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Abstract—Many problems associated with networked sys- upon whether the user, the link, or both user and link,
tems can be formulated as network utility maximization (NUM) respectively, update their states through gradient falgw

problems. NUM problems maximize a global separable measure ocrsions. Among all existing algorithms, the dual decom-
of network optimality subject to linear constraints on resaurces.

Dual decomposition is a widely used distributed algorithm 995'“0” approach_proposed by Low et al. [9] is the most
that solves the NUM problem. This approach, however, uses a Widely used algorithm for the NUM problem. Low et al.
step size that is inversely proportional to measures of netark ~ showed that their dual decomposition algorithm was stable
size such as maximum path length or maximum neighborhood  for a step size that is inversely proportional to two impotta
size. As a result, the number of messages exchanged betweerh]easures of network size: the maximum length rl_'atland

nodes by a dual decomposition scales poorly with respect to . . —
these measures. This paper presents a distributed primaltl the maximum number of neighbofs So as these two mea-

algorithm for the NUM problem that uses event-triggering.  SUres get large, the step size required for stability besome
Under event triggering, each agent broadcasts to its neighdss  extremely small. Step size, of course, determines the numbe
when a local “error” signal exceeds a state dependent thresid.  of computations required for the algorithm’s convergence.
The paper establishes such state-dependent event-triggeg  nqer dual decomposition, system agents exchange infor-

thresholds under which the proposed algorithm converges. fie Hi i h iterati that st . Iso det .
paper gives an upper bound on the largest number of successiv mation at each iteration, so that step size aiso determines

data dropouts the network can tolerate while ensuring the theé message passing complexity of the dual decomposition
algorithm’s convergence. State-dependent lower bound orhe  algorithm. Therefore if we use the “stabilizing” step size,
broadcast period is also given. Simulation results show thehe  dual decomposition will have a message complexity that
proposed algorithm reduce the number of message exchanges gcjes in a super-linear manner with those two measures of
by up to two orders of magnitude, and is scale-free with resps = —=
to the above two measures of network size. network size,L and 5. . .
For many networked systems this type of message passing
[. INTRODUCTION complexity may be unacceptable. This is particularly true
A networked system is a collection of subsystems wher@r systems communicating over a wireless network. In such
individual subsystems exchange information over some corietworked systems, the energy required for communication
munication network. Examples of networked systems includg@n be significantly greater than the energy required to
the electrical power grid, wireless sensor networks, an@erform computation [12]. As a result, it would be beneficial
the Internet. In many of these networked systems, we’iéwe can somehow separate communication and computation
interested in optimizing overall system behavior subject tin distributed algorithms. This should reduce the message
local constraints generated by limited subsystem ressurc@assing complexity of distributed optimization algorithm
Examples of such applications include parameter estimati¢uch as dual decomposition significantly.
in sensor networks [1] [2], distributed control of sensor- This paper presents one way of reducing the message pass-
actuator networks [3], resource allocation in wireless €oning complexity of distributed NUM algorithms. The paper
munication networks [4] [5] [6] [7], and congestion controlpresents a distributed primal-dual NUM algorithm that uses
in wired communication networks [8] [9]. In all of these event-triggered message passing. We prove that the prbpose
problems, we find subsystems communicating with eacdgorithm converges to an approximate solution of the NUM
other in order to collaboratively solve a network optimiaat Problem. We also consider the scenarios when there are data
problem. dropouts, and give an upper bound on the largest number
[4] [5] [6] [7] [8] [9] fall into the general framework Of successive data dropouts the network can tolerate, while
of Network Utility Maximization (NUM) problems. NUM ensuring the asymptotic convergence of the algorithmeStat
problems maximize a global separable measure of the néiependent lower bound on the broadcast period is also given.
worked system’s performance subject to linear constrainf§mulation results show that the algorithm has a message
on resources. A variety of distributed algorithms [9] [10]Passing complexity that is up to two orders of magnitude
[11] have been proposed to solve the NUM problem aftdpwer than dual decomposition, and is scale-free with relspe
Kelly's seminar work [8]. These algorithms can be classified® the above two measures of network size.
as either primal, dual, or primal-dual algorithms, depagdi ~ This work is similar to our prior work in [13]. Both
work are based on the augmented Lagrangian method for
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in [13], there is an event associated with each user addlUM problem, which is
link. Each user has to know the gradient information of .. .. .. maxgso {3 es Vi) — p7(Az — )}
its own data rate, which is very undesirable. Moreover, _ . .

. . . subject to: p >0
the interactions between the user events and link events
complicate the algorithm significantly, and make the analys\yhere ) = [p1 - pum }T is the Lagrange multiplier
of the algorithm very difficult. In the primal-dual algorith  yector (which can be viewed as the price for using each link
in this paper, there are only link events. The glgonthm hag]) associated with the inequality constraidt: < c. If z*
comparable performance to the primal algorithm, but thgnd,* are vectors solving the dual problem, then it can be
simplicity in the event structure enables us to obtain SOMghown thatz* also solves the original NUM problem.
additional analytical results. In [13], the primal algbrit | oy et al. [9] established conditions under which a pair
converges to the exact minimizer of the NUM problemof recursions would generate a sequence of user rates,
To be specific, we included a distributed update strategy,[k]}> , and link prices {p[k]};>,, that asymptotically

for the penalty parameters. So asw goes to zero, the converge to a solution of the dual problem. Given initial
exact minimizer is reached. We could develop a similag o] andp[0], then for alli € S andj € £, we let

distributed update strategy so that the primal-dual albyori
also converges to the exact minimizer. However, for the

