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Abstract. This paper examines event-triggered broadcasting of state
information in networked control systems. Event-triggering has the agent
broadcast its state information when its local “error” signal exceeds a
given threshold. We present a decentralized approach for determining
event-triggering thresholds for both linear and nonlinear subsystems with
the assumption that each agent only has access to its local state. The
main results of this paper show that our decentralized event triggering
scheme guarantees the asymptotic stability of the entire networked con-
trol system. For nonlinear systems these conditions are characterized as
Hamilton-Jacobi-Isaacs (HJI) inequalities. For linear systems the con-
ditions simplify to a linear matrix inequality (LMI) feasibility problem.
Simulation results show that event-triggered systems outperform com-
parable periodically triggered systems when the number of subsystems
is relatively small. Contention within the communication network, how-
ever, eventually erodes the performance benefits of the event-triggered
scheme so that in highly congested networks periodically triggered broad-
casts have the performance edge.

1 Introduction

A networked control system (NCS) is a collection of control systems where indi-
vidual controllers exchange information over some communication network. Net-
working refers to not only the communication infrastructure supporting feedback
control, it also refers to the fact that individual subsystems may be intercon-
nected in a way that can be modelled as a network. Specific examples of NCS
include electrical power grids and transportation networks. The networking of
control effort can be advantageous in terms of lower system costs due to stream-
lined installation and maintenance costs. Such distributed systems may have
higher reliability since the failure of no single subcomponent will bring down the
entire system.

The introduction of communication network infrastructure, however, raises
new challenges regarding the impact that communication reliability has on the
control system’s performance. Communication channels are customarily accessed
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in a mutually exclusive manner. In other words, only one agent can broadcast its
state information at a time. So one important issue in the implementation of such
NCSs is to identify the broadcast decision logics that can provide guarantees on
overall system performance. In addition, the broadcast decision should be made
locally since there is no central computer to make broadcast scheduling decisions.

This paper addresses this issue through the use of an event-triggered broad-
cast scheme. Event-triggering has the agent broadcast its state information when
its local “error” signal exceeds a given threshold. We present an approach for
selecting event-triggering thresholds that assure the asymptotic stability of the
group. Our analysis applies to both linear and nonlinear subsystems. The event-
triggering scheme is “decentralized” in that a controller’s broadcast decisions are
made using its local state and the last received state information from its neigh-
bors. It is also “decentralized” in that the designer’s selection of the threshold
also only requires information about an individual subsystem and its immediate
neighbors. For nonlinear subsystems, these thresholds are characterized by fea-
sible solutions to Hamilton-Jacobi-Isaacs (HJI) inequalities. For linear systems,
these conditions simplify to an LMI (linear matrix inequality) feasibility prob-
lem. Preliminary simulation results show that when a controller has a limited
number of neighbors, the event-triggered systems perform better than systems
using periodically triggered broadcasts. As the number of neighbors increases,
our results show that periodically triggered broadcasts eventually have better
performance than comparable event-triggered schemes.

This paper is organized as follows. Section 2 discusses the prior work. The
problem is formulated in section 3. Our event-triggering scheme for a general
class of nonlinear subsystems is presented in section 4. Section 5 specializes
these results to linear subsystems. Simulation results examining the scalability
of event-triggered and periodically-triggered broadcasts are presented in section
6. Final conclusions are found in section 7.

2 Prior Work

Early works analyzing scheduling of real-time network traffic were presented in
[2] and [3]. However, the impact of communication constraints on system per-
formance was not been addressed in these works. [4], [5], [6] noticed the harmful
effect of the communication delay on the system stability and considered the one
packet transmission problem, where all of the system outputs were packaged into
a single packet. As a result, agents in the network do not have to compete for
channel access. One packet transmission strategies, however, use a supervisor to
summarize all subsystem data into this single packet. As a result such schemes
may be impractical for large-scale systems.

Asynchronous broadcasts were considered in [7]. This work derived bounds
on the maximum admissible time interval (MATI) that a message can be delayed
while still maintaining closed loop system stability. It led to scheduling methods
[8] that were able to assure the MATI was not violated. This work, however,
estimated MATI bounds in a “centralized” way since information from all sys-



tems was needed to estimate the bound. Furthermore, all of the previous work
confined its attention to control area network (CAN) buses where centralized
computers can be used to schedule communication.

