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Abstract— Many problems associated with networked sys- their dual decomposition algorithm was stable for a step siz
tems can be formulated as network utility maximization (NUM)  that is inversely proportional to two important measures of
problems. NUM problems maximize a global separable measure network size: the maximum length pafh and the maximum

of network optimality subject to linear constraints on resaurces. b f ighborss. S th W t
Dual decomposition is a widely used distributed algorithm bhat number of neighborss. S0 as these two measures ge

solves the NUM problem. This approach, however, uses a step large, the step size required for stability becomes extlgme
size that is inversely proportional to measures of networkigze  small. Step size, of course, determines the number of com-

such as maximum path length or maximum neighborhood size. putations required for the algorithm’s convergence. Under
As a result, the number of messages exchanged between nodesy, 5| gecomposition, system agents exchange information at

by a dual decomposition scales poorly with respect to these . . . ?
measures. Motivated by recent results with event-triggere each iteration, so that step size also determines the nmeessag

state feedback control, this paper investigates the use ofna Passing complexity of the algorithm. Therefore if we use
event-triggered communication scheme in distributed NUM the “stabilizing” step size, dual decomposition will have a
algorithms. Under event triggering, each agent broadcastso  message complexity that scales in a super-linear mannier wit
its neighbors when a local “error” signal exceeds a state de- those two measures of network siZe andS.

pendent threshold. In particular, this paper proposes an egnt- F tworked t this t f .
triggered distributed NUM algorithm based on the augmented or many networked systems this type or message passing

Lagrangian methods. The paper establishes state-dependen COmMplexity may be unacceptable. This is particularly true

event-triggering thresholds under which the proposed algathm  for systems communicating over a wireless network. In such

converges to the optimal solution of the NUM problem. Sim- networked systems, the energy required for communication

ulation results show that the proposed algorithm redt_lces th can be significantly greater than the energy required to

number of message exchanges by two orders of magnitude, and . S

is scale-free with respect to the above two measures of netio perform_co_mputanon [_10]' As a result, there is S|gn|f|caqt

size. interest in finding algorithms that reduce the messagepgssi
complexity of distributed optimization algorithms such as

l. INTRODUCTION dual decomposition.

A networked system is a collection of subsystems where This paper presents one way of reducing the message
individual subsystems exchange information over some corfassing complexity of distributed NUM algorithms. It has
munication network. Examples of networked systems includ€cently been demonstrated [11] [12] that event-trigggiin
the electrical power grid, wireless sensor networks, angtate feedback control systems can greatly lengthen the ave
the Internet. Many problems in networked systems, likage sampling period of such systems. These results suggest
distributed control of sensor-actuator networks [1], tese that the use of event-triggering in a suitable NUM algorithm
allocation in wireless communication networks [2] [3] [4]may significantly reduce the message passing complexity
[5], and congestion control in wired communication netvgork experienced by such algorithms. This paper presents a NUM
[6] [7], fall into the general framework of Network Utility algorithm based on the augmented Lagrangian methods that
Maximization (NUM) problems. NUM problems maximize uses event-triggered message passing. We prove that the
a global separable measure of the networked system’s peroposed algorithm converges to the global optimal satutio
formance subject to linear constraints on resources. In &f the NUM problem. Simulation experiments suggest that
of these problems, we find subsystems communicating withe resulting algorithm has a message passing complexity
each other in order to collaboratively solve a network optithat is two orders of magnitude lower than dual decom-
mization problem. position algorithms, and is scale-free with respect to the

A variety of distributed algorithms have been propose@bove two measures of network size. This work is similar
to solve the NUM problem [6] [7] [8] [9]. Kelly [6] first to our prior work in [13]. However, in [13], we used the
proposed two classes of algorithms by decomposing tHarrier method instead of the augmented Lagrangian method
NUM problem into a user problem and a network problemas the basis for the event-triggered algorithm. In that,dhse
Among all existing algorithms, the dual decomposition apresulting algorithm suffers from issues like ill-conditiag
proach proposed by Low et al. [7] is the most widely use@nd the need for an initial feasible point. The event-trigde
algorithm for the NUM problem. Low et al. showed thatalgorithm presented in this paper does not have these issues

The rest of the paper is organized as follows. Section
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lution to the NUM problem which is described in section lll.converge to the optimal solution. Low et al. [7] showed that

Section IV presents our event-triggered distributed aflgor  a suitable step size is

based on the augmented Lagrangian methods, and proves its 9

convergence. Simulation results are shown in section V, and 0<~y<~* = _2maX(i’1)v Ui(x:)

T<

section VI concludes the paper. LS

whereL is the maximum number of links any user uses and

S is the maximum number of users any link has. Equation 5
NUM problem [6] considers a network ¥ users and requires that the step size be inversely proportional tb Bot

M links. We letS = {1,---, N} denote the set of users andS. We can conclude that the computational complexity of

and £ = {1,---, M} denote the set of links. Each userdual decomposition (as measured by the number of algorithm

generates a flow with a specified data rate. Each flow maypdates) scales superlinearly withand S.

traverse several links (which together constitute a route)

before reaching its destination. The set of links that asslus IIl. AUGMENTED LAGRANGIAN METHOD NUM

by useri € S will be denoted asC; and the set of users ALGORITHM

that are using linkj € £ will be denoted asS;. The NUM The event-triggered algorithm presented in this paper is

problem takes the form based on the augmented Lagrangian method for the NUM

S Ui(x) problem. In the augmented Lagrangian method, a constrained
€S ! (1) problem is converted into a sequence of unconstrained prob-

lems by adding to the cost function a penalty term that

where z = [z1,..,zny]|T and z; € R is useri’s data prescribes a high cost to infeasible points.

rate. A € RM*¥ s the routing matrix mapping users onto To apply the augmented Lagrangian method on our NUM

links andc € RM is a vector of link capacities. Thg’th  problem, we need to introduce the slack variable R

component,A,;, is 1 if useri's flow traverses linkj and and replace the inequalities — aJTa: >0,VjeL by

is zero otherwise. Thgth row of Ax represents the total . _

data rates going through link, which cannot exceed its ajr—cj+s;=0, 520 VjeL (6)

capacityc;. The cost functio/ is the sum of the usertility ¢ augmented cost is then

functionsU;(z;). These utility functions represent the reward

(i.e. quality-of-service) [6][7] usei gets by transmitting at L(xz,s; \, w) = — Z Ui(x;) + Z Aj (aJTa: —c¢j+55)

®)

II. DUAL DECOMPOSITIONNUM ALGORITHM

maximize: U(z) =
subjectto: Az <c¢ x>0

rate x;. i€S jeL
NUM problems are often solved using the dual decompo- Z s (@)
sition algorithm [7]. The algorithm examines the dual of the 2 TG

NUM problem, which is Jeﬁ

N Here a penalty parameter,; is associated with each link
minimize.  maxz>o {Xies Uilzi) = p"(Az — o)} (2) constraint, andv = [wy, - - -J, wyy] is the vector of penalty
subject to: p > 0 parameters. Supposg is the Lagrange multiplier associated
with link j’s constraintc; — a] = > 0 in the Karush-Kuhn-
Tucker conditions of the NUM problerm is an estimate of

ndA = [\, -, Anm]. The vectora =[Aj1, -, AjN]
g the jth row of the routing matrixA.

wherep = [ p1 -+ pum }T is the Lagrange multiplier

vector (Which can be vieyved as _the price fpr using each ImK

[6]) associated with the inequality constraiat: < c. If x*

err]lgv]\om ?r:Zth catlc;ros ;;I\\I/g;gtrt]zeo?i;?rllgrﬁﬁﬁﬂmértg]ag;'Can b L(x, s\, ?“) is a continuous function of ands for fixed
Low et al. [7] established conditions under which a pai?‘ andw. It is shown [14] that

of recursions would generate a sequence of user ratesyin T(z,s; ), w) _mmmmL(x s w) = InlnL(:c A w)

{z[k]}2,, and link prices {p[k]}?°,, that asymptotically #0520 220 s 220

converge to a solution of the dual problem. Given the initiajyhere the augmented Lagrangian functi@ssociated with
user ratesr[0] and link pricesp[0], then for alli € S and  the NUM problem is given as

Jj €L, we let
Lz \w) ==Y Us(z:) + Y wj(w; A w) (8)
€S JjeEL
zilk+1] = argmax < U;(x;[k]) — zi[k Z pilk]) ¢ (3)
zi20 where
JEL;:
. B ——wJ/\2 if cj—aJTx—wj/\j >0

pilk+1] = maxq0,p;[k] +7 Z zilk] — ¢; 4) (@5 A w) = { Al e —¢j) + 27}”], (alx — ¢;)?, otherwise

3655 The augmented Lagrangian method solves the NUM

fork=0,---,00. problem by approximately minimizind.(z; A[k],w[k]) for
The step sizey in equation 4 must be chosen to ensursequences ofw[k]}°, and {A[k]}2 . Let 2*[k] denote
that the sequencesc[k]} 2, and {p[k]}7>, asymptotically the approximate minimizer fok(z; A[k], w[k]). The method



in [14, Chap 4.2] can be used to show that for approsection presents an event-triggered distributed implémen
priately chosen sequencdso[k]}°, and {A[k]}?°,, the tion of the augmented Lagrangian method NUM algorithm.
sequence of approximate minimizefs*[k]}>°, converges
to the optimal point of the NUM problem. The choices
are as follows {w;[k]}, are sequences of linkj(c £) ] )
penalty parameters that are monotone decreasing to zerolhe NUM augmented Lagrangian algorithm solves a se-
{\[k]}52, are sequences of Lagrange multiplier estimategluence of unconstrained optimization problems that are in-
where \;[k + 1] = max{0, \;[k] + %(a;f:v*[k] —¢)}. dexed with respect to the non-negative intederih particu-
The augmented Lagrangian methodJaI]gorithm for the NUN@I, the algorithm minimizes the Lagrangidi; A[k], w[k])
problem is formally stated below. where {w[k]}7° , are sequences of link penalty parameters,
that are monotone decreasing to zero. The veafét is
computed after th€k — 1)th minimization problem.
Implementing the NUM augmented Lagrangian algorithm
. , . in a distributed manner requires communication between
2) Main Recursive Loop: : . : :
D o 0. users and links. An event-triggered implementation of the
o until: ||V,L(z% A, w)|| < eq . oo
) b _ algorithm assumes that the transmission of messages bretwee
a) Approx.|r'nately minimize Lw; A, w): users and links is triggered by some local error signal
Do until: HVmL(x ;)\,w)H S e crossing a state-dependent threshold. The main problem is
_ 0o_ 0. to determine a threshold condition that results in message
ﬁ = max{0,2° —yVaL(a® A w)} (9) streams ensuring the asymptotic convergence of the NUM
r =7 augmented Lagrangian algorithm to the problem’s solution.
We begin by considering the minimization of
Setw; — ,[K+1], \; = max{0, A\j+ - (aTa— L(z; /\[k]_,w[k]) for a f|xe(_j set of parameters (i.e. flxeh)._ .
W e £ ande — 21K 4+ 11 Setk it Subsection IV-A determines an event threshold condition
¢}t ?J €L, ande =¢[K +1]. SetK = K +1. ensuring the convergence of the local update (equation 9)
3) Setz™ =z". to this minimizer. Subsection IV-B then considers the case
In the algorithm above{e[k]}°, is a sequence of tol- when the penalty parameters awitchedas we changé.
erance levels that are monotone decreasing to zgr@ a In particular, we present a distributed update strategy for
terminating tolerance level. is a sufficiently small step size. the penalty parameters that ensures the convergence of the
Note that the inner recursion shown in step 2a is approlgorithm to the NUM problem’s solution.
imately minimizing L(z; A\, w) for fixed A and w using a )
. ) : . A. Fixed penalty parameter case
simple gradient following method. It is known [14] that by ) _ _ o _
using the update of in step 2b,\ will converge to\*. This subsection considers the problem of finding a min-
We know that whenw is decreased to zero, the algorithmiMizer for the Lagrangiar(z; A, w) under the assumption
converges. However, with an increasingly accurate estima’at the vectorss and A are constant. We can search for the
), it usually suffices ifw is smaller than some threshold Minimizer using a gradient following algorithm

IV. EVENT-TRIGGEREDNUM AUGMENTED
LAGRANGIAN ALGORITHM

1) Initialization: Select any initial user rate® > 0,
vector\ > 0 and setk’ = 0. Setw; = w,[K], j € L,
ande = €[K].

b) Update Parameters:

[14]. In this way, we may not need to decreaseo zero t
in practice, and thereby alleviating the difficulty with-ill zi(t) = —/ (Vo L(w(5); A, w)) o) ds
conditioning whenw is small. 0 +
The computations above can be easily distributed among b OU(4(s))
the users and links. The primary computations that need to be - /0 T oz, Z pi(s) ds(10)

distributed are the user rate update and terminating dondit J€Ls

in step 2a, as well as the parameter update in step 2b. We Wik each usei € S and where

see how they are distributed in our event-triggered disteith 1

implementation of the algorithm in section IV. 1 (t) = max {O, Aj+ —(a] (t) — cj)} (11)
In dual decomposition and the augmented Lagrangian Wi

method shown above, the exchange of information betwedtere given a functiorf : R, — R, its positive projectioris

users and links happens each time the gradient followirdgfined as

update is applied. This means that the number of messages { 0, if 2=0 and f(z)<0

z;(s)