)

purpose of this paper, we only considering the problem ghilk+1] = arghas Ui(w;[k]) — @4[k] Z p;ilk]) 0 (3)
converging to an approximate minimizer. a JEL:

The rest of the paper is organized as follows. Section
Il formally states the NUM problem and reviews the duab;[k+1] = max < 0,p;[k]+v{ Y ailk] —¢; 4
decomposition algorithm. The event-triggered distridute i€S;
primal-dual algorithm is based on a basic primal-dual algoy,, ;. — 0,--- ,00. It is shown that a stabilizing step size is

rithm for the NUM problem, which will be first discussed in )
section Ill. Section IV then presents the event-triggerisd d 0<~y <y = —2max(; z,) VUi(xi) )
tributed primal-dual algorithm, and proves its convergenc LS

Section V and VI analyzes data dropouts and broadcgghereT, is the maximum number of links any user uses and

period in the event-triggered primal-dual algorithm, B30 g is the maximum number of users any link has. Equation 5
tively. Finally, section VIl presents simulation resultada requires that the step size be inversely proportional th Bot

section VIl concludes the paper. andS. We can conclude that the computational complexity of
dual decomposition (as measured by the number of algorithm
1. DUAL DECOMPOSITIONNUM ALGORITHM updates) scales superlinearly withand S.
NUM problem [8] considers a network o¥ users and [1l. BASIC PRIMAL-DUAL ALGORITHM
M links. We letS = {1,---,N} denote the set of users The event-triggered distributed primal-dual algorithm in
and £ = {1,---, M} denote the set of links. Each userthis paper is also based on the augmented Lagrangian method

generates a flow with a specified data rate. Each flow magr the NUM problem. In the augmented Lagrangian method,
traverse several links (which together constitute a route)constrained problem is converted into a sequence of uncon-
before reaching its destination. The set of links that aeglus strained problems by adding to the cost function a penalty
by useri € S will be denoted asC; and the set of users term that prescribes a high cost to infeasible points.
that are using linkj € £ will be denoted asS;. The NUM To apply the augmented Lagrangian method on our NUM
problem takes the form problem, we need to introduce the slack variable RM

i s TS :
maximize: U(z) = 3, Us(z) and repljce the inequalities — a; = > 0, Vj € L by

subjectto: Az <c¢ x>0 @ ajr—cj+s;=0, s;>0, VjieLl (6)

where z = [z1,..,zy]7 and z; € R is useri’'s data The augmented cost is then

r_ate.A € RMxN is the routing matrix mapping users oNto 7,(z, s; A\, w) = — Z Ui(z;) + Z by (ajTI —ci+s))

links andc € RM is a vector of link capacities. Thgi'th ies jet

componentAj;;, is 1 if useri's flow traverses linkj and 1 1, ., )

is zero otherwise. Thgth row of Az represents the total 5 > —l(ajz—cj+s5)° (7)

data rates going through link, which cannot exceed its jec

capacityc;. The cost functioi/ is the sum of the usettility ~Here a penalty parameter; is associated with each link

functionsU;(z;). These utility functions represent the rewardconstraint, andw = [wy,--- ,wy]. Suppose); is the

(i.e. quality-of-service) [8][9] usei gets by transmitting at Lagrange multiplier associated with constraint- aJTx >0

rate x;. in the Karush-Kuhn-Tucker conditions of the NUM problem.
NUM problems are often solved using the dual decompok; is an estimate of)\;f and A = [\1,---, ). o =

sition algorithm [9]. The algorithm examines the dual of thdA,;,--- , A;n] is the jth row of the routing matrixA?



In our earlier work [13], we eliminate the dual variable IV. EVENT-TRIGGEREDDISTRIBUTED PRIMAL -DUAL
and rewrite the augmented cost in equation 7 as a function of ALGORITHM
only the primal variable: for fixed A andw. That approach
gives us the resulting primal algorithm. In this paper, we

treatL(z, s; A\, w) as a function of both the primal variable <o < anq jinks. An event-triggered implementation of the
v and dual variable. This gives us a primal-dual algorithm. 54.4rithm assumes that the transmission of messages betwee
In this primal-dual setup, the augmented Lagrangiafisers and links is triggered by some local error signal
method solves the NUM problem by approximately minirossing a state-dependent threshold. The main problem is
mizing L(z, s; A[k], w[k]) for sequences ofwlk]}72, and to determine a threshold condition that results in message
{A[k]}R,- Let (a7 [k], s*[K]) denote the approximate min- gyreams ensuring the asymptotic convergence of the algo-
imizer for L(x, s; A[k], w[k]). Then for appropriately cho- (ithm to the NUM problem’s approximate solution. This
sen sequenceqw(k|};2, and {A[k]};,, the sequence gection determines such an event threshold condition and
of approximate minimizers{(z*[k], s*[k])};Z, converges gives an event-triggered distributed primal-dual aldwrit
to the optimal point of the NUM problem. The choices” \we can search for the minimizer of the Lagrangian

are as follows.{w;[k]};2,, are monotone decreasing 0, .\ w) using a gradient following algorithm where
zero. {\;[k]}2, satisfy \j[k + 1] = max{0, A\;[k] +

Implementing the primal-dual algorithm in section Il
a distributed manner requires communication between

* * t
ﬁ(a?z (k] —cj + s} [k])} . zi(t) = _/ (Va, L(z(7), s(7); /\,w)):(T) dr
In [13], we gave a primal algorithm based on the aug- 0 :
mented Lagrangian method that converges to the exact min- . +
imizer of the NUM problem. However, in many scenarios, - / Wi(wi(7)) _ Z 15 (7) d7(10)
it usually suffices to obtain an approximate minimizer. So 0 Oz jets

z;(T)

instead of minimizingL(x, s; A\[k], w[k]) for sequences of
{wlk]}s2, and {\[k]}3>,, we are only considering the for each usei € S and
problem of minimizingL(z, s; A, w) for fixed A andw in this t
paper. If\; = 0 andw; is sufficiently small, the minimizer si(t) = —/ (Vst(w(T),S(T);/\7w)):(7) dr
of L(x, s; A, w) will be a good approximation to the solution 0 ’

of the original NUM problem.

The basic primal-dual algorithm is given as follows:

t
/0 (=4 (7));(7) dr (11)

1) Initialization: Select initial rate:® > 0, initial s* > 0. for each link;j € £, where

Set)\; = 0 and sufficiently smalk; > 0, j € L. )

2) Recursive Loop: Minimize L(z, s; \, w) wi(t) = Aj+ — Z zi(t) — ¢j + s(t) (12)
w‘] iESj
_ 0 0 _ V.L 0 0. A 8 . i . " P R
x maX{ ’Io Y (xo ) 80 ) ’w) }( ) Here given a func“orf : Ry — R, its positive projection is
s = maX{O,S _'YVSL(I y S 7)\,11_))}(9) defined as
(2°,8") = (z,9) 0, if 0 and f(z) <0
, | xTr = X
| | (@) = { therwi 13)
The above algorithm converges to an approximate solution f(z), otherwise

of the original NUM problem. The smaller is, the more ¢ hogitive projection used in equation 10 and 11 guar-
accurate t_he approximation is. The_ recursmn_shown in _S‘tepa%tees the user rate;(t) and dual state s;(t) are always
is minimizing L(x, s; A, w) using a simple gradient following nonnegative along the trajectory.
method.y is a sgfﬁmently small step S'Z_e' o Equations 10 and 11 are the continuous-time versions of
The computations above can be easily distributed amoRge ypdate in equations 8 and 9, respectively. In equation 10
the users and links. We will see that in our event-triggeregser; < S can compute its rate only based on the information
distributed implementation of the algorithm in section IV. fom jtself, and the information of,; from those links that
In dual decomposition and the algorithm shown above, there being used by usér Link j € £ is associated with a
exchange of information between users and links happefignamical system which is characterized by equations 11-
each time the gradient following update is applied. Thig2. This first-order dynamical system takes the total flow
means that the number of messages passed between usgis that goes through linkas the input, and outputs;. To
and links is equal to the number of updates required for th@ake our notations consistent with [13], we qgallas thejth
algorithm’s convergence. That number is determined by thik’s local state, which serves as the feedback signal to the
step size. For both algorithms, these step sizes may be,smalers ini € S;. From equations 11 and 12, likonly needs
so that the number of messages passed will be large.  to be able to measure the total flow that goes through itself
The following section presents an event-triggered disn order to compute its local statg. All of this information
tributed implementation of the basic primal-dual algarith is locally available, so both the user rate update and thke lin
presented in this section. state computation can be done in a distributed manner.



In equation 10, the link state information is available td£;| nonzero terms in the su@jj\i

the users in a continuous manner. We now conside&vert-

triggered version of equation 10, where the user accesses a

sampled version of the link state. In particular, we asgecia
a sequence o$ampling instants,{TjL[é]};’;O with the jth
link. The time T'"[¢] denotes the instant when thiéh link
samples its link statg; in equation 12 for theth time and
transmits that state to useiss S;. At any timet € &, the

sampled link state is a piecewise constant function of time

which satisfies

fi (t) = ps (TF10]) (14)

forall £ =0,---,00 and anyt e [T}[¢],T}[¢ + 1]). The
event- trlggered version of equation 10 takes the form
+
¢ U, (x; (T
zi(t) = /O P Z fij (T d=(15)

JEL zi(r)

for all ¢ and anyt € [T}[¢], T}[¢ +1]).

Next we will state the main theorem of this section.

Theorem 4.1: Consider the Lagrangian in equation 7
where the functionslU; are twice differentiable, strictly
increasing, and strictly concave and where the routingimatr
A is of full rank. Assume a fixed penalty parameter> 0
and vector\ > 0. For each linkj € £, consider the sequence
{T}[0]}32,, and its dynamics satisfy equations 11-12. Fo
each usei € S, let the user rater;(t), satisfy equation 15
with sampled link states defined in equation 14.