In recent years there has been considerable interest in developing distributed
controllers over ad hoc wireless networks [9]. The problem faced in using wireless
networks is that their throughput capacity is limited [10]. As network density
increases, the throughput seen by an individual agent asymptotically approach
zero. There is, therefore, great interest in being able to develop networked control
systems which are extremely frugal in their use of network bandwidth.

One approach for reducing the bandwidth requirements within a networked
control system is to reduce the frequency with which agents communicate. Unlike
the aforementioned CAN buses, NCS that use multi-hop wireless networks as
their communication infrastructure must schedule message transmission in a
decentralized manner. Each controller in such systems is a potential router for a
message. The problem, therefore, turns to finding a localized strategy for deciding
when to broadcast state information.

This paper addresses this problem through a decentralized event-triggering
scheme. In particular, we want to adaptively adjust agent broadcasts in a man-
ner that is sensitive to what is currently happening within the system. One
approach for doing this is to use event-triggered broadcasts. Event-triggering
has a subsystem broadcast its state information only when “needed”. In this
case, “needed” means that some measure of the agent’s state error is above a
specified threshold. There is a great deal of recent research [1], [11], [12], [13]
dealing with event-triggered feedback. All of this prior work, however, has fo-
cused on using event-triggered feedback in single processor real-time systems.
The novelty of our paper is its consideration of event-triggering in networked
systems following an approach we laid out earlier in [14].

3 Problem Formulation

In this section, the system dynamics and control objective are defined. Consider
an N -agent nonlinear distributed system. Let N = {1, 2, · · · , N}.

Notation: Zi ⊂ N denotes the set of agents whose state information is
accessible by agent i (so-called “information set of agent i”). Di ⊂ N denotes
the set of agents that directly drive agent i’s dynamics. Ui ⊂ N denotes the set
of agents that can receive agent i’s broadcasted information. Si ⊂ N denotes the
set of agents who are directly driven by agent i’s dynamics. xi : R→ Rni is the
ith agent’s state trajectory, ui : R→ Rmi is the ith agent’s control variable, and
xi0 ∈ Rni is the initial state of agent i. x = (xT

1 , · · · , xT
N )T is the overall system

state, x0 = (xT
10, · · · , xT

N0)
T is the overall initial state, and u = (uT

1 , · · · , uT
N )T

is the overall input. Let Ti = Di ∪ Zi, n̄ = Σj∈Nnj , and m̄ = Σj∈Nmj ; for a
given set S ⊆ N , we let nS =

∑
j∈S nj and xS = {xj}j∈S .



The system dynamics of agent i ∈ N are defined by the following equations

ẋi(t) = fi(xDi , ui)
ui(t) = γi(xZi

)
xi(0) = xi0 (1)

where γi : RnZi → Rmi is the given feedback strategy of agent i satisfying
γi(0) = 0, and fi : RnDi ×Rmi → Rni is a given function satisfying fi(0, 0) = 0.

In particular we assume the closed-loop system 1 is asymptotically stable. So
there exists a smooth, proper, positive-definite function V : Rn̄ → R, such that

∑

i∈N

∂V

∂xi
fi(x, γi(x)) ≤ 0 (2)

and the equality holds if and only if x = 0.
This paper focuses on distributed control systems, where each agent broad-

casts its state information to its neighbors if its local “error” signal exceeds a
given threshold. In this system, each agent can only detect its own state and
broadcast it to other agents in an aperiodic fashion. We assume there is no de-
lay, namely the time spent in sampling and receiving the signal is negligible (The
delay case can be easily extended by using the techniques in [1] and [15]). Agent
i’s broadcasting task is characterized by a monotone increasing sequence of time
instants, {bi

k}∞k=1, where bi
k denotes the time instant when agent i broadcasts its

state for the kth time (so-called “broadcast times”). bi
k can also be viewed as

agent i’s sampling time since we assume there is no delay between sampling and
broadcasts.

Agent i’s control, ui, at time t is computed based on its neighbors’ latest
broadcast states (also called “measured states”) at time t, denoted as x̂Zi(t).
Notice that, in our discussion, i’s neighbors include agent i itself. The control
signal used by agent i is held constant by a zero-order hold (ZOH) until one of
its neighbors makes another broadcast. This means that the distributed system
satisfies the following state equations,

ẋi(t) = fi(xDi , ui)
ui(t) = γi(x̂Zi(tk)) (3)

for t ∈ [tk, tk+1), k = 1, . . . ,∞. Here tk represents the kth time instant when
any agent broadcasts. In fact, the sequence of {tk}∞k=1 is the sorted sequence of
the elements in the set {bj

k | k ∈ N, j ∈ N}. Notice that x̂Zi(t) = x̂Zi(tk) for all
t ∈ [tk, tk+1).

4 Decentralized Broadcast-triggering Events Design

This section derives a threshold condition for event-triggering. The triggered
event causes the agent to broadcast its state information to its neighbors. We’re



interested in determining condition under which such event-triggering preserves
the system’s asymptotical stability. In the following discussion, we use |S| ∈ N
to denote the number of the elements in a given set S, ‖ · ‖2 to denote 2-norm
of a vector, and ‖ · ‖ to denote the matrix norm.

Theorem 1. For system 3, assume that there exists a smooth, proper, positive-
definite function V : Rn̄ → R, such that the following inequality

∑

i∈N

∂V

∂xi
fi(xDi

, γi(yZi
)) ≤

∑

i∈N
φi(xi, yi) (4)

holds, where φi : Rni × Rni → R is a continuous function and φi(xi, xi) is
negative definite for all i ∈ N . If for any i ∈ N , the broadcast sequence {bi

k}∞k=1

satisfies

φi(xi(t), xi(bi
k)) ≤ 0 (5)

for t ∈ [bi
k, bi

k+1), then system 3 is asymptotically stable.

Proof. Note that, if agent i broadcasts its state, equation 5 will be trivially
satisfied because φi(xi, xi) is negative definite. Therefore, bi

k ≤ bi
k+1 will always

hold.
Consider V̇ over the time interval [tk, tk+1). Assume that the current mea-

sured state at time t is
(
x1(b1

k1
)T , · · · , xN (bN

kN
)T

)T . Therefore, according to equa-
tion 4, the inequality

V̇ ≤
∑

i∈N
φi

(
xi(t), xi(bi

ki
)
)

(6)

holds for t ∈ [tk, tk+1).
Based on the definition of {tk}∞k=1 in equation 3, we have [tk, tk+1) ⊆ [bi

ki
, bi

ki+1)
for any i ∈ N . Therefore, by equation 5 and 6, we have

V̇ ≤ 0 (7)

for any t ∈ [tk, tk+1). Since k is arbitrarily selected, V̇ ≤ 0 holds for all t > 0.
By the assumption that φi(xi, xi) is negative definite, we know V̇ will stay at
0 if and only if xi = xi(bi

ki
) = 0 for all i ∈ N , which implies that system 3 is

asymptotically stable. ut
Remark 1. Equation 4 implies that the growth rate of the total system’s “en-
ergy” can be partitioned in N pieces, φi(xi, xi(bi

ki
)). Each piece is related to only

one agent so that the agent just needs to take care of its own piece.

Theorem 1 shows the structure of the broadcast event trigger. Essentially, the
theorem says that under the structural conditions in equations 4, the threshold
function implicit in equation 5 can be used to assure the overall system’s as-
ymptotic stability. We now address the question of how to locally construct such
threshold functions.



Before addressing this question in theorem 2, we must define δ ∈ R+ and
continuous functions βi, ψi : Rni → Rni , i = 1, · · · , N , which are known to each
agent. In other words, δ and the collection of {βj}j∈N , {ψj}j∈N are selected at
the very beginning of the entire design procedure.

The following theorem presents a decentralized design scheme by which each
agent constructs its threshold function.

Theorem 2. For system 3, assume that there exist continuous functions ψi :
Rni → Rni and Li : RnTi → R+, i = 1, · · · , N , such that for any xZi , yZi ∈ RnZi

‖fi(xDi , γi(yZi))− fi(xDi , γi(xZi))‖2 ≤ Li(xTi)‖ψZi(yZi)− ψZi(xZi)‖2, (8)

where ψZi
(xZi

) = {ψj(xj)}j∈Zi
∈ RnZi . Given a constant δ ∈ R+ and con-

tinuous functions βi(xi), i = 1, · · · , N , if there exist smooth positive-definite
functions Vi : Rni → R and continuous functions αi : Rni → R, i = 1, · · · , N ,
such that

−αi(xi) + (|Si ∪ Ui| − 1)βi(xi) is negative definite (9)

∂Vi

∂xi
fi(xDi , γi(xZi)) +

1
2δ

L2
i (xTi)

∂Vi

∂xi

(
∂Vi

∂xi

)T

≤ −αi(xi) + Σj 6=i,j∈Tiβj(xj). (10)

then the threshold functions φi : Rni × Rni → R defined by

φi(xi, yi) = −αi(xi) + (|Si ∪ Ui| − 1)βi(xi) +
|Ui|δ

2
‖ψi(yi)− ψi(xi)‖22 (11)

satisfy equation 4.

Proof. It is obvious that φi(xi, xi) is negative definite because of assumption 9.
We now consider φi’s satisfaction of equation 4 with V (x) =

∑
i∈N Vi(xi). In

particular using equation 8 we see that

∑

i∈N

∂Vi

∂xi
fi(xDi , γi(yZi))

≤
∑

i∈N

∂Vi

∂xi
fi(xDi , γi(xZi)) +

∑

i∈N

∥∥∥∥
∂Vi

∂xi

∥∥∥∥
2

‖fi(xDi , γi(yZi))− fi(xDi , γi(xZi))‖2

≤
∑

i∈N

∂Vi

∂xi
fi(xDi , γi(xZi)) +

∑

i∈N

∥∥∥∥
∂Vi

∂xi

∥∥∥∥
2

Li(xTi)‖ψZi(yZi)− ψZi(xZi)‖2

≤
∑

i∈N

∂Vi

∂xi
fi(xDi , γi(xZi)) +

∑

i∈N

[
L2

i (xTi)
2δ

∥∥∥∥
∂Vi

∂xi

∥∥∥∥
2

2

+
δ

2
‖ψZi(yZi)− ψZi(xZi)‖22

]

=
∑

i∈N

[
∂Vi

∂xi
fi(xDi , γi(xZi)) +

L2
i (xTi)
2δ

∂Vi

∂xi

(
∂Vi

∂xi

)T

+
|Ui|δ

2
‖ψi(yi)− ψi(xi)‖22

]



From equation 10 this can be reduced to

∑

i∈N

∂Vi

∂xi
fi(xDi , γi(yZi))

≤
∑

i∈N

[
(|Si ∪ Ui| − 1)βi(xi)− αi(xi) +

|Ui|δ
2
‖ψi(yi)− ψi(xi)‖22

]

=
∑

i∈N
φi(xi, yi)

which implies the satisfaction of equation 4. ut

Remark 2. In theorem 2, the only things agent i can determine are Vi and αi.
Therefore, agent i’s local problem is to construct Vi and αi such that equation 9
and 10 hold. Once such Vi and αi are found, we can use equation 5 to construct
the event-triggering threshold logic. In this case the ith agent’s k+1st broadcast
time bi

k+1 is triggered by the violation of the following inequality

−αi(xi) + (|Si ∪ Ui| − 1)βi(xi) +
|Ui|δ

2
‖ψi(xi(bi

k))− ψi(xi)‖22 < 0 (12)

Remark 3. Equation 10 is in the form of Hamilton-Jacobi-Isaacs (HJI) inequal-
ity. If fi is linear, the existence of Vi and αi can be guaranteed. If fi is nonlinear,
fi has to satisfy some additional requirements to ensure the existence of Vi and
αi. These necessary conditions for the solution to the HJI inequality are not
presented here due to space limitations.

