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Abstract— Many problems associated with networked sys- size, dual decomposition will have a message complexity tha
tems can be formulated as network utility maximization (NUM)  scales in a super-linear manner with those two measures of
problems. Dual decomposition is a widely used distributed la network size.L, andS

gorithm that solves the NUM problem. This approach, however E tworked t this t f .
uses a step size that is inversely proportional to measures or many networked systems this type or message passing

of network size such as maximum path length or maximum complexity may be unacceptable. This is particularly true
neighborhood size. As a result, the number of messages ex-for systems communicating over a wireless network. In

changed between nodes by dual decomposition scales poorlysych systems, the energy required for communication can

with respect to these measures. This paper investigates thse of i ;
an event-triggered communication scheme in distributed NW Egr:;)gur:glt?g:t[lg]greater than the energy required to perform

algorithms. Under event triggering, each agent broadcastt its ’ .
neighbors when a local “error” signal exceeds a state depermeaht This paper presents one way of reducing the message
threshold. In particular, this paper proposes an event-trggered  passing complexity of distributed NUM algorithms. It has

distributed NUM algorithm based on barrier methods. The  recently been demonstrated [9] that event-triggering aest
paper establishes state-dependent event-triggering thseolds  ¢oaqpack control systems can greatly lengthen the average

under which the proposed algorithm converges to the optimal - .
solution of the NUM problem. Simulation results suggest sampling period of such systems. These results suggest that

that the proposed algorithm reduces the number of message the use of event-triggering in a suitable NUM algorithm
exchanges by up to two orders of magnitude, and is scale-free may significantly reduce the message passing complexity

with respect to the above two measures of network size. experienced by such algorithms. This paper presents a NUM
algorithm based on barrier methods that uses event-tegger
message passing. We prove that the proposed algorithm
A networked system is a collection of subsystems whereonverges to the global optimal solution of the NUM prob-
individual subsystems exchange information over some cortem. Simulations suggest that the resulting algorithm has a
munication network. Many problems in networked systemsnessage passing complexity that is significantly lower than
like distributed control of sensor-actuator networks [H; dual decomposition algorithms.
source allocation in wireless communication networks [2] The rest of the paper is organized as follows. Section
[3] and congestion control in wired communication networksl formally states the NUM problem and reviews the dual
[4] [5], fall into the general framework of Network Utility decomposition algorithm. The event-triggered optimizati
Maximization (NUM) problems. NUM problems maximize algorithm is based on a barrier method solution to the NUM
a global separable measure of the networked system’s peroblem which is described in section Ill. Section IV presen
formance subject to linear constraints on resources. our event-triggered distributed algorithm based on barrie
A variety of distributed algorithms have been proposed tmethods, and proves its convergence. Simulation resudts ar
solve the NUM problem [5] [6] [7] after Kelly’s seminar shown in section V, and section VI concludes the paper.
work [4]. Among all existing algorithms, the dual decom-
position approach by Low et al. [5] is the most widely Il. DUAL DECOMPOSITIONNUM ALGORITHM
used algorithm for the NUM problem. Low et al. showed NUM problem [4] considers a network of users and
that their dual decomposition algorithm was stable for as links. We letS = {1,---,N} denote the set of users
step size that is inversely proportional to two importangnd £ = {1,---, M} denote the set of links. Each user
measures of network size: the maximum length path generates a flow with a specified data rate. Each flow may
and the maximum number of neighbass So as these two traverse several links before reaching its destinatiow. at
measures get large, the step size becomes extremely sm@fljinks that are used by useérc S will be denoted asC;

Step size determines the number of computations requirg@éld the set of users that are using link £ will be denoted
for the algorithm’s convergence. Under dual decompositio&sgj_ The NUM problem takes the form

I. INTRODUCTION

system agents exchange information at each iteration,ago th maximize: U(z) =3, Ui(z;)
step size also determines the message passing complexity subject to: Az < ¢ xZ€>50 (1)
of the algorithm. Therefore if we use the “stabilizing” step - -

where z = [z1,..,zy]7 and z; € R is useri's data
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zero otherwise. Theth row of Ax represents the total data Traditional barrier algorithms [11] have only one barrier
rates going through link, which cannot exceed its capacity parameter. Our algorithms consider a more general case in
¢;. The cost functioi/ is the sum of the usertility functions  which a barrier parameter is associated with each constrain
Ui(z;). These utility functions represent the reward [4][5]Let 7° = {z : > 0, Az < ¢} denote the strict feasible

useri gets by transmitting at rate;. region. The Lagrangian associated with NUM problem is
NUM problems are often solved using dual decomposition

[5]. The algorithm examines the dual of the NUM problem, Liz;m,A) = - Z Uilw:) = Z Ailog
which is €8 ZGST

minimize: max,>o {3 ,cs Ui(zi) — pT (Az —¢)} @) jGZLTJ log(¢j — aj @) (6)

subject to: p >0

wherer = [r1, -+ ,7um] IS @ vector of barrier parameters

wherep = [ p1 -+ pu }T is the Lagrange multiplier associated with the links irC and A = [Ay,--- ,An] Is
vector (which can be viewed as the price for using each lin& vector of barrier parameters associated with the users in
[4]) associated with the inequality constraift: < c. If z*  S. The vectora] = [A;1,---, A;n] is the jth row of the
andp* are vectors solving the dual problem, then it can beouting matrix A. _
shown thatz* also solves the original NUM problem. Let {7;[k]} 32, and{\;[k]} 22, be sequences of linkj (c

Low et al. [5] established conditions under which a paif’) and user{ < S) barriers, respectively, that are monotone
of recursions would generate a sequence of user rat@ecreasing to zero. The barrier method solves the NUM

{z[k]}32,, and link prices,{p[k]}2,, that asymptotically Problem by approximately minimizind.(x;7[k], A[k]) for

converge to a solution of the dual problem. Given initiathe barrier sequences defined above. k&fk] denote the

2[0] andp[0], then for alli € S andj € £, we let approximate minimizer fotl.(z; 7[k], A[k]). By the barrier
method in [11], the sequence of approximate minimizers
{z*[k]}32, converges to the optimal point of the NUM

wilk +1] = argmax  U(zi[k]) — 2;[k] > pilk]) 3 problem. The algorithm is formally stated below.

TiZ

JeLs 1) Initialization: Select initial ratex® € F*. SetK = 0,
T = Fj[K], A = XZ[K], ieS, RS L, ande :E[K]
pilk+1] = maxq0,p;[k]+v > @ilk] — ¢ 4) 2) Main Recursive Loop:
i€S; Do until: HVzL(xO,T, /\)H <eq
for k =0,--- ,0c0. It is showed that a stabilizing step size is a) Approximately Minimize L(xz;T,A):
Do until: HVIL(IO;T, )\)H <e
. —2max( ., VAU(x;)
0<y<y"= 75 (5) v = 2°—yV,L(a"%7,\) @)
0
where L is the maximum number of links any user uses v
and S is the maximum number of users any link has. We b) Update Parameters: B
can conclude that the computational complexity of dual Setr; = T;[K + 1], Ay = N[K + 1,0 € S,
decomposition (as measured by the number of algorithm j€L,ande =¢[K + 1]. SetK = K + 1.
updates) scales superlinearly withand S. 3) Setz* = 0.

In the algorithm above{e[k]}?°, is a sequence of tol-
erance levels that are monotone decreasing to zgras

The event-triggered algorithm presented in this paper & terminating tolerance level is a sufficiently small step
based on a barrier method for the NUM problem. Barriesize. Note that the inner recursion shown in step 2a is
type algorithms have only recently been proposed for usgpproximately minimizing_(z; 7, \) for a fixed set of barrier
on the NUM problem. This recent work uses a specialectors using a simple gradient following method.
type of barrier method known as the interior-point method The computations above can be easily distributed among
[10]. Primal-dual interior point methods, however, do nothe users and links. We will see that in our event-triggered
distribute across the network. We therefore have to develafistributed implementation of the algorithm in section IV.
a barrier method that easily distributes across the network In dual decomposition and the barrier algorithm shown

In barrier methods, a constrained problem is converteabove, the exchange of information between users and links
into a sequence of unconstrained problems, which involve drappens each time the gradient following update is ap-
added high cost for approaching the boundary of the feasibdied. This means that the number of messages passed is
region via its interior. The added cost is parameterized bgqual to the number of updates required for the algorithm’s
the barrier parameter. As the barrier parameter decreasesbnvergence. That number is determined by the step-size,
zero, the added cost becomes increasingly inconsequentighich may be small, so that the number of messages
This progressively allows the iterates to approach thewadti passed between links and users will be large. The following
point on the boundary. As the barrier parameter goes to zesgction presents such an event-triggered implementafion o
the optimal point on the boundary is reached. the barrier method NUM algorithm.

I1l. BARRIER METHOD NUM ALGORITHM



IV. EVENT-TRIGGEREDNUM BARRIER ALGORITHM for all ¢ and anyt € [T}[¢], T} [¢ +1]).

Implementing the NUM barrier algorithm in a distributed Define z;(¢) as
manner requires communication between users and links. ) by .
An event-triggered implementation of the algorithm asssime z(t) = &i(t) = VUi(2:(t)) + zi(t) Z 5 (t)
that the transmission of messages is triggered by some local JE€L:
error signal crossing a state-dependent threshold. Tha méor all i € S. We will refer to z; as theith user state We
problem is to determine a threshold condition that results iassociate a sequend@;°[¢]}22, to each usei € S. The
message streams ensuring the asymptotic convergence of tinee 7°[¢] is the ¢th time when user transmits its user
algorithm to the problem’s solution. state to all linksj € £;. At any timet € R, the sampled
We begin by considering the minimization of user state is a piecewise constant function of time satigfyi
L(z;7[k], A[k]) for a fixed set of barrier vectors (i.e. ) s
fixed k). Subsection IV-A determines an event threshold Zi(t) = (T [6) (13)
condition ensuring the convergence of the local updaf@r all ¢ =0,--- ,c0 and anyt e [T°[¢], T°[¢ + 1]).
(equation 7) to this minimizer. Subsection IV-B then e are now in a position to state the main theorem of this
considers the case when the barrier vectorssanéchedas  sybsection. The proofs of all the theorems and lemmas in
we changek. In particular, we present a distributed updatenhe paper will be found in the appendix.
strategy for the parameters that ensures the convergence ofheorem 4.1:Consider the Lagrangian in equation 6
the algorithm to the NUM problem’s solution. where U; are twice differentiable, strictly increasing, and
strictly concave and4 is full rank. Assume fixed\ > 0,
. . . .. ... 7 > 0 and initial user ratesc;(0) € F*5. Consider the
This subsgctlon considers the problem of m,'n,'m_'z'n%equenceiTiS[Z]};‘;O and {Tij e for eachi € S, and
L(:T;T, A) for _f|xed7 andA. We can search for the minimizer eachj € £, respectively. For eache S, let the user rate,
using a gradient following algorithm x;(t), satisfy equation 11 with sampled link states given by
¢ oUs(wi(s)) A\, equation 10. For eache S let the user state; (t) satisfy
i(t) :/ (T4 + x_(’s) - Z wi(s) | ds (8) equation 12 and assume links measurement of the user
0 i

(12)

A. Fixed Barrier Parameter case

O jeL; state satisfies equation 13.
for each usei € S and where Lgt p be a constant such that< p < 1. Assume that for
- alieSandall{=0,--- 00, that
() = —F—— 9
witl) = © 2(t) - pE2(t) > 0 (14
Equation 8 is the continuous-time version of the updatgyr ¢ ¢ [T[€], T2[¢ + 1]). Further assume that for allc £
in equation 7. Note that in equation 8, ugecan compute and all¢ =0, -- - , co that
its rate only based on the information from itself, and the 1 L
information of ;z; from those links that are being used by p > =2t — LS (u;(t) — ij(£))* > 0 (15)
useri. We can think ofu; as thejth link’s local state From i€S; L

equation 9, linkj only needs to be able to measure the tOtaTIor ‘e
flow that goes through itself. All of this information is |dta

available so the update of the user rate can be done in Theorem 4.1 provides the basis for constructing an event-

distributed manner. . : X
. . : Lo -triggered message-passing protocol. This theorem askatts
In the above equation, the link state information is avail- D . o .
. . . we can use the violation of the inequalities in equations 14
able to the user in a continuous manner. We now consider . : o .
. X . and 15 to trigger the sampling and transmission of link/user
an event-triggeredversion of equation 8. We assume that

the user accesses sampledversion of the link state. In §tates across t_he networl§. At tim% .Tis[g]’ the inlequality.
particular, let's associate a sequencesampling instants n equation 14 is gutomancally sat|sf|ed_. After Fh|s san.ngph_
{T.L[e]}oo’ with the jth link. The time T [¢] denotes th'e instant, z;(¢) continues to change until the inequality is
‘g L le=0 g : L violated. We let that time instant BE°[¢ + 1] and transmit
instant when thejth link samples its link state:; for the ) L iy

fth time and transmits that state to usérs S,. We can the sampled user state to the link. Similarly, lipZkompares

therefore see that at any timez &, the sampled link state the sguare of the error between the last tran§m|ttgd link
. . i . T . state/i; and the current link statg;. At the sampling time
is a piecewise constant function of time in which

TjL [4], this difference is zero and the inequality is trivially
fij (t) = i (T} 1€]) (10) satisfied. After that timey;(¢) continues to change or the
link may receive an updated user stéatethat may result in
the violation of the inequality. We let that time be the next
sampling instantTjL[é + 1] and then transmit the sampled
t oU(xs(s)) A\ link state/i; to the user.
z(t) :/ e e Z ii(s) | ds (11) The threhold conditions shown in equations 14-15 there-
0 O zi(s) 7, fore provide the basis for an event-triggered scheme teesolv

[T}[€],T}[¢ +1]). Then the user rates(t) asymp-
totically converge to the unique minimizer &f(x; 7, \).

forall £ = 0,---,00 and anyt e [T}[¢],T}[¢ + 1]). The
“event-triggered” version of equation 8 takes the form




the local minimization problem in step 2a of the NUM barrier then sefi; = uj(T*) and broadcast the updated

algorithm presented earlier. link state . (") to all usersi € S;.

b) Or if link j receives a new user statg (7'F) for
anyi € S;, then sets; = z;7(T).

c) Or if link j receives notification that user
performed a barrier update, skt= 1.

4) Update Barrier Parameter: If I; =1 for all i € S,
then setr; = 7,;[K + 1], resetl; = 0 for all i € S;.
SetK = K + 1.

5) Increment Time: SetT = T and go to step 3.

S (I)rf'l the preceding algorithms, the parametgrsr;, ande;

aré switched according to the parameter sequefitds|},
{7;[k]}, and {€;[k]}, respectively. These switches occur
at discrete time instants. Provided an infinite number of
switches occur, we can guarantee that the sequence of pa-
rameters used by the algorithm also asymptotically apjproac
zero. The following lemma establishes that this occurs.

Lemma 4.2:In algorithms 4.1- 4.2, For eache S, let

S
{T}[k]}gﬁo denote the sequences of all time instants when

B. The switching barrier parameter case

This subsection presents a distributed update strategy for
the barrier parameters and proves the convergence of the
resulting event-triggered distributed algorithm.

For a functionf(t) ont € [0,7'), denotef*(T) as the
limit of f(¢) whent approache§" from the left hand side.

Each useri € S executes the following algorithm. It
is continuously transmitting data at ratg(¢) at time ¢.
We assume there exists monotone decreasing sequence
N[k }22,, and {&[k]}2, that asymptotically approaches
zero.

Algorithm 4.1: User i's Update Algorithm

1) Parameter Initialization: Set initial ratex® € F*. Let
K=0,T=0,\ :Xl[K], andei = El[K]

2) State Initialization: Wait for all neighborsj € L;
to send their link stateg,;(T") and seti; = p;(T).
Initialize the user state, sef = z;(7') and transmit A7k
z(T) to all links inj € L;. A ande; switch values. For each € L, let {T7[k]}, 2,

3) Update User Rate:Integrate the user rate equation denote the sequence of all time instants wherswitches

values. ThenV/;” and M} are infinite for alli, ;.

t
zi(t) = / 2i(s)ds (16)  The following lemma provides a lower bound on
T L(z; 7, \) for fixed barrier parameters.
zi(t) = VUi(x(t) + Ai Z i (17) Lemma 4.3:Under the assumptions of theorem 4.1, for
) 1\ ; n :
zi(t) =7 allt=0, o AL(x(0): 7 0)
2(T) = af (18) T3 ) < =g <0 (19)
€S
wheret € [T,T+) and T+ is the time instant when We can now show that algorithms 4.1-4.2 asymptotically
one of the following conditions is true converge to the solution of the NUM problem. _
a) If z2(t) — p22 < 0 then broadcast} (T) to all Theorem 4.4:Under the assumptions @f;, A, andp in

theorem 4.1, the data rate§t) generated by algorithms 4.1-
4.2 converge asymptotically to the unique solution of the
NUM problem.

links j € £;, and sets; = 2, (T™).
b) Or if user: receives a new link statﬁ;r(TJr)

from link j € £;, sety; = puf (T).
c) Or if |z(t)| < €, then set\; = \;[K + 1] and V. SIMULATION
€; = €[K + 1]. SetK = K + 1 and notify link
j € L; that useri performed a barrier update.

4) Increment Time: SetT = T, 20 = 2} (T+) and go A Simulation Setup
to step 3. Denotes € Ula,b] if s is a random variable uniformly
A similar algorithm is executed by all linkse £. Link j  distributed on[a,b]. Given M, N, L and S, we randomly
can continuously monitor the link stafg (¢) at any timet €  generate a network with/ links and N users, whergS;| €

R. We assume there exists a monotone decreasing sequeli§e S|, j € L, |£;] € U[1,L], i € S. We make sure that

This section presents simulation results.

{7;[k]}7, that asymptotically approaches zero. at least one link (user) haS users [ links). Useri is
Algorithm 4.2: Link j's Update Algorithm assignedU; (z;) = «;logz;, wherewa; € U[0.8,1.2]. Link
1) Parameter Initialization: SetK = 0,7 =0, 7, = J is assigned capacity; € /[0.8,1.2]. Both algorithms are

7,;[K] and setl; = 0 for eachi € S;. simulated. The optimal rate* and its corresponding utility
2) State Initialization Measure the local link state. Trans-U™* are calculated using a global optimization technique.

mit 1, (T) to all usersi € S; and seti; = u;(T). Define error as (for both algorithms)

Wait for users to return;(7") for all ¢ € S;, and set 7

) " ’ oty = | LA =07 (20)

3) Link Update: Continuously monitor the link state
w;i(t) forall ¢ € [T, T1) whereT™ is the time instant
when one of the following events occur

where z(k) is the rate at thekth iteration. e(k) is the
‘normalized deviation’ from the optimal point at theth
iteration. In both algorithms, we count the number of it-
a) If p Z izf < TS (ui(t) — py)° erations K for e(k) to decrease to and stay in the neigh-
i€S; L borhood{e(k)|e(k) < eq}. In dual decomposition, message



passings from the links to the users occur at each iterati@®composition, which scales superlinearly with resped,to
synchronously. SdX is a measure of the total number ofour algorithm on the other hand is virtually scale-free.
message exchanges. In our event-triggered algorithmtsven

occur asynchronously. We add the total number of triggered _

events and the number of message passings associated WithScalability with respect td.

the barrier parameter updates, and divide this number by

M. This works as an equivalent iteration numbisr for This simulation is similar to subsection V-B except that
our event-triggered algorithm, and is a measure of the tot4€ vary L from 4 to 18 instead ofS. Figure 2 plotsk (in
number of message exchanges. logarithm scale) as a function df for both algorithms. For

The default settings are as follows:= 0.5, eg = 1%, ©OUr algorithm, wherl increases from to 18, mx does not
M =60. N = 150. L = 8 § — 15. Initial condition Show noticeable increase, and it varies betwggand224.
2;(0) = 0.95minjez c;/N, Vi € S, which is kept inFs. 0K varies betweer4 and88. We notice that, however, our

3 - . -] ] ) ) . . . e
Choosing the initial conditions can be done in a distribute§vent-triggered algorithm has worse performance whés

way through message passings, however, we will not discu§§;a"' For dual decompositiomx increases from.774 x

this issue here. In dual decomposition, initigl= 0 for j ¢ to 8'231 x 10°. 0K at the same time increases from
£, and the step size is calculated using equation 5. In ourV0-183x10° t0 1.26 x 10°. Our event-triggered algorithm is up

algorithm, {X;[k]}3.,, {&:[k]}5%,. {7;[k]}32, are chosen as to two order magnitude faster than the dual decomposition,

{01732, {5 x 0.17}92, {017}, respectively. and is virtually scale-free with respect fo
B. Scalability with respect t& ‘

In this simulation, we fixA/, N, L and varyS from 7 .
to 26. For eachS, both algorithms were rur300 times, .
and each time a random network which satisfies the above
specification is generated. The mean, and standard devi-
ation o of K are computed for eacH. m; works as our - . 7
criteria for comparing the scalability of the two algoritam , e O A
Figure 1 plots the iteration numbéf (in logarithm scale) L ]
as a function ofS for both algorithms. The asterisks above
representny for dual decomposition, while the circles be-
low correspond to our event-triggered algorithm. The dbtte ‘
vertical line around each asterisk and circle correspoads t A j o
the interval [mK — o, mi + UK] for each differentS Fig. 2. Iteration numbelK as a function ofL for both algorithms.

denoted by ther-axis.
The reason the event-triggered algorithm has worse perfor-
T T T T mance at small is beacuse the parameters we choose work
i poorly for those cases. The choice of barrier parameters can
e sometimes greatly affect the performance of our algorithm.
et ’ We will investigate how to optimally choose these paranseter
Lt in future work.

10°

VI. CONCLUSION
Peeset Tl This paper presents an event-triggered distributed NUM
algorithm based on the barrier methods. Simulation results
s suggest that the proposed algorithm is scale-free withesp
. to two measures of network size, and reduces the number of
Fig. 1. Iteration numbe as a function ofS for both algorithms. message exchanges by up to two orders of magnitude when
compared to existing dual decomposition algorithms.
For our event-triggered algorithm, wheéhincreases from
7 to 26, myx does not show noticeable increase, and it
varies betweef3 and192. The standard deviation, varies VIlI. APPENDIX
between20 and80. For dual decompositionn g increases
from 0.148 x 10* to 1.040 x 10% ok at the same time A. Proof of Theorem 4.1
increases from0.197 x 10% to 1.222 x 103. Our event-
triggered algorithm is up to two order magnitude faster than  Proof: For convenience, we do not explicitly include
the dual decomposition. We can also see that, unlike dutine dependence in the proof. For ali> 0 we have
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—L(:C;T, )\) Zl[VUz('rz) - Z,ujAjz]
i=1 j=1
N 1 1 M
> Y 55— 5D (= i) Al (21)
i=1 j=1
1 N 1 N M
> 52—y D YLDl — )AL 5(22)
i=1 i=1 j=1
1 N 1 M
> 52 A5 > IS - i)’ (23)
=1 Jj=1
Consider the termp 3" | 27, we have
1 & 1 o1
- 22 = — L=73? 24
2p;zl 2,,; =% (24)
M N
= —pZZ—AZAnJr pz - L= A2(25)
j=1i=1
RemembetL;| < L for i € S, this means
N
r . 1 2 52
—L(z;7, ) > B ;[Zz - pE]+
1 & 1
52 P2 A IS — i)' e (26)
j=1 i€S;

This means if the inequalities in equations 14 and 15 holdince g_L

then L(:c 7,A) < 0 is guaranteed for alf. Using the prop-
erties ofU;, we know for any fixedr and \, L(z; 7, \) has
an unique minimizerz*(7, A). Suppose the corresponding
Lagrangian isL(z*; 7, A) and defineV (x) = L(z;7,A) —
L(z*;7,\). Itis trivial to seeV(z) is a Lyapunov function
for the system. Moreovel/ (z) = 0 meansL(z; 7, \) = 0
this can only happen at*(r,A). As a result,z*(r, \) is
asymptotically stable. Proof complete. ]

B. Proof of Lemma 4.2

Proof: We will first show thatM? is infinite for all
1 €8, then showMjL is infinite for all j € L.

Rememben,; ande; are switched according to\; [k]}3°,
and{€;[k]}?2,. This means after finite or infinite switches,
they will converge to their equilibria\}, € respectively
[12]. Assume); ande¢; are at the equilibrium, then by the
algorithm, for each linkj, 7; is also at its equilibrium. This
means we now have fixed*, \*, ¢*. Suppose at least one
userr has a nonzero equilibