed data, and one would expect that the resulting clusters
are less likely to be in� uenced by outlying data points than would be obtained by clustering
the original data. Similarly, our transformed data can be made available to many other
multivariate procedures such as principal components, factor analysis, and discriminant
analysis.

In order to achieve a more thorough analysis, we recommend the user to try all three
inference procedures, as outlined in Section 3, before drawing conclusions about a model. If
the transformation is successful in making the resulting sample normally distributed, the
standard normal theory procedure will be enough for model inference. In such a case,
actually, all the three inference procedures should give similar conclusions about the model.
Of course it is entirely possible with some data sets that even the transformed samples remain
non-normally distributed. In that case, it would be more appropriate to use the two alternative
procedures in Section 3. Of course, any other procedures applied to the transformed data
should also give better model evaluations than those based on the raw sample. Our preference
for these three procedures is based on our limited experience with a variety of data sets.
Further research and more applications will be needed to provide a thorough evaluation of the
proposed methodology . Among the various SEM procedures, it would be especially valuable
to identify one that can give most reliable model inference based on robust samples. Since
there are numerous types of violations to multivariate normality, de� nitive conclusions may
require extensive Monte Carlo studies. Finally, resampling procedures for model testing and
standard errors may also be used on transformed samples. This topic also deserves further
research.
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