5 Linear System

Consider the distributed system 3 in linear form:

ẋi = AixDi + Biui

ui = Kix̂Zi(tk) (13)

for t ∈ [tk, tk+1), k = 1, · · · ,∞, where Ai ∈ Rni×nDi , Bi ∈ Rni×mi , and Ki ∈
Rmi×nZi .

We know that there always exist matrices Ci ∈ RnDi
×n̄ and Ri ∈ RnZi

×n̄

such that xDi = Cix and xZi = Rix hold. Let A =
(
(A1C

1
1 )T , · · · , (ANC1

N )T
)T ,

B = ((B1K1R1)T , · · · , (BNKNRN )T )T . Therefore, equation 2 is equivalent to
the inequality:

P (A + B) + (A + B)T P ≤ −Q (14)

where V (x) = xT Px and P,Q ∈ Rn̄×n̄ are positive definite matrices.
We first show the general structure of the threshold functions φi in linear

systems satisfying equation 4.



Theorem 3. For system 13, if the matrices P,Q ∈ Rn̄×n̄ and Wi,Mi ∈ Rni×ni ,
i = 1, 2, · · · , N satisfy:

P (A + B) + (A + B)T P ≤ −Q (15)
Q− PBM−1BT P ≥ W (16)
P, Q,Mi,Wi > 0 (17)

where M = diag{Mj}j∈N and W = diag{Wj}j∈N , then the threshold functions
φi : Rni × Rni → R defined by

φi(xi, yi) = −xT
i Wixi + (yi − xi)T Mi(yi − xi) (18)

satisfy equation 4 with V (x) = xT Px.

Proof. It is obvious that φi(xi, xi) = −xT
i Wixi is negative definite.

We now show that φi(xi, yi) defined in equation 18 satisfies equation 4 in
theorem 1. For any x, y ∈ Rn̄, let xDi

= Cix and yZi
= Riy. Then

∑

i∈N

∂V

∂xi
(AixDi + BiKiyZi) = xT (PA + AT P + PB + BT P )x + 2xT PB(y − x)

Since equation 15 holds and using equation 16, the inequality reduces to

∑

i∈N

∂V

∂xi
(AixDi + BiKiyZi) ≤ −xT Qx + 2xT PB(y − x)

≤ −xT (Q− PBM−1BT P )x + (y − x)T M(y − x)

≤ −
∑

i∈N
xT

i Wixi +
∑

i∈N
(yi − xi)T Mi(yi − xi) =

∑

i∈N
φi(xi, yi) (19)

which means equation 4 is satisfied. ut
It can be shown that the matrices {Wj}j∈N and {Mj}j∈N required in theo-

rem 3 always exist, provided equation 15 holds (for example, let Wi = εIni×ni

and Mi = ‖PB‖2
λmin(Q)−εIni×ni , where ε ∈ (0, λmin(Q))).

Remark 4. Notice that equation 16 can be rewritten as the following
[

Q−W PB
BT P M

]
≥ 0 (20)

Therefore, equation 15, 17, 20 form a linear matrix inequality (LMI), which
characterizes the desired matrices.

Theorem 3 presents the general structure of valid threshold functions. As
mentioned in remark 4, the assumptions in theorem 3 can be posed as an LMI.
However, directly solving this LMI for an admissible solution is a centralized
approach. Since decentralization is desired, we need to find a way to transform



the centralized LMI into several local LMI problems. In the following discussion,
we introduce a decentralized event-design scheme, where each agent solves its
local LMI and constructs its threshold function based on the local information.

The first step in the design is to select N +1 constants δ, β1, · · · , βN ∈ R. To
outline the main idea of this approach, we study the case when β1, · · · , βN are
the same, say βi = β ∈ R for all i ∈ N . The general case can be easily extended.

Let si = Σj∈Ti, j<inj and s̄i = Σj∈Ti, j>inj for i ∈ N . Assuming matrices
C ′i ∈ RnDi

×nTi and R′i ∈ RnZi
×nTi satisfy xDi = C ′ixTi

and xZi
= R′ixTi

, we
define functions Fi : Rni×ni → RnTi

×nTi as

Fi(Pi) =




0si×nTi

Pi(AiC
′
i + BiKiR

′
i)

0s̄i×nTi


 (21)

and Gi : R→ RnTi
×nTi as

Gi(qi) = diag
{
βIsi×si

,−qiIni×ni
, βIs̄i×s̄i

}
. (22)

We now introduce the local LMI problem for agent i:

Problem 1. For two given constants δ > 0 and β, find w∗i such that

w∗i = max
wi, qi∈R, Pi∈Rni×ni

wi

s.t.

Fi(Pi) + FT
i (Pi) ≤ Gi(qi) (23)

Pi > 0 (24)[
(qi − (|Si ∪ Ui| − 1)β − wi) I PiBiKi

KT
i BT

i Pi δI

]
≥ 0 (25)

The following theorem shows that if the optimal solution to problem 1 is greater
than zero, then the required threshold functions can be constructed in a decen-
tralized manner.

Theorem 4. For system 13, if for any i ∈ N , the solution of problem 1, w∗i ,
satisfies w∗i > 0, then the threshold functions φi : Rni × Rni → R defined by

φi(xi, yi) = −w∗i xT
i xi + δ|Ui|‖yi − xi)‖22 (26)

satisfy equation 4 with V (x) =
∑

i∈N xT
i Pixi.

Proof. Assume w∗i , Pi, and qi are the solution of LMI problem 1. If w∗i > 0 for
all i ∈ N , then it is easy to show that the matrices

P = diag{Pi}N
i=1

Q = diag{[−qi + (|Si ∪ Ui| − 1)β]Ini×ni}N
i=1

Wi = w∗i Ini×ni

M = diag{δ|Ui|Ini×ni}N
i=1

satisfy the assumptions in theorem 3. According to theorem 3, the conclusion of
this theorem is drawn. ut



Remark 5. As shown in the proof of theorem 4, if w∗i > 0 holds for all i ∈ N ,
then a solution to the centralized LMI defined by equation 15, 17, 20 can be
constructed by the solutions of local LMIs.

Remark 6. The LMI defined in problem 1 actually is equivalent to the linear
form of equation 10

xT
i PiYixTi + xT

Ti
Y T

i Pixi +
1
δ
xT

i PiBiKiK
T
i BT

i Pixi

≤ − (w∗i + (|Si ∪ Ui| − 1)β)xT
i xi +

∑

j 6=i,j∈Ti

βxT
j xj (27)

where Yi , AiC
′
i +BiKiR

′
i. In linear case, αi(xi) = (w∗i + (|Si ∪ Ui| − 1)β)xT

i xi

and βi(xi) = βxT
i xi. The assumption w∗i > 0 is equivalent to the requirement in

equation 9. For linear systems, it is natural to set ψi(xi) , xi.

6 Simulation

The simulation results demonstrate the value of decentralized event-triggered
broadcasts over a networked system. A collection of N inverted pendulums is
considered, where every pendulum arm is connected to every other pendulum
arm by springs as shown in Fig. 1. The plant’s state equation is

ẋi =

(
θ̇i(

g
` − (N−1)ka2

m`2

)
sin(θi) +

∑
j 6=i

ka2

m`2 sin(θj) + 1
m`2 ui

)
+

(
1
1

)
vi (28)

where m is the mass of the pendulum bob, ` is the length of the pendulum arm,
g is the gravitational acceleration, k is the spring constant, and vi : R→ R is the
external disturbance in agent i. The system state is the vector xi =

[
θi θ̇i

]T
,

where θi is the ith pendulum bob’s angle with respect to the vertical. In these
simulations, we set g = 10, l = 2, m = 1, k = 5, and a = 1.

 

x3 x2 x1 

Fig. 1. Network of three inverted pendulums

We assume in all simulations, every broadcast takes 0.001 seconds. If there is
a broadcast conflict, we assume agents compete for access to the channel using
carrier sense media access (CSMA) protocols. In this case, the probability of an
agent accessing the medium is 1/3.



