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Abstract: This paper examines a class of real-time control systems in which each control
task triggers its next release based on the value of the last sampled state. Prior work by
Lemmon et al. (2007) used simulations to demonstrate that self-triggered control systems can
be remarkably robust to task delay. This paper derives bounds on a task’s sampling period
and deadline to quantify how robust the control system’s performance will be to variations in
these parameters. In particular we establish inequality constraints on a control task’s period and
deadline whose satisfaction ensures that the closed loop system’s induced L2 gain lies below a
specified performance threshold. The results apply to linear time-invariant systems driven by
external disturbances whose magnitude is bounded by a linear function of the system state’s
norm. The plant is regulated by a full-information H∞ controller. These results can serve as
the basis for the design of soft real-time systems that guarantee closed-loop control system
performance at levels traditionally seen in hard real-time systems.

1. INTRODUCTION

Computer-controlled systems are often implemented using
periodic tasks satisfying hard real-time constraints. Under
a periodic task model, consecutive invocations (also called
jobs) of a task are released in a periodic manner. Periodic
task models allow the control system designer to treat the
computer-controlled system as a discrete-time system, for
which there are a variety of mature controller synthesis
methods.

However, periodic task models may be undesirable in
many situations. Traditional approaches for estimating
task periods and deadlines are very conservative, so the
control task may have greater utilization than it actually
needs. This results in significant over-provisioning of the
real-time system hardware. With such high utilization,
it may be difficult to schedule other tasks on the same
processing system. Finally, it should be noted that real-
time scheduling over networked systems may be poorly
served by the periodic task model. In many networked
systems, tasks are finished only after information has
been successfully transported across the network. It is
often unreasonable to expect hard real-time guarantees
on message delivery in communication networks. This is
particularly true for wireless sensor-actuator networks. In
these applications, there may be good reasons to consider
alternatives to periodic task models.

This paper considers a self-triggered aperiodic task
model in which each task determines the release of its next
job. In particular, the next release time is described as a
function of the system state sampled by the current job.
We can therefore consider this “state-based” self-triggering
as a closed-loop form of releasing tasks for execution,
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whereas periodic task models release their jobs in an open-
loop fashion.

Self-triggering provides a more flexible way of adjusting
task periods. Since task periods are based on the system’s
current state, it is possible to reduce control task utiliza-
tion during periods of time when the system is sitting
happily at its equilibrium point. The question here is
precisely how much freedom do we have in adjusting task
periods in response to variations in the system state. This
paper answers that question by providing bounds on the
task periods and deadlines required to assure a specified
level of L2 stability. Our results pertain to linear time-
invariant system with state feedback. Since our controller
seeks to ensure L2 stability, we use a full-information H∞
controller in our analysis. We also assume that the system
has a process noise whose magnitude is bounded by a linear
function of the norm of the system state. Under these
assumptions we obtain a set of inequality constraints on
the task period and deadlines as a function of the system
state. On the basis of simulation results, these bounds
appear to be tight and relatively easy to compute, so it
may be possible to use them in actual real-time control
systems.

The remainder of this paper is organized as follows.
Section 2 discusses the prior work related to self-triggered
feedback. Section 3 introduces the system model. Section
4 derives sufficient threshold condition that can serve as
an event triggering state sampling. In section 5, the self-
triggering scheme is presented and the system is shown to
be L2 stable. Simulations are shown in section 6. Finally,
conclusions and future work are presented in section 7.

2. PRIOR WORK

To the best of our knowledge there is relatively little
prior work examining state-based self-triggered feedback



control. A self-triggered task model was introduced by
Velasco et al. (2003) in which a heuristic rule was used
to adjust task periods. A self-triggered task model was
also introduced by Lemmon et al. (2007) which chose task
periods based on a Lyapunov-based technique. But other
than these two papers, we are aware of no other serious
work looking at self-triggered feedback schemes. There is,
however, a great deal of related work dealing with event-
triggered feedback, sample period selection, and real-time
control system co-design. We’ll review each of these areas
in more detail below and then discuss their relationship to
the self-triggered task models.

Traditional methods in Astrom et al. (1990) for sample
period selection are usually based on Nyquist sampling.
Nyquist sampling ensures that the sampled signal can
be perfectly reconstructed from its samples. In practice,
however, feedback within the control system means the
system’s performance will be somewhat insensitive to
errors in the feedback signal, so that perfect reconstruction
is much more than we require in a feedback control system.
An alternative approach to the sample period selection
problem makes use of Lyapunov techniques. This was done
by Zheng et al. (1990) for a class of nonlinear sampled-data
system. Nesic et al. (1999) used input-to-state stability
(ISS) techniques to bound the inter-sample behavior of
nonlinear systems. The sample periods obtained by these
methods also tend to be very conservative due to the
bounding techniques used.

