
Distributed Network Utility Maximization using Event-triggered
augmented Lagrangian methods

Pu Wan and Michael D. Lemmon

Abstract— Many problems associated with networked sys-
tems can be formulated as network utility maximization (NUM)
problems. NUM problems maximize a global separable measure
of network optimality subject to linear constraints on resources.
Dual decomposition is a widely used distributed algorithm that
solves the NUM problem. This approach, however, uses a step
size that is inversely proportional to measures of network size
such as maximum path length or maximum neighborhood size.
As a result, the number of messages exchanged between nodes
by a dual decomposition scales poorly with respect to these
measures. Motivated by recent results with event-triggered
state feedback control, this paper investigates the use of an
event-triggered communication scheme in distributed NUM
algorithms. Under event triggering, each agent broadcaststo
its neighbors when a local “error” signal exceeds a state de-
pendent threshold. In particular, this paper proposes an event-
triggered distributed NUM algorithm based on the augmented
Lagrangian methods. The paper establishes state-dependent
event-triggering thresholds under which the proposed algorithm
converges to the optimal solution of the NUM problem. Sim-
ulation results show that the proposed algorithm reduces the
number of message exchanges by two orders of magnitude, and
is scale-free with respect to the above two measures of network
size.

I. I NTRODUCTION

A networked system is a collection of subsystems where
individual subsystems exchange information over some com-
munication network. Examples of networked systems include
the electrical power grid, wireless sensor networks, and
the Internet. Many problems in networked systems, like
distributed control of sensor-actuator networks [1], resource
allocation in wireless communication networks [2] [3] [4]
[5], and congestion control in wired communication networks
[6] [7], fall into the general framework of Network Utility
Maximization (NUM) problems. NUM problems maximize
a global separable measure of the networked system’s per-
formance subject to linear constraints on resources. In all
of these problems, we find subsystems communicating with
each other in order to collaboratively solve a network opti-
mization problem.

A variety of distributed algorithms have been proposed
to solve the NUM problem [6] [7] [8] [9]. Kelly [6] first
proposed two classes of algorithms by decomposing the
NUM problem into a user problem and a network problem.
Among all existing algorithms, the dual decomposition ap-
proach proposed by Low et al. [7] is the most widely used
algorithm for the NUM problem. Low et al. showed that

Both authors are with the department of Electrical Engineering, Univ. of
Notre Dame, Notre Dame, IN 46556; e-mail: pwan,lemmon@nd.edu. The
authors gratefully acknowledge the partial financial support of the National
Science Foundation (NSF-ECS04-00479 and NSF-CNS-07-20457).

their dual decomposition algorithm was stable for a step size
that is inversely proportional to two important measures of
network size: the maximum length pathL, and the maximum
number of neighborsS. So as these two measures get
large, the step size required for stability becomes extremely
small. Step size, of course, determines the number of com-
putations required for the algorithm’s convergence. Under
dual decomposition, system agents exchange information at
each iteration, so that step size also determines the message
passing complexity of the algorithm. Therefore if we use
the “stabilizing” step size, dual decomposition will have a
message complexity that scales in a super-linear manner with
those two measures of network size,L andS.

For many networked systems this type of message passing
complexity may be unacceptable. This is particularly true
for systems communicating over a wireless network. In such
networked systems, the energy required for communication
can be significantly greater than the energy required to
perform computation [10]. As a result, there is significant
interest in finding algorithms that reduce the message passing
complexity of distributed optimization algorithms such as
dual decomposition.

This paper presents one way of reducing the message
passing complexity of distributed NUM algorithms. It has
recently been demonstrated [11] [12] that event-triggering in
state feedback control systems can greatly lengthen the aver-
age sampling period of such systems. These results suggest
that the use of event-triggering in a suitable NUM algorithm
may significantly reduce the message passing complexity
experienced by such algorithms. This paper presents a NUM
algorithm based on the augmented Lagrangian methods that
uses event-triggered message passing. We prove that the
proposed algorithm converges to the global optimal solution
of the NUM problem. Simulation experiments suggest that
the resulting algorithm has a message passing complexity
that is two orders of magnitude lower than dual decom-
position algorithms, and is scale-free with respect to the
above two measures of network size. This work is similar
to our prior work in [13]. However, in [13], we used the
barrier method instead of the augmented Lagrangian method
as the basis for the event-triggered algorithm. In that case, the
resulting algorithm suffers from issues like ill-conditioning
and the need for an initial feasible point. The event-triggered
algorithm presented in this paper does not have these issues.

The rest of the paper is organized as follows. Section
II formally states the NUM problem and reviews the dual
decomposition algorithm. The event-triggered optimization
algorithm is based on an augmented Lagrangian method so-

lution to the NUM problem which is described in section III.
Section IV presents our event-triggered distributed algorithm
based on the augmented Lagrangian methods, and proves its
convergence. Simulation results are shown in section V, and
section VI concludes the paper.

II. D UAL DECOMPOSITIONNUM A LGORITHM

NUM problem [6] considers a network ofN users and
M links. We letS = {1, · · · , N} denote the set of users
and L = {1, · · · ,M} denote the set of links. Each user
generates a flow with a specified data rate. Each flow may
traverse several links (which together constitute a route)
before reaching its destination. The set of links that are used
by useri ∈ S will be denoted asLi and the set of users
that are using linkj ∈ L will be denoted asSj . The NUM
problem takes the form

maximize: U(x) =
∑

i∈S Ui(xi)
subject to: Ax ≤ c x ≥ 0

(1)

where x = [x1, ..., xN]T and xi ∈ R is user i’s data
rate.A ∈ R

M×N is the routing matrix mapping users onto
links andc ∈ R

M is a vector of link capacities. Theji’th
component,Aji, is 1 if user i’s flow traverses linkj and
is zero otherwise. Thejth row of Ax represents the total
data rates going through linkj, which cannot exceed its
capacitycj . The cost functionU is the sum of the userutility
functionsUi(xi). These utility functions represent the reward
(i.e. quality-of-service) [6][7] useri gets by transmitting at
ratexi.

NUM problems are often solved using the dual decompo-
sition algorithm [7]. The algorithm examines the dual of the
NUM problem, which is

minimize: maxx≥0

{
∑

i∈S Ui(xi) − pT (Ax − c)
}

subject to: p ≥ 0
(2)

wherep =
[

p1 · · · pM

]T
is the Lagrange multiplier

vector (which can be viewed as the price for using each link
[6]) associated with the inequality constraintAx ≤ c. If x∗

andp∗ are vectors solving the dual problem, then it can be
shown thatx∗ also solves the original NUM problem.

Low et al. [7] established conditions under which a pair
of recursions would generate a sequence of user rates,
{x[k]}∞k=0, and link prices,{p[k]}∞k=0, that asymptotically
converge to a solution of the dual problem. Given the initial
user ratesx[0] and link pricesp[0], then for all i ∈ S and
j ∈ L, we let

xi[k + 1] = arg max
xi≥0







Ui(xi[k]) − xi[k]
∑

j∈Li

pj [k])







(3)

pj [k + 1] = max







0, pj [k] + γ







∑

i∈Sj

xi[k] − cj













(4)

for k = 0, · · · ,∞.
The step sizeγ in equation 4 must be chosen to ensure

that the sequences{x[k]}∞k=0 and{p[k]}∞k=0 asymptotically

converge to the optimal solution. Low et al. [7] showed that
a suitable step size is

0 < γ < γ∗ =
−2 max(i,xi) ∇

2Ui(xi)

LS
(5)

whereL is the maximum number of links any user uses and
S is the maximum number of users any link has. Equation 5
requires that the step size be inversely proportional to bothL
andS. We can conclude that the computational complexity of
dual decomposition (as measured by the number of algorithm
updates) scales superlinearly withL andS.

III. A UGMENTED LAGRANGIAN METHOD NUM
ALGORITHM

The event-triggered algorithm presented in this paper is
based on the augmented Lagrangian method for the NUM
problem. In the augmented Lagrangian method, a constrained
problem is converted into a sequence of unconstrained prob-
lems by adding to the cost function a penalty term that
prescribes a high cost to infeasible points.

To apply the augmented Lagrangian method on our NUM
problem, we need to introduce the slack variables ∈ R

M

and replace the inequalitiescj − aT
j x ≥ 0, ∀j ∈ L by

aT
j x− cj + sj = 0, sj ≥ 0, ∀j ∈ L (6)

The augmented cost is then

L(x, s;λ,w) = −
∑

i∈S

Ui(xi) +
∑

j∈L

λj(a
T
j x− cj + sj)

+
1

2

∑

j∈L

1

wj

(aT
j x− cj + sj)

2 (7)

Here a penalty parameterwj is associated with each link
constraint, andw = [w1, · · · , wM] is the vector of penalty
parameters. Supposeλ∗j is the Lagrange multiplier associated
with link j’s constraintcj − aT

j x ≥ 0 in the Karush-Kuhn-
Tucker conditions of the NUM problem.λj is an estimate of
λ∗j andλ = [λ1, · · · , λM]. The vectoraT

j = [Aj1, · · · , AjN]
is the jth row of the routing matrixA.
L(x, s;λ,w) is a continuous function ofx ands for fixed

λ andw. It is shown [14] that

min
x≥0,s≥0

L(x, s;λ,w) = min
x≥0

min
s≥0

L(x, s;λ,w) = min
x≥0

L(x;λ,w)

where the augmented Lagrangian functionassociated with
the NUM problem is given as

L(x;λ,w) = −
∑

i∈S

Ui(xi) +
∑

j∈L

ψj(x;λ,w) (8)

where

ψj(x;λ,w) =

{

− 1
2wjλ

2
j , if cj − aT

j x− wjλj ≥ 0
λj(a

T
j x− cj) + 1

2wj
(aT

j x− cj)
2, otherwise

The augmented Lagrangian method solves the NUM
problem by approximately minimizingL(x;λ[k], w[k]) for
sequences of{w[k]}∞k=0 and {λ[k]}∞k=0. Let x∗[k] denote
the approximate minimizer forL(x;λ[k], w[k]). The method

in [14, Chap 4.2] can be used to show that for appro-
priately chosen sequences{w[k]}∞k=0 and {λ[k]}∞k=0, the
sequence of approximate minimizers{x∗[k]}∞k=0 converges
to the optimal point of the NUM problem. The choices
are as follows.{wj [k]}

∞
k=0 are sequences of link (j ∈ L)

penalty parameters that are monotone decreasing to zero.
{λj [k]}

∞
k=0 are sequences of Lagrange multiplier estimates,

whereλj [k + 1] = max{0, λj[k] + 1
wj [k] (a

T
j x

∗[k] − cj)}.
The augmented Lagrangian method algorithm for the NUM
problem is formally stated below.

1) Initialization: Select any initial user ratex0 > 0,
vectorλ ≥ 0 and setK = 0. Setwj = wj [K], j ∈ L,
andǫ = ǫ[K].

2) Main Recursive Loop:
Do until:

∥

∥∇xL(x0;λ,w)
∥

∥ ≤ ǫd

a) Approximately minimize L(x;λ,w):
Do until:

∥

∥∇xL(x0;λ,w)
∥

∥ ≤ ǫ

x = max
{

0, x0 − γ∇xL(x0;λ,w)
}

(9)

x0 = x

b) Update Parameters:
Setwj = wj [K+1], λj = max{0, λj+

1
wj

(aT
j x−

cj)}, j ∈ L, andǫ = ǫ[K + 1]. SetK = K + 1.

3) Setx∗ = x0.

In the algorithm above,{ǫ[k]}∞k=0 is a sequence of tol-
erance levels that are monotone decreasing to zero.ǫd is a
terminating tolerance level.γ is a sufficiently small step size.

Note that the inner recursion shown in step 2a is approx-
imately minimizingL(x;λ,w) for fixed λ and w using a
simple gradient following method. It is known [14] that by
using the update ofλ in step 2b,λ will converge toλ∗.
We know that whenw is decreased to zero, the algorithm
converges. However, with an increasingly accurate estimate
λ, it usually suffices ifw is smaller than some threshold
[14]. In this way, we may not need to decreasew to zero
in practice, and thereby alleviating the difficulty with ill-
conditioning whenw is small.

The computations above can be easily distributed among
the users and links. The primary computations that need to be
distributed are the user rate update and terminating condition
in step 2a, as well as the parameter update in step 2b. We will
see how they are distributed in our event-triggered distributed
implementation of the algorithm in section IV.

In dual decomposition and the augmented Lagrangian
method shown above, the exchange of information between
users and links happens each time the gradient following
update is applied. This means that the number of messages
passed between links and users is equal to the number
of updates required for the algorithm’s convergence. That
number is determined by the step-size. For both algorithms,
these step sizes may be small, so that the number of messages
passed between links and users will be large.

Recent results [11] [12] show that it is possible to greatly
reduce the message passing complexity of networked control
systems by usingevent-triggeredmessages. The following

section presents an event-triggered distributed implementa-
tion of the augmented Lagrangian method NUM algorithm.

IV. EVENT-TRIGGEREDNUM AUGMENTED

LAGRANGIAN ALGORITHM

The NUM augmented Lagrangian algorithm solves a se-
quence of unconstrained optimization problems that are in-
dexed with respect to the non-negative integersk. In particu-
lar, the algorithm minimizes the LagrangianL(x;λ[k], w[k])
where{w[k]}∞k=0 are sequences of link penalty parameters,
that are monotone decreasing to zero. The vectorλ[k] is
computed after the(k − 1)th minimization problem.

Implementing the NUM augmented Lagrangian algorithm
in a distributed manner requires communication between
users and links. An event-triggered implementation of the
algorithm assumes that the transmission of messages between
users and links is triggered by some local error signal
crossing a state-dependent threshold. The main problem is
to determine a threshold condition that results in message
streams ensuring the asymptotic convergence of the NUM
augmented Lagrangian algorithm to the problem’s solution.

We begin by considering the minimization of
L(x;λ[k], w[k]) for a fixed set of parameters (i.e. fixedk).
Subsection IV-A determines an event threshold condition
ensuring the convergence of the local update (equation 9)
to this minimizer. Subsection IV-B then considers the case
when the penalty parameters areswitchedas we changek.
In particular, we present a distributed update strategy for
the penalty parameters that ensures the convergence of the
algorithm to the NUM problem’s solution.

A. Fixed penalty parameter case

This subsection considers the problem of finding a min-
imizer for the LagrangianL(x;λ,w) under the assumption
that the vectorsw andλ are constant. We can search for the
minimizer using a gradient following algorithm

xi(t) = −

∫ t

0

(∇xi
L(x(s);λ,w))+xi(s)

ds

=

∫ t

0





∂Ui(xi(s))

∂xi

−
∑

j∈Li

µj(s)





+

xi(s)

ds(10)

for each useri ∈ S and where

µj(t) = max

{

0, λj +
1

wj

(aT
j x(t) − cj)

}

(11)

Here given a functionf : R+ → R, its positive projectionis
defined as

(f(x))+x =

{

0, if x = 0 and f(x) < 0

f(x), otherwise
(12)

The positive projection used in equation 10 guarantees the
user ratexi(t) is always nonnegative along the trajectory.

Equation 10 is the continuous-time version of the update
in equation 9. Note that in equation 10, useri can compute
its rate only based on the information from itself, and the
information of µj from those links that are being used by

useri. We can think ofµj as thejth link’s local state. From
equation 11, linkj only needs to be able to measure the
total flow that goes through itself. All of this information is
locally available so the update of the user rate can be done
in a distributed manner.

In the above equation, this link state information is avail-
able to the user in a continuous manner. We now consider
an event-triggeredversion of equation 10. Here we assume
that the user accesses asampledversion of the link state.
In particular, let’s associate a sequence ofsamplinginstants,
{TL

j [ℓ]}∞ℓ=0 with the jth link. The timeTL
j [ℓ] denotes the

instant when thejth link samples its link stateµj for the
ℓth time and transmits that state to usersi ∈ Sj . We can see
that at any timet ∈ ℜ, the sampled link state is a piecewise
constant function of time in which

µ̂j(t) = µj(T
L
j [ℓ]) (13)

for all ℓ = 0, · · · ,∞ and anyt ∈ [TL
j [ℓ], TL

j [ℓ+ 1]). In this
regard, the “event-triggered” version of equation 10 takesthe
form

xi(t) =

∫ t

0





∂Ui(xi(s))

∂xi

−
∑

j∈Li

µ̂j(s)





+

xi(s)

ds(14)

for all ℓ and anyt ∈ [TL
j [ℓ], TL

j [ℓ+ 1]).
The sequence{TL

j [ℓ]}∞ℓ=0 represents time instants when
the link transmits its “state” to its users. Under event-
triggering, it will be convenient to have a similar flow of
information from the user to the link. We assume that link
j can directly measure the total flow rate,

∑

i∈Lj
xi(t), in

a continuous manner. The event-triggering scheme proposed
below will require that linkj have knowledge of the time
derivative of useri’s flow rate. In particular, letzi(t) denote
the time derivative of this flow rate.zi(t) therefore satisfies

zi(t) = ẋi(t) =



∇Ui(xi(t)) −
∑

j∈Li

µ̂j(t)





+

xi(t)

(15)

for all i ∈ S. We will refer to zi as theith user state. We
associate a sequence{T S

i [ℓ]}∞ℓ=0 to each useri ∈ S. The
time T S

i [ℓ] is the ℓth time when useri transmits its user
state to all linksj ∈ Li. We can therefore see that at any
time t ∈ ℜ, the sampled user state is a piecewise constant
function of time satisfying

ẑi(t) = zi(T
S
i [ℓ]) (16)

for all ℓ = 0, · · · ,∞ and anyt ∈ [T S
i [ℓ], T S

i [ℓ + 1]). In the
proposed event-triggering scheme, links will use the sampled
user state,̂z, to help determine when they should transmit
their states back to the user.

Next we will state the main theorem of this subsection.
The proofs of all the theorems and lemmas in the paper will
be found in the appendix.

Theorem 4.1:Consider the Lagrangian in equation 8
where the functionsUi are twice differentiable, strictly
increasing, and strictly concave and where the routing matrix

A is of full rank. Assume a fixed penalty parameterw > 0
and vectorλ ≥ 0. Consider the sequences{T S

i [ℓ]}∞ℓ=0 and
{TL

j [ℓ]}∞ℓ=0 for eachi ∈ S, and eachj ∈ L, respectively. For
eachi ∈ S, let the user rate,xi(t), satisfy equation 14 with
sampled link states given by equation 13. For eachi ∈ S let
the user statezi(t) satisfy equation 15 and assume linkj’s
measurement of the user state satisfies equation 16.

Let ρ be a constant such that0 < ρ < 1. Assume that for
all i ∈ S and allℓ = 0, · · · ,∞, that

z2
i (t) − ρẑ2

i (t) ≥ 0 (17)

for t ∈ [T S
i [ℓ], T S

i [ℓ+ 1]). Further assume that for allj ∈ L
and allℓ = 0, · · · ,∞ that

ρ
∑

i∈Sj

1

L
ẑ2

i (t) − LS (µj(t) − µ̂j(t))
2
≥ 0 (18)

for t ∈ [TL
j [ℓ], TL

j [ℓ + 1]). Then the user ratesx(t) asymp-
totically converge to the unique minimizer ofL(x;λ,w). �

Theorem 4.1 provides the basis for constructing an event-
triggered message-passing protocol. This theorem essentially
asserts that we need to select the transmit times{T S

i [ℓ]}
and {TL

j [ℓ]} so that the inequalities in equations 17 and
18 always hold. One obvious way to do this is to use the
violation of these inequalities to trigger the sampling and
transmission of link/user states across the network. At time
t = T S

i [ℓ], the inequality in equation 17 is automatically
satisfied. After this sampling instant,zi(t) continues to
change until the inequality is violated. We let that time
instant beT S

i [ℓ + 1] and transmit the sampled user state to
the link. Similarly, link j compares the square of the error
between the last transmitted link stateµ̂j and the current link
stateµj . At the sampling timeTL

j [ℓ], this difference is zero
and the inequality is trivially satisfied. After that time,µj(t)
continues to change or the link may receive an updated user
stateẑi that may result in the violation of the inequality. We
let that time be the next sampling instant,TL

j [ℓ+1] and then
transmit the sampled link statêµj to the user.

The threshold conditions shown in equations 17-18 pro-
vide the basis for an event-triggered scheme to solve the local
minimization problem in step 2a of the NUM augmented
Lagrangian algorithm presented earlier.

B. The switching penalty parameter case

We now consider what happens when we systematically
reduce these penalty parametersw to zero. In particular, we
need to identify a distributed strategy for updating these
penalty parameters so that the sequence of approximate
minimizers asymptotically approach the global solution of
the NUM problem. This subsection presents such an up-
dating strategy and proves that the resulting event-triggered
algorithm asymptotically converges to the desired solution.

Future discussion needs an additional notation. For a
function f(t) defined ont ∈ [0, T), denotef+(T) as the
limit of f(t) when t approachesT from the left hand side.

Each useri ∈ S executes the following algorithm. The
main assumption here is that useri is continuously transmit-
ting data at ratexi(t) at time t. For each useri, we assume

there exists a monotone decreasing sequence of tolerance
levels,{ǫi[k]}∞k=0 that asymptotically approaches zero.

Algorithm 4.1: User i’s Update Algorithm
1) Parameter Initialization: Set the initial user ratex0

i >

0. Let K = 0, T = 0, andǫi = ǫi[K].
2) State Initialization: Wait for all neighborsj ∈ Li

to send their link statesµj(T) and setµ̂j = µj(T).
Initialize the user state to

zi(T) =



∇Ui(x
0
i) −

∑

j∈Li

µ̂j





+

xi(T)

(19)

setẑi = zi(T) and transmitzi(T) to all links inj ∈ Li.
3) Update User Rate:Integrate the user rate equation

xi(t) =

∫ t

T

zi(s)ds (20)

zi(t) =



∇Ui(xi(t)) −
∑

j∈Li

µ̂j





+

xi(t)

(21)

xi(T) = x0
i (22)

where t ∈ [T, T+) and T+ is the time instant when
one of the following conditions is true

a) If z2
i (t)− ρẑ2

i ≤ 0 then broadcastz+
i (T+) to all

links j ∈ Li, and set̂zi = z+
i (T+).

b) Or if user i receives a new link stateµ+
j (T+)

from link j ∈ Li, set µ̂j = µ+
j (T+).

c) Or if |zi(t)| ≤ ǫi, then setǫi = ǫi[K + 1]. Set
K = K + 1 and notify link j ∈ Li that useri
performed a tolerance update.

4) Increment Time: SetT = T+, x0
i = x+

i (T+) and go
to step 3.

A similar algorithm is executed by all linksj ∈ L. The
main assumption here is that linkj can continuously monitor
the link stateµj(t) at any timet ∈ ℜ. For each linkj
we assume there exists a monotone decreasing sequence
of link penalty parameters,{wj [k]}

∞
k=0 that asymptotically

approaches zero.
Algorithm 4.2: Link j’s Update Algorithm
1) Parameter Initialization: SetK = 0, T = 0, wj =

wj [K], setλj ≥ 0 and set the switching indicatorIi =
0 for eachi ∈ Sj .

2) State Initialization Measure the local link state

µj(T) = max







0, λj +
1

wj





∑

i∈Sj

xi(T) − cj











(23)

Transmitµj(T) to all usersi ∈ Sj and set̂µj = µj(T).
Wait for users to returnzi(T) for all i ∈ Sj , and set
ẑi = zi(T).

3) Link Update: Continuously monitor the link state
µj(t) for all t ∈ [T, T+) whereT+ is the time instant
when one of the following events occur

a) If

ρ
∑

i∈Sj

1

L
ẑ2

i ≤ LS (µj(t) − µ̂j)
2

then set̂µj = µ+
j (T+) and broadcast the updated

link stateµ+
j (T+) to all usersi ∈ Sj .

b) Or if link j receives a new user statez+
i (T+) for

any i ∈ Sj , then set̂zi = z+
i (T+).

c) Or if link j receives notification that useri
performed a tolerance update, setIi = 1.

4) Update Penalty Parameter:If Ii = 1 for all i ∈ Sj ,
then setwj = wj [K + 1], λj = µ+

j (T+), resetIi = 0
for all i ∈ Sj . SetK = K + 1.

5) Increment Time: SetT = T+ and go to step 3.
In the preceding algorithms, the parameterswj andǫi are

switched according to the sequences{wj [k]}, and {ǫi[k]},
respectively. The convergence of the algorithms relies on
decreasingwj and ǫi to zero. However, the switches of
λj in the link algorithm will in general help increase the
convergence speed. These switches occur at discrete instants
in time. Provided an infinite number of switches occur, we
can guarantee that the sequence of parameterswj and ǫi
used by the algorithms also asymptotically approach zero.
The following lemma establishes that this actually occurs.

Lemma 4.2:Consider algorithms 4.1 and 4.2. For eachi ∈

S, let {T ǫ
i [k]}

MS
i

k=0 denote the sequences of all time instants

when ǫi switch values. For eachj ∈ L, let {Tw
j [k]}

ML
j

k=0

denote the sequence of all time instants whenwj switches
values. ThenMS

i andML
j are infinite for alli, j.

The following lemma provides a lower bound on
L̇(x;λ,w) for fixed penalty parameters. This bound will be
later used in the proof of theorem 4.4.

Lemma 4.3:Under the assumptions of theorem 4.1, for
all t ≥ 0,

−
5

2

∑

i∈S

z2
i (t) ≤

dL(x(t);λ,w)

dt
≤ 0 (24)

We can now show that algorithms 4.1-4.2 asymptotically
converge to the solution of NUM. The main idea is to divide
the entire time axis into an infinite number of mutually
disjoint time intervals. On each interval, we have fixed
penalty parameters. Since there are an infinite number of
penalty parameter switches, we can show that the bound
in lemma 4.3 asymptotically converges to zero, thereby
showing thatL̇ converges to zero and thus establishing the
convergence of the algorithm.

Theorem 4.4:Under the assumptions ofUi, A, andρ in
theorem 4.1, the data ratesx(t) generated by algorithms 4.1-
4.2 converge asymptotically to the unique solution of the
NUM problem.

V. SIMULATION

This section presents simulation results. We compare the
number of message exchanges of our event-triggered algo-
rithm against the dual decomposition algorithm. Simulation
results show that our event-triggered algorithm reduces the
number of message exchanges by two order magnitude when
compared to dual decomposition. Moreover, our algorithm is
scale free with respect to network size. The remainder of this
section is organized as follows: Subsection V-A discusses the

simulation setup. The scalability results with respect toS and
L are presented in subsection V-B and V-C, respectively.

A. Simulation Setup

Denotes ∈ U [a, b] if s is a random variable uniformly
distributed on[a, b]. Given M , N , L and S, the network
used for simulation is generated in the following way. We
randomly generate a network withM links andN users,
where |Sj | ∈ U [1, S], j ∈ L, |Li| ∈ U [1, L], i ∈ S. We
make sure that at least one link hasS users, and at least one
user usesL links. After the network is generated, we assign
utility function Ui(xi) = αi log xi for each useri, where
αi ∈ U [0.8, 1.2]. Link j is assigned capacitycj ∈ U [0.8, 1.2].
Once the network is generated, both algorithms are simu-
lated. The optimal ratex∗ and its corresponding utilityU∗

are calculated using a global optimization technique.
Define error as (for both algorithms)

e(k) =
∣

∣

∣

U(x(k)) − U∗

U∗

∣

∣

∣
(25)

where x(k) is the rate at thekth iteration. e(k) is the
‘normalized deviation’ from the optimal point at thekth
iteration. In both algorithms, we count the number of it-
erationsK for e(k) to decrease to and stay in the neigh-
borhood{e(k)|e(k) ≤ ed}. In dual decomposition, message
passings from the links to the users occur at each iteration
synchronously. SoK is a measure of the total number of
message exchanges. In our event-triggered algorithm, link
events and user events occur in a totally asynchronous way.
We add the total number of triggered events and the number
of message passings associated with the penalty parameter
updates, and divide this number by the link numberM . This
works as an equivalent iteration numberK for our event-
triggered algorithm, and is a measure of the total number of
message exchanges.

The default settings for simulation are as follows: For
both algorithms, the initial conditionxi(0) ∈ U [0.01, 0.05],
∀i ∈ S. In dual decomposition, initial pricepj = 0 for
j ∈ L, and the step sizeγ is calculated using equation 5. In
our event-triggered algorithm, the initial Lagrange multiplier
estimate isλj = 0 for j ∈ L. The sequences{ǫi[k]}∞k=0 and
{wj [k]}

∞
k=0 are chosen as{0.1k}∞k=0 and{0.01×0.1k}∞k=0,

respectively. Other parameters includeρ = 0.5, ed = 1%,
M = 60, N = 150, L = 8, S = 15.

B. Scalability with respect toS

In this simulation, we fixM , N , L and varyS from
7 to 26. For eachS, both algorithms were run2000
times, and each time a random network which satisfies
the above specification is generated. The meanmK and
standard deviationσK of K are computed for eachS. mk

works as our criteria for comparing the scalability of the
two algorithms. Figure 1 plots the iteration numberK (in
logarithm scale) as a function ofS for both algorithms.
The asterisks above representmK for dual decomposition,
while the circles below correspond to our event-triggered
algorithm. The dotted vertical line around each asterisk and

circle corresponds to the interval[mK − σK ,mK + σK] for
each differentS denoted by thex-axis.

6 8 10 12 14 16 18 20 22 24 26
10

1

10
2

10
3

10
4

10
5

\hat S

K

trigger
DD

Fig. 1. Iteration numberK as a function ofS for both algorithms.

For our event-triggered algorithm, whenS increases from
7 to 26, mK does not show noticeable increase, and it varies
between36 and 50. σK varies between6 and 34. For dual
decomposition,mK increases from1.3119×103 to 9.4315×
103. σK at the same time increases from0.1876 × 103 to
1.1702 × 103. Our event-triggered algorithm is about two
order magnitude faster than the dual decomposition. We can
also see that, unlike the dual decomposition algorithm, which
scales superlinearly with respect toS, our event-triggered
algorithm on the other hand is scale-free.

C. Scalability with respect toL

This simulation is similar to subsection V-B except that
we vary L from 4 to 18 instead ofS. Figure 2 plotsK
(in logarithm scale) as a function ofL for both algorithms.
For our event-triggered algorithm, whenL increases from4
to 18, mK first increases from34 to 67 (when L = 11),
then varies between65 and 68 when L > 11. σK varies
between12 and36. For dual decomposition,mK increases
from 1.8009 × 103 to 8.5434 × 103. σK at the same time
increases from0.1773 × 103 to 1.1411 × 103. Our event-
triggered algorithm is about two order magnitude faster than
the dual decomposition. We can also see that, unlike the dual
decomposition algorithm, which scales superlinearly with
respect toL, our event-triggered algorithm on the other hand
is scale-free.

2 4 6 8 10 12 14 16 18
10

1

10
2

10
3

10
4

\hat L

K

trigger

DD

Fig. 2. Iteration numberK as a function ofL for both algorithms.

VI. CONCLUSION

This paper presents an event-triggered distributed NUM
algorithm based on the augmented Lagrangian methods. The
paper establishes state-dependent event-triggering thresholds
under which the proposed algorithm converges to the optimal
solution of the NUM problem. Simulation results suggest
that the proposed algorithm is scale-free with respect to
two measures of network size, and reduces the number
of message exchanges by two orders of magnitude when
compared to existing dual decomposition algorithms. Future
work will focus on analyzing how different parameters affect
the performance of the algorithm.

VII. A PPENDIX

A. Proof of Theorem 4.1

Proof: For convenience, we do not explicitly include
the time dependence ofxi(t), x̂i(t), zi(t), ẑi(t), µj(t), µ̂j(t)
in most part of the proof. For allt ≥ 0 we have

−L̇(x;λ,w) = −

N
∑

i=1

∂L

∂xi

dxi

dt

=

N
∑

i=1

zi[∇Ui(xi) −

M
∑

j=1

µjAji] (26)

≥
N

∑

i=1







1

2
z2

i −
1

2
[

M
∑

j=1

(µj − µ̂j)Aji]
2







(27)

The last inequality holds whether the positive projection is
active or not for each useri. Also remember there are only
|Li| nonzero terms in the sum

∑M
j=1(µj − µ̂j)Aji, then by

using the inequality

−





M
∑

j=1

(µj − µ̂j)Aji





2

≥ −|Li|

M
∑

j=1

[(µj − µ̂j)Aji]
2 (28)

we have −L̇(x;λ,w)

≥
1

2

N
∑

i=1

z2
i −

1

2

N
∑

i=1







|Li|

M
∑

j=1

[(µj − µ̂j)Aji]
2







(29)

=
1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

{

(µj − µ̂j)
2

N
∑

i=1

|Li|A
2
ji

}

(30)

≥
1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 (31)

Consider the term1
2ρ

∑N
i=1 ẑ

2
i , we have

1

2
ρ

N
∑

i=1

ẑ2
i =

1

2
ρ

N
∑

i=1

L
1

L
ẑ2

i (32)

=
1

2
ρ

M
∑

j=1

N
∑

i=1

1

L
ẑ2

iAji +
1

2
ρ

N
∑

i=1

(L− |Li|)
1

L
ẑ2

i (33)

Remember|Li| ≤ L for i ∈ S, this means

−L̇(x;λ,w) ≥
1

2

N
∑

i=1

z2
i −

1

2
ρ

N
∑

i=1

ẑ2
i

+
1

2
ρ

N
∑

i=1

ẑ2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 (34)

≥
1

2

N
∑

i=1

[z2
i − ρẑ2

i] +

1

2

M
∑

j=1







ρ
∑

i∈Sj

1

L
ẑ2

i − LS(µj − µ̂j)
2







(35)

which immediately suggests us if the sequences of sampling
instants{T S

i [ℓ]}∞ℓ=0 and{TL
j [ℓ]}∞ℓ=0 satisfy the inequalities

in equation 17 and 18 for allℓ = 0, 1, 2, ...,∞, and any
i ∈ S, j ∈ L, thenL̇(x;λ,w) ≤ 0 is guaranteed for allt.

By using the properties ofUi(xi) and ψj(x;λ,w), it is
easy to show that for any fixedλ and w, L(x;λ,w) is
strictly convex inx. It thus has a unique minimizer. Suppose
x∗(λ,w) is this minimizer, and the corresponding Lagrangian
is L(x∗;λ,w). Define V (x) = L(x;λ,w) − L(x∗;λ,w).
It is trivial to see V (x) is a Lyapunov function for the
system. Moreover,̇V (x) = 0 meansL̇(x;λ,w) = 0. The
only scenario this can happen is

zi = ẑi = 0, ∀i ∈ S, µj = µ̂j , ∀j ∈ L (36)

which corresponds tox∗(λ,w). As a result, the equilibrium
x∗(λ,w) is asymptotically stable. Proof complete.

B. Proof of Lemma 4.2

Proof: We will first show thatMS
i is infinite for all

i ∈ S, then showML
j is infinite for all j ∈ L.

Rememberǫi are switched according to the monotone
decreasing sequences{ǫi[k]}∞k=0 which are lower bounded
by zero. This means after an finite or infinite number of
switches, they will converge to their equilibriaǫ∗i [15]. Next
we will show ǫ∗i = 0 by contradiction.

Assumeǫi are at the equilibrium, then by the algorithm,
for each link j, wj and λj are also at their equilibrium.
This means we now have fixedw∗, λ∗, ǫ∗, which satisfy all
the assumptions in theorem 4.1. Suppose at least one userr

has a nonzero equilibriumǫ∗r . From theorem 4.1, we know
zr(t) also asymptotically converges to zero and enters the
|zr(t)| ≤ ǫr neighborhood in finite time for anyǫr > 0. If
we chooseǫr to be any element in the sequence{ǫr[k]}

∞
k=0

that is smaller thanǫ∗r , then a user tolerance switch will occur
for userr according to the algorithm, which contradicts the
assumption thatǫr is already at its equilibrium. This means
ǫ∗i = 0, ∀i ∈ S. As a result, we know for each useri, MS

i

is infinite.
Next we will show for each linkj, ML

j is also infinite.
Define T (0) = maxi∈S T

ǫ
i [0]. Then on t ∈ [0, T (0)],

each useri ∈ S has completed at least one switch. By
algorithm 4.2, this means each linkj ∈ L also has com-
pleted at least one switch. Starting fromT (0), we can use

the same argument again. As a result, we can partition
the time axis [0,+∞) into the union of time intervals
[0, T (0)]

⋃

(T (0), T (1)]
⋃

(T (1), T (2)] · · · . On each time inter-
val, each linkj ∈ L has completed at least one switch. Since
MS

i is infinite for eachi, we can construct an infinite number
of such intervals. This meansML

j is also infinite for each
j ∈ L. Proof complete.

C. Proof of Lemma 4.3

Proof: Remember

−L̇(x;λ,w)

=

N
∑

i=1

zi[∇Ui(xi) −

M
∑

j=1

µjAji] (37)

≤
1

2

N
∑

i=1











z2
i +



zi +

M
∑

j=1

µ̂jAji −

M
∑

j=1

µjAji





2










(38)

≤
3

2

N
∑

i=1

z2
i +

N
∑

i=1















M
∑

j=1

µ̂jAji −
M
∑

j=1

µjAji





2










(39)

As a result of the events in theorem 4.1, the right-hand side
of equation 27 in the proof is nonnegative, which is

N
∑

i=1

z2
i −

N
∑

i=1















M
∑

j=1

µ̂jAji −

M
∑

j=1

µjAji





2










≥ 0 (40)

This means

−L̇(x;λ,w) ≤
3

2

N
∑

i=1

z2
i +

N
∑

i=1

z2
i =

5

2

N
∑

i=1

z2
i (41)

which completes the proof.

D. Proof of Theorem 4.4

Proof: By lemma 4.2, there are infinite user switches
for each user. Let{T [k]}∞k=0 be the nondecreasing sorted

sequence of all the elements in{T ǫ
i [k]}

MS
i

k=0 for all i ∈
S. This means we can partition the time axis[0,+∞)
into the union of infinite number of time intervals,
[0, T [1])

⋃

[T [1], T [2])
⋃

[T [2], T [3]) · · · . Here T [k] is the
time instant when a user tolerance switch occurs for any
user. On[T [k], T [k + 1]), we have fixed parameterw, λ, ǫ.
By lemma 4.3, we have

|zi(t)| ≤ ǫ̃i(t),−
5

2

N
∑

i=1

ǫ̃2i (t) ≤ −
5

2

N
∑

i=1

z2
i (t) ≤ L̇(x;λ,w) ≤ 0

whereǫ̃i(t) is defined as

ǫ̃i(t) = ǫi[k − 1], t ∈ [T ǫ
i [k], T ǫ

i [k + 1]) (42)

SinceT ǫ
i [k] is the time instant when thekth tolerance switch

occurs for useri. At any timet, ǫ̃i(t) is the tolerance for user
i right before the latest switch occurs.

Definef(t) = − 5
2

∑N
i=1 ǫ̃

2
i (t), we knowf(t) is a nonde-

creasing function oft that converges to0. Also for each
user i ∈ S, define gi(t) = ǫ̃i(t). Then gi(t) is also a

nondecreasing function oft that converges to0. This means
|zi(t)| converges to zero ast → ∞. Similarly, L̇(x;λ,w)
also converges to zero ast→ ∞.

Remember equation 35 and the user and link events in
algorithms 4.1-4.2, this immediately implies∀i ∈ S, ∀j ∈ L

lim
t→∞

{z2
i (t) − ρẑ2

i (t)} = 0 (43)

lim
t→∞

{ρ
∑

i∈Sj

1

L
ẑ2

i (t) − LS(µj(t) − µ̂j(t))
2} = 0 (44)

From equation 43 and the fact thatlimt→∞ zi(t) = 0, we
havelimt→∞ ẑi(t) = 0. When combined with equation 44,
we obtainlimt→∞ |µj(t) − µ̂j(t)| = 0. This means

lim
t→∞

{−
∂L

∂xi

} = lim
t→∞

{∇Ui(xi(t)) −
∑

j∈Li

µj(t)}

= lim
t→∞

zi(t) − lim
t→∞

∑

j∈Li

(µj(t) − µ̂j(t)) = 0

So ast→ ∞, ratex(t) comes closer and closer to satisfying
the Karush-Kuhn-Tucker conditions of the original NUM
problem. Since∂L

∂xi
is a continuous function ofx, we have

limt→∞ xi(t) = x∗i ,∀i ∈ S. This completes the proof.

REFERENCES

[1] P. Wan and M. Lemmon, “Distributed Flow Control using Embedded
Sensor-Actuator Networks for the Reduction of Combined Sewer
Overflow (CSO) Events,”Proceedings of the IEEE Conference on
Decision and Control, 2007.

[2] Y. Qiu and P. Marbach, “Bandwidth allocation in ad hoc networks: a
price-based approach,”INFOCOM 2003.

[3] Y. Xue, B. Li, and K. Nahrstedt, “Optimal resource allocation in
wireless ad hoc networks: a price-based approach,”IEEE Transactions
on Mobile Computing, vol. 5, no. 4, pp. 347–364, 2006.

[4] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and
resource allocation via dual decomposition,”Communications, IEEE
Transactions on, vol. 52, no. 7, pp. 1136–1144, 2004.

[5] M. Chiang and J. Bell, “Balancing supply and demand of bandwidth
in wireless cellular networks: utility maximization over powers and
rates,”Proc. IEEE INFOCOM, vol. 4, pp. 2800–2811, 2004.

[6] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, no. 3, pp. 237–252, 1998.

[7] S. Low and D. Lapsley, “Optimization flow control, I: basic algorithm
and convergence,”IEEE/ACM Transactions on Networking (TON),
vol. 7, no. 6, pp. 861–874, 1999.

[8] J. Wen and M. Arcak, “A unifying passivity framework for network
flow control,” Automatic Control, IEEE Transactions on, vol. 49, no. 2,
pp. 162–174, 2004.

[9] D. Palomar and M. Chiang, “Alternative Distributed Algorithms for
Network Utility Maximization: Framework and Applications,” Auto-
matic Control, IEEE Transactions on, vol. 52, no. 12, pp. 2254–2269,
2007.

[10] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient Communication Protocol for Wireless MicrosensorNet-
works,” in Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, vol. 2, 2000.

[11] X. Wang and M. Lemmon, “State based Self-triggered Feedback
Control Systems with L2 Stability,” inProceedings of the 17 IFAC
World Congress, 2008.

[12] ——, “Event-triggered Broadcasting across Distributed Networked
Control Systems,” inProceedings of the American Control Conference,
2008.

[13] P. Wan and M. D. Lemmon, “Distributed Network Utility Maximiza-
tion using Event-triggered Barrier Methods,”Submitted to European
Control Conference 2009.

[14] D. Bertsekas,Nonlinear programming. Athena Scientific, 1999.
[15] R. Walter,Principles of mathematical analysis.McGraw-Hill, 1976.

