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Abstract. A self-triggered control task is one in which the task deter-
mines its next release time. It has been conjectured that self-triggering
can relax the requirements on a real-time scheduler while maintaining
application (i.e. control system) performance. This paper presents pre-
liminary results supporting that conjecture for a self-triggered real-time
system implementing full-information H∞ controllers. Release times are
selected to enforce upper bounds on the induced L2 gain of a linear feed-
back control system. These release times are treated as requests by the
system scheduler, which then assigns actual release times using But-
tazzo’s elastic scheduling algorithm. Preliminary experimental results
from a Matlab stateflow simulink model demonstrated a remarkable ro-
bustness to scheduling delays induced by real-time schedulers. These
results show that self-triggered controllers are indeed able to maintain
acceptable levels of application performance during prolonged periods of
processor overloading.

1 Introduction

Computer controlled systems are often implemented using periodic real-time
tasks. This approach can lead to significant over-provisioning of the real-time
system since task periods are determined by the worst case time interval assur-
ing closed loop system stability. In recent years, a number of researchers have
proposed aperiodic task models in which tasks are either event-triggered [1] or
self-triggered [2] controllers. Event-triggered control systems are systems whose
control tasks are triggered by some asynchronous “event” within the control
loop. These events are usually generated when an error signal crosses a speci-
fied threshold. The notion of event-triggered feedback [1] has appeared under a
variety of names, such as interrupt-based feedback [3], Lebesgue sampling [4],
asynchronous sampling [5], or state-triggered feedback [6].

Except for relay or pulse-width modulated feedback, event-triggered feedback
can be impractical since it requires integrating an analog event detector into the
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physical plant. A more pragmatic approach for implementing aperiodic feedback
is found in the self-triggered task model of Velasco et al. [2]. In self-triggered
systems, the control task determines its next release time based on samples of the
state gathered at the current release time. Self-triggered task models, therefore,
can be implemented in existing computer controlled system without the need for
any special analog event-detectors.

This paper presents experimental results examining the performance of a
self-triggered control system. Our system’s control tasks select sampling peri-
ods in a way that guarantees the closed-loop system’s induced L2 gain satisfies
a specified bound. We then consider a real-time system that schedules mul-
tiple self-triggered control tasks using traditional earliest-deadline-first (EDF)
scheduling and Buttazzo’s elastic scheduling algorithm [7]. Our implementa-
tion of Buttazzo’s scheduler relies on a utilization constraint similar to that
originally suggested by Chantem et al. [8]. Preliminary simulation results for a
Simulink/Stateflow model of a real-time system controlling three inverted pen-
dulums showed that the control system’s performance under self-triggering was
remarkably insensitive to the type of scheduler used by the real-time system.
While preliminary, these results strongly suggest that self-triggering can pro-
vide a valuable way of ensuring control system performance in cases where the
scheduler is unable to provide hard real-time guarantees on job completion.

2 Prior Work on Sample Period Selection

This section briefly reviews some of the prior work on sample period selection.
Sample period selection for aperiodic real-time systems requires a detailed anal-
ysis of the system’s intersample behavior. This usually involves studying a can-
didate Lyapunov function as was done in Zheng et al. [9] for a class of nonlin-
ear sampled-data systems. Nesic et al. [10] used input-to-state stability (ISS)
techniques to bound the intersample behavior of nonlinear systems [10]. This
approach was used by Tabuada et al. [6] to estimate sampling periods for a class
of nonlinear event-triggered control systems.

All of the aforecited works selected sampling periods to preserve some mea-
sure of the control system’s stability, whether this is asymptotic stability or
input-to-state stability. Applications, however, also need to ensure some mini-
mum level of control system performance. Early work concerning the co-design
of control systems and real-time systems viewed this as a schedulability prob-
lem in which sampling periods were selected to solve the following optimization
problem,

minimize: Penalty on Control Performance
with respect to: Sampling Periods
subject to: closed loop stability

task set schedulability

(1)

Early statements of this problem may be found in Seto et al. [11] with more
recent studies in [12] and [13]. The penalty function used in the above problem



is often a performance index for an infinite-horizon optimal control. The problem
we face here, however, is that such performance indices [5] are rarely monotone
functions of the sampling period. So it can be very difficult to identify “optimal”
sampling periods for the above problem.

This paper uses Lyapunov techniques to select sampling periods that bound
the intersample behavior of the system. This is similar to the approaches in [10],
[9], and [6]. But rather than simply assuring closed loop stability, we select sam-
pling periods to adjust the induced L2 gain of the system. This approach allows
us to make the system responsive to variations in the intensity of the input dis-
turbances driving the system. In the presence of high-intensity disturbances, for
example, the system can reduce its gain to keep its output signal below some
specified threshold. In the presence of low-intensity disturbances, it can then
relax that gain and still ensure that the output remains below the same spec-
ified threshold. The variations in disturbance intensity are therefore mirrored
in variations of the system gain which in turn result in large variations in the
sampling period. This means that during periods of low disturbance intensity,
the average sampling period can be much longer than during periods of high
disturbance intensity. The bounds on intersample behavior ensuring a specified
L2 gain are discussed in section 4. Because our controllers enforce a specified in-
duced L2 gain, we confine our attention to linear full-information H∞ controllers
for which we can generate tight bounds on the system’s intersample behavior.

3 System Model

The real-time system considered in this paper consists of N dynamical systems
(called plants) that are controlled by N tasks running on a single processor.
Each task samples (S) the system state, computes a state feedback control,
and outputs that control to the plant through a zero-order hold (H). The state
xi : < → <n, of the ith plant satisfies the initial value problem,

ẋi(t) = Aixi(t) + B1iui(t) + B2iwi(t) (2)

xi(0) = xi0

for t ≥ 0 and i ∈ N = {1, . . . , N}. The function wi : < → <n is an uncon-
trolled and bounded disturbance. The function ui : < → <m is the control input
generated by the ith real-time control task. Ai, B1i, and B2i are appropriately
dimensioned matrices.

The ith plant’s control, ui, is generated by task i ∈ N . Task i is associated
with a sequence of release times, {ri[j]}

∞
j=1. The time ri[j] ∈ < is that time

when the jth job of task i is available for execution. The task set is said to be
synchronous if ri[0] is the same for all i ∈ N . The period for the jth job of
task i is denoted as

Ti[j] = ri[j + 1] − ri[j] (3)

If Ti[j] is constant for all j = 1, . . . ,∞, then the task is said to be periodic. A
task that is not periodic is said to be sporadic.



The task set is associated with a scheduling function, σ : < → N . This
function takes the value σ(t) = i ∈ N at time t when task i is executing at
that time. The finishing time for job j of task i is denoted as fi[j] ∈ < and is
formally defined as

fi[j] = max

{

t ∈ < :
i = σ(t+), i 6= σ(t−)
ri[j] ≤ t ≤ ri[j + 1]

}

(4)

where σ(t+) = limτ↑t σ(τ) and σ(t−) = limτ↓t σ(τ) are the left and right hand
limits of σ at t, respectively.

The ith task’s worst-case execution time (WCET) is denoted as Ci ∈ <.
The task’s relative deadline is denoted as Di ∈ <. A task set is said to be
schedulable if there exist sequences of release times {ri[j]}∞j=1 and a scheduling
function σ such that

Di ≥ fi[j] − ri[j] ≥ Ci (5)

for all i ∈ N and j = 1, . . . ,∞.
The ith task computes the control ui for the ith plant. This control is assumed

to be a state feedback control law of the form

ui(t) = −kT x(ri[j]) (6)

for t ∈ [fi[j], fi[j + 1]) where j = 1, . . . ,∞. Note that the control output is
constant between finishing times and the value of that constant is determined
by the system state at the job’s release time, ri[j].

4 Sample Period Selection for Induced L2 Gain

This section states the paper’s main result concerning sample period selection
enforcing a specified bound on the closed-loop system’s induced L2 gain. We
confine our attention to the behavior of a single plant between consecutive release
times. We therefore drop the task index, i, without a loss of generality.

We assume, for the purpose of analytic simplicity, that the control ui(t)
satisfies equation 6 for all t between consecutive release times rather than con-
secutive finishing times. This simplification is done for analytical convenience at
the expense of some loss in generality.

The following theorem provides conditions which guarantee that the induced
L2 gain from the plant’s disturbance w to its state be less than a specified
positive number, γ.

Theorem 1. Let G denote the sampled-data control system given by equations 2
and 6. Assume the control gain is kT = −BT

1 P where P is a positive symmetric
matrix that satisfies the algebraic Riccati equation,

0 = AT P + PA + I − P

(

B1B
T
1 −

1

γ2
B2B

T
2

)

P (7)



for some γ > 0.
Let xr denote the system’s state at release time r[j]. If the system state x(t)

satisfies

[

x(t)
xr

]T [

−I + PB1B
T
1 P −PB1B

T
1 P

−PB1B
T
1 P 0

] [

x(t)
xr

]

≤ −‖x(t)‖2 (8)

for all t ∈ [r[j], r[j + 1]) and j = 1, . . . ,∞, then the induced L2 gain of G is less
than γ.

Proof. The directional derivative of V = xT Px is

V̇ =
∂V

∂x

(

Ax − B1B
T
1 Pxr + B2w

)

Using the standard completing the square argument and the Riccati equation 7,
we rewrite the above equation as

V̇ = xT Xx −
1

γ2
xT PB2B

T
2 Px + 2wT BT

2 Px

= xT Xx −

∥

∥

∥

∥

γw −
1

γ
BT

2 Px

∥

∥

∥

∥

2

+ γ2‖w‖2

≤ xT Xx + γ2‖w‖2

where

X =

[

−I + PB1B
T
1 P −PB1B

T
1 P

−PB1B
T
1 P 0

]

, x =

[

x
xr

]

(9)

Note that if

xT Xx ≤ −‖x‖2

then the above inequalities imply that

V̇ (x) ≤ −‖x‖2 + γ2‖w‖2

which is sufficient to ensure that the induced L2 gain of G is less than γ ♦

Remark: The matrix X in equation 9 can be viewed as a collection of rank-
one perturbations of the block diagonal matrix diag(−I, 0). We can use this
observation to show that xT Xx ≤ λ1(k

T (x(t) − xr))
2 where λ1 is the largest

eigenvalue of X . So if we can ensure that λ1(k
T (x(t) − xr))

2 < ‖x(t)‖2, then
we can again guarantee that the conditions in theorem 1 are satisfied. This is a
more conservative condition than the one in theorem 1 and it is similar to the
switching condition used in [6]. Therefore by using an analysis similar to that
in [6] we can show that the “sampling period” is bounded below by a positive
constant. In general, however, this lower bound can be an extremely conservative
estimate of the sampling period.



After the task’s release, we’re interested in approximating the interval over
which we can guarantee the condition in theorem 1. This time interval can be
taken as an estimate of the task’s next release time, T r, which we treat as the task
period. A reasonable approximation for this period is obtained by integrating
the differential equation

ẋ(t) = Ax − B1B
T
1 Pxr (10)

x(r) = xr

Let eAt be the transition matrix for A, so we can easily see that

x(t) =

[

eAt

(

I +

∫ t

0

e−AsBT
1 ds

)]

xr = Φ(t)xr (11)

Because A and B1 are known, we can evaluate the matrix function Φ(t).

5 Schedulability with Deadlines less than Periods

The preceding section suggests that if our task retriggers itself so equation 8 is
always satisfied, then our sampled-data system can guarantee the system’s closed
loop gain is less than γ. This may only happen, however, if the released tasks
can meet their real-time deadlines. Earliest deadline first (EDF) schedulers are
frequently used in periodically triggered real-time control systems. In the self-
triggered system, however, release times will vary depending upon the system’s
current state. As a result we need to consider a scheduler that can adjust its
task periods while assuring EDF schedulability and the “minimum” task period
required by the application.

The elastic task model of Buttazzo et al., [7], is a popular method of
adjusting task periods. The elastic task model uses a mechanical analogy to
develop an algorithm for adjusting task periods. This analogy views tasks as
being interconnected by “springs”. The length of the spring represents the task’s
utilization and the spring constant represents that task’s resistance to changing
its utilization. Buttazzo’s elastic task model was extended by Caccamo et al.
[14] to handle uncertainties in computation time. A later paper [15] showed how
to modify Buttazzo’s algorithm to handle additional resource constraints. Hu
et al [16] showed that Buttazzo’s elastic scheduling algorithm can be viewed as
minimizing a task set’s summed squared utilization subject to the Liu-Layland
EDF schedulability condition [17].

In our system, task deadlines will always be significantly less than task pe-
riods. This is needed to ensure a short time delay between the state sampling
and the release of the control signal. Such task sets are schedulable under EDF
if and only if

N
∑

i=1

(⌊

L − Di

Ti

⌋

+ 1

)

Ci ≤ L (12)



for all L ∈ D where

D =

{

di,k :
di,k = kTi + Di

i ∈ N , k ≥ 0

}

This condition is proven by Baruah et al. [18] using a processor demand analysis.
Processor demand analysis requires that the total processor demand of all

released tasks in an interval is less than or equal to the total processing power
available in that interval. For task sets in which the deadline is less than the
period, the ith task’s processor demand over time interval [0, L] is

Ci(0, L) =

(⌊

L − Di

Ti

⌋

+ 1

)

Ci.

The condition in equation 12 is simply the sum of all demands, Ci(0, L), over i
which must be checked for all possible future releases of the tasks.

In our application, release times are recomputed each time the task is called
and so the task set is really not periodic. As a result we only need to check
equation 12 over a subset of D; namely those times that are less than or equal
to the next release time. This idea was used in Chantem et al. [8] to propose a
heuristic generalization of Buttazzo’s elastic scheduling algorithm. The following
theorem introduces a schedulability condition similar to that used in [8] which
can be directly used with Buttazzo’s algorithm.

Theorem 2. Consider a task set in which all tasks are released at time 0. As-
sume that the task set is sorted in order of non-decreasing relative deadlines
(Di ≤ Di+1) and let {T j}

N
j=1 be a set of bounds on the task period that are

generated recursively from

⌊

D2 − D1

T 1

⌋

=

⌊

D2

C1

−
2

∑

i=1

Ci

C1

⌋

(13)

⌊

Dj+1 − Dj

T j

⌋

=

⌊

Dj+1

Cj

−

j+1
∑

i=1

Ci

Cj

−

j−1
∑

i=1

⌊

Dj+1 − Di

T i

⌋

Ci

Cj

⌋

(14)

for j = 1, . . . , N .
Let i∗ = arg mini{Di + Ti} then the task set will miss no deadlines over the

interval from [0, Di∗ + Ti∗ ] if Tj ≥ T j for all j = 1, . . . , N and

N
∑

i=1

Ui ≤ 1 −
1

T i∗

N
∑

i=1

Ci (15)

Proof. To prove this theorem we need to demonstrate that the processor demand
satisfies

N
∑

i=1

(⌊

L − Di

Ti

⌋

+ 1

)

Ci ≤ L



over intervals

L ∈ {D1, · · · , DN , min
i
{Ti + Di}}

Essentially this means that the processor demand is satisfied between the con-
secutive release times.

When L = Di, the processor demand can be written as a triangular system
of algebraic equations

0 ≤ D1 − C1 (16)
⌊

D2 − D1

T1

⌋

C1 ≤ D2 −
2

∑

i=1

Ci (17)

⌊

D3 − D1

T1

⌋

C1 +

⌊

D3 − D2

T2

⌋

C2 ≤ D3 −
3

∑

i=1

Ci (18)

· · · ≤ · · · (19)

in which the jth term has the form,

j−1
∑

i=1

⌊

Dj − Di

Ti

⌋

Ci ≤ Dj −

j
∑

i=1

Ci

This is a triangular system of equations that we can solve recursively for T i. In
particular the second equation (eqn. 17) yields equation 13. Applying this in a
recursive manner yields equation 14. So if these equations are satisified then we
can guarantee the processor demand is sufficient for time intervals equal to the
task deadlines.

Now consider L = Tj + Dj for any arbitrary j and assume that Ti ≥ T i for
all i. Then clearly,

Dj ≥
N

∑

i=1

(⌊

Dj − Di

Ti

⌋

+ 1

)

Ci

≥
N

∑

i=1

(⌊

Tj + Dj − Di

Ti

⌋

−

⌊

Tj

Ti

⌋

− 1 + 1

)

Ci

where we used the fact that bx + yc ≤ bxc+ byc+ 1. We can now rearrange our
last inequality to obtain

Dj +

N
∑

i=1

Ci +

N
∑

i=1

⌊

Tj

Ti

⌋

Ci ≥
N

∑

i=1

(⌊

Tj + Dj − Di

Ti

⌋

+ 1

)

Ci

The lefthand side of the above inequality can be bounded as

Dj +

N
∑

i=1

Ci +

N
∑

i=1

⌊

Tj

Ti

⌋

Ci ≤ Dj +

N
∑

i=1

Ci + Tj

N
∑

i=1

Ci

Ti



By the assumption in equation 15 we can see that

Dj +

N
∑

i=1

Ci +

N
∑

i=1

⌊

Tj

Ti

⌋

Ci ≤ Dj +

N
∑

i=1

Ci −
N

∑

i=1

Ci + Tj = Dj + Tj

So if the above condition holds we can ensure that

N
∑

i=1

(⌊

Tj + Dj − Di

Ti

⌋

+ 1

)

Ci ≤ Dj + Tj

which is the inequality required to ensure that the processor demand is satisfied
prior to the given release time. We choose j = i∗ to complete the proof. ♦

6 Self-triggered Real-time H∞ Controllers

This section discusses how theorems 1 and 2 are used to elastically schedule
self-triggered control tasks. Upon release, the ith task numerically integrates
equation 10 forward to determine T r

i . T r
i serves as the task’s desired next release

time. The scheduler handles T r
i as a request for the specified task period. If the

scheduler simply grants the task’s requested period, we say it is a rigid task
scheduler. If the scheduler adjusts the requested period as is done in Buttazzo’s
algorithm, then we say the task scheduler is elastic.

Let Ur
i = Ci/T r

i denote the utilization requested by the ith task. For the
simulations in section 7, our elastic task scheduler assigns task utilization, Ui =
Ci/Ti, in a manner that solves the following optimization problem.

minimize:
∑N

i=1
(Ui − Ur

i )2

subject to: U i ≤ Ui ≤ min(Ur
i , Ci/T i)

∑N
i=1

Ui ≤ 1 − U

(20)

where U i is the minimum individual task utilization for closed loop stability, T i

is the minimum task period required in theorem 2, U r
i = Ci/T r

i is the task’s
requested utilization and

U =
1

min{T i}

N
∑

i=1

Ci

is the upper bound on the total utilization given in equation 15 of theorem 2.
This optimization problem seeks to minimize the squared difference between a
task’s desired utilization, U r

i , and its actual utilization, Ui. The allocation is done
subject to constraints in theorem 2. These constraints require that the allocated
utilizations assure closed loop stability while remaining schedulable under EDF.

It is important to note that the optimization problem in equation 20 is pre-
cisely the problem considered in Hu et al. [16] and Chantem et al. [8]. In those
papers it was shown that Buttazzo’s elastic scheduling algorithm [15] actually
assigns task periods in a way that always satisfies the optimization problem in
equation 20. So in our proposed self-triggered system, we can simply use But-
tazzo’s algorithm directly to allocate task utilization.



7 Simulation Results

This section presents preliminary simulation results for the real-time control of
three identical inverted pendulums that are controlled by three control tasks
running on the same processor. The controllers are full-information H∞ con-
trollers. The plants are all identical and the linearized state equation for the ith
plant is

ẋi(t) =









0 1 0 0
0 0 −(mg/M) 0
0 0 0 1
0 0 g/` 0









xi(t) +









0
1/M

0
−1/M`









ui(t) +









1
0
1
0









wi(t)

where M is the cart mass, m is the mass of the pendulum bob, ` is the length
of the pendulum and g is gravitational accleration. The initial state is zero.
For these simulations we let M = 10, ` = 3, and g = 10. The system state
x =

[

y ẏ θ θ̇
]

where y is the cart’s position and θ is the pendulum bob’s angle
with respect to the vertical.

The external disturbance, wi, is time-varying and takes the form,

wi(t) = ν(t) + WRect(t − τi)

where ν is band-limited white noise with a noise power of 100 and sampling
period of .001 sec. Rect(t−τi) is a unit rectangle function of duration 0.25 seconds
starting at time τi. W represents the strength of the rectangular disturbance. In
these simulations, all three plants are hit with the same rectangular disturbance
at the same time (τi = 2) and the disturbance level, W , was set to 1000.

In these simulations we required the state magnitude to lie below a specified
level, M . In other words, we require ‖xi(t)‖2 ≤ M for some specified M ∈ <.
Immediately after the rectangular pulse, the system state changes and we assume
that the next released task can measure this change. Once the sampled system
state exceeds M , the task reduces its gain to γ = 100 to more aggressively reject
the rectangular pulse. M was set to 5 for these simulations. Once the system
state is sufficiently small, the gain is reset to a large value (γ = 500) consistent
with a less aggressive disturbance rejection objective. By adjusting the gain in
this manner we kept the system output relatively small without having to use
the more aggressive gain throughout the entire system’s history.

We simulated the real-time system using a Matlab stateflow/simulink model.
The model was built to accurately capture task timing that might be seen in
actual real-time systems. The real-time computer was modeled as a stateflow
chart that consisted of the parallel composition of three control tasks, six in-
terrupt handlers, and two processes for the scheduler. The control tasks sample
the plant state upon their release, compute the requested next release time T r.
Upon finishing their execution, these tasks output the control signal. This sim-
ulation, therefore, forces the control, ui(t), to be constant between consecutive
finishing times rather than consecutive release times as assumed in theorem 1.
The scheduler was implemented as two processes. One process assigned priorities



to the released control tasks and the other process used the requested sampling
period to compute the actual release times.

We simulated three different cases. The first “baseline” case simulated the
response of a single inverted pendulum by an “idealized” real-time system in
which scheduler performance was not an issue. The second case simulated the
response of a self-triggered real-time system under “rigid” and “elastic” schedul-
ing. The third case simulated the response of the periodically-triggered real-time
system under two different task periods. These three cases are discussed below.
Baseline Case: The baseline case simulated the response of a single inverted
pendulum in which the control, ui(t), was constant between consecutive release
times. Tasks were periodically released every 0.25 seconds. The controller’s state
feedback gain was chosen to ensure the closed loop system’s H∞ gain was less
than 100. This case is therefore an “idealized” real-time system in which missed
deadlines and processor contention are abstracted away. The lefthand side of
figure 1 shows the time histories for the four system states: cart position, cart
velocity, pendulum bob angle and angular velocity. This plot serves as a baseline
against which the other cases will be compared. The plot shows that when the
rectangular disturbances hits the system, the cart moves quickly to ensure the
pendulum bob angle, θ, remains small. This corrective action results in a large
displacement, x, of the cart that takes about 10 seconds to return to the home
position.
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Fig. 1. Transient Response of Baseline System

Self-Triggered Case: The self-triggered case consisted of two simulations. One
simulation used rigidly scheduled and the other used elastically scheduled task
sets. The system clock ran at 0.001 seconds. All control tasks had identical
computation times, Ci = 50 clock ticks, and deadlines, Di = 100 clock ticks.
Task periods were selected based on the results in theorem 1. In general, this
resulted in a probabilistic distribution of task periods that were dependent on
the system state at the release time. For a system gain γ = 100 and 500 the
requested period averaged 200 and 500 clock ticks, respectively. In the “rigidly”



self-triggered system, these requested task periods were granted by the scheduler.
The “elastically” self-triggered system had the requested task periods adjusted
by the Buttazzo algorithm using the schedulability condition of theorem 2.
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Fig. 2. State histories for rigidly (left) and elastically (right) self-triggered controllers

The state histories for the rigid and elastic self-triggered systems are shown
in figure 2. The lefthand graphs are state histories for the three plants in the
rigidly self-triggered system and the righthand graphs are for the elastically self-
triggered system. What is perhaps most interesting here is that all systems have
the same transient behavior regardless of whether task periods were assigned in
an elastic or rigid manner. Comparing the state trajectories in figure 2 against
the baseline trajectories in figure 1, we see little difference; thereby suggesting
that the self-triggered system was maintaining the baseline transient behavior
regardless of which scheduling scheme was used.

Periodically-Triggered Case: As a point of comparison we simulated a pe-
riodically triggered system. The task computation times and deadlines were 50
and 100 respectively for all tasks with a clock tick of 0.001 seconds. For one
set of simulations, we set the task period to 250. The state trajectories for the
three plants are shown in the lefthand plots of figure 3. A task period of 250 was
the average task period for the rigidly scheduled self-triggered simulations. The
lefthand plots in figure 3 are therefore comparable to the “rigidly scheduled”
simulations in figure 2. In the other set of simulations, we set the task period to
500. This simulation’s state histories are shown in the righthand plots of figure 3.
A task period of 500 was the average task period for the “elastically scheduled”
self-triggered simulations. The righthand plots are therefore comparable to the
“elastically scheduled” simulations in figure 2. These simulations show that at
the shorter task period (lefthand side of figure 3), the systems appears to have a
transient response similar to that for the baseline system. At the longer task pe-
riod (righthand side of figure 3), some of the plants become extremely oscillatory
with one of the systems actually becoming unstable.
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Fig. 3. State trajectories for periodically triggered system. (Left) Task period = 250,
(Right) Task period = 500

8 Final Remarks

In comparing the simulation results between the baseline, periodically triggered,
and self-triggered systems it should be apparent that the self-triggered system
was able to maintain an acceptable level of transient performance regardless of
whether a rigid or elastic scheduler was used. This was somewhat surprising at
first glance. But in hindsight it was conjectured that this might be due to the
inherent feedback nature of self-triggering. In selecting the next release based on
the current state, a self-triggered system is using state feedback to adjust task
periods in a way that assures overall system “performance”.

The feedback nature of this interaction suggests that the performance of self-
triggered systems should be very robust to processor overloads and late (delayed)
jobs. Our simulations showed that the rigidly scheduled system was overloaded
whereas the elastically scheduled system was not overloaded. Inspite of the fact
that the rigidly scheduled system was overloaded, figure 2 clearly shows that the
transient response is very similar to the baseline response. The task periods in
the elastically scheduled self-triggered system were long enough to destabilize
the periodically triggered system (figure 3). The results in figure 2 clearly show
that even with this longer task period, the self-triggered system was able to
preserve control performance. In other words, self-triggered systems appear to
maintain acceptable levels of application performance in the face of significant
processor overloading.

This paper’s results therefore demonstrate that self-triggering can maintain
acceptable levels of system performance regardless of whether or not we schedule
in an elastic manner. In particular, these results seem to suggest a practical
way for relaxing the need for “hard” real-time support in computer controlled
systems. These results, however, are only preliminary and future work will need
to more rigorously verify them.
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