For all j € L, let p; be a constant such that< p; < 1.
Assume that for allj € £, and all{ =0, --- , 0o that

i [0 0] 5TS Ins ) — s () > 0

for ¢t € [TF[¢], T/ [¢ + 1]). Then the user rates(t) asymp-
totically converge to the unique minimizer éf(z, s; \, w).
[ |

(16)

Proof: Let z;(¢) denote the time derivative of usés
flow rate, z;(t) therefore satisfies

+
VU;(z;(t

Z/M

JEL;

(17)

:E,,(t)
for all i € S. For convenience, we do not explicitly include
the time dependence of(t), Z;(t), z:(t), Z:(t), p; (t), f15(2)
in most part of the proof. For all > 0 we have
oL dsj

(“)s7 dt

_Z: Ox; dt
ZMJ ji +Z —1;) s] )

—L(z,s;\w) =

Zzl VU, (x;)

N

> 15

=1

1

>
- 2

il +Z[ — SJ

- i)A

[Z(u

1 (15 — 1) Aji, then by

using the inequality

M M
D s — i) Az | = =1L D> [y — 1) A (18)
j=1 i=1
we have
—L(:v, 85 A, w)
1 N 1 N M
> 3 > el 3 DS ILD My — ) Al
i=1 i=1 j=1
M 2 7
+3° ]
=1
1JN 1 M N
= 5223—5 {(Mj_ﬂJ)QZ"Ci'A?i}
i1 j=1 i=1
M 2
+Z [(_/M);C}
j=1
] 7N LM M )
> 53— oY Ty — i+ Y [(m)i ]
i=1 i—1 j=1
o2 522%2(1 = pj) {( uj);i} +
i=1 j=1
M 2 L
Z {Pj [(—Nj);ﬁ] — 5LS(u; — ﬂa)z}

This immediately suggests us that if the sequences of sam-
pling instants{Tf[ﬂ]};‘;O satisfy the inequality in equation
16 forall ¢ =0,1,2,...,00, andj € £, thenL(z, s; \, w) <
0 is guaranteed for al.

By using the properties df;(z;), we know for any fixed\
andw, L(z, s; A, w) is strictly convex inz ands. It thus has a
unigue minimizer. Suppose* (A, w), s* (A, w)) is this min-
imizer, and the corresponding Lagrangiarig™*, s*; A, w).
DefineV (x, s) = L(x, s; A\, w) — L(z*, s*; A\, w). Itis trivial
to see V(z,s) is a Lyapunov function for the system.
Moreover,V (z,s) = 0 meansL(z, s; \,w) = 0. The only
scenario this can happen is

Zi = 07 Vi € 87 (_MJ)SJFJ = Oa Hj = ﬂja v.] €L (19)

which corresponds to the unique minimizer. As a result,

the equilibrium(z*(\, w), s* (A, w)) is asymptotically stable.
Proof complete. [ ]

This theorem asserts that we need to select the transmit
times {T}[/]} so that the inequality in equation 16 always
hold. It could be easily done if we use the violation of the
inequality to trigger the sampling and transmission of the
link states. Each linkj computes the square of the error
between the last transmitted link staig and the current
link state ;. At the sampling time = TjL[é], this error is
zero and the inequality is trivially satisfied. After thang,

The last inequality holds whether the positive projection i u;(¢) continues to change until the inequality is violated.
eachz; and u; is active or not. Remember there are onlyWe let that time be the next sampling instaﬁf, [£+1] and



then transmit the sampled link state to the users € S;. Proof: By the definition ofd; in equation 21, equation

We see that, unlike the primal algorithm in [13], which ha0 is equivalent to

interacting user events and link events, we only have lin___ R ) R ) R )

events here. 5 LSk (8) = A 1 + pjlus () = 57 < psl s () (22)

In theorem 4.1, the parametgy can be differ(_ent for each therefore, we have

link j € £. One may wonder why we do not simply choose

p; = 1in equation 16. For stability consideration, it is correct= LS|, (t) — j;(¢)|? il (O = pilus () — iy ()2

that we can simply choose; = 1. However, as we will see 5

in the next section, choosing a smallgrmakes the network Pilu; (t)]

more robust to data dropouts. For this reason, we keep it &g all ¢ ¢ [TJLWTJLM +1]),j € Landl = 0,--- ,00.

a parameter here. Since we assume that the positive projection in equation 16
We should point out that, in equation 16, if the positivecannot be active unless at the minimizer bfz, s; A, w),

projection stays active, in other wordg(t) = 0 andu,;(t) >  all assumptions of theorem 4.1 are satisfied. We can thus

0 for t over some time interval, then the link dynamicalconclude thatx(¢) asymptotically converge to the unique

system in equations 11-12 reduces to a memoryless functianinimizer of L(x, s; A\, w). ]

In those situations, if we still use the inequality in eqaati  The inequalities in equations 16 or 20 can both be used

16 to trigger the link event, it would require thAt(t) = as the basis for the event-triggered algorithm. Equation 20

w;(t) over the interval. This is highly undesirable since itis a slightly more conservative condition, and we will use it

requires link; to sample and transmit its state infinitelyin our event-triggered distributed primal-dual algorithm

fast. There are two possible solutions to this issue. Orig the following.

solution is, once the projection stays active, then we no Future discussion needs an additional notation. For a

longer use the primal-dual algorithm. Instead, we switch téunction f(¢) defined ont € [0,7'), denotef™(T) as the

the primal algorithm [13]. In this paper, we take a slightiylimit of f(¢) whent approache§" from the left hand side.