Another related research direction viewed sample period
selection as a “co-design” problem that involves both the
control system and the real-time system. In this case,
sample periods are selected to minimize some penalty on
control system performance subject to a schedulability
condition. Early statements of this problem may be found
in Seto et al. (1996) with more recent studies in Cervin
et al. (2002) and Marti et al. (2004). The penalty function
is often a performance index for an infinite horizon optimal
control problem. It has, however, been demonstrated in
Bamieh (2003) that such indices may not be a monotone
function of the sampling period (particular under slow-
sampling).

In recent years, a number of researchers have proposed
aperiodic and sporadic task models in which tasks are
event-triggered in Arzen (1999). By event-triggering, we
usually mean that the system state is sampled when some
function of the system state exceeds a threshold. The idea
of event-triggered feedback has appeared under a variety
of names, such as interrupt-based feedback in Hristu-
Varsakelis (2002), Lebesgue sampling in Astrom (1999), or
state-triggered feedback in Tabuada et al. (2006). Event
triggering usually requires some form of hardware event
detector to generate a hardware interrupt to release the
control task. This can be done using either custom analog
integrated circuits (ASIC’s) or floating point gate array
(FPGA) processors.

The prior work on event-triggered feedback is probably
most closely related to this paper’s work. In particular,
the bounds we derive in this paper are based on variations
of the event-triggering conditions used by Tabuada et al.
(2006).

3. SYSTEM MODEL

Consider a linear time-invariant system whose state x :
< → <n satisfies the initial value problem,

ẋ(t) = Ax(t) + B1u(t) + B2w(t)

x(0) = x0

where u : < → <m is a control input and w : < → <l

is an exogenous disturbance function in L2 such that
there exists a positive real constant W > 0 so that
‖w(t)‖2 ≤ W‖x(t)‖2 for all t ≥ 0. In the above equation,
A ∈ <n×n, B1 ∈ <n×m, and B2 ∈ <n×l are real matrices
of appropriate dimensions.

Since we’re interested in controllers that are finite-gain L2

stable, assume there exists a symmetric positive definite
matrix P satisfying the H∞ algebraic Riccati equation
(ARE),

0 = PA + AT P −Q + R (1)
where

Q = PB1B
T
1 P (2)

R = I +
1
γ2

PB2B
T
2 P (3)

for some real constant γ > 0.

If we consider the standard L2 storage function V : <n →
< given by V (x) = xT Px for all x ∈ <n then the preceding
assumptions about P allow us to show that the storage
function’s directional derivative satisfies the dissipative
inequality,

V̇ (x(t)) < −‖x(t)‖22 + γ2‖w(t)‖22 (4)
for all t. Recall that a linear system, T , is said to be finite
gain L2 stable if T is a linear operator from L2 back into
L2. The induced gain of T is

‖T‖ = sup
‖w‖L2=1

‖Tw‖L2 .

Satisfaction of the dissipative inequality (eq. 4) is sufficient
to show that the system T characterized by the state
equation

ẋ(t) = (A−B1B
T
1 P )x(t) + B2w(t) (5)

is finite gain L2 stable with an induced gain less than γ.
For notational convenience, let Acl = A − B1B

T
1 P and

K = −BT
1 P .

This paper considers a sampled-data implementation of
the closed loop system in equation 5. This means that
the plant’s control, u, is computed by a computer task.
This task is characterized by two monotone increasing
sequences of time instants; the release time sequence
{rk}∞k=0 and the finishing time sequence {fk}∞k=0. We say
these two sequences are admissible if rk ≤ fk ≤ rk+1 for all
k = 0, . . . ,∞. The time rk denotes the time when the kth
invocation of a control task (also called a job) is released
for execution on the computer’s central processing unit
(CPU). At this time, we assume that the system state
is sampled so that rk also represents the kth sampling



time instant. The time fk denotes the time when then kth
job has finished executing. Each job of the control task
computes the control u based on the last sampled state.
Upon finishing, the control job outputs this control to the
plant. The control signal used by the plant is held constant
by a zero-order hold (ZOH) until the next finishing time
fk+1. This means that the sampled-data system under
study in this project satisfies the following set of state
equations,

ẋ(t) = Ax(t) + B1u(t) + B2w(t) (6)

u(t) =−BT
1 Px(rk)

for t ∈ [fk, fk+1) and all k = 0, . . . ,∞. The state
trajectories x satisfying equation 6 are continuous so that
the initial state at time fk is simply x(fk) = limt↑fk

x(t).

We let Tk = rk+1 − rk denote the kth inter-release time
(also called sampling or task period) and Dk = fk − rk

denote the time interval between the kth job’s release
and finishing time, which is called delay or jitter of the
kth job. If we decrease the sampling period, Tk, and
delay, Dk, in a uniform manner so that the resulting
release and finishing time sequences remain admissible,
then the state trajectories generated by the sampled-data
system in equation 6 will converge to state trajectories
satisfying the original closed-loop system equation 5. By
construction of the control, we know that this original
system is L2 stable with gain less than γ. This paper’s
main results establish nontrivial bounds on the sequence
of sampling periods {Tk}∞k=0 and delays {Dk}∞k=0 such
that the resulting release and finishing time sequences
are admissible and the sampled-data system preserves the
original system’s L2 stability.

4. L2 STABILITY

Consider the sampled-data system in equation 6 with a set
of admissible release and finishing time sequences. For all
k, define the kth job’s error function ek : [rk, fk+1) → <n

by ek(t) = x(t)−x(rk). This error represents the difference
between the current system state and the system state
at the last release time, rk. This section presents two
inequality constraints on ek(t) (see theorem 1 and corollary
2 below) whose satisfaction is sufficient to ensure that the
sampled-data system’s L2 gain is less than γ/β for some
parameter β ∈ (0, 1].
Theorem 1. Consider the sampled-data system in equa-
tion 6 with admissible release and finishing time sequences.
Let β be any real constant in the open interval (0, 1] with
the matrix Q as given in equation 2. If

eT
k (t)Qek(t) < (1− β2)‖x(t)‖22 + x(rk)T Qx(rk) (7)

for all t ∈ [fk, fk+1) and any k = 0, . . . ,∞, then the
sampled-data system is finite gain L2 stable with a gain
less than γ/β.

In our following work, we’ll find it convenient to use a
slightly weaker sufficient condition for L2 stability which
is only a function of the state error ek(t). The following
corollary states this result.
Corollary 2. Consider the sampled-data system in equa-
tion 6 with admissible sequences of release and finishing

times. Let Q be a real matrix that satisfies equation 2 and
β be a real constant in the interval (0, 1] such that the
matrix

M = (1− β2)I + Q. (8)

has full rank. If the state error trajectory satisfies

ek(t)T Mek(t) ≤ x(rk)T Mx(rk) (9)

for t ∈ [fk, fk+1) for all k = 0, . . . ,∞, then the sampled
data system is L2 stable with a gain less than γ/β.
Remark 3. The inequalities in equations 7 or 9 can both
be used as the basis for an event-triggered feedback control
system, which is very similar to the state-triggering scheme
proposed by Tabuada et al. (2006) for asymptotic stability.
The main difference between that result and this one is
that our proposed event-triggering condition provides a
stronger assurance on the sampled-data system’s perfor-
mance as measured by its induced L2 gain.

5. ADMISSIBLE RELEASE AND FINISHING TIMES

This section introduces the self-triggering scheme to char-
acterize the admissible sequences of release and finishing
times that ensure the sampled data system in equation 6
is L2 stable with a specified gain.

For notational convenience, let xr = x(rk), xr− = x(rk−1),
xr+ = x(rk+1) and define zk : [rk, fk+1) → <n and
ρ : <n → < as

zk(t) =
√

(1− β2)I + Q =
√

Mek(t) (10)

ρ(x) =
√

xT Mx (11)

where
√

M is a matrix square root and M is defined in
equation 8. So if we can guarantee for any δ ∈ (0, 1] that

‖zk(t)‖2 ≤ δρ(xr) (12)

for all t ∈ [fk, fk+1) for any k = 0, . . . ,∞, then the
hypotheses in corollary 2 are satisfied and we can conclude
that the sampled-data system is finite-gain L2 stable with
a gain less than γ/β.

Fig. 1. Time history of zk(t) with task delay.

The triggering signals appear as shown in figure 1. This
figure shows the time history for the triggering signals,
zk−1, zk, and zk+1. With delay, we can partition the
time interval [rk, fk+1) into two subintervals [rk, fk) and
[fk, fk+1), where the associated differential equations are



ẋ(t) = Ax(t)−B1B
T
1 Pxr− + B2w(t)

and

ẋ(t) = Ax(t)−B1B
T
1 Pxr + B2w(t),

respectively. We can use differential inequalities to bound
zk(t) for all t ∈ [rk, fk+1) and thereby determine suf-
ficient conditions assuring the admissibility of the re-
lease/finishing times while preserving the closed-loop sys-
tem’s L2-stability. The next two lemmas (lemma 4 and 5)
characterize the behavior of zk(t) over these two subinter-
vals.
Lemma 4. Consider the sampled-data system in equation
6 where ‖w(t)‖2 ≤ W‖x(t)‖2 for all t ∈ < for some non-
negative real W . For any non-negative integer k and some
ε ∈ (0, 1), if the kth release time rk and finishing time fk

satisfy

0 ≤ Dk = fk − rk ≤ L1(xr, xr− ; ε) (13)
for all t ∈ [rk, fk), then the kth trigger signal, zk, satisfies

‖zk(t)‖2 ≤ φ(xr, xr− ; t− r) ≤ ερ(xr) (14)
for all t ∈ [rk, fk), where

L1(xr, xr− ; ε) =
1
α

ln
(

1 + εα
ρ(xr)

µ1(xr, xr−)

)
, (15)

α =
∥∥∥
√

MA
√

M
−1

∥∥∥ + W
∥∥∥
√

MB2

∥∥∥
∥∥∥
√

M
−1

∥∥∥ , (16)

φ(xr, xr− ; t− r) =
µ1(xr, xr−)

α

(
eα(t−r) − 1

)
, (17)

µ1(xr, xr−) =
∥∥∥
√

M
(
Axr −B1B

T
1 Pxr−

)∥∥∥
2

+W
∥∥∥
√

MB2

∥∥∥ ‖xr‖2 . (18)

Lemma 5. Consider the sampled-data system in equation
6 where ‖w(t)‖2 ≤ W‖x(t)‖2 for some non-negative real
W . For a given integer k and some ε ∈ (0, 1), assume that
rk−1 ≤ fk−1 ≤ r. For any η ∈ (ε, 1], let

dη = fk + L2(xr, xr− ;Dk, η), (19)
where L2 : <n ×<n ×<× (0, 1] → < is given by

L2(xr, xr− ;Dk, η)

=
1
α

ln
(

1 + α
ηρ(xr)− φ(xr, xr− ;Dk)
µ0(xr) + αφ(xr, xr− ; Dk)

)
(20)

and µ0 : <n → < is a real-valued function given by

µ0(xr) =
∥∥∥
√

MAclxr

∥∥∥
2

+ W
∥∥∥
√

MB2

∥∥∥ ‖xr‖2 . (21)

if

0 ≤ Dk ≤ L1(xr, xr− ; ε) (22)
then

dη > fk, and (23)

‖zk(t)‖2 ≤ ηρ(xr) for all t ∈ [fk, dη] (24)

According to lemma 5, for a constant δ ∈ (ε, 1), if
rk+1 = fk + L2(xr, xr− ;Dk, δ) and fk+1 ≤ fk +
L2(xr, xr− ;Dk, 1), we will always have ‖zk(rk+1)‖2 ≤
δρ(xr) and ‖zk(fk+1)‖2 ≤ ρ(xr). We will use this fact
below to characterize a self-triggering scheme that pre-
serves the sampled-data system induced L2 gain. Theorem
7 formally states this self-triggering scheme. The proof of
theorem 7 requires the following lemma showing that the
longest allowable task delay given in lemma 4 is bounded
below by a positive function of xr− .
Lemma 6. Consider the sampled-data system in equation
6 where ‖w(t)‖2 ≤ W‖x(t)‖2 for all t ∈ < where W is
a non-negative real constant. Assume that for a constant
δ ∈ (ε, 1), the release time rk−1 and rk satisfy

‖zk−1(rk)‖2 ≤ δρ(xr−) (25)
for any given k. Then L1 given by equation 15 satisfies

L1(xr, xr− ; ε) ≥ ξ(xr− ; ε, δ) > 0. (26)
where

ξ(xr− ; ε, δ) =
1
α

ln
(

1 +
ε(1− δ)ρ(xr−)

δρ(xr−) + µ0(xr−)/α

)
(27)

With the preceding technical lemma we can now state a
self-triggered feedback scheme which can guarantee the
sampled-data system’s induced L2 gain. The basis for
this self-triggering scheme will be found in the following
theorem.
Theorem 7. Consider the sampled-data system in equa-
tion 6 where ‖w(t)‖2 ≤ W‖x(t)‖2 for all t ∈ <+ where
W is some non-negative real constant. For given ε ∈ (0, 1)
and δ ∈ (ε, 1), we assume that

• The initial release and finishing times satisfy

r−1 = r0 = f0 = 0
• For any non-negative integer k, the release times are

generated by the following recursion,

rk+1 = fk + L2(xr, xr− ; Dk, δ) (28)
and the finishing times satisfy

rk+1 ≤ fk+1 ≤ rk+1 + ξ(xr; ε, δ). (29)

where L2 is given in equation 20 and ξ is given in
equation 27. Then the sequence of release times, {rk}∞k=0,
and finishing time, {fk}∞k=0, will be admissible and the
sampled-data system is finite gain L2 stable with an
induced gain less than γ/β.
Remark 8. ξ(xr; ε, δ) serves as the deadline for the delay
Dk in theorem 7.
Remark 9. By the way we constructed δ, we see that it
controls when the next job’s finishing time. We might
therefore expect to see a larger δ result in larger sampling
periods. This is indeed confirmed by the analysis. Since

Tk ≥ rk+1 − fk = L2(xr, xr− ;Dk, δ)
and since L2 is an increasing function of δ we can see that
larger δ result in larger sampling periods.
Remark 10. By our construction of the parameter ε, we
see that it controls the current job’s finishing time. Since
this



Dk = fk − rk ≤ ξ(xr− ; ε, δ)

and since ξ is an increasing function of ε, we can expect
to see the allowable delay increase as we increase ε. Note
also that ξ is a decreasing function of δ so that adopting a
longer sampling period by increasing δ will have the effect
of reducing the maximum allowable task delay.

The following corollary to the above theorem shows that
the task periods and deadlines generated by our self-
triggered scheme are all bounded away from zero. This
is important in establishing that our scheme does not
generate infinite sampling frequencies.
Corollary 11. Assume the assumptions in theorem 7 hold.
Then there exist two positive constants ζ1, ζ2 > 0 such
that Tk ≥ ζ1 and ξ(xr; ε, δ) ≥ ζ2.

6. SIMULATION

The following simulation results were generated for self-
triggered feedback systems. The plant was an inverted
pendulum on top of a moving cart with state equations

ẋ(t) =




0 1 0 0
0 0 −mg/M 0
0 0 0 1
0 0 g/` 0


 x(t) +




0
1/M

0
−1/(M`)


 u(t) +




1
1
1
1


 w(t)

where M was the cart mass, m was the mass of the
pendulum bob, ` was the length of the pendulum arm, and
g was gravitational acceleration. For these simulations, we
let M = 10, ` = 3, g = 10, γ = 200, and β = 0.5. The
function w was an external disturbance to the system. The
system’s initial state was the vector x0 = [ 0.98 0 0.2 0 ]T .

6.1 Self-triggered Feedback

The simulations in this subsection examined the self-
triggering feedback scheme in theorem 7. In this case the
task release time rk+1 was generated at time fk using the
equation 28 and the finishing times were assumed to satisfy

fk+1 = fk + ξ(xr; ε, δ)

We controlled the inverted pendulum plant of the preced-
ing subsection in which the external disturbance w was
zero. The ε and δ parameters were the same as in the pre-
ceding subsection taking values 0.65 and 0.7, respectively.

Let x(t) denote the self-triggered system’s response and
xc(t) the continuous-time system’s response. Figure 2 plots
the error signal ‖x(t)− xc(t)‖2 as a function of time. The
error signal is small over time, thereby suggesting that
the continuous-time and self-triggered systems have nearly
identical impulse responses

Figure 3 plots the task periods, Tk, (crosses) and deadlines,
ξ, (dots) generated by the self-triggered scheme. The
sampling periods range between 0.027 to 0.187. These
sampling periods show significant variability. The shortest
and most aggressive sampling periods occurred in response
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Fig. 2. State error (‖x(t)− xc(t)‖2) versus time for a self-
triggered control system (δ = 0.7, ε = 0.65, w(t) = 0).

to the system’s non-zero initial condition. Longer and
relatively constant sampling periods were generated once
the system state has returned to the neighborhood of
the system’s equilibrium point. This seems to confirm the
conjecture that self-triggering can effectively adjust task
periods in response to changes in the control system’s
external inputs.
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Fig. 3. Sampling period and predicted deadline for a self-
triggered system in which δ = 0.7 and ε = 0.65.

Figures 4 and 5 show what happens to task periods
and deadlines when we varied δ and ε. In figure 4,
δ = 0.7 and ε was varied between 0.1, 0.4 and 0.65.
The top/middle/bottom two plots show histograms of
the sampling period (left) and deadline (right) for ε =
0.65, 0.4, 0.1, respectively. The left side of figure 4 shows
little change in sampling period as a function of ε. The
three histograms on the right side of figure 4 show signifi-
cant variation in deadline as a function of ε. These results
are consistent with our earlier discussion in remark 10.
Recall that ε controls the time when the kth task finishes.
So by changing ε we expect to see a large impact on the
predicted deadline (ξ) and little impact on the task period.

Figure 5 is similar to figure 4 except that we keep ε fixed
at 0.1 and vary δ from 0.15 (bottom) to 0.4 (middle) to 0.9
(top). These histograms show that as we increase δ we also
enlarge the task periods. Recall that δ controls the time
interval fk+1−fk so that what we observe in the simulation
is again consistent with our comments in remark 9. As
we increase the sampling period, however, we can expect
smaller predicted deadlines because the average sampling
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Fig. 4. Histogram of sample period and predicted deadline
for a self-triggered system in which δ = 0.7 and
ε ∈ {0.1, 0.4, 0.65}.

frequency is lower. This too is seen in the histograms on
the righthand side of figure 5.
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Fig. 5. Histogram of sample period and predicted deadline
for a self-triggered system in which ε = 0.1 and
δ ∈ {0.15, 0.40.9}.

The results in this subsection clearly show that we can
effectively bound the task periods and deadlines in a
way that preserves the closed loop system’s stability. An
interesting future research topic concerns how we might
use these bounds on period and deadline in a systematic
manner to schedule multiple real-time control tasks.

6.2 Self-triggered versus Periodically Triggered Control

The simulations in this subsection directly compare the
performance of self-triggered and ”comparable” periodi-
cally triggered feedback control systems. These simulations
were done on the inverted pendulum system described
above. The self-triggered simulations assumed that ε =
0.65 and δ = 0.7 and task delays were set equal to the
deadlines given by the function ξ.

The state trajectories were compared against periodically
triggered systems with a comparable task period and
delays. The comparable task periods were chosen from
the sample periods generated by a self-triggered system
whose exogenous inputs were chosen to be a noise process
in which ‖w(t)‖2 ≤ 0.01‖x(t)‖2. The delay was set equal
to the minimum predicted deadline. Figure 6 plots the
sample periods, Tk, and predicted deadlines generated by
such a self-triggered system. After the initial transient in
response to the system’s non-zero initial condition, the

sampling periods converge onto a periodic signal in which
the sample periods range between 0.055 to 0.104. The
mean sample period over the interval when the system
is near its equilibrium point is taken as the ”comparable”
period for a periodically triggered control system. This
comparable period was 0.0673. The comparable delay was
set to the minimum predicted deadline which was 0.004.
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Fig. 6. Sample periods generated by a self-triggered system
(ε = 0.65 and δ = 0.7) driven by a noise process.

It is interesting to note that Tk shows significant periodic
variation in figure 6. Other simulations have shown similar
results. These observations suggest that the choice of
”optimal” sampling period has its own dynamic that
leads to a period variation in the sampling periods. One
interesting issue for future research is whether or not we
can take advantage of this variability in the scheduling of
multiple real-time control tasks.

We compared the self-triggered and periodically triggered
system’s performance by examining their normalized state
errors, E(t), given by

E(t) =
|V (x(t))− V (xc(t))|

V (xc(t))

where V (x) = xT Px and P is the positive definite
matrix satisfying the algebraic Riccati equation 1. This
normalization of the state error allows us to fairly compare
those states (i.e. the pendulum bob angle) that are most
directly affected by input disturbances. The results from
this comparison are shown in figure 7. This figure plots the
time history of the normalized error, E(t), for the inverted
pendulum using the input signal, w(t) = µ(t)+ν(t) where
ν is a white noise process such that ‖ν(t)‖2 ≤ 0.01‖x(t)‖2
and µ : < → < takes the values

µ(t) =
{

sgn(sin(0.7t)) if 0 ≤ t < 10
0 otherwise .

The function µ is a square wave input to the system that
we’ll use to see how the self-triggered and periodically
triggered systems react to external disturbances. The
figure plots the normalized error for the self-triggered
system and a comparable periodically triggered system.
As noted above the period for the periodically-triggered
system was chosen from the ”steady-state” sample periods
generated by the self-triggered system (see figure 6).

Figure 7 clearly shows that the self-triggered error is
significantly smaller than the error of the periodically
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Fig. 7. Normalized error, E(t), versus time for a self-
triggered system (ε = .65 and δ = 0.7) and a
periodically triggered system whose period was chosen
from the sample periods shown in figure 6.

triggered system. This error is a direct result of the self-
triggered system’s ability to adjust its sample period.
Figure 8 plots the sampling periods generated by the
self-triggered system for the preceding system. This plot
shows that the sampling period readjusts and gets smaller
when the square wave input hits the system over the time
interval [0, 10]. These results again demonstrate the ability
of self-triggering to successfully adapt to changes in the
system’s input disturbances.
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Fig. 8. Sampling period versus time for the self-triggered
system (ε = 0.65 and δ = 0.7) with a square wave
input over the time interval [0, 10].

7. CONCLUSION

This paper has presented a state-dependent threshold in-
equality whose satisfaction assures the induced L2 gain of
a sampled-data linear state feedback control system. We
derive state-dependent bounds on the task periods and
deadlines enforcing this threshold inequality. These results
were used to present an event-triggered feedback scheme
and self-triggered feedback scheme with guaranteed L2

stability. Simulation results show that the proposed self-
triggered feedback schemes perform better than compara-
ble periodically triggered feedback controllers. The results
in this paper, therefore, appear to provide a solid analyt-
ical basis for the development of aperiodic sampled-data
control systems that adjust their periods and deadlines to
variations in the system’s external inputs.

The bounds derived in this paper can be thought of as
quality-of-control (QoC) constraint that a real-time sched-

uler must enforce to assure the application’s (i.e. control
system’s) performance level. This may be beneficial in
the development of soft real-time systems for controlling
multiple plants. The bounds on task period and deadline
suggest that real-time engineers can adjust both task pe-
riod and task deadline to assure task set schedulability
while meeting application performance requirements. This
might allow us to finally build soft real-time systems pro-
viding guarantees on application performance that have
traditionally been found only in hard real-time control
systems.
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Appendix A. PROOFS

Proof. [Theorem 1] Consider V (x) = xT Px where P is
defined in equation 1. The directional derivative of V for
t ∈ [fk, fk+1) is

V̇ =
∂V

∂x

(
Axt −B1B

T
1 Pxr + B2w

)

= −xT
t (I −Q)xt −

∥∥∥∥γwt − 1
γ

BT
2 Pxt

∥∥∥∥
2

2

+γ2‖wt‖22 − 2xT
t Qxr

≤ −xT
t (I −Q)xt + γ2‖wt‖22 − 2xT

t Qxr

= −‖xt‖22 + [et + xr]
T

Q [et + xr]
−2 [et + xr]

T
Qxr + γ2‖wt‖22

= −‖xt‖22 + eT
t Qet − xT

r Qxr + γ2‖wt‖22

(A.1)

By the assumption in equation 7, we know that equation
A.1 can be rewritten as

V̇ ≤ −β2‖xt‖22 + γ2‖wt‖22 (A.2)
which is sufficient to ensure the sampled-data system is L2

stable with a gain less than γ/β.

Proof. [Corollary 2] Equation 9 can be rewritten as

ek(t)T Mek(t) = (1− β2)‖ek(t)‖22 + ek(t)T Qek(t)

≤ (1− β2)‖xr‖22 + xT
r Qxr

This can be rewritten to obtain

ek(t)T Qek(t)≤ (1− β2)(‖xr‖22 − ‖ek(t)‖22) + xT
r Qxr

≤ (1− β2)‖x(t)‖22 + xT
r Qxr

where we used the fact that

‖xr‖22 − ‖ek(t)‖22 ≤ ‖xr + ek(t)‖22 = ‖x(t)‖22.
This inequality is the sufficient condition in theorem 1 so
we can conclude that the sampled-data system is L2 stable
with a gain less than γ/β.

Proof. [Lemma 4] For t ∈ [rk, fk), the derivative of
‖zk(t)‖2 satisfies the differential inequality,

d

dt
‖zk(t)‖2 ≤ ‖żk(t)‖2 =

∥∥∥
√

Mėk(t)
∥∥∥

2
=

∥∥∥
√

Mẋ(t)
∥∥∥

2

=
∥∥∥
√

M
(
Axt −B1B

T
1 Pxr− + B2wt

)∥∥∥
2

≤ α‖zk(t)‖2 + µ1(xr, xr−). (A.3)
The differential inequality in equation A.3 along with the
initial condition zk(rk) = 0, allows us to conclude that

‖zk(t)‖2 ≤ φ(xr, xr− ; t− r) (A.4)
for all t ∈ [rk, fk).

The assumption in equation 13 can be rewritten as

φ(xr, xr− ;Dk) ≤ ερ(xr) (A.5)
Combining this fact with equations A.4 and A.5 yields

‖zk(t)‖2 ≤ φ(xr, xr− ; t− r) ≤ φ(xr, xr− ; Dk) ≤ ερ(xr)
which leads to equation 14 holding for all t ∈ [rk, fk).

Proof. [Lemma 5] The hypotheses of this lemma also
satisfy the hypotheses of lemma 4 so we know that

‖zk(fk)‖2 ≤ φ(xr, xr− ; Dk) ≤ ερ(xr) ≤ ηρ(xr). (A.6)
By equation 20 and A.6, we have

L2(xr, xr− ;Dk, η) > 0

which implies dη > fk.

Assume the system state x(t) satisfies the differential
equation

ẋ(t) = Ax(t)−B1B
T
1 Pxr + B2wt

for t ∈ [fk, dη]. Using an argument similar to that in lemma
4, we can show that ‖zk(t)‖2 satisfies the differential
inequality

d

dt
‖zk(t)‖2 ≤ α‖zk(t)‖2 + µ0(xr). (A.7)

Equation A.6 can be viewed as an initial condition on
the differential inequality in equation A.7. Solving the
differential inequality, we know for all t ∈ [fk, dη],

‖zk(t)‖2 ≤ eα(t−fk)φ(xr, xr− ; Dk) +
µ0(xr)

α

(
eα(t−fk) − 1

)

Because the right side of the equation above is an increas-
ing function of t, we get

‖zk(t)‖2 ≤ eα(dη−fk)φ(xr, xr− ; Dk)

+
µ0(xr)

α

(
eα(dη−fk) − 1

)

= ηρ(xr). (A.8)
for all t ∈ [fk, dη].

Proof. [Lemma 6] First note that

‖xr−‖2 − ‖ek−1(rk)‖2 ≤ ‖xr‖2 ≤ ‖xr−‖2 + ‖ek−1(rk)‖2
A lower bound on ρ(xr) is obtained by noting that

ρ(xr) =
∥∥∥
√

Mxr

∥∥∥
2

=
∥∥∥
√

M(ek−1(rk) + xr−)
∥∥∥

2

≥ ‖
√

Mxr−‖2 − ‖zk−1(r)‖2
≥ ρ(xr−)− δρ(xr−)

= (1− δ)ρ(xr−) (A.9)

Similarly, an upper bound on µ1(xr, xr−) is obtained:

µ1(xr, xr−)≤ µ0(xr−) + αδρ(xr−) (A.10)

Putting both inequalities together we see that

L1(xr, xr− ; ε) ≤ ξ(xr− ; ε, δ) > 0 (A.11)
which completes the proof.

Proof. [Theorem 7] From the definition of ξ in equation
27, we can easily see that ξ(xr; ε, δ) > 0 for any non-
negative integer k. We can therefore use equation 29
to conclude that the interval [rk+1, rk+1 + ξ(xr; ε, δ)] is
nonempty for all k.



Next, we insert equation 28 into equation 29 to show that

fk+1 ≤ rk+1 + ξ(x(rk); ε, δ)

≤ fk + L2(x(rk), x(rk−1); Dk, δ) + ξ(x(rk)); ε, δ)

= fk + L2(x(rk), x(rk−1); Dk, 1) (A.12)

for all non-negative integers k.

With the preceding two preliminary results, we now con-
sider the following statement about the kth job. This
statement is that

rk ≤ fk ≤ rk+1 (A.13)

‖zk(t)‖2 ≤ δρ(x(rk)) for all t ∈ [fk, rk+1] (A.14)

‖zk(t)‖2 ≤ ρ(x(rk)) for all t ∈ [fk, fk+1] (A.15)

We now use mathematical induction to show that under
the theorem’s hypotheses, this statement holds for all non-
negative integers k.

First consider the base case when k = 0. By L2(x0, x0; D0, δ)
> 0, we can know

r0 = f0 ≤ f0 + L2(x0, x0;D0, δ) = r1 (A.16)

which establishes the first part of the inductive statement
when k = 0.

Next note that

D0 = 0 ≤ L1(x(r0), x(r−1); ε). (A.17)

If we use the fact that δ ∈ (ε, 1) ⊂ (0, 1] in equations
28 and A.17, we can see that the hypotheses of lemma 5
are satisfied. This means that ‖z0(t)‖2 ≤ δρ(x(r0)) for
all t ∈ [f0, r1] which completes the second part of the
inductive statement for k = 0.

Now define the time

d0
1 = f0 + L2(x(r0), x(r−1); D0, 1)

Equation A.17 again implies that the hypotheses of lemma
5 are satisfied, so that

‖z0(t)‖2 ≤ ρ(x(r0)) for all t ∈ [f0, d
0
1]. (A.18)

From equation A.12, we know that f1 ≤ d0
1. We can also

combine equations 29 and A.16 to conclude that f0 ≤ f1.
We therefore know that [f0, f1] ⊆ [f1, d

0
1] which combined

with equation A.18 implies that

‖z0(t)‖2 ≤ ρ(x(r0)) for all t ∈ [f1, d
0
1]

This therefore establishes the last part of the inductive
statement for k = 0.

We now turn to the general case for any k. For a given k,
assume the statements A.13, A.14, and A.15 hold.

Now consider the k + 1st job. Because equation A.14 is
true, the hypothesis of lemma 6 is satisfied which means
there exists a function ξ (given by equation 27) such that

0 < ξ(xr); ε, δ) ≤ L1(xr+ , xr; ε).

We can use this in equation 29 to obtain

0 ≤ Dk+1 ≤ L1(xr+ , xr; ε). (A.19)
From equation A.19 and the fact that δ ∈ (0, 1) we know
that the hypotheses of lemma 5 hold and we can conclude
that

fk+1 ≤ rk+2 (A.20)

‖zk+1(t)‖2 ≤ δρ(xr+) for t ∈ [fk+1, rk+2]. (A.21)
Combining equation 29 with the above equation A.20
yields rk+1 ≤ fk+1 ≤ rk+2 which establishes the first part
of the statement for the case k + 1. Equation A.21 is the
second part of the statement.

Finally let

dk+1
1 = fk+1 + L2(x(rk+1), x(rk); Dk+1, 1)

Following our prior argument for the case when k = 0,
we know that the validity of equation A.19 satisfies the
hypotheses of lemma 5. We can therefore conclude that

‖zk+1(t)‖2 ≤ ρ(xr+) for t ∈ [fk+1, d
k+1
1 ] (A.22)

According to equation A.12, fk+2 ≤ dk+1
1 . We can

therefore combine equations 29 and A.20 to show that
fk+1 ≤ fk+2 and therefore conclude that [fk+1, fk+2] ⊆
[fk+1, d

k+1
1 ]. Combining this observation with equation

A.22 yields ‖zk+1(t)‖2 ≤ ρ(x(rk+1)) for all t ∈ [fk+1, fk+2]
which completes the third part of the inductive statement
for case k + 1.

We may therefore use mathematical induction to conclude
that the inductive statement holds for all non-negative
integers k. The first part of the statement, of course,
simply means that the sequences {rk}∞k=0 and {fk}∞k=0
are admissible. The third part of the inductive statement
implies that the hypotheses of corollary 2 are satisfies,
thereby ensuring that the system’s induced L2 gain is less
than γ/β.

Proof. [Corollary 11] From theorem 7, we know

fk − rk ≤ ξ(xr; ε, δ) ≤ L1(xr, xr− ; ε)
Therefore, by lemma 4,

‖zk(f)‖2 ≤ φ(xr, xr− ; Dk) ≤ ερ(xr)
Let us first take a look at Tk. From equation 28, we have

Tk ≥ rk+1 − fk = L2(xr, xr− ;Dk, δ)

≥ 1
α

ln
(

1 + α
δρ(xr)− ερ(xr)

µ0(xr) + αερ(xr)

)

≥ 1
α

ln

(
1 +

α(δ − ε)λ(
√

M)
‖√MAcl‖+ W‖√MB2‖+ αελ(

√
M)

)

= ζ1 > 0 (A.23)
It is easy to show that

ξ(xr; ε, δ)

≥ 1
α

ln


1 +

εα(1− δ)λ(
√

M)∥∥∥
√

MAcl

∥∥∥ + W‖√MB2‖+ δαλ(
√

M)




= ζ2 > 0