passed between links and users is equal to the numbeff(z)); =

of updates required for the algorithm’s convergence. That
number is determined by the step-size. For both algorithm$he positive projection used in equation 10 guarantees the
these step sizes may be small, so that the number of messagssr rater;(¢) is always nonnegative along the trajectory.
passed between links and users will be large. Equation 10 is the continuous-time version of the update
Recent results [11] [12] show that it is possible to greatlyn equation 9. Note that in equation 10, usezan compute
reduce the message passing complexity of networked contitd rate only based on the information from itself, and the
systems by usingvent-triggeredmessages. The following information of i; from those links that are being used by

f(z), otherwise (12)



user:. We can think ofu; as thejth link’s local state From A is of full rank. Assume a fixed penalty parameter> 0

equation 11, linkj only needs to be able to measure theand vector\ > 0. Consider the sequencégg;°[/]}2°, and

total flow that goes through itself. All of this informatios i {TjL[é] 2, foreachi € S, and eacly € £, respectively. For

locally available so the update of the user rate can be doeach: € S, let the user ratey;(t), satisfy equation 14 with

in a distributed manner. sampled link states given by equation 13. For eaehS let
In the above equation, this link state information is availthe user state;(¢) satisfy equation 15 and assume lijik

able to the user in a continuous manner. We now considereasurement of the user state satisfies equation 16.

an event-triggeredversion of equation 10. Here we assume Let p be a constant such that< p < 1. Assume that for

that the user accessessampledversion of the link state. alli € S and all{ =0, -- , 00, that

In particular, let's associate a sequenceaiplinginstants, 9 2

{T}10}32, with the jth link. The timeT[¢] denotes the 2i(t) = pZ(t) 20 (17)

instant when thejth link samples its link statg:; for the for ¢t € [T°[¢], T°[¢ + 1]). Further assume that for ajlc £

¢th time and transmits that state to usérs S;. We can see and all{ =0, --- , oo that
that at any time < &, the sampled link state is a piecewise 1, o )
constant function of time in which > T4 (t) = LS (u;(t) — f;(¢))" = 0 (18)
R . =
A3(0) = (T 1) 13) for t € [TF[¢], TF[¢ + 1]). Then the user rates(t) asymp-
forall £=0,---,00 and anyt € [T}[(], T}*[¢ + 1]). In this  totically converge to the unique minimizer &fz; A, w). W
regard, the “event-triggered” version of equation 10 takes Theorem 4.1 provides the basis for constructing an event-
form triggered message-passing protocol. This theorem eabignti
oy + assertsLthat we need to select the transmit tifiES[¢]}
nlt) = / Uzéle(s)) =3 is) ds(1a) @nd {T/[(]} so that the inequalities in equations 17 and
0 ; ~ 18 always hold. One obvious way to do this is to use the
I zi(s) violation of these inequalities to trigger the sampling and
for all ¢ and anyt € [TjL[g],TjL [0 4 1]). transmission of link/user states across the network. Aétim

The sequencdTF[(]}, represents time instants whent = T[], the inequality in equation 17 is automatically
the link transmits its “state” to its users. Under eventsatisfied. After this sampling instant;(¢) continues to
triggering, it will be convenient to have a similar flow of change until the inequality is violated. We let that time
information from the user to the link. We assume that linknstant beT;[¢ + 1] and transmit the sampled user state to
j can directly measure the total flow rafg;,. . ;(t), in the link. Similarly, Ilnkj.compares the square of the error
a continuous manner. The event-triggering scheme propc)s@gjtween the last transmitted link stgteand the current link
below will require that linkj have knowledge of the time Statex;. At the sampling timer’”[¢], this difference is zero
derivative of useu’s flow rate. In particular, let;(¢) denote and the inequality is trivially satisfied. After that time; (¢)

the time derivative of this flow rates;(¢) therefore satisfies continues to change or the link may receive an updated user
stateZ; that may result in the violation of the inequality. We

" let that time be the next sampling instaiY; [¢+ 1] and then
zi(t) = @)= | VU(@(t) = > fi;(1) (15)  transmit the sampled link stafg; to the user.
JEL: 2i(t) The threshold conditions shown in equations 17-18 pro-

vide the basis for an event-triggered scheme to solve tha loc
minimization problem in step 2a of the NUM augmented
Lagrangian algorithm presented earlier.