simpler approach. To be specific, we are only interested in Each useri € S executes the following algorithm. It is

how fast the trajectory enters some neighborhood of thgontinuously transmitting data at rate(t) at timet.

optimal point. This neighborhood is chosen large enough Algorithm 4.1: User i's Update Algorithm

so that the positive projections will not stay active before 1) Parameter Initialization: Set the initial user rate? >

entering the neighborhood. In the remaining part of the pape 0. LetT =0.

we will assume that the positive projection in equation 16 2) State Initialization: Wait for all neighborsj € £; to

IN

IN

cannot be active unless at the minimizer Bfz, s; A\, w). send their link stateg;(T") and seti; = p;(T).
This assumption is reasonable if we are only interested in 3) Update User Rate:Integrate the user rate equation
converging to some neighborhood of the optimal point. It +
enables us to present and analyze the primal-dual algorithm ¢
in a much cleaprer way. ’ P : zi(t) = /T VUi(zi(7)) = Z [ dr

In the following work, we will find it convenient to use a JeLs zi(7)
slightly more conservative event than equation 16. z(T) = o

Corollary 4.2: Consider the Lagrangian in equation 7
where the functionsU; are twice differentiable, strictly
increasing, and strictly concave and where the routingimatr a) if useri receives a new link state? (T°+) from
A is of full rank. Assume a fixed penalty parameter> 0 . g J
and vector\ > 0. For each linkj € £, consider the sequence link j 6_ Li, setjyy = pj (T7).

{TE[0]}32,, and its dynamics satisfy equations 11-12. For 4) Increment Time: SetT" = T+, o) =2/ (T*) and go
each usei € S, let the user ratey;(t), satisfy equation 15 to step 3.

with sampled link states defined in equation 14. A similar algorithm is executed by all link$ € £. The
For all j € £, let p; be a constant such that< p; < 1 main assumption here is that ligkcan continuously monitor
’ J J .

Assume that for allj € £, and all{ = 0, - - , 00 that the link statey; (¢) at any timet € ®.
Algorithm 4.2; Link j's Update Algorithm
i () — fs (B)] < 6510, (20) 1) Parameter Initialization: SetT = 0, w; > 0,0 <
I3 (8) = By 0)] < 2l ) p; < 1, initial 57 > 0, andd; is defined by

for t € [T}[€], T} [¢ + 1]), whered; is defined by o
0j = ﬁ (23)
: \ 25 +p;
Pj

wheret € [T,7%) and Tt is the time instant when
the following condition is true

0 = %L_S+ p; (21) 2) State Initialization Measure the local link state
Then the user rates(t) asymptotically converge to the wi(T) = 1 Z zi(T) —¢j + 59 (24)
unique minimizer ofL(z, s; A, w). W Wi \ies,



Transmity; (T) to all users € S; and sefi; = p;(T). Theorem 5.1: Consider the Lagrangian in equation 7

3) Link Update: Integrate the equation where the functionsU; are twice differentiable, strictly
t increasing, and strictly concave and where the routingimatr
si(t) = / (—/Lj(T)):_j(T) dr (25) A is of full rank. Assume a fixed penalty parameter> 0
T and vector\ > 0. For each linkj € L, consider the
1 sequence$ T [(]}52, {r;[k]}72,, and its dynamics satisfy
pi(t) = — (Z zi(t) — ¢ +Sj(t)) (26)  equations 11-12. For each usere S, let the user rate,
7 o\ies; x;(t), satisfy equation 15 with sampled link states defined in
s;{(T) = ) (27) equation 14,
. . . For all j € L, let p; be a constant such that< p; < 1.
+ + j J
wheret € [T, T%) andT" is the time instant when Assume that for allj € £, and allk = 0. - - - . o0 that

the following condition is true
a) If |(t) — iy(t)] > 6]y (t)], then setp; = | (£) = pag (rs[R])] < 65145 (5 [K])] (28)

uj(T*) and broadcast the updated link statgq, ; - [r;1k], 7k + 1]), wheres; is defined by
i (TT) to all usersi € S;.

4) Increment Time: Set7 = T* and go to step 3. §; = _Pi (29)
By corollary 4.2, the data rates(t) generated by algo- ' 1LS + p;
nthms 4.1-4.2 converge .asy_mptotlcally tq the unique Mk, ther assume that link's largest number of successive
mizer of L(z, s; A, w), which is an approximate solution to

the NUM problem. data dropoutsd; € Z, satisfies

2
V. EVENT-TRIGGERING WITH DATA DROPOUTS dj < Dj(p;) =log_1_(1+ ’/ﬁ) -1 (30)

1-3;
The discussion in the previous section did not conside

data dropouts. To be specific, whenever the new sampl

link statefi;(¢) is obtained by linkj, it is transmitted to the ) ; : _ . .

usersi € S; successfully. This, however, does not necessarily ., Er(;?;.ﬁ (i‘,onsF|der I![nI; J lover the tme interval

happen in large scale networks. In this section, we take daty L]’—j [ (')" - olr hotationa cocrllvenlenccil, Welasiume

dropouts into consideration, and gives an upper bound %‘LH = r;[0] < (1] <o < mglds] < oyl 4+ 1] =

the largest number of successive data dropouts each Iiﬁké“ 1(]j ‘ i k h

can have, while ensuring the asymptotic convergence of the Considere; (¢) for any ¢ & [r;[k], r;[k + 1), we have

event—t_riggered_ algo_rithm_ in section IV. Usin_g our result, lej(t)] = i (t) —/lj(TjL[é])|

each link can identify this upper bound for its subsystem

k—1
in a decentralized way. We assume that data dropouts only < Z |5 (ri[p 4+ 1)) = i ([P + |1 (£) = (5[]
happen when the sampled stafg$t) are transmitted across =0

the network. . . . . .
First, let us see what happens when there are data dropoﬁ‘%alymg equation 28 on the previous equation yields

n the user rategt) asymptotically converge to the unique
minimizer of L(x, s; A, w). B

in the network. Suppose link detects a local event and i
obtains a new sampled stafe. Link j will then transmit lej ()] < 6 Z |15 (r; [p])] (31)
the new/i; to usersi € S;. If the transmission fails, then =0

usersi € S; will not receive the new sampled link state.for all ¢ € [r;[k],r;[k + 1]).
However, link j thinks the new state has been successfully From equation 28, we can easily obtain
transmitted, so in equation 20, (¢) has been updated to the 1
new fi;. This means users and links have different copies | (i [K])] < 1_—5_|Mj(t)| (32)
of the latest sampled link state, which may destabilize the J_ .
system. Our main idea is, the event in equation 20 is @7 &ll ¢ € [r;[k], 7;[k+1]). Applying equation 28 repeatedly
relatively conservative event ji; is small, so even if some 9N [rjlk=1],7[K]), [rj[k=2],r5[k=1]), - -~ [rj[p], 75 [p+1]),
data dropouts happen, the system may still be stable. W& know

Further discussion needs some additional notations. We 1 e
use r;[k] to denote the time instant when link samples |1 (r3[p))] < (q) |1 (2)] (33)
its link state p; for the kth time (but not necessarily for
successfully transmitted), and u@% [¢] to denote the time
instant when the sampled state of lihkas been successfully
transmitted for the/th time. It is obvious tha{ T} [¢]} 52, k 1 \Ffi-»
is a subsequence df-;[k]}3°,. Using these notations, the BIOIE TS (m) i (O] (34)
user dynamics in equation 15 and user’s knowledge of the p=0 !
sampled link state in equation 14 still apply. Define error as 1 kot

[( ) - 1} mol @)

all t [Tj[k],?"j[k =+ 1])
Applying equation 33 on equation 31 yields

AN

ej(t) = p;(t) — iy (T} [€]) ont € [TF[0), T +1]). 1—6;



for all ¢ € [r;[k],r;j[k + 1]). This means for allt € (i ec,s # Jt may trigger one or multiple broadcasts.
[T}1€], T} +1]), we have Define N;={j'|j € £,j € L,S; NSy # 0}, soN; is the
. set of Imks that have at Ieast one common user with Jink
1 J
. < _
el < [(1_5j) 1

ol (36) Notice that\/; includes link; itself. Assume that on time
! interval [T [¢], T}[¢ + 1]), links in the set\; — {j} have
triggered a total ofm broadcasts, and[p] is the time of

Eincettr?et sftbovitir;e%ualit);]holds fordl=0,1,--- 00, we 40 pth broadcast. For notational convenience, we assume
now that for afle = U we have TE[0) = b[0] < b[1] < --- < b[m] < blm + 1] = TL[€+1]
R 1 \%*! It is obvious that or¢ € [b[p],blp +1]), p = 0,1,--- ,m,
i (t) = (B)] < (1 = 5j> = 1| [p (t)] fi; (t) is fixed for all j* € N;. Also define error as; (t)
i(t) — i (TH10) on't € [TH[6), THE + 1))
< i'ﬂj(t)' (37) We can then study the behavior of the eregft) ont
[b[p], b[p + 1]), wherep =0,1,--- ,m.
The last inequality holds by applying equation 30. Define Q = {t € [b[p],b[p + 1])lle;(t)] = 0} Ont €
From the proof of theorem 4.1 and apply equation 37, wg[p], b[p + 1]) — Q, we have
know that for allt > 0 we have dle;(t)] _ de; (t) ’ _ ‘d,uj (t)‘
—L(z, s\, w) e — | dt dt
N M M
1 15 1ds;(t) 1 dx;(t)
> - Z 2 S i A A
> 1 3 22 39 = —iu*(t)
=1 +
The convergence then follows easily. ] 1 .
d; is link j's largest number of successive data dropouts, +—j Z (VUi(fL'i(t)) - Z Ky’ (t)>
andD,(p,) represents the the maximum allowable number of €55 J L i (t)

successive data dropouts for liikThis theorem guarantees 1 1

that algorithm 4.1-4.2 still converges if each lifils largest }_w_jeﬂ (t) - w_j“j(t)+
number of successive data dropouts does not exceed +
D;(p;). However, it says nothing if this condition is not
satisfied. We can easily see thaf(p,) can be determined wa Z <VU (wi(t Z py ( )
by link j itself locally. However, there is a tradeoff between

D;(p;) and the broadcast periods. In general, smatiesults 1

ZGS jeL;

zi(t)

. . : < _ _
in short broadcast periods and larg®(p;), while large - wj le3 (2)] + |“7( )+ w; ZS VUi(zi(t))
p; results in long broadcast periods but small(p;). Two e
extreme cases are, @s — 0, D;j(p;) — +oo, asp; — 1, +_ Z Z iy (t
Dj(p;) — 0. 7 ies; e£

VI. BROADCAST PERIOD ANALYSIS FOR THE < i|ej( t)] + 55

PRIMAL-DUAL ALGORITHM U’J
This section presents results on the link broadcast pefiod o —|Hg TL )] + — Z Z |y (t (41)

the event-triggered primal-dual algorithm. We lower bound T ieS; i er,

it as a function of the system states in the network.

Recall that{T}[{]} 2, is the sequence of broadcast time
instants for Imkg € L. We define the/th broadcast period
of link j as

where we use the right-hand sided derivative whenb|p).
®From the definition of\j, we Know ;s 3" e p, Ity (1))

is constant ort € [b[p],b[p + 1]). We can then solve the
differential inequality in equation 41, which gives us
B[] =T}t +1] - T} (40)

IA
o

2 (o-blp), o
Assume that the hypotheses in corollary 4.2 hold. This 1€(t)] 7 le; (blp])| + (554' |15 (T [€])]

means linkj will obtain a new sample of:;(¢) when the

inequality in equation 20 is about to be violated. Further as . L (t—bp))
sume that the gradient of the utility functi@f(z;) satisfies + Z Z |Mj/ {e ! —1/(42)
VU;(xz;) < pforallieS. i€5; j'eL;

Consider the time intervalT"[¢], T)[¢ + 1]) for link  for all ¢t € [b[p], b[p + 1]) sincele;(t)| = 0 for all t € Q.
j. Between the latest broadcast tim@{i[z], and the next  Since link j's next broadcast will be triggered when the
broadcast time‘]“f[é+1], it is quite possible that other links inequality in equation 20 is about to be violated. This will



happen at tim&’"[¢ 4 1] when
le; (T 1€+ 1| = 815 (T [€))] (43)
We can use the bound dn;(¢)| in equation 42 to solve
for TjL [¢ 4+ 1] in equation 43. It gives us
TFIe+ 1] —bm] > w;In (1 +

0311 (T [€D)] = lej (b[m])] )
lej (0[m])| + BS + |1 (T} ()] + Z;, (b[m])

where

Define error as (for all algorithms)

U(x(k)) —U*
e(k) = i
wherezx (k) is the rate at théth iteration. In both algorithms,
we count the number of iterations for e(k) to decrease
to and stay in the neighborhod@(k)|e(k) < eq4}. In dual
decomposition, message passings from the links to the users
occur at each iteration synchronously. &is a measure
of the total number of message exchanges. In our event-
triggered algorithms, events occur in a totally asynchusno
way. We add the total number of triggered events, and
divide this number by the link humbey/. This works as
an equivalent iteration numbek for our event-triggered

(45)

Zy;, (b[m]) = Z Z |,1j, (b[m))| (44) algorithms, and is a measure of the total number of message
i€S; i e exchanges.
) L The default settings for simulation are as followd: =
The broadcast period of link is then 60, N =150, L = 8, S = 15, eq = 3%. Initial condition is
B[] = TjL 0+1] - TjLw x;(0) € L{[O.Ql, 0.05],Vi € S. In dugl dgcomposition, iniFiaI
: m p; = 0 for j € L, and the step size is calculated using
= TE+1]—bjm] + (blp] — b[p — 1]) equation 5. In our algorithmp; = 0.9, A; = 0, w; = 0.01
! = for j € L.
m B. Broadcast periods of the event-triggered algorithm
2 — (blp] — blp —1]) + w;In{ 1+ In this subsection we present simulation results on the
p=t N broadcast periods of our algorithm.
61 (T[] — lej(b[ml])| This simulation uses the default settings in subsection VII
le;j(b[m])| + BS + |ﬂj(TjL[€])| + Zn;, (blm]) A and ran for3.60s. The error in both algorithms entered

the e4 neighborhood ir3.60s. For reference, with the same

The above equation provides a state-dependent lower bougihings, the average broadcast period for dual deconimosit
for link j's broadcast periodB;[¢]. We can then conclude s (.0026. In our algorithm, there are a total ab71 link

that the broadcast period of each link is bounded away frogy,ents. The links have an average broadcast periéd 696,
Zero. which is 42 times longer than in dual decomposition.

VIl. SIMULATION

0.35

link broadcast period history

This section presents simulation results. It shows that
event-triggered primal-dual algorithm reduces the num
of message exchanges by up to two order magnitude w
compared to dual decomposition. Moreover, our algoritl
is scale free with respect to network size. The robustn
to data dropouts of our algorithm is also demonstrated. *
remainder of this section is organized as follows: Subsac
VII-A discusses the simulation setup. Simulation results
broadcast periods of our algorithm are shown in subsec
VII-B. Subsection VII-C presents simulation results on a
algorithm when data dropouts are taken into considerat
The scalability results are presented in subsection VII-D.

A. Smulation Setup

Denotes € Ua,b] if s is a random variable uniformly
distributed on[a, b]. Given M, N, L and S, we randomly
generate a network with/ links andN users, wheré¢S;| €
UL, S, j € L, |L;| € UL, L], i € S. We make sure
at least one link (user) haS users { links). Useri is
assignedJ;(z;) = «; log x;, wherea; € U[0.8,1.2]. Link j
is assigned:; € U£[0.8,1.2]. Both algorithms are simulated.
The optimal ratex* and corresponding/* are calculated
using a global optimization technique.
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Fig. 1. Broadcast results for event-triggered algorithm

To see how the broadcast periods vary for a particular link
in our algorithm, we pick one link in the network, and its
broadcast results are shown in figure 1. The left plot is time
history of broadcast periods generated by the link’s local
event. The right plot is the histogram of those link broaticas
periods. The link’s broadcast periods range betw@6n20
and0.3230. The link was triggered1 times, with an average
broadcast period 0f.1161.

As we can see, our algorithm enjoys much longer broad-
cast periods than dual decomposition.



C. Data dropout simulation times, and each time a random network which satisfies the
In this subsection we present simulation results on o#Pove specification is generated. The meap and standard

algorithm when data dropouts are taken into consideratiorfleviationo of K are computed for eacH. m;, works as
Figure 2 plots the maximum allowable number of succeur criteria for comparing the scalability of both algonthk.

sive data dropoutd;(p,) as a functionp; (in logarithm Figure 3 plots the iteration numbéf (in logarithm scale)
scale). As we can seeD;(p;) is monotone decreasing S @ function ofS' for both algorithms. The asterisks above

in p,. If we want the system to be robust to possiblé€Presenin for dual decomposition, and the crosses below

For references, whep = 0.208,0.094,0.024, D;(p;) = around each asterisk and cross corresponds to the interval

1.0045,2.0089, 5.0113 respectively. [mx — ok, mk + o] for each differentS denoted by the
z-axis. For our algorithm, whets' increases fron¥ to 26,
my increases fron24.9 to 39.6, and o increases from

0.6 and3.4. As for dual decompositionn g increases from
0.3851 x 103 t0 5.0899 x 103. o) at the same time increases
f from 0.4958 x 102 to 6.7957 x 102.

< 15 10*

*  dual decompose
x  primal-dual

*
% *
104 % ¥
5 *

10°F ¥

10° 107 10" 10° ¥
P, N3

)
Fig. 2. Max allowable number of successive data dropddj$p;) as a
function of p; s

Table | summarizes simulation results for three different [ | . <« « x x x x = 2 x5 2 5 2 2
choices ofp;. For each giverp;, we use the samp;, d;
for every link in the network. In the simulation, we assume Ve s 1 1w \bifs B 0 2 26 2
that the number of successive data dropouts is always equal
to the largest number of successive data dropaljtsywhen Fig. 3. lteration numbei as a function ofS for both algorithms.
p; = 0.094 andp; = 0.024, d; is chosen so that the stability

condition in equation 30 is satisfied. When = 0.9, we we vary T, from 4 to 18 instead ofS. Figure 4 plotsk (in

intentionally chooseé; = 10 so that it violates the condition. . o :
; . ; . logarithm scale) as a function df for both algorithms. For

The system is asymptotically stable in all three scenarios. . = :
r algorithm, when. increases fromd to 18, my increases

_Th!s means that_ t_he bound_ on data dro_p_out n e_quatlon ?rom 26.9 to 47.0, andok varies betweer.1 and3.7. As
is indeed a sufficient condition for stability, but is a very " . 3
. . . for dual decompositionyng increases fron0.9772 x 10

conservative bound. Remember in subsection VII-B, Whep 3 . .

10,3.5174 x 10°, and o at the same time increases from
p; = 0.9 and no data dropouts, the average broadcast peri %668 « 102 t0 6.1947 x 102
is 0.1096. This is close to the average successful broadcasts ) ) ’
period in table I in all three cases. However, with no suggris “’

*  dual decompose
when data dropouts occur, the average triggered broadcasts

period is much shorter thaim1096, which is clearly shown

The second simulation is similar to the first one except that

.
*

in table I. whoe f
Pj 0.094 0.024 0.9 .
D;(p)) 2.0089 | 5.0113 0
; 2 5 10 2
Number of triggered broadcasts | 7629 17342 18932 w0

Number of successful broadcasts| 2522 2867 1693
Average triggered broadcasts period 0.0283 | 0.0125 | 0.0114
Average successful broadcasts peripd.0856 | 0.0753 | 0.1276

TABLE | R R TR T

\bar L

SIMULATION RESULTS FOR DIFFERENTp; AND d; _
Fig. 4. lteration numbelK as a function ofL for both algorithms.

D. Scalability with respect to S and L Our event-triggered algorithm is up to two order magni-
In this simulation we present simulation results on scalaude faster than the dual decomposition. We can also see that
bility of our algorithm. unlike dual decomposition, which scales superlinearlyhwit

In the first simulation, we fix)/, N, L and varyS respecttdS andL, our event-triggered primal-dual algorithm
from 7 to 26. For eachS, both algorithms were ru250 on the other hand is scale-free. As shown above, the primal-



dual algorithm in this paper has comparable performance to
the primal algorithm in [13].

VIII. CONCLUSION

This paper presents an event-triggered primal-dual algo-
rithm for the NUM problem and proves its convergence.
Results on the maximum allowable successive data dropouts
and lower bound on broadcast periods are also given. Simu-
lation results suggest that the algorithm is scale-fredn wit
respect to two measures of network size, and reduce the
number of message exchanges by up to two orders of
magnitude compared to dual decomposition.
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