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_Abstract—This paper studies the event design in event- models is called event-triggering. Under event-trigggtine
triggered feedback systems with asymptotic stability. A n&  system states are sampled when some error signal exceeds a
event-triggering scheme is presented that may postpone the given threshold [7], [8], [9], [10]. Event-triggering remes

occurrence of events over previously proposed methods. Our hard { detector that be imol ted usi
approach pertains to nonlinear state-feedback systems. Eh a haraware event detector thal may be impiemented using

resulting event-triggered feedback systems are guarantddo be ~ CUstom analog integrated circuits (ASIC’s) or floating foin
asymptotically stable, provided that the continuous systas are  gate array (FPGA) processors. A software realization aféhe

stabilizable. We also show that the task periods and deadl'&s. sporadic task models is called self-triggering. Under-self
generated by our scheme are bounded strictly away from zerd i triggering the next task release time is predicted by the

the continuous systems are input-to-state stable with regzt to ; ter based th t led st 11
measurement errors. Simulation results indicate that our gent- ~ PFOCESSING computer based on the current sampled s ate [11]

triggered scheme has a much larger average period compared [12], [13]. This software approach may be appropriate when
with the prior work. Moreover, our scheme also appears to be the hardware implementation is unacceptable.

robust to task delays. Both realizations of sporadic task models have the ability
to dynamically adjust the task periods to variations in the
system state. This “on-line” property enables event/self-
Sampled-data systems sample continuous signals and didggering to generate longer task periods than periodik ta
computers to make control decisions based on the samodels [13]. One thing worth mentioning is that, provided
pled data. A great challenge of implementing sampled-dathe cost associated with using ASIC/FPGA hardware is
systems is to determine the sample periods such that taeceptable, event-triggering has a lower computationst co
resulting systems achieve a desired level of performance.than self-triggering and usually generates longer sample
Traditional approaches are based on periodic task modegriods since self-triggering periods are usually coretéers
in which consecutive invocations of a task are released ingstimates of the periods generated by event-triggering.
periodic manner. Lyapunov techniques were used in ZhengThis paper studies the event design for event-triggered
et al. [1] for a class of nonlinear sampled-data systemé&edback systems with asymptotic stability. In all of thepr
Following that, Nesic et al. [2] used input-to-state stipil work considering stability of event/self-triggered feadk
(ISS) techniques to bound the inter-sample behavior @ystems [9], [10], [12], [13], the same Lyapunov function
nonlinear systemsC, stability of such sampled-data systemsV” is shared by the continuous closed-loop system and the
was considered in [3]. For networked control systems, thgampled-data system. Meanwhilé,is required to be mono-
maximum admissible time interval (MATI) was introducedtone decreasing in the sampled-data system as it is in the
by Walsh et al [4]. Further work was done in [5], [6]. continuous system. This is not necessary. As noted in earlie
As we mentioned above, the preceding approaches am@rk on switched system stability, we can still guarantee
all based on periodic task models. Such models may @ymptotic stability as long as an appropriate subsequence
undesirable in many situations due to their conservatissne V' is monotone decreasing [14]. need not be decreasing all
Under periodic task models, the selection of sample periodiRe time. What this means is that we can lengthen the period
is done before the system is deployed. One therefore hashgtween events by adopting this less restrictive condition
ensure adequate behavior over a wide range of uncertaintiésin the sampled-data system.
As a result, these selected periods may be shorter thanBased on this idea, a new event-triggering scheme is
necessary, which results in significant over-provisionifig Presented. Our approach pertains to nonlinear state-de&db
the real-time system hardware. This over-provisioning magystems. The resulting event-triggered feedback systeens a
negatively impact the scheduling of other tasks on the sangélaranteed to be asymptotically stable, provided that the
processing system. In these applications it may be better g@ntinuous systems are stabilizable. We also show that the
consider alternatives to periodic task models that can motask periods and deadlines generated by our scheme are
effectively balance the real-time system’s computatimoat bounded strictly away from zero if the continuous systems
against the control system’s performance. are input-to-state stable with respect to measurementserro
In recent years, sporadic task models have been consfgimulation results indicate that our event-triggered suhe

ered for real-time control. A hardware realization of sucthas a much larger average period than the event-triggered
scheme proposed in [9], the self-triggered scheme in [13],
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I. INTRODUCTION



lem is formulated. Section Ill presents the event-trigygri called “job”) is released for execution on the computer and
scheme. Event-triggered feedback systems with non-zefp denotes the time when thigh job has finished executing.
delays are considered in section IV. Simulation results aM/e assume that the system state is also sampled. afo
presented in section V. Finally, conclusions are stated simplify the notation, letT}, = rip+1 — r denote thekth
section VI. sample periodDy = fi — ri denote theith task delay. We
also definee, : RT — R asex(t) = z(t) — x(ry) over

Il. PROBLEM FORMULATION e
t € [ry, fr+1) for k € Z*, which is the measurement error.

Consider a nonlinear system with the state equation This paper considers how to reduce the usage of the
i(t) = fla(t),u(t)) computational resource subject _to the guarantee th_at_ the
sampled-data system is asymptotically stable. The mam ide
u(t) = (z(t) @ is to use the violation of events to trigger the release of the
z(0) = zo task so that (1) the event-triggered system is asymptbtical

wherez : [0,00) — R" is the state trajectoryy, € R" stable and (2) the sample periods can be as long as possible.

is the non-zero initial state, and : [0,00) — R™ is a In the following sections, we will present our approach
control input. In the above equatior :7Rn « R™ — g to designing such events and discuss the robustness of

and~ : R” — R™ are locally Lipschitz functions. the resulting event-triggered feedback system to external

Assumption 2.1: For the continuous closed-loop systemdisturbances and delays.
in equation 1, assume that there exist positive constants |||. EVENT-TRIGGEREDFEEDBACK SYSTEMS

5 5.8 + iti nita ('L ; .
L, o, @, 8,8, L1 € R7, a positive definiteC" function V : This section introduces the approach to designing the

n + i - RT + .
R" — R, and two classC functionsay, az : RT — R events that are used to trigger the tasks’ release such that

such that the resulting event-triggered feedback system has asyimpto
| f(z,v(x +e))| < L||z|| + L|e]| (2) stability. To show asymptotic stability of such a system, we
ar(|lz]) < V(z) < az(||z]]) 3) only need to show the existence of a piecewise continuous
- - functionh : Rt x R"” — R such that
—aV(@) = fell
AV (z) _ h(t|zo) > V(z(t|zo)), forall t € RT 9)
5y ] @@ te)) < —aV(z)+Ble|  (4) lim A(t|zo) = 0, (10)
or (=) < L] (5)

hold, wherez is the state trajectories of the resulting event-
hold for all z, ¢ in a compact set. triggered feedback system. Singeis also a function of,
Remark 2.1: Equation 4 implies the continuous systemwe useV (t) to denoteV (z(t[zo)).
i = f(z,y(x+e)) is ISS with respect te. It also suggests  The results in this section focus on sampled-data systems
that the continuous closed-loop system in equation 1 Wherer, = fi holds for allk € Z*. We will propose an
exponentially stable. Further discussion on this assumpti event-triggering scheme and show that the resulting system
can be seen in [9]. asymptotically stable and the sampling peridis bounded
Remark 2.2: For a linear time invariant system from below by a positive constant. To show this, we first
. introduce a lemma, which will be used in the later proofs.
#(t) = Ax(t) + Bu, u= Kz, z(0)=z0, (6) Lemma 3.1: For twoC' functionsp, ¢ : RT — R, assume
assumption 2.1 is satisfied as long as the system definedéis R* is the smallest positive solution te(t) = ¢(t). The
equation 6 is asymptotically stable. Assuiie= 27 Pz is  following statements hold:

Lyapunov function of this LTI system. TheW = VIV = 1) If p(0) = ¢(0), 4(0) < p(0), andt* > 0 satisfies

vaT Pz is also a Lyapunov function. Lef) = —P(A + p(t*) < ¢q(t*), thent* > ¢;

BK)— (A+ BK)TP > 0. So we have 2) If p(0) > ¢(0) andt* > 0 satisfiesp(t*) < ¢(t*), then
=&

L = max{[|A + BK|,||BK|},

0= Jonu(P Q). = fomn(P1Q), 7 Y A enadl) < 2O fhenn(t) = at) o
B=B=IVPBE|, Li= F=—. 4) If p(0) > g(0), thenp(t) > q(t) for all ¢ € [0, ).

whereo,i(P) denote the minimum singular value & Proof: It can be easily shown taking advantage of the

A sampled-data implementation of the closed-loop s Stel%ontinuity ofp. ¢, . 4. . u
in equatign 1is P Py Theorem 3.2: For the sampled-data system in equation 8,

let assumption 2.1 hold and, = Oforallk € Z*.If rg =0

z(t) = fa(t),u(t)) and thek + 1th task release is triggered by the violation of
u(t) = v(z(re)) (8) V() < —5aV (r)(t — re) + V (i), (11)
z(0) = zo

whereé € (0, 1), then the sampled-data system is asymptot-
for t € [fx, fr+1) @and allk = 0,..., 00, wherer; denotes ically stable and there exists a positive constant 0, such
the time when thekth invocation of a control task (also that the sample period],, satisfiesT}, > &.



Proof: We first show that the sampling peridd, is which means for any € Z*, h(t|zo) is continuous at =
bounded from below by a positive constant. By equation 2and the left-hand and right-hand sided derivatives @fz)

d _ att = r; are both negative. Since equation 16 holds;—
Fler@ll < llz@)l] < 2Lllex(@)l] + Lllz(rx )| oo holds. Combining this with equation 19 and 20 yileds

holds for allt € [ry, rx+1). Solving this differential inequal-

lim A(t = 0. 21
ity with the initial conditioney,(r,) = 0 yields A Altlzo) (21)
lz(re)ll  2rm, Since equation 18 and 21 are satisfied, we can conclude
lex()l < =5~ (e**"+ — 1) (12) : .
2 that the sampled-data system is asymptotically stablem
for all ¢ € [ry,rr+1). According to equation 3 and 5, Remark 3.1: For anyk € Z™, r,41 is triggered when
V(t) intersects the straight lin& (t) = —déaV (ry)(t —

-1
le(ri)| < e (Vre)) < LV (i) (13) re) + V(rr). This line serves as the threshold. However,
holds. Applying equation 12 and 13 into equation 4 leads tgsing linear functions of as the thresholds is not the only
the inequalityV (t) < —aV (t) + 222 () (,2LTx _ 1) for  choice for the threshold. Nonlinear functions can also be
t € [rk,k+1). Solving this differential inequality with the used as long as the sequer{adry )}, converges to zero
initial condition V (ry,) provides andry1 —ri > 0 holds for allk € Z*.

V(t) < V(J,k)e—a(t—rk)
_ﬁL12V(Tk) (62LTk _ 1) (e—a(t—rk) — 1)

fe)

IV. NON-ZERODELAYS

o (14) In this section, we consider event-triggered feedback sys-
for all ¢ € [ry,7x41). Becausersy, is triggered by the tems with non-zero delays and show the existence of a non-
violation of equation 11, zero deadline for the delays with the guarantee of system

V(rps1) = —6aV (re) T + V(1) (15) stability. _The main idea is to use an upper boqnd/_()fk) as
o ] i the starting point of the threshold ling,, is still triggered
holds. Combining equation 14 and 15 yields whenV (¢) intersects the threshold line. To ensure the system
p(Ty) & —@sTy, + 1 stability, we need to properly choose the deadline such that
< 0Tk _ % (2T — 1) (=0T — 1) £ ¢(T},). the sequenc¢V (r;)}72, converges to zero. In that way, a

i ) piecewise continuouA(t|zy) can be constructed satisfying
It is obvious thatp(0) = ¢(0) = 1 and §(0) = —@ < gquation 9 and 10. This is shown in figure 1, where the

p(0) = —ad. Therefore, using lemma 3.1, we conclude  horizontal axis is time, the vertical axis is the enefgythe

T, > &, (16) solid curve is the trajectory df (¢), and the dashed lines are

. . . __the threshold lines.
where ¢ is the smallest positive solution to the equation

p(t) = q(t). Vi
We now show asymptotic stability of the resulting system.

threshold lines
First, define the functioh(¢|x) as:
h(tlzg) = —0aV (ri)(t — i) + V(rk),Vt € [ri, rky1). (17)

Because;; is triggered by the violation of equation 11,

V(t) < —8aV (r)(t — i) + V() = h(tlzo) ~ (18) t

Te-1 fe-1 Tk fi Thi1 frr Thi2

holds for allt € [ry,rry1), k € ZT.

To show asymptotic stability of the system, we still needfig. 1. The trajectory oft” and the threshold lines in event-triggered
to showlim, o h(t|zo) = 0. By the definition ofh(t|zy)  Systems with non-zero delays
in equation 17, we knowh(t|zg) is differentiable fort <

(Tk,Tr41).- By equation 3, the derivative df(t|xo) is As we mentioned above, the first step is to find the upper
h(tlwo) — —sav(m,) < —oa-ar(||z(r)]) (19) bouno_l forV(¢) for t € [rk, fr), which is shown in the
) _ ~ following lemma.
for all ¢ € (rk,7i41), which meansh(t|zo) is decreasing | emma 4.1: For the sampled-data system in equation 8,
OVer (rj, Tky1)- _ _ let assumption 2.1 hold. For anly € Z*, if V(ry_1) <
Although h(z_f|:c0) may not be differentiable at= r; for AV (r;,) and the delayD;, satisfiesD, < min{Aj, Ao},
somek € Z7, it satisfies where A € (1,00) and A;, A, are the smallest positive
lim h(t|zo) = 1im+ h(t|zo) = h(re|zo), solutions to the equation
t—r,; t—ry _
. Ly 1 —alAq)
lim h(t|ze) < —0a@ - a1 (||z(rr_1)]), and E (14 5)etd — 3] (1—e ™) = pAy, (22)
t—ry —an, | Bl 2LA; (,—aA
) e @82 4 =2 (14 \)e?lB2 (em2B2 — 1)
lim A(t|zy) < —da- 20 Y (23)
ti% ( |CL‘0) > « al(Hx(rk)H) ( ) "r%% (eQLA2 _ 1) (e_gAz _ 1) _ %7



respectively, thert/(t) < V(ri)(1 4+ pDg) and AV (fx) >
V(ry) hold for all ¢ € [ry, fr), wherep € R is a positive
constant satisfying > L1 (1 + \).

Proof: Consider the derivative dfex—1(t)]|.

d
e ()]l < 2Lllex—1 ()] + Llia(ri)]

holds for allt € [rg, fr). Solving the differential inequality
with the initial condition|lex—1(7%)||, we have

lew-1 (O < llew-1(ri) 2P + Bl (220 — 1)

(24)
for all ¢ € [ry, fx). By equation 4, the inequality

V(t) < —av(t) + Bllex—1 (1)

holds for ¢t € [rg, fr). Combining this inequality with
equation 24 yields

V(t) < —av(t)+ Bller—(ri)] e

+BM (e2EDx — 1)
for all ¢ € [ry, fx). Solving this differential inequality with
the initial conditionV () leads to
V() < V(rg)e otk

—Lllex—1(re)lle
_ Bllz(re=1)ll (82LDk
a2

2L Dy (efa(thk) _ 1)
—1) (e@=m1) _1

) ( 225)
for all t € [ry, fx). Using||z|| < o7 ' (V(z)) < L,V (z) and

V(rg—1) < AV (ry), equation 25 implies

V() <V (k) — BEL(1 + NV (1) e2EPr (e7Px — 1)
LAl (g2ihs ) (o0
> ( ) 226)

for all t € [rg, fr). By lemma 3.1 and;, < A, we know

1= BLi(1 4 \)e2EDx (e=Dk — 1)

_ 27
CELY (1 ) (e e 1) 14D, D

thent; — fi, > £(A) > 0 holds, wheret; > f, is the first
time when

V(ty) = (L+ pA)V(ry) — 0aV (r)(ty = fr). (29)

holds afterfy, p > BL1(1+)), £(A) is the smallest positive
solution to

14 pA —dar = (14 pA)e 7 — w

(30)
with respect tor, andg : R™ x Rt — R™ is defined by
g(m,A) = 3L, [¥ (62LA _ 1) e2L7 4 % (62LT _ 1)} .
(31)
Proof: Consider the derivative oflex(t)|| over the
interval t € [rg, fx):

d
S el < 2L{lex@)ll + Lllz(re) ]l + Lllex—1 (&)l

Solving this differential inequality with the initial cond
tion ex(ry) = 0, we have

@) < Hw(Tk)ll'i‘H;k—l(Tk)H (EZLDJC _ 1) (32)

for all ¢ € [rg, f). The derivative ofe,(t) over [f,t})
satisfies |y (t)|| < 2L|lex(t)|| + L||z(rx)||. Solving this
differential inequality with the initial condition givenyb
equation 32, we have

lex (@)

llex

< llz(ri)ll+llex—1 ()l

2L Dk
2
+ Hw(gk)H (e2Lti—Tk) — 1)

— 1) 2L )

(33)
holds for allt € [f%, ;). By equation 4 and 33, we have

_1)

_ 1) e2L(ty—fr)

V() < —aV(t)jLBM (2L =10)
4 Bletultle (ol (2L

for all t € [fx,t}). Since |z(ry)|| < a7 (V(rg)) <

LiV(rg) for all k € Zt and V(ry—1) < AV (rg), the

wherep > SL1(1+ \). According to equation 26 and 27, it inequality above can be further reduced as

is easy to show that'(¢t) < V(rt)(1 + pDy) holds for all

V(t) < —aV(t) + g(tz — fr, Dk)V(Tk), (34)

t € [rg, fr). Using the similar technique, we can show that

if Dy < Ao, )\V(fk) > V(’I’k) holds. ]

for all ¢ € [fx,t;). Solving the differential inequality in

Lemma 4.1 shows that (¢) is bounded by a linear func- €quation 34 with the initial conditiof’ (f;) leads to

tion of delays fort € [rg, fi) as long asD; < A,. Based
on this lemma, we can use the poipft,, V(ri)(1 + pA))
as the start of the threshold line with the slopéaV (r),

V(ty) < V(fi)e @U/w)
_ 9= fr, D)V (re) (efa(tszk) _ 1) '

where A < A; is the deadline for the delays. Asymptotic Since the hypotheses of lemma 4.1 are satisfi§dy) <

stability of the event-triggered feedback system is guaeh

(14 pA)V(r) holds. Applying this and equation 29 to the

by theorem 4.3. The proof of theorem 4.3 requires thimequality above, we have

following lemma, which shows that the time length between

the finishing time, fx, and the time instant whe (¢)

intersects the threshold line is always bounded from below

by a positive function of the deadline.

p(t; = fu) & 1+ pA — da(t — fr)
< (1 4 pA)e—E(tZ—fk) _ M (e—E(tZ—fk) _ 1)
£ q(ty — fr)

Lemma 4.2: For the sampled-data system in equation 8, Ngtice thatp(0) = ¢(0). SinceA < Ay implies p(0) >

let assumption 2.1 hold. ¥ (r;_1) < AV (r;) and the delay
D, satisfiesD;, < A = min{A1, A3}, wherel > 1, A €
R*, Ay is given by equation 22, anfl; € R™ is the smallest
positive solution to

BLi A (218 — 1) —a@(1+pA3 —6) =0,  (28)

¢(0), by lemma 3.1, we know; — fi > £(A) > 0. [ |
Theorem 4.3: For the sampled-data system in equation 8,
let assumption 2.1 hold. Ify = f, = 0 and for anyk € ZT,
1) Dy, < A min{A;, Ay, Az, A4} holds, where
A1,Ay, Az € RT are defined in equation 22, 23 and



28, respectivelyAy; € RT is the smallest positive  Case II: r 1 is triggered by the violation of?;. Follow-
solution to ing the similar analysis for case |, we have

pAs — {(Ag)da =0 (35) h(fry1lmo) = %h(mxo). (45)

or oo if the positive solution to equation 35 does not  Equation 44 and 45 implies
exist, ¢ is defined in equation 3Q > SLi(1 + M), .
5 € (0,1), andX € (1, 0). Jim h(filo) =0 (46)

2) T+ is triggered by the violation of since\ € (1, 00). Notice thath(t|zo) < h(fx|zo) holds for

(E1 /\EQ) \/E?” (36) all t > fi.. So equation 46 implies
where tlirgo h(t|zg) = 0. (47)

_ Equation 42 and 47 are sufficient to conclude that the
By V(t) < (14 pA —da(t — fx)V(rx) (37)

sampled-data system is asymptotically stable. ]
Esy : AV (t) > V(rg) (38) Remark 4.1: Event E, in equation 38 is used to control
Es:r, <t < fi (39) the distance betweevi(ry1) andV (r). The reason to do

_ ) this is that ifV (41 ) is arbitrarily small, the deadline will go
then the sampled-data system 8 is asymptotically stablgg zero, although the sample period might be enlarged. There

Proof: By lemma 4.1, we knowE; andE; always hold  js a tradeoff between periods and the predicted deadlines.
whent = fj. It is easy to show thag(0) > 0 according to

equation 30. ThereforqyD;, — £(Dy)é@ < 0 holds when V. SIMULATIONS

Dy = 0. By lemma 3.1 and the definition ak,, we have In this section, we used the inverted pendulum problem
pDy — &(Dy)da < 0 for all D, < A4. Consequently , there in [13] to demonstrate the proposed event-triggered scheme
must be a positive constaatsuch that The plant’s linearized state equations were

pA — £(A)da < —e, (40) 0 1 0 0 0

. |0 0 —mg/M 0O 1/M
holds sinceA < A4. We construct a piecewise continuous * — 0 0 0 1| % + 0
functionh : RT™ x R® — R™T in the following way: 0 0 g/t 0 —1/(M¢)
htlao) = 10D = 08— V(). £ € [fiorinn) = AvtBu
0 (14 pAYV (rg+1), t€ [Frt1s fo+1) whereM = 10, m = 1, £ = 3, andg = 10. The S);stem’s

o o (41) initial state was the vectar, = [ 0.98 0 0.2 0] .The
. _Becauserkﬂ is triggered by the violation ofs; or E2,  controller isu = Kz, where K = [2 12 378 210 ].
it is easy to showV/(t) < h(t|zo) for all t € [fk,74+1)  The Lyapunov function we used for the continuous closed-
andk € Z*. Since D, < A < A holds, by lemma 4.1, |g0p system isV (z) = v/2T Pz, where
V(t) < (14 pA)V(rg) = h(t|xo) holds for allt € [rg, fi)
andk € Z*. Therefore, 7 21 222 127
21 106 1180 675

V(t) < ht|zo) (42) P=1 222 1180 26578 14873 (48)

. 127 675 14873 8327
holds for allt € R*. We now show thatim;_, h(t|zg) = o .
0. Two cases are considered. We compared our event-triggering scheme with the event-

Case I: 7,1 is triggered by the violation of7;. Then triggering scheme in [9], the self-triggering scheme in][13
and MATI in [6] when Dy = 0. Recall that the event-

h(frlzo) = (1 + pA)V (ry) triggering scheme in [9] samples the state when
h(fr+1lzo) = (1 4 pA)V (re41) (43) eg(t)Pek(t) _ prT(t)P:z:(t).
Sinceryy; is triggered by the violation of’;, we have wherep is the real constant
V(TkJrl) = [1 + pA — 5a(Tk+1 — fk)]V(’l’k) N Umin(P) Umin(—P(A + BK) — (A + BK)TP)
P e (P) |PBK]| '
By lemma 4.2, we know 1 — fi > £(A). So
When D;, = 0, the self-triggering scheme in [13] triggers
V(rgs1) < [1+ pA = sag(A)V () the k + 1th task releaser; 1, in the following way:
holds. Combining this inequality with equation 43, we have 1 a||VNz(re)||
h(fr+1lzo) < [1+ pA — da€(A)]h(fk|zo), which implies Tkl = Tk + a Infl+ H\/M(A + BK)z(ry)||
h(fe+1lzo) < (1 — €)h(fr|zo) (44)  \where M = 31+ PBBTP andN = I + PBBTP and

according to equation 40. a= ||\/HA\/JV[71||.



MATI in [6] is defined by

1 r(175\) _ r _§
Ir afCtan IS iy S S - lj 5
L(ll;f;) y=1L (49) £
Larctanh—0=N 5 [ g
R EG e T ”

where\ = 0, L = max(0.50m,ax(—BK — KTBT),0), 7 is
the £, gain for the closed-loop systent & A,z + BKe)
from e to — Az, andr = ‘g—i - 1‘.

The average periods generated by different schemes
listed in Table I. It is obvious that our event-triggeredescte
has a much longer average sample period.

TABLE |
COMPARISON OFDIFFERENTSCHEMES

Schemes

| Average Periods]

Sample Period
-
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Fig. 2. An event-triggered feedback system with, < 0.1

Our event-triggering schemé & 0.2) 0.4816
Event-triggering scheme in [9] <107°
Self-triggering Scheme in [13] 0.1782
MATI in [6] 0.0169

to measurement errors. Simulation results indicate that ou
event-triggered scheme has a much larger average period
than the previous event/self-triggered schemes. Moreover

We then took a look at non-zero delay cases. The paur scheme also appears to be robust to task delays.

rameters were computed based on equation 7 in remark
2.2, wherea = 0.015, f = [ = 1042.8, L = 45.58,

L1 = 191, p = 5993, A = 2, 6 = 0.8. The deadline
based on theorem 4.3 is around—!'2. This deadline is
extremely small, although it is at the same level of the
predicted deadline in [9] which is around—!3. It is because
the large condition number d? leads to a smatlv and a big

3, which directly affect the solutions to equation 28 and 35.[3]
Notice that the method we proposed is only for showing the
existence of non-zero deadlines. In practice, for systeitis w
a large condition number aP, it is better to use dynamic
deadlines because of its “on-line” nature.

We then added random delays satisfyibg < 0.1 into [5]
the proposed event-triggered feedback system to see how
robust this system can be to delays. We used the violatioff]
of equation 36 to trigger the next release with= 0. The
results are presented in figure 2. The state trajectories aig
shown in the top plot of figure 2. From this plot, we can see
that, the event-triggered feedback system still convetges
the equilibrium even whe,, can be as large &s1. The
bottom plot of figure 2 provides the sample periods in this[9]
system. The average period (51882, which is definitely
larger than the periods offered by the prior work. Thesgg
simulation results suggest that the event-triggered faeklb
system is robust to delays. How to obtain a tighter estima{gl]
of the deadline would be an interesting future topic.

(1]

(2]

VI. CONCLUSIONS [12]

This paper proposed a new event-triggering scheme. The
resulting event-triggered feedback systems are guatntees]
to be asymptotically stable, provided that the continuous
systems are stabilizable. We show that the task periods afg
deadlines generated by our scheme are bounded strictly away
from zero if the continuous systems are ISS with respect
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