6.1 Event Design for Nonlinear Systems

This simulation considered the broadcast-triggering event design in the inverted
pendulums system 28. We set N = 3 and vi(t) = 0. The controllers designed for
the continuous closed-loop system were:

ui = m`2


−θi − 2θ̇i −

(
g

`
− 2ka2

m`2

)
sin(θi)

∑

j 6=i

ka2

m`2
sin(θj)


 , for i = 1, 2, 3

Let δ = 1000, βi(xi) = xT
i xi, ψi(xi) = xi and the system dynamics in

equation 28 satisfied equation 8 for L1 = L2 = L3 =
√

5 + 5. Solving equation 9
and 10, we found

V1(x1) = xT
1 Px1 V2(x2) = xT

2 Px2 V3(x3) = xT
3 Px3

α1(x1) = 11.13xT
1 x1 α2(x2) = 11.13xT

2 x2 α3(x3) = 11.13xT
3 x3

where P =
(

58.27 56.11
56.11 81.58

)
.
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State History under Event−triggered Broadcasts
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0.2
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Broadcast Period History

Fig. 2. Event-triggered broadcast simulation results in the distributed nonlinear system

Agent i used the violation of equation 12 to trigger its broadcasts. The left
plot in Fig. 2 shows the state time history for all three inverted pendulums.
Obviously the system is asymptotically stable. The right plot of Fig. 2 is the
history of broadcast periods generated by the violation of equation 12, where
the periods of agents 1, 2, 3 are represented as circles, crosses, and stars in the
plot, respectively. As shown in the plot, the broadcast periods vary considerably.
The minimum, mean, maximum of periods are [0.012, 0.048, 0.130] for agent 1,
[0.050, 0.061, 0.118] for agent 2, [0.025, 0.058, 0.121] for agent 3, respectively.



6.2 Event-triggered Model versus Periodic Model

This simulation compared the performance of the event-triggered model and the
“comparable” periodic model. By “comparable”, we mean the total numbers of
broadcasts in these two models are the same over the same system running time.
In this way, these two models use the same amount of communication resource.
The plant’s state equation used in this simulation is the linear version of equation
28:

ẋi =

(
0 1

g
` − (N−1)ka2

m`2 0

)
xi +

∑

j 6=i

(
0 0

ka2

m`2 0

)
xj +

(
0
1

m`2

)
ui (29)

and the controllers designed for the continuous system were

ui = m`2


−

∑

j 6=i

(
ka2

m`2 , 0
)

xj −
(

2 + g
` − (N−1)ka2

m`2 , 3
)

xi


 . (30)

We also introduced the external disturbance, vi : R→ R, to agent i, where

vi(t) =
{

300/N , t− 2(i−1)
N ∈ (k, k + 0.02], for k = 0, 2, 4, · · · ,∞

0 , otherwise
. (31)

The case when N = 3 was considered. With δ = 1000 and β = 1, each
agent solved problem 1 and resulted in w∗1 = w∗2 = w∗3 = 59.7. Therefore, the
broadcast-triggering events were determined using LMI techniques.:

−0.0597 ‖xi‖22 + 3‖xi − xi(bi
k)‖22 < 0 (32)

Using the broadcast-triggering events in equation 32 and the disturbance
defined in equation 31, we first ran the event-triggered model. The period in
the periodic model was the average period in the event-triggered model. In this
way, the periodic model used the same average transmission rate as the event-
triggered model did.

We varied the system running time from 6 to 50 seconds. Let xe(t) and xf (t)
denote the state trajectories in the event-triggered model and the periodic model,
respectively. The system performance over [0, t] is defined as

E[x|t] =
∫ t

0

xT x dt

Fig. 3 shows the improvement of the performance in the event-triggered
model compared with the periodic model. The horizonal axis denotes the system
running time t and the vertical axis p(t) is defined as

p(t) =
E[xf |t]− E[xe|t]

E[xf |t] (33)
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Fig. 3. The percentage of performance improvement by the event-triggered model com-
pared with the periodic model
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Fig. 4. Event-triggered broadcasts simulation results in linear systems with disturbance

As shown in Fig. 3, the percentage tends to increase as the system running
time increases. It eventually settles down around 19%. It shows that, with the
same amount of channel access and the same disturbance, the event-triggered
broadcast model achieves a better performance than the periodic model.

For the case when the system running time t = 10, the state trajectory of the
overall system is shown in the left plot of Fig. 4, where the state shows a periodic
pattern after t = 3. The reason is that after t = 3, the state is dominated by the
disturbance. Since the disturbance is periodic, the state also changes periodically.
The right plot of Fig. 4 shows the broadcast periods. Notice that, every time
when the disturbance in agent i is non-zero, the broadcast periods becomes
shorter. It is because the event-triggered broadcasts have the ability of adjusting
periods according to the current state.



6.3 Scalability in Event-triggered Model and Periodic Model

In the previous simulations, because we limited the number of pendulums to
3, there was no broadcast conflict in the network. However, as the number of
pendulums increases, broadcast conflicts will occur, which introduces broadcast
delays in the network. By “delay”, we mean the time length from the violation
of agent i’s event to its first broadcast after that violation. Two simulations were
done by varying N from 3 to 50. The first one compared the broadcast delay in
the event-triggered models and the periodic model; the second one compared the
system performance of these two models. In these two simulation, the external
disturbance is still the one defined in equation 31 and the system running time
is set to be 10 seconds.
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Fig. 5. The relationship between broadcast delay and the scale of the event-triggered
model

The first result is shown in Fig. 5. Circles and crosses represent the aver-
age delay in the event-triggered model and the periodic model, respectively. By
“average”, we mean its total delay over N . From the plot, the periodic model
introduced less delay than the event-triggered model, especially when N gets
larger. In the event-triggered model, after N > 15, the delay increases quickly as
the number of agents increases. We notice that when N = 15, the channel usage
is 90% during the entire running time and when N ≥ 23, the channel occupation
is 100%, which means agents always compete for the channel access. This is the
indication that the bandwidth of the network is not high enough.

Two reasons lead to the fast increase of delay. The first one is that as the
number of agents increases, more agents compete for the channel access. The
second reason is that, because every pendulum arm is connected to every other
pendulum arm, the coefficient of the local error in the event is Nδ. As N in-
creases, the error becomes a larger weight, which leads to a short broadcast
period.
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Fig. 6. The performance comparison between the event-triggered model and the peri-
odic model

The comparison of system performance in the event-triggered model and the
periodic model is shown in Fig. 6. The vertical axis is p(t) defined in 33. When
N = 3, the event-triggered model improves the performance by 20% compared
with the periodic model. However, the improvement keeps decreasing as the num-
ber of agents increases until N = 30 when the performance of the event-triggered
model becomes worse than the periodic model. Remember that when N ≥ 23,
agents always compete for the channel access. In that case, event-triggering be-
comes meaningless since the agent’s decision is always broadcasting, not waiting.
Therefore, when N is extremely large, the periodic model seems better since the
periodic model introduces less delay into the system. This suggests that event-
triggered feedback, by itself, does not scale well with communication network
density.

7 Conclusion

This paper examines event-triggered broadcasting of state information in dis-
tributed networked control systems. We showed that it is possible to design
event-triggering thresholds that preserve asymptotic stability while only requir-
ing “local” subsystem information to make their decisions. We showed that it is
possible to design such thresholds using only local information about the dynam-
ics of a subsystem. The approach applies to both nonlinear and linear systems,
though determining the threshold for nonlinear systems requires the solution
of a HJI inequality. For linear systems, this condition reduces to a much sim-
pler LMI feasibility problem. We investigated the scalability of event-triggering
through simulation studies. These results indicate that event-triggered systems
outperform periodically triggered systems when there is little communication
network congestion. As network density increases, thereby resulting in increased
congestion, the performance of the event-triggered scheme begins to fall below



that achieved by the periodically triggered system. This suggests that event-
triggering, by itself, is not a scalable solution to networked feedback control
systems. We firmly believe that the results indicate that broadcasting in such
NCS requires a hybrid scheme that judiciously alternates between time-triggered
and event-triggered broadcast strategies. Future work will investigate such hy-
brid schemes in a more rigorous manner.
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