for all 7 € S. We will refer to z; as theith user state. We
associate a sequendd’®[¢]}2° to each usei € S. The

time T°[¢] is the (th time when user transmits its user
state to all linksj € £;. We can therefore see that at anyB. The switching penalty parameter case

time ¢ € R, the sampled user state is a piecewise constant\ye now consider what happens when we systematically

function of time satisfying reduce these penalty parameterso zero. In particular, we
5(t) = (TS ) (16) need to identify a distributed strategy for updating these
penalty parameters so that the sequence of approximate
forall ¢=0,---,00 and anyt € [T°[¢], T°[¢ + 1]). In the minimizers asymptotically approach the global solution of

proposed event-triggering scheme, links will use the sathpl the NUM problem. This subsection presents such an up-
user statez, to help determine when they should transmitlating strategy and proves that the resulting event-trizgye
their states back to the user. algorithm asymptotically converges to the desired sofutio
Next we will state the main theorem of this subsection. Future discussion needs an additional notation. For a
The proofs of all the theorems and lemmas in the paper willinction f(¢) defined ont € [0,7T), denotef™*(T') as the
be found in the appendix. limit of f(¢) whent approache§" from the left hand side.
Theorem 4.1:Consider the Lagrangian in equation 8 Each useri € S executes the following algorithm. The
where the functionsU; are twice differentiable, strictly main assumption here is that ugas continuously transmit-
increasing, and strictly concave and where the routingimatrting data at rate:;(¢) at timet. For each usef, we assume



there exists a monotone decreasing sequence of tolerance

levels, {€;[k]}72, that asymptotically approaches zero.
Algorithm 4.1: User i's Update Algorithm
1) Parameter Initialization: Set the initial user rate? >
0.Let K =0, T =0, ande; = ¢[K].
State Initialization: Wait for all neighborsj € £;
to send their link stateg,;(T") and setj; = p;(T).
Initialize the user state to

29) = >

JEL;

2)

+

zi(T) = (19)

setZ; = z;(T) and transmit;(T) to all links inj € L;.

3) Update User Rate:Integrate the user rate equation

zi(t) = /T t zi(s)ds (20)
+
zi(t) = | VUi(wi(t)) fj (21)
€L T
z(T) = af (22)

wheret € [T,T%) and T is the time instant when
one of the following conditions is true
a) If 22(t) — p22 < 0 then broadcasi*(TJf) to all
Imks; € El, and sets; = z; (T™).
b) Or if user: receives a new link statﬁj(TJr)
from link j € £, setji; = puf (T).
c) Orif |z(t)] < €, then sete; = &[K + 1]. Set
K = K + 1 and notify link j € £; that user:
performed a tolerance update.
4) Increment Time: Set7 = T, 2¥ = 2 (T*) and go
to step 3.
A similar algorithm is executed by all linkg € £. The
main assumption here is that ligkcan continuously monitor
the link statey;(t) at any timet € R. For each linkj

then seti; = j(T*) and broadcast the updated
link state . (T) to all usersi € S;.

b) Oriflink j receives a new user staztgf T+) for
anyi € S;, then sets; = 2, (T™).

c) Or if link j receives not|f|cat|on that user
performed a tolerance update, det= 1.

4) Update Penalty Parameter:If I, =1 forall i € S;,
then setw; = w;[K + 1], A; = u; (TT), resetl; = 0
forall i € ;. SetK = K + 1.

5) Increment Time: SetT =T and go to step 3.

In the preceding algorithms, the parametessande; are
switched according to the sequendes;[k]}, and {€;[k]},
respectively. The convergence of the algorithms relies on
decreasingw; and ¢; to zero. However, the switches of
A; in the link algorithm will in general help increase the
convergence speed. These switches occur at discretetmstan
in time. Provided an infinite number of switches occur, we
can guarantee that the sequence of parameterand e;
used by the algorithms also asymptotically approach zero.
The following lemma establishes that this actually occurs.

Lemma 4.2: Consider algorithms 4.1 and 4.2. For each

S, let {Tf[k ]},C _, denote the sequences of all time mstants

when ¢; switch values. For each € L, let {T}"[k ]},C 0
denote the sequence of all time instants wlmgnswnches
values. Then\/; andML are infinite for alls, j.

The following Iemma provides a lower bound on
L(x; A, w) for fixed penalty parameters. This bound will be
later used in the proof of theorem 4.4.

Lemma 4.3:Under the assumptions of theorem 4.1, for
all ¢ >0,

5 dL(z(t); A\, w)
2 dt

We can now show that algorithms 4.1-4.2 asymptotically
converge to the solution of NUM. The main idea is to divide

22(t) <

<0 (24)

we assume there exists a monotone decreasing sequetiee entire time axis into an infinite number of mutually

of link penalty parameters,w;[k]}7, that asymptotically
approaches zero.

Algorithm 4.2: Link j's Update Algorithm

1) Parameter Initialization: SetK =0, T = 0, w;
w;[K], seth; > 0 and set the switching indicatdy =
0 for eachi € S;.
State Initialization Measure the local link state

2)

1
=max< 0,A\; + — g zi(T) —¢j
wj :
: 1€S;

1 (T)) (23)
Transmity;(T) to all users € S; and sefi; = p;(T).
Wait for users to returry;(T) for all i € S, and set
Link Update: Continuously monitor the link state
wi(t) forall ¢ € [T,T1) whereT is the time instant
when one of the following events occur

a) If

3)

~52 < TS (s (1) — )’
€S,

disjoint time intervals. On each interval, we have fixed

penalty parameters. Since there are an infinite number of
penalty parameter switches, we can show that the bound
in lemma 4.3 asymptotically converges to zero, thereby
showing thatl, converges to zero and thus establishing the
convergence of the algorithm.

Theorem 4.4:Under the assumptions @&f;, A, andp in
theorem 4.1, the data rate§t) generated by algorithms 4.1-
4.2 converge asymptotically to the unique solution of the
NUM problem.

V. SIMULATION

This section presents simulation results. We compare the
number of message exchanges of our event-triggered algo-
rithm against the dual decomposition algorithm. Simulatio
results show that our event-triggered algorithm reduces th
number of message exchanges by two order magnitude when
compared to dual decomposition. Moreover, our algorithm is
scale free with respect to network size. The remainder sf thi
section is organized as follows: Subsection V-A discudses t



iimulation setup. The scalability results with respec§tand  circle correspgnds to the intervah i — o, mk + ok for
L are presented in subsection V-B and V-C, respectively. each differentS denoted by thec-axis.

10°

A. Simulation Setup ‘
* DD

Denotes € Ula,b] if s is a random variable uniformly

distributed on[a,b]. Given M, N, L and S, the network w0 o
used for simulation is generated in the following way. We TR !
randomly generate a network with/ links and N users, R

where S;| € U[1,S], j € L, |£i| € U[L,L], i € S. We <0y

make sure that at least one link héisisers, and at least one
user used. links. After the network is generated, we assign
utility function U;(z;) = «;logx; for each useri, where
a; € U[0.8,1.2]. Link j is assigned capacity € ¢/[0.8,1.2].

10°F
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Once the netvyork is generat_ed, both algori_thms are simu- R T T e |

lated. The optimal rate* and its corresponding utility/* hats

are calculated using a global optimization technique. Fig. 1. Iteration numbeis as a function ofS for both algorithms.
Define error as (for both algorithms)

For our event-triggered algorithm, whehincreases from
e(k) = U(z(k)) = U* (25) 71026, mk does not show noticeable increase, and it varies
U+ between36 and 50. o varies betweers and 34. For dual
where z(k) is the rate at thekth iteration. e(k) is the decompositionmn increases from.3119 x 10° t0 9.4315 x
‘normalized deviation’ from the optimal point at theth 10°. ox at the same time increases frami876 x 10° to
iteration. In both algorithms, we count the number of it-1-1702 x 10°. Our event-triggered algorithm is about two
erationsK for e(k) to decrease to and stay in the neighOrder magnitude _faster than the dual dg(_:omposn_lon. We can
borhood{e(k)e(k) < eq}. In dual decomposition, messagea|50 see that, unlike the dual decomposition algorithmgetwhi
passings from the links to the users occur at each iteratiGales superlinearly with respect £ our event-triggered
synchronously. S5 is a measure of the total number ofélgorithm on the other hand is scale-free.
message exchanges. In our gvent—triggered algorithm, ligk Scalability with respect t@
events and user events occur in a totally asynchronous way._ . . L )
We add the total number of triggered events and the numberTh's simulation is S|m|!ar to subs_ecth_)n V-B except that
of message passings associated with the penalty paramét§r Vary L from 4 to 18 instead ofS. Figure 2 plotsik
updates, and divide this number by the link numbgrThis (I logarithm scale) as a function df for both algorithms.
works as an equivalent iteration numb&r for our event- For our event-triggered algorithm, whéhnincreases from

triggered algorithm, and is a measure of the total number 6:1: 18, m f'[)St lncrasesdfron84hto 67 (when L = 11),
message exchanges. then varies betweefi5 and 68 when T > 11. ok varies

The default settings for simulation are as follows: Fopetween12 and36. For dual decompositionn increases

3 3 i
both algorithms, the initial condition;(0) € ¢/[0.01, 0.05], from 1.8009 > 10° 1o 8'543:? X 10° o at Te same time
Vi € S. In dual decomposition, initial price; = 0 for increases fron0.1773 x 10° to 1.1411 x 10°. Our event-

j € L, and the step size is calculated using equation 5. In triggered algorithm.i_s about two order magnitude fastentha
our event-triggered algorithm, the initial Lagrange npllér the dual dg(_:omposm_on. we can also see that, u_nllke the QUaI
estimate is\; = 0 for j € £. The sequence;[k]}:°, and decomposition algorlthr_n, which scgles superlinearly with
(@ [k]}22, ;re chosen a80.1¥}2° . and{0.01 x 0_15}20_0, respect tal,, our event-triggered algorithm on the other hand

respectively. Other parameters include= 0.5, e; = 1%, is scale-free.
M =60, N =150, L =8, § = 15. R

B. Scalability with respect t& .

In this simulation, we fixM, N, L and vary S from
7 to 26. For eachS, both algorithms were rur2000
times, and each time a random network which satisfies -
the above specification is generated. The meagn and
standard deviatiow of K are computed for eacH. my,
works as our criteria for comparing the scalability of the ST
two algorithms. Figure 1 plots the iteration numb&r (in : '
logarithm scale) as a function of for both algorithms. ‘ ‘ ‘ ‘ ‘ ‘
The asterisks above represeni; for dual decomposition, N e R ®
while the circles below correspond to our event-triggered gy
algorithm. The dotted vertical line around each asterigk an

R S
99':;'???

N

Iteration numbei< as a function ofL for both algorithms.



VI. CONCLUSION Remembet

Li| < L fori € S, this means
This paper presents an event-triggered distributed NUM 1 2
algorithm based on the augmented Lagrangian methods. Thel(z; A w) = 3 Z q PZ
paper establishes state-dependent event-triggeringhibids i=1

under which the proposed algorithm converges to the optimal al

solution of the NUM problem. Simulation results suggest +2 Zz - _ZLS )* (34)
that the proposed algorithm is scale-free with respect to N =t

two measures of network size, and reduces the number S 1 2 .o

of message exchanges by two orders of magnitude when = 2 Z[zi PEI+

compared to existing dual decomposition algorithms. Futur =t

work will focus on analyzing how different parameters affec .

the performance of the algorithm. B Z P Z —Z - — /1;)136)

i€S;

VII. APPENDIX which immediately suggests us if the sequences of sampling
instants{T;°[¢]}$2,, and {T¥[¢]}22,, satisfy the inequalities
A. Proof of Theorem 4.1 in equa;[ion[l];éa%.d 18{fc§r[a]lli’é:0 0,1,2,...,00, and any
Proof: For convenience, we do not explicitly includei € S, j € L, thenL(z; A\, w) < 0 is guaranteed for all.
the time dependence ef(t), (1), z:(t), 2:(t), j;(t), f1;(t) By using the properties of/;(x;) and v;(z; A\, w), it is
in most part of the proof. For all > 0 we have easy to show that for any fixed and w, L(z;A,w) is
strictly convex inx. It thus has a unique minimizer. Suppose
OL dz; 2* (A, w) is this minimizer, and the corresponding Lagrangian
Z ox; dt is L(z*; A\, w). Define V(z) = L(x;\,w) — L(z*; A\, w).
It is trivial to seeV(z) is a Lyapunov function for the
system. Moreovery/ (z) = 0 meansL(z; \,w) = 0. The

x)\w

I
Mz

— &l VUi(:) Z“J i (26) only scenario this can happen is

N (4 1M zi=2%2=0, YieS, wp=p, Viel (36)
> S22 = =) (i (27)
T =2 % = which corresponds te* (A, w). As a result, the equilibrium

z* (A, w) is asymptotically stable. Proof complete. ]
The last inequality holds whether the positive projectien i
active or not for each user Also remember there are only
|£;| nonzero terms in the su@jj\il(uj — [1;)Aj;, then by
using the inequality

B. Proof of Lemma 4.2

Proof: We will first show thatM/; is infinite for all
i € 8, then showM is infinite for all j € L.
Remembere; are switched according to the monotone

M decreasing sequencgs;[k]};°, which are lower bounded
- Z(uj —a)Aul ==L |Z i;)A;:]> (28) by zero. This means after an finite or infinite number of
j=1 switches, they will converge to their equilibré& [15]. Next
. we will show e} = 0 by contradiction.
we have —I(z; A\, w Assumee; are at the equilibrium, then by the algorithm,
1 X 1 X for each linkj, w; and \; are also at their equilibrium.
> 3 Z %~ 3 Z |L; IZ )42 $(29)  This means we now have fixad*, \*, ¢*, which satisfy all
i=1 i=1 the assumptions in theorem 4.1. Suppose at least one-user

M

=

M

s
Il
—

<.

N
i etgm

Consider the term p 31

1

s
Il
—

<

we have

zlz’

2 _
;=

1
27

— 1) Zw |42, } (30)

(31)

(32)

has a nonzero equilibriurg:. From theorem 4.1, we know
z-(t) also asymptotically converges to zero and enters the
|z-(t)| < ¢, neighborhood in finite time for any, > 0. If

we choose,. to be any element in the sequen@e(k]}7°

that is smaller thag’, then a user tolerance switch will occur
for userr according to the algorithm, which contradicts the
assumption that, is already at its equilibrium. This means
e =0, Vi €S. As a result, we know for each useri

is infinite.

Next we will show for each linkj, MJL is also infinite.
Define T = max;ecs Tf[0]. Then ont ¢ [0,7)],
each useri € S has completed at least one switch. By
algorithm 4.2, this means each linke £ also has com-
pleted at least one switch. Starting frafi?), we can use



the same argument again. As a result, we can partitiarondecreasing function dfthat converges t0. This means

the time axis[0,+o0) into the union of time intervals |z;(t)| converges to zero as — oo. Similarly,
. On each time inter- also converges to zero as— oo.
val, each linkj € £ has completed at least one switch. Since Remember equation 35 and the user and link events in

[0, T(O)] U(T(O)a T(l)] U(T(l)a T(2)] .

L(z; A, w)

M? is infinite for eachi, we can construct an infinite numberalgorithms 4.1-4.2, this immediately impligs € S, Vj € £

of such intervals. This meanMjL is also infinite for each

Jim {=(t) — p2}(t)} =0 (43)
Jim o 3" 2220 ~ T804 () — 102 =0 (44)

i€S;

From equation 43 and the fact thii; ., z;(t) = 0, we

havelim;_. 2;(t) = 0. When combined with equation 44,

j € L. Proof complete. [ ]
C. Proof of Lemma 4.3
Proof: Remember
—L(:vv\ w)
= ZZ,L VU ZCZ Z'LLJ ]’L (37)
=1
2
1 N M M
< 52 A |z A — Y Ay | §38)
i=1 j=1 j=1
2
3 N N M M
s 5 DoAY S DA =Y Al 3(39)
i=1 i=1 j=1 j=1

As a result of the events in theorem 4.1, the right-hand sial.émt_’OO zi(t) =

of equation 27 in the proof is nonnegative, which is

N N 2 (1]
Z 212 - Z Z M] Jt Z :u] Jt Z 0 (40)
i=1 i=1 =
~ 2
This means
(3]
3 N N 5 N
—L(z;\w) < §;z —|—;z 5;,2 (41) "
which completes the proof. ]

(5]
D. Proof of Theorem 4.4
Proof: By lemma 4.2, there are infinite user switches g
for each user. Le{T'[k]};2, be the nondecreasing sorted

sequence of all the elements i{ril“;[k]}i\fo for all i €
S. This means we can partition the time axi& +oo)
into the wunion of infinite number of time intervals, ]
O, T UIT], T2)UIT[2]),T[3])---. Here T[k] is the
time instant when a user tolerance switch occurs for any
user. On[T[k], T[k + 1]), we have fixed parametes, \,e.  [9]
By lemma 4.3, we have

(7]

N
. 5 2 5 2 [10]
EAG] Sei(t),—iig;ei(t < E;Z ) < L{z; A\, w) <0
whereg;(t) is defined as [11]
&(t) =%k —1], te[I7[k], TY[k + 1)) (42)

SinceTf[k] is the time instant when thieth tolerance switch [z

occurs for usei. At any timet, ¢;(¢) is the tolerance for user

i right before the latest switch occurs. (13]
Define f(t) = —3 SN | &(t), we know f(t) is a nonde-

[14]
[15]

creasing function oft that converges td. Also for each
useri € S, defineg;(t) = €&(t). Then g;(t) is also a

we obtainlim; o | (t) —

t—oo

f;(t)| = 0. This means

Z/M

JEL;

(1) =0

lim {——} = hm {VU (xs(t

)= lim Y (u(t) -

JEL;

= lim z;(¢
t—oo

So ast — oo, ratex(t) comes closer and closer to satisfying
the Karush-Kuhn-Tucker conditions of the original NUM
problem. Sincea— is a continuous function of, we have

*Vi e S. This completes the proof. |
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