
An event-triggered distributed primal-dual algorithm forNetwork Utility
Maximization

Pu Wan and Michael D. Lemmon

Abstract— Many problems associated with networked sys-
tems can be formulated as network utility maximization (NUM)
problems. NUM problems maximize a global separable measure
of network optimality subject to linear constraints on resources.
Dual decomposition is a widely used distributed algorithm
that solves the NUM problem. This approach, however, uses a
step size that is inversely proportional to measures of network
size such as maximum path length or maximum neighborhood
size. As a result, the number of messages exchanged between
nodes by a dual decomposition scales poorly with respect to
these measures. This paper presents a distributed primal-dual
algorithm for the NUM problem that uses event-triggering.
Under event triggering, each agent broadcasts to its neighbors
when a local “error” signal exceeds a state dependent threshold.
The paper establishes such state-dependent event-triggering
thresholds under which the proposed algorithm converges. The
paper gives an upper bound on the largest number of successive
data dropouts the network can tolerate while ensuring the
algorithm’s convergence. State-dependent lower bound on the
broadcast period is also given. Simulation results show that the
proposed algorithm reduce the number of message exchanges
by up to two orders of magnitude, and is scale-free with respect
to the above two measures of network size.

I. I NTRODUCTION

A networked system is a collection of subsystems where
individual subsystems exchange information over some com-
munication network. Examples of networked systems include
the electrical power grid, wireless sensor networks, and
the Internet. In many of these networked systems, we’re
interested in optimizing overall system behavior subject to
local constraints generated by limited subsystem resources.
Examples of such applications include parameter estimation
in sensor networks [1] [2], distributed control of sensor-
actuator networks [3], resource allocation in wireless com-
munication networks [4] [5] [6] [7], and congestion control
in wired communication networks [8] [9]. In all of these
problems, we find subsystems communicating with each
other in order to collaboratively solve a network optimization
problem.

[4] [5] [6] [7] [8] [9] fall into the general framework
of Network Utility Maximization (NUM) problems. NUM
problems maximize a global separable measure of the net-
worked system’s performance subject to linear constraints
on resources. A variety of distributed algorithms [9] [10]
[11] have been proposed to solve the NUM problem after
Kelly’s seminar work [8]. These algorithms can be classified
as either primal, dual, or primal-dual algorithms, depending

Both authors are with the department of Electrical Engineering, Univ. of
Notre Dame, Notre Dame, IN 46556; e-mail: pwan,lemmon@nd.edu. The
authors gratefully acknowledge the partial financial support of the National
Science Foundation (NSF-ECS04-00479 and NSF-CNS-07-20457).

upon whether the user, the link, or both user and link,
respectively, update their states through gradient following
recursions. Among all existing algorithms, the dual decom-
position approach proposed by Low et al. [9] is the most
widely used algorithm for the NUM problem. Low et al.
showed that their dual decomposition algorithm was stable
for a step size that is inversely proportional to two important
measures of network size: the maximum length pathL, and
the maximum number of neighborsS. So as these two mea-
sures get large, the step size required for stability becomes
extremely small. Step size, of course, determines the number
of computations required for the algorithm’s convergence.
Under dual decomposition, system agents exchange infor-
mation at each iteration, so that step size also determines
the message passing complexity of the dual decomposition
algorithm. Therefore if we use the “stabilizing” step size,
dual decomposition will have a message complexity that
scales in a super-linear manner with those two measures of
network size,L andS.

For many networked systems this type of message passing
complexity may be unacceptable. This is particularly true
for systems communicating over a wireless network. In such
networked systems, the energy required for communication
can be significantly greater than the energy required to
perform computation [12]. As a result, it would be beneficial
if we can somehow separate communication and computation
in distributed algorithms. This should reduce the message
passing complexity of distributed optimization algorithms
such as dual decomposition significantly.

This paper presents one way of reducing the message pass-
ing complexity of distributed NUM algorithms. The paper
presents a distributed primal-dual NUM algorithm that uses
event-triggered message passing. We prove that the proposed
algorithm converges to an approximate solution of the NUM
problem. We also consider the scenarios when there are data
dropouts, and give an upper bound on the largest number
of successive data dropouts the network can tolerate, while
ensuring the asymptotic convergence of the algorithm. State-
dependent lower bound on the broadcast period is also given.
Simulation results show that the algorithm has a message
passing complexity that is up to two orders of magnitude
lower than dual decomposition, and is scale-free with respect
to the above two measures of network size.

This work is similar to our prior work in [13]. Both
work are based on the augmented Lagrangian method for
the NUM problem. However, in [13], we eliminate the dual
variables from the Lagrangian function explicitly, which as
a result gives us a primal algorithm. In the primal algorithm

in [13], there is an event associated with each user and
link. Each user has to know the gradient information of
its own data rate, which is very undesirable. Moreover,
the interactions between the user events and link events
complicate the algorithm significantly, and make the analysis
of the algorithm very difficult. In the primal-dual algorithm
in this paper, there are only link events. The algorithm has
comparable performance to the primal algorithm, but the
simplicity in the event structure enables us to obtain some
additional analytical results. In [13], the primal algorithm
converges to the exact minimizer of the NUM problem.
To be specific, we included a distributed update strategy
for the penalty parametersw. So asw goes to zero, the
exact minimizer is reached. We could develop a similar
distributed update strategy so that the primal-dual algorithm
also converges to the exact minimizer. However, for the
purpose of this paper, we only considering the problem of
converging to an approximate minimizer.

The rest of the paper is organized as follows. Section
II formally states the NUM problem and reviews the dual
decomposition algorithm. The event-triggered distributed
primal-dual algorithm is based on a basic primal-dual algo-
rithm for the NUM problem, which will be first discussed in
section III. Section IV then presents the event-triggered dis-
tributed primal-dual algorithm, and proves its convergence.
Section V and VI analyzes data dropouts and broadcast
period in the event-triggered primal-dual algorithm, respec-
tively. Finally, section VII presents simulation results and
section VIII concludes the paper.

II. D UAL DECOMPOSITIONNUM A LGORITHM

NUM problem [8] considers a network ofN users and
M links. We letS = {1, · · · , N} denote the set of users
and L = {1, · · · , M} denote the set of links. Each user
generates a flow with a specified data rate. Each flow may
traverse several links (which together constitute a route)
before reaching its destination. The set of links that are used
by useri ∈ S will be denoted asLi and the set of users
that are using linkj ∈ L will be denoted asSj . The NUM
problem takes the form

maximize: U(x) =
∑

i∈S Ui(xi)
subject to: Ax ≤ c x ≥ 0

(1)

where x = [x1, ..., xN]T and xi ∈ R is user i’s data
rate.A ∈ R

M×N is the routing matrix mapping users onto
links andc ∈ R

M is a vector of link capacities. Theji’th
component,Aji, is 1 if user i’s flow traverses linkj and
is zero otherwise. Thejth row of Ax represents the total
data rates going through linkj, which cannot exceed its
capacitycj . The cost functionU is the sum of the userutility
functionsUi(xi). These utility functions represent the reward
(i.e. quality-of-service) [8][9] useri gets by transmitting at
ratexi.

NUM problems are often solved using the dual decompo-
sition algorithm [9]. The algorithm examines the dual of the

NUM problem, which is

minimize: maxx≥0

{
∑

i∈S Ui(xi) − pT (Ax − c)
}

subject to: p ≥ 0
(2)

wherep =
[

p1 · · · pM

]T
is the Lagrange multiplier

vector (which can be viewed as the price for using each link
[8]) associated with the inequality constraintAx ≤ c. If x∗

andp∗ are vectors solving the dual problem, then it can be
shown thatx∗ also solves the original NUM problem.

Low et al. [9] established conditions under which a pair
of recursions would generate a sequence of user rates,
{x[k]}∞k=0, and link prices,{p[k]}∞k=0, that asymptotically
converge to a solution of the dual problem. Given initial
x[0] andp[0], then for alli ∈ S andj ∈ L, we let

xi[k + 1] = arg max
xi≥0







Ui(xi[k]) − xi[k]
∑

j∈Li

pj [k])







(3)

pj [k + 1] = max







0, pj [k] + γ







∑

i∈Sj

xi[k] − cj













(4)

for k = 0, · · · ,∞. It is shown that a stabilizing step size is

0 < γ < γ∗ =
−2 max(i,xi) ∇

2Ui(xi)

LS
(5)

whereL is the maximum number of links any user uses and
S is the maximum number of users any link has. Equation 5
requires that the step size be inversely proportional to both L

andS. We can conclude that the computational complexity of
dual decomposition (as measured by the number of algorithm
updates) scales superlinearly withL andS.

III. B ASIC PRIMAL -DUAL ALGORITHM

The event-triggered distributed primal-dual algorithm in
this paper is also based on the augmented Lagrangian method
for the NUM problem. In the augmented Lagrangian method,
a constrained problem is converted into a sequence of uncon-
strained problems by adding to the cost function a penalty
term that prescribes a high cost to infeasible points.

To apply the augmented Lagrangian method on our NUM
problem, we need to introduce the slack variables ∈ R

M

and replace the inequalitiescj − aT
j x ≥ 0, ∀j ∈ L by

aT
j x − cj + sj = 0, sj ≥ 0, ∀j ∈ L (6)

The augmented cost is then

L(x, s; λ, w) = −
∑

i∈S

Ui(xi) +
∑

j∈L

λj(a
T
j x − cj + sj)

+
1

2

∑

j∈L

1

wj

(aT
j x − cj + sj)

2 (7)

Here a penalty parameterwj is associated with each link
constraint, andw = [w1, · · · , wM]. Supposeλ∗

j is the
Lagrange multiplier associated with constraintcj −aT

j x ≥ 0
in the Karush-Kuhn-Tucker conditions of the NUM problem.
λj is an estimate ofλ∗

j and λ = [λ1, · · · , λM]. aT
j =

[Aj1, · · · , AjN] is the jth row of the routing matrixA.

In our earlier work [13], we eliminate the dual variables,
and rewrite the augmented cost in equation 7 as a function of
only the primal variablex for fixed λ andw. That approach
gives us the resulting primal algorithm. In this paper, we
treatL(x, s; λ, w) as a function of both the primal variable
x and dual variables. This gives us a primal-dual algorithm.

In this primal-dual setup, the augmented Lagrangian
method solves the NUM problem by approximately mini-
mizing L(x, s; λ[k], w[k]) for sequences of{w[k]}∞k=0 and
{λ[k]}∞k=0. Let (x∗[k], s∗[k]) denote the approximate min-
imizer for L(x, s; λ[k], w[k]). Then for appropriately cho-
sen sequences{w[k]}∞k=0 and {λ[k]}∞k=0, the sequence
of approximate minimizers{(x∗[k], s∗[k])}∞k=0 converges
to the optimal point of the NUM problem. The choices
are as follows.{wj [k]}∞k=0 are monotone decreasing to
zero. {λj [k]}∞k=0 satisfy λj [k + 1] = max{0, λj[k] +

1
wj [k] (a

T
j x∗[k] − cj + s∗j [k])}.

In [13], we gave a primal algorithm based on the aug-
mented Lagrangian method that converges to the exact min-
imizer of the NUM problem. However, in many scenarios,
it usually suffices to obtain an approximate minimizer. So
instead of minimizingL(x, s; λ[k], w[k]) for sequences of
{w[k]}∞k=0 and {λ[k]}∞k=0, we are only considering the
problem of minimizingL(x, s; λ, w) for fixedλ andw in this
paper. Ifλj = 0 andwj is sufficiently small, the minimizer
of L(x, s; λ, w) will be a good approximation to the solution
of the original NUM problem.

The basic primal-dual algorithm is given as follows:

1) Initialization: Select initial ratex0 > 0, initial s0 ≥ 0.
Setλj = 0 and sufficiently smallwj > 0, j ∈ L.

2) Recursive Loop: Minimize L(x, s; λ, w)

x = max
{

0, x0 − γ∇xL(x0, s0; λ, w)
}

(8)

s = max
{

0, s0 − γ∇sL(x0, s0; λ, w)
}

(9)

(x0, s0) = (x, s)

The above algorithm converges to an approximate solution
of the original NUM problem. The smallerw is, the more
accurate the approximation is. The recursion shown in step 2
is minimizingL(x, s; λ, w) using a simple gradient following
method.γ is a sufficiently small step size.

The computations above can be easily distributed among
the users and links. We will see that in our event-triggered
distributed implementation of the algorithm in section IV.

In dual decomposition and the algorithm shown above, the
exchange of information between users and links happens
each time the gradient following update is applied. This
means that the number of messages passed between users
and links is equal to the number of updates required for the
algorithm’s convergence. That number is determined by the
step size. For both algorithms, these step sizes may be small,
so that the number of messages passed will be large.

The following section presents an event-triggered dis-
tributed implementation of the basic primal-dual algorithm
presented in this section.

IV. EVENT-TRIGGEREDDISTRIBUTED PRIMAL -DUAL

ALGORITHM

Implementing the primal-dual algorithm in section III
in a distributed manner requires communication between
users and links. An event-triggered implementation of the
algorithm assumes that the transmission of messages between
users and links is triggered by some local error signal
crossing a state-dependent threshold. The main problem is
to determine a threshold condition that results in message
streams ensuring the asymptotic convergence of the algo-
rithm to the NUM problem’s approximate solution. This
section determines such an event threshold condition and
gives an event-triggered distributed primal-dual algorithm.

We can search for the minimizer of the Lagrangian
L(x, s; λ, w) using a gradient following algorithm where

xi(t) = −

∫ t

0

(∇xi
L(x(τ), s(τ); λ, w))+

xi(τ) dτ

=

∫ t

0





∂Ui(xi(τ))

∂xi

−
∑

j∈Li

µj(τ)





+

xi(τ)

dτ(10)

for each useri ∈ S and

sj(t) = −

∫ t

0

(

∇sj
L(x(τ), s(τ); λ, w)

)+

sj(τ)
dτ

=

∫ t

0

(−µj(τ))+
sj(τ) dτ (11)

for each linkj ∈ L, where

µj(t) = λj +
1

wj





∑

i∈Sj

xi(t) − cj + sj(t)



 (12)

Here given a functionf : R+ → R, its positive projection is
defined as

(f(x))+x =

{

0, if x = 0 and f(x) < 0

f(x), otherwise
(13)

The positive projection used in equation 10 and 11 guar-
antees the user ratexi(t) and dual state sj(t) are always
nonnegative along the trajectory.

Equations 10 and 11 are the continuous-time versions of
the update in equations 8 and 9, respectively. In equation 10,
useri ∈ S can compute its rate only based on the information
from itself, and the information ofµj from those links that
are being used by useri. Link j ∈ L is associated with a
dynamical system which is characterized by equations 11-
12. This first-order dynamical system takes the total flow
rate that goes through linkj as the input, and outputsµj . To
make our notations consistent with [13], we callµj as thejth
link’s local state, which serves as the feedback signal to the
users ini ∈ Sj . From equations 11 and 12, linkj only needs
to be able to measure the total flow that goes through itself
in order to compute its local stateµj . All of this information
is locally available, so both the user rate update and the link
state computation can be done in a distributed manner.

In equation 10, the link state information is available to
the users in a continuous manner. We now consider anevent-
triggered version of equation 10, where the user accesses a
sampled version of the link state. In particular, we associate
a sequence ofsampling instants,{T L

j [ℓ]}∞ℓ=0 with the jth
link. The timeT L

j [ℓ] denotes the instant when thejth link
samples its link stateµj in equation 12 for theℓth time and
transmits that state to usersi ∈ Sj . At any time t ∈ ℜ, the
sampled link state is a piecewise constant function of time
which satisfies

µ̂j(t) = µj(T
L
j [ℓ]) (14)

for all ℓ = 0, · · · ,∞ and anyt ∈ [T L
j [ℓ], T L

j [ℓ + 1]). The
event-triggered version of equation 10 takes the form

xi(t) =

∫ t

0





∂Ui(xi(τ))

∂xi

−
∑

j∈Li

µ̂j(τ)





+

xi(τ)

dτ(15)

for all ℓ and anyt ∈ [T L
j [ℓ], T L

j [ℓ + 1]).
Next we will state the main theorem of this section.
Theorem 4.1: Consider the Lagrangian in equation 7

where the functionsUi are twice differentiable, strictly
increasing, and strictly concave and where the routing matrix
A is of full rank. Assume a fixed penalty parameterw > 0
and vectorλ ≥ 0. For each linkj ∈ L, consider the sequence
{T L

j [ℓ]}∞ℓ=0, and its dynamics satisfy equations 11-12. For
each useri ∈ S, let the user rate,xi(t), satisfy equation 15
with sampled link states defined in equation 14.

For all j ∈ L, let ρj be a constant such that0 < ρj ≤ 1.
Assume that for allj ∈ L, and allℓ = 0, · · · ,∞ that

ρj

[

(−µj(t))
+
sj (t)

]2

−
1

2
LS [µj(t) − µ̂j(t)]

2 ≥ 0 (16)

for t ∈ [T L
j [ℓ], T L

j [ℓ + 1]). Then the user ratesx(t) asymp-
totically converge to the unique minimizer ofL(x, s; λ, w).
�

Proof: Let zi(t) denote the time derivative of useri’s
flow rate,zi(t) therefore satisfies

zi(t) = ẋi(t) =



∇Ui(xi(t)) −
∑

j∈Li

µ̂j(t)





+

xi(t)

(17)

for all i ∈ S. For convenience, we do not explicitly include
the time dependence ofxi(t), x̂i(t), zi(t), ẑi(t), µj(t), µ̂j(t)
in most part of the proof. For allt ≥ 0 we have

−L̇(x, s; λ, w) = −
N
∑

i=1

∂L

∂xi

dxi

dt
−

M
∑

j=1

∂L

∂sj

dsj

dt

=

N
∑

i=1

zi



∇Ui(xi) −
M
∑

j=1

µjAji



+

M
∑

j=1

(−µj)
+
sj

(−µj)

≥
N
∑

i=1







1

2
z2

i −
1

2
[

M
∑

j=1

(µj − µ̂j)Aji]
2







+

M
∑

j=1

[

(−µj)
+
sj

]2

The last inequality holds whether the positive projection in
eachzi and µj is active or not. Remember there are only

|Li| nonzero terms in the sum
∑M

j=1(µj − µ̂j)Aji, then by
using the inequality

−





M
∑

j=1

(µj − µ̂j)Aji





2

≥ −|Li|
M
∑

j=1

[(µj − µ̂j)Aji]
2 (18)

we have

−L̇(x, s; λ, w)

≥
1

2

N
∑

i=1

z2
i −

1

2

N
∑

i=1







|Li|
M
∑

j=1

[(µj − µ̂j)Aji]
2







+
M
∑

j=1

[

(−µj)
+
sj

]2

=
1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

{

(µj − µ̂j)
2

N
∑

i=1

|Li|A
2
ji

}

+

M
∑

j=1

[

(−µj)
+
sj

]2

≥
1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 +

M
∑

j=1

[

(−µj)
+
sj

]2

≥
1

2

N
∑

i=1

z2
i +

M
∑

j=1

(1 − ρj)
[

(−µj)
+
sj

]2

+

M
∑

j=1

{

ρj

[

(−µj)
+
sj

]2

−
1

2
LS(µj − µ̂j)

2

}

This immediately suggests us that if the sequences of sam-
pling instants{T L

j [ℓ]}∞ℓ=0 satisfy the inequality in equation
16 for all ℓ = 0, 1, 2, ...,∞, andj ∈ L, thenL̇(x, s; λ, w) ≤
0 is guaranteed for allt.

By using the properties ofUi(xi), we know for any fixedλ
andw, L(x, s; λ, w) is strictly convex inx ands. It thus has a
unique minimizer. Suppose(x∗(λ, w), s∗(λ, w)) is this min-
imizer, and the corresponding Lagrangian isL(x∗, s∗; λ, w).
DefineV (x, s) = L(x, s; λ, w)−L(x∗, s∗; λ, w). It is trivial
to see V (x, s) is a Lyapunov function for the system.
Moreover,V̇ (x, s) = 0 meansL̇(x, s; λ, w) = 0. The only
scenario this can happen is

zi = 0, ∀i ∈ S, (−µj)
+
sj

= 0, µj = µ̂j , ∀j ∈ L (19)

which corresponds to the unique minimizer. As a result,
the equilibrium(x∗(λ, w), s∗(λ, w)) is asymptotically stable.
Proof complete.

This theorem asserts that we need to select the transmit
times {T L

j [ℓ]} so that the inequality in equation 16 always
hold. It could be easily done if we use the violation of the
inequality to trigger the sampling and transmission of the
link states. Each linkj computes the square of the error
between the last transmitted link statêµj and the current
link stateµj . At the sampling timet = T L

j [ℓ], this error is
zero and the inequality is trivially satisfied. After that time,
µj(t) continues to change until the inequality is violated.
We let that time be the next sampling instant,T L

j [ℓ + 1] and

then transmit the sampled link statêµj to the usersi ∈ Sj .
We see that, unlike the primal algorithm in [13], which has
interacting user events and link events, we only have link
events here.

In theorem 4.1, the parameterρj can be different for each
link j ∈ L. One may wonder why we do not simply choose
ρj = 1 in equation 16. For stability consideration, it is correct
that we can simply chooseρj = 1. However, as we will see
in the next section, choosing a smallerρj makes the network
more robust to data dropouts. For this reason, we keep it as
a parameter here.

We should point out that, in equation 16, if the positive
projection stays active, in other words,sj(t) = 0 andµj(t) >

0 for t over some time interval, then the link dynamical
system in equations 11-12 reduces to a memoryless function.
In those situations, if we still use the inequality in equation
16 to trigger the link event, it would require thatµ̂j(t) =
µj(t) over the interval. This is highly undesirable since it
requires link j to sample and transmit its state infinitely
fast. There are two possible solutions to this issue. One
solution is, once the projection stays active, then we no
longer use the primal-dual algorithm. Instead, we switch to
the primal algorithm [13]. In this paper, we take a slightly
simpler approach. To be specific, we are only interested in
how fast the trajectory enters some neighborhood of the
optimal point. This neighborhood is chosen large enough
so that the positive projections will not stay active before
entering the neighborhood. In the remaining part of the paper,
we will assume that the positive projection in equation 16
cannot be active unless at the minimizer ofL(x, s; λ, w).
This assumption is reasonable if we are only interested in
converging to some neighborhood of the optimal point. It
enables us to present and analyze the primal-dual algorithm
in a much clearer way.

In the following work, we will find it convenient to use a
slightly more conservative event than equation 16.

Corollary 4.2: Consider the Lagrangian in equation 7
where the functionsUi are twice differentiable, strictly
increasing, and strictly concave and where the routing matrix
A is of full rank. Assume a fixed penalty parameterw > 0
and vectorλ ≥ 0. For each linkj ∈ L, consider the sequence
{T L

j [ℓ]}∞ℓ=0, and its dynamics satisfy equations 11-12. For
each useri ∈ S, let the user rate,xi(t), satisfy equation 15
with sampled link states defined in equation 14.

For all j ∈ L, let ρj be a constant such that0 < ρj ≤ 1.
Assume that for allj ∈ L, and allℓ = 0, · · · ,∞ that

|µj(t) − µ̂j(t)| ≤ δj |µ̂j(t)| (20)

for t ∈ [T L
j [ℓ], T L

j [ℓ + 1]), whereδj is defined by

δj =

√

ρj

1
2LS + ρj

(21)

Then the user ratesx(t) asymptotically converge to the
unique minimizer ofL(x, s; λ, w). �

Proof: By the definition ofδj in equation 21, equation
20 is equivalent to

1

2
LS|µj(t) − µ̂j(t)|

2 + ρj |µj(t) − µ̂j(t)|
2 ≤ ρj |µ̂j(t)|

2 (22)

Therefore, we have

1

2
LS|µj(t) − µ̂j(t)|

2 ≤ ρj |µ̂j(t)|
2 − ρj |µj(t) − µ̂j(t)|

2

≤ ρj |µj(t)|
2

for all t ∈ [T L
j [ℓ], T L

j [ℓ + 1]), j ∈ L and ℓ = 0, · · · ,∞.
Since we assume that the positive projection in equation 16
cannot be active unless at the minimizer ofL(x, s; λ, w),
all assumptions of theorem 4.1 are satisfied. We can thus
conclude thatx(t) asymptotically converge to the unique
minimizer of L(x, s; λ, w).

The inequalities in equations 16 or 20 can both be used
as the basis for the event-triggered algorithm. Equation 20
is a slightly more conservative condition, and we will use it
in our event-triggered distributed primal-dual algorithm
in the following.

Future discussion needs an additional notation. For a
function f(t) defined ont ∈ [0, T), denotef+(T) as the
limit of f(t) when t approachesT from the left hand side.

Each useri ∈ S executes the following algorithm. It is
continuously transmitting data at ratexi(t) at time t.

Algorithm 4.1: User i’s Update Algorithm
1) Parameter Initialization: Set the initial user ratex0

i >

0. Let T = 0.
2) State Initialization: Wait for all neighborsj ∈ Li to

send their link statesµj(T) and setµ̂j = µj(T).
3) Update User Rate:Integrate the user rate equation

xi(t) =

∫ t

T



∇Ui(xi(τ)) −
∑

j∈Li

µ̂j





+

xi(τ)

dτ

xi(T) = x0
i

where t ∈ [T, T +) and T + is the time instant when
the following condition is true

a) if useri receives a new link stateµ+
j (T +) from

link j ∈ Li, set µ̂j = µ+
j (T +).

4) Increment Time: SetT = T +, x0
i = x+

i (T +) and go
to step 3.

A similar algorithm is executed by all linksj ∈ L. The
main assumption here is that linkj can continuously monitor
the link stateµj(t) at any timet ∈ ℜ.

Algorithm 4.2: Link j’s Update Algorithm
1) Parameter Initialization: Set T = 0, wj > 0, 0 <

ρj ≤ 1, initial s0
j ≥ 0, andδj is defined by

δj =

√

ρj

1
2LS + ρj

(23)

2) State Initialization Measure the local link state

µj(T) =
1

wj





∑

i∈Sj

xi(T) − cj + s0
j



 (24)

Transmitµj(T) to all usersi ∈ Sj and set̂µj = µj(T).
3) Link Update: Integrate the equation

sj(t) =

∫ t

T

(−µj(τ))
+
sj(τ) dτ (25)

µj(t) =
1

wj





∑

i∈Sj

xi(t) − cj + sj(t)



 (26)

sj(T) = s0
j (27)

where t ∈ [T, T +) and T + is the time instant when
the following condition is true

a) If |µj(t) − µ̂j(t)| ≥ δj |µ̂j(t)|, then setµ̂j =
µ+

j (T +) and broadcast the updated link state
µ+

j (T +) to all usersi ∈ Sj .

4) Increment Time: SetT = T + and go to step 3.
By corollary 4.2, the data ratesx(t) generated by algo-

rithms 4.1-4.2 converge asymptotically to the unique mini-
mizer of L(x, s; λ, w), which is an approximate solution to
the NUM problem.

V. EVENT-TRIGGERING WITH DATA DROPOUTS

The discussion in the previous section did not consider
data dropouts. To be specific, whenever the new sampled
link stateµ̂j(t) is obtained by linkj, it is transmitted to the
usersi ∈ Sj successfully. This, however, does not necessarily
happen in large scale networks. In this section, we take data
dropouts into consideration, and gives an upper bound on
the largest number of successive data dropouts each link
can have, while ensuring the asymptotic convergence of the
event-triggered algorithm in section IV. Using our result,
each link can identify this upper bound for its subsystem
in a decentralized way. We assume that data dropouts only
happen when the sampled statesµ̂j(t) are transmitted across
the network.

First, let us see what happens when there are data dropouts
in the network. Suppose linkj detects a local event and
obtains a new sampled statêµj . Link j will then transmit
the newµ̂j to usersi ∈ Sj . If the transmission fails, then
usersi ∈ Sj will not receive the new sampled link state.
However, link j thinks the new state has been successfully
transmitted, so in equation 20,µ̂j(t) has been updated to the
new µ̂j . This means users and links have different copies
of the latest sampled link state, which may destabilize the
system. Our main idea is, the event in equation 20 is a
relatively conservative event ifρj is small, so even if some
data dropouts happen, the system may still be stable.

Further discussion needs some additional notations. We
use rj [k] to denote the time instant when linkj samples
its link state µj for the kth time (but not necessarily
successfully transmitted), and useT L

j [ℓ] to denote the time
instant when the sampled state of linkj has been successfully
transmitted for theℓth time. It is obvious that{T L

j [ℓ]}∞ℓ=0

is a subsequence of{rj [k]}∞k=0. Using these notations, the
user dynamics in equation 15 and user’s knowledge of the
sampled link state in equation 14 still apply. Define error as
ej(t) = µj(t) − µ̂j(T

L
j [ℓ]) on t ∈ [T L

j [ℓ], T L
j [ℓ + 1]).

Theorem 5.1: Consider the Lagrangian in equation 7
where the functionsUi are twice differentiable, strictly
increasing, and strictly concave and where the routing matrix
A is of full rank. Assume a fixed penalty parameterw > 0
and vectorλ ≥ 0. For each link j ∈ L, consider the
sequences{T L

j [ℓ]}∞ℓ=0, {rj [k]}∞k=0, and its dynamics satisfy
equations 11-12. For each useri ∈ S, let the user rate,
xi(t), satisfy equation 15 with sampled link states defined in
equation 14.

For all j ∈ L, let ρj be a constant such that0 < ρj ≤ 1.
Assume that for allj ∈ L, and allk = 0, · · · ,∞ that

|µj(t) − µj(rj [k])| ≤ δj |µj(rj [k])| (28)

for t ∈ [rj [k], rj [k + 1]), whereδj is defined by

δj =

√

ρj

1
2LS + ρj

(29)

Further assume that linkj’s largest number of successive
data dropouts,dj ∈ Z, satisfies

dj ≤ Dj(ρj) = log(1

1−δj
)(1 +

√

2

LS
) − 1 (30)

then the user ratesx(t) asymptotically converge to the unique
minimizer of L(x, s; λ, w). �

Proof: Consider link j over the time interval
[T L

j [ℓ], T L
j [ℓ + 1]). For notational convenience, we assume

T L
j [ℓ] = rj [0] < rj [1] < · · · < rj [dj] < rj [dj + 1] =

T L
j [ℓ + 1].
Considerej(t) for any t ∈ [rj [k], rj [k + 1]), we have

|ej(t)| = |µj(t) − µ̂j(T
L
j [ℓ])|

≤
k−1
∑

p=0

|µj(rj [p + 1]) − µj(rj [p])| + |µj(t) − µj(rj [k])|

Applying equation 28 on the previous equation yields

|ej(t)| ≤ δj

k
∑

p=0

|µj(rj [p])| (31)

for all t ∈ [rj [k], rj [k + 1]).
From equation 28, we can easily obtain

|µj(rj [k])| ≤
1

1 − δj

|µj(t)| (32)

for all t ∈ [rj [k], rj [k+1]). Applying equation 28 repeatedly
on [rj [k−1], rj [k]), [rj [k−2], rj [k−1]), · · · , [rj [p], rj [p+1]),
we know

|µj(rj [p])| ≤

(

1

1 − δj

)k+1−p

|µj(t)| (33)

for all t ∈ [rj [k], rj [k + 1]).
Applying equation 33 on equation 31 yields

|ej(t)| ≤ δj

k
∑

p=0

(

1

1 − δj

)k+1−p

|µj(t)| (34)

=

[

(

1

1 − δj

)k+1

− 1

]

|µj(t)| (35)

for all t ∈ [rj [k], rj [k + 1]). This means for allt ∈
[T L

j [ℓ], T L
j [ℓ + 1]), we have

|ej(t)| ≤

[

(

1

1 − δj

)dj+1

− 1

]

|µj(t)| (36)

Since the above inequality holds for allℓ = 0, 1, · · · ,∞, we
know that for allt ≥ 0 we have

|µj(t) − µ̂j(t)| ≤

[

(

1

1 − δj

)dj+1

− 1

]

|µj(t)|

≤

√

2

LS
|µj(t)| (37)

The last inequality holds by applying equation 30.
From the proof of theorem 4.1 and apply equation 37, we

know that for allt ≥ 0 we have

−L̇(x, s; λ, w)

≥
1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 +

M
∑

j=1

µ2
j (38)

≥
1

2

N
∑

i=1

z2
i (39)

The convergence then follows easily.
dj is link j’s largest number of successive data dropouts,

andDj(ρj) represents the the maximum allowable number of
successive data dropouts for linkj. This theorem guarantees
that algorithm 4.1-4.2 still converges if each linkj’s largest
number of successive data dropoutsdj does not exceed
Dj(ρj). However, it says nothing if this condition is not
satisfied. We can easily see thatDj(ρj) can be determined
by link j itself locally. However, there is a tradeoff between
Dj(ρj) and the broadcast periods. In general, smallρj results
in short broadcast periods and largeDj(ρj), while large
ρj results in long broadcast periods but smallDj(ρj). Two
extreme cases are, asρj → 0, Dj(ρj) → +∞, asρj → 1,
Dj(ρj) → 0.

VI. B ROADCAST PERIOD ANALYSIS FOR THE

PRIMAL-DUAL ALGORITHM

This section presents results on the link broadcast period of
the event-triggered primal-dual algorithm. We lower bound
it as a function of the system states in the network.

Recall that{T L
j [ℓ]}∞l=0 is the sequence of broadcast time

instants for linkj ∈ L. We define theℓth broadcast period
of link j as

Bj [ℓ] = T L
j [ℓ + 1] − T L

j [ℓ] (40)

Assume that the hypotheses in corollary 4.2 hold. This
means linkj will obtain a new sample ofµj(t) when the
inequality in equation 20 is about to be violated. Further as-
sume that the gradient of the utility functionUi(xi) satisfies
∇Ui(xi) ≤ β for all i ∈ S.

Consider the time interval[T L
j [ℓ], T L

j [ℓ + 1]) for link
j. Between the latest broadcast time,T L

j [ℓ], and the next
broadcast time,T L

j [ℓ+1], it is quite possible that other links

{j
′

|j
′

∈ L, j
′

6= j} may trigger one or multiple broadcasts.
DefineNj={j

′

|j ∈ L, j
′

∈ L,Sj

⋂

Sj
′ 6= ∅}, so Nj is the

set of links that have at least one common user with linkj.
Notice thatNj includes linkj itself. Assume that on time
interval [T L

j [ℓ], T L
j [ℓ + 1]), links in the setNj − {j} have

triggered a total ofm broadcasts, andb[p] is the time of
the pth broadcast. For notational convenience, we assume
T L

j [ℓ] = b[0] < b[1] < · · · < b[m] < b[m + 1] = T L
j [ℓ + 1].

It is obvious that ont ∈ [b[p], b[p + 1]), p = 0, 1, · · · , m,
µ̂j

′ (t) is fixed for all j
′

∈ Nj . Also define error asej(t) =

µj(t) − µ̂j(T
L
j [ℓ]) on t ∈ [T L

j [ℓ], T L
j [ℓ + 1]).

We can then study the behavior of the errorej(t) on t ∈
[b[p], b[p + 1]), wherep = 0, 1, · · · , m.

Define Ω = {t ∈ [b[p], b[p + 1])||ej(t)| = 0} On t ∈
[b[p], b[p + 1]) − Ω, we have

d|ej(t)|

dt
≤

∣

∣

∣

∣

dej(t)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

dµj(t)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

wj

dsj(t)

dt
+

1

wj

∑

i∈Sj

dxi(t)

dt

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

−
1

wj

µj(t)

+
1

wj

∑

i∈Sj



∇Ui(xi(t)) −
∑

j
′
∈Li

µ̂j
′ (t)





+

xi(t)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

−
1

wj

ej(t) −
1

wj

µ̂j(t)+

1

wj

∑

i∈Sj



∇Ui(xi(t)) −
∑

j
′
∈Li

µ̂j
′ (t)





+

xi(t)

∣

∣

∣

∣

∣

∣

∣

≤
1

wj

|ej(t)| +
1

wj

|µ̂j(t)| +
1

wj

∑

i∈Sj

∇Ui(xi(t))

+
1

wj

∑

i∈Sj

∑

j
′
∈Li

|µ̂j
′ (t)|

≤
1

wj

|ej(t)| +
1

wj

βS

+
1

wj

|µ̂j(T
L
j [ℓ])| +

1

wj

∑

i∈Sj

∑

j
′
∈Li

|µ̂j
′ (t)| (41)

where we use the right-hand sided derivative whent = b[p].
From the definition ofNj , we know

∑

i∈Sj

∑

j
′
∈Li

|µ̂j
′ (t)|

is constant ont ∈ [b[p], b[p + 1]). We can then solve the
differential inequality in equation 41, which gives us

|ej(t)| ≤ e
1

wj
(t−b[p])

|ej(b[p])| +

(

βS + |µ̂j(T
L
j [ℓ])|

+
∑

i∈Sj

∑

j
′
∈Li

|µ̂j
′ (b[p])|





[

e
1

wj
(t−b[p])

− 1
]

(42)

for all t ∈ [b[p], b[p + 1]) since|ej(t)| = 0 for all t ∈ Ω.
Since link j’s next broadcast will be triggered when the

inequality in equation 20 is about to be violated. This will

happen at timeT L
j [ℓ + 1] when

|ej(T
L
j [ℓ + 1])| ≥ δj |µ̂j(T

L
j [ℓ])| (43)

We can use the bound on|ej(t)| in equation 42 to solve
for T L

j [ℓ + 1] in equation 43. It gives us

T L
j [ℓ + 1] − b[m] ≥ wj ln

(

1 +

δj |µ̂j(T
L
j [ℓ])| − |ej(b[m])|

|ej(b[m])| + βS + |µ̂j(T L
j [ℓ])| + ZNj

(b[m])

)

where

ZNj
(b[m]) =

∑

i∈Sj

∑

j
′
∈Li

|µ̂j
′ (b[m])| (44)

The broadcast period of linkj is then

Bj[ℓ] = T L
j [ℓ + 1] − T L

j [ℓ]

= T L
j [ℓ + 1] − b[m] +

m
∑

p=1

(b[p] − b[p − 1])

≥
m
∑

p=1

(b[p] − b[p − 1]) + wj ln

(

1 +

δj|µ̂j(T
L
j [ℓ])| − |ej(b[m])|

|ej(b[m])| + βS + |µ̂j(T L
j [ℓ])| + ZNj

(b[m])

)

The above equation provides a state-dependent lower bound
for link j’s broadcast period,Bj[ℓ]. We can then conclude
that the broadcast period of each link is bounded away from
zero.

VII. S IMULATION

This section presents simulation results. It shows that our
event-triggered primal-dual algorithm reduces the number
of message exchanges by up to two order magnitude when
compared to dual decomposition. Moreover, our algorithm
is scale free with respect to network size. The robustness
to data dropouts of our algorithm is also demonstrated. The
remainder of this section is organized as follows: Subsection
VII-A discusses the simulation setup. Simulation results on
broadcast periods of our algorithm are shown in subsection
VII-B. Subsection VII-C presents simulation results on our
algorithm when data dropouts are taken into consideration.
The scalability results are presented in subsection VII-D.

A. Simulation Setup

Denotes ∈ U [a, b] if s is a random variable uniformly
distributed on[a, b]. Given M , N , L and S, we randomly
generate a network withM links andN users, where|Sj | ∈
U [1, S], j ∈ L, |Li| ∈ U [1, L], i ∈ S. We make sure
at least one link (user) hasS users (L links). User i is
assignedUi(xi) = αi log xi, whereαi ∈ U [0.8, 1.2]. Link j

is assignedcj ∈ U [0.8, 1.2]. Both algorithms are simulated.
The optimal ratex∗ and correspondingU∗ are calculated
using a global optimization technique.

Define error as (for all algorithms)

e(k) =
∣

∣

∣

U(x(k)) − U∗

U∗

∣

∣

∣ (45)

wherex(k) is the rate at thekth iteration. In both algorithms,
we count the number of iterationsK for e(k) to decrease
to and stay in the neighborhood{e(k)|e(k) ≤ ed}. In dual
decomposition, message passings from the links to the users
occur at each iteration synchronously. SoK is a measure
of the total number of message exchanges. In our event-
triggered algorithms, events occur in a totally asynchronous
way. We add the total number of triggered events, and
divide this number by the link numberM . This works as
an equivalent iteration numberK for our event-triggered
algorithms, and is a measure of the total number of message
exchanges.

The default settings for simulation are as follows:M =
60, N = 150, L = 8, S = 15, ed = 3%. Initial condition is
xi(0) ∈ U [0.01, 0.05], ∀i ∈ S. In dual decomposition, initial
pj = 0 for j ∈ L, and the step sizeγ is calculated using
equation 5. In our algorithm,ρj = 0.9, λj = 0, wj = 0.01
for j ∈ L.

B. Broadcast periods of the event-triggered algorithm

In this subsection we present simulation results on the
broadcast periods of our algorithm.

This simulation uses the default settings in subsection VII-
A and ran for3.60s. The error in both algorithms entered
the ed neighborhood in3.60s. For reference, with the same
settings, the average broadcast period for dual decomposition
is 0.0026. In our algorithm, there are a total of1971 link
events. The links have an average broadcast period of0.1096,
which is 42 times longer than in dual decomposition.

0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
link broadcast period history

t

br
oa

dc
as

t p
er

io
d

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

7

8

9

10
histogram of broadcast period

broadcast period

tr
ig

ge
re

d
fr

eq
ue

nc
y

Fig. 1. Broadcast results for event-triggered algorithm

To see how the broadcast periods vary for a particular link
in our algorithm, we pick one link in the network, and its
broadcast results are shown in figure 1. The left plot is time
history of broadcast periods generated by the link’s local
event. The right plot is the histogram of those link broadcast
periods. The link’s broadcast periods range between0.0020
and0.3230. The link was triggered31 times, with an average
broadcast period of0.1161.

As we can see, our algorithm enjoys much longer broad-
cast periods than dual decomposition.

C. Data dropout simulation

In this subsection we present simulation results on our
algorithm when data dropouts are taken into consideration.

Figure 2 plots the maximum allowable number of succes-
sive data dropoutsDj(ρj) as a functionρj (in logarithm
scale). As we can see,Dj(ρj) is monotone decreasing
in ρj . If we want the system to be robust to possible
large data dropouts, then we need to choose a smallρj .
For references, whenρ = 0.208, 0.094, 0.024, Dj(ρj) =
1.0045, 2.0089, 5.0113 respectively.

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

ρ
j

d j

Fig. 2. Max allowable number of successive data dropoutsDj(ρj) as a
function of ρj

Table I summarizes simulation results for three different
choices ofρj . For each givenρj, we use the sameρj , dj

for every link in the network. In the simulation, we assume
that the number of successive data dropouts is always equal
to the largest number of successive data dropouts,dj . When
ρj = 0.094 andρj = 0.024, dj is chosen so that the stability
condition in equation 30 is satisfied. Whenρj = 0.9, we
intentionally choosedj = 10 so that it violates the condition.
The system is asymptotically stable in all three scenarios.
This means that the bound on data dropout in equation 30
is indeed a sufficient condition for stability, but is a very
conservative bound. Remember in subsection VII-B, when
ρj = 0.9 and no data dropouts, the average broadcast period
is 0.1096. This is close to the average successful broadcasts
period in table I in all three cases. However, with no surprise,
when data dropouts occur, the average triggered broadcasts
period is much shorter than0.1096, which is clearly shown
in table I.

ρj 0.094 0.024 0.9
Dj(ρj) 2.0089 5.0113 0

dj 2 5 10
Number of triggered broadcasts 7629 17342 18932
Number of successful broadcasts 2522 2867 1693

Average triggered broadcasts period 0.0283 0.0125 0.0114
Average successful broadcasts period0.0856 0.0753 0.1276

TABLE I

SIMULATION RESULTS FOR DIFFERENTρj AND dj

D. Scalability with respect to S and L

In this simulation we present simulation results on scala-
bility of our algorithm.

In the first simulation, we fixM , N , L and vary S

from 7 to 26. For eachS, both algorithms were run250

times, and each time a random network which satisfies the
above specification is generated. The meanmK and standard
deviationσK of K are computed for eachS. mk works as
our criteria for comparing the scalability of both algorithms.
Figure 3 plots the iteration numberK (in logarithm scale)
as a function ofS for both algorithms. The asterisks above
representmK for dual decomposition, and the crosses below
denote our primal-dual algorithm. The dotted vertical line
around each asterisk and cross corresponds to the interval
[mK − σK , mK + σK] for each differentS denoted by the
x-axis. For our algorithm, whenS increases from7 to 26,
mK increases from24.9 to 39.6, and σK increases from
0.6 and3.4. As for dual decomposition,mK increases from
0.3851×103 to 5.0899×103. σK at the same time increases
from 0.4958 × 102 to 6.7957× 102.

6 8 10 12 14 16 18 20 22 24 26
10

1

10
2

10
3

10
4

\bar S

K

dual decompose

primal−dual

Fig. 3. Iteration numberK as a function ofS for both algorithms.

The second simulation is similar to the first one except that
we varyL from 4 to 18 instead ofS. Figure 4 plotsK (in
logarithm scale) as a function ofL for both algorithms. For
our algorithm, whenL increases from4 to 18, mK increases
from 26.9 to 47.0, andσK varies between1.1 and3.7. As
for dual decomposition,mK increases from0.9772 × 103

to 3.5174 × 103, and σK at the same time increases from
0.9668× 102 to 6.1247× 102.

2 4 6 8 10 12 14 16 18
10

1

10
2

10
3

10
4

\bar L

K

dual decompose

primal−dual

Fig. 4. Iteration numberK as a function ofL for both algorithms.

Our event-triggered algorithm is up to two order magni-
tude faster than the dual decomposition. We can also see that,
unlike dual decomposition, which scales superlinearly with
respect toS andL, our event-triggered primal-dual algorithm
on the other hand is scale-free. As shown above, the primal-

dual algorithm in this paper has comparable performance to
the primal algorithm in [13].

VIII. CONCLUSION

This paper presents an event-triggered primal-dual algo-
rithm for the NUM problem and proves its convergence.
Results on the maximum allowable successive data dropouts
and lower bound on broadcast periods are also given. Simu-
lation results suggest that the algorithm is scale-free with
respect to two measures of network size, and reduce the
number of message exchanges by up to two orders of
magnitude compared to dual decomposition.

REFERENCES

[1] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” Proceedings of the third international symposium on Infor-
mation processing in sensor networks, pp. 20–27, 2004.

[2] B. Johansson, M. Rabi, and M. Johansson, “A simple peer-to-peer
algorithm for distributed optimization in sensor networks,” IEEE
Conference on Decision and Control, 2007.

[3] P. Wan and M. Lemmon, “Distributed Flow Control using Embedded
Sensor-Actuator Networks for the Reduction of Combined Sewer
Overflow (CSO) Events,”IEEE Conference on Decision and Control,
2007.

[4] Y. Qiu and P. Marbach, “Bandwidth allocation in ad hoc networks: a
price-based approach,”INFOCOM 2003.

[5] Y. Xue, B. Li, and K. Nahrstedt, “Optimal resource allocation in
wireless ad hoc networks: a price-based approach,”IEEE Transactions
on Mobile Computing, vol. 5, no. 4, pp. 347–364, 2006.

[6] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and
resource allocation via dual decomposition,”Communications, IEEE
Transactions on, vol. 52, no. 7, pp. 1136–1144, 2004.

[7] M. Chiang and J. Bell, “Balancing supply and demand of bandwidth
in wireless cellular networks: utility maximization over powers and
rates,”Proc. IEEE INFOCOM, vol. 4, pp. 2800–2811, 2004.

[8] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, no. 3, pp. 237–252, 1998.

[9] S. Low and D. Lapsley, “Optimization flow control, I: basic algorithm
and convergence,”IEEE/ACM Transactions on Networking (TON),
vol. 7, no. 6, pp. 861–874, 1999.

[10] J. Wen and M. Arcak, “A unifying passivity framework fornetwork
flow control,” Automatic Control, IEEE Transactions on, vol. 49, no. 2,
pp. 162–174, 2004.

[11] D. Palomar and M. Chiang, “Alternative Distributed Algorithms for
Network Utility Maximization: Framework and Applications,” Auto-
matic Control, IEEE Transactions on, vol. 52, no. 12, pp. 2254–2269,
2007.

[12] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient Communication Protocol for Wireless MicrosensorNet-
works,” in Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, vol. 2, 2000.

[13] P. Wan and M. D. Lemmon, “Distributed Network Utility Maximiza-
tion using Event-triggered augmented Lagrangian methods,” American
Control Conference 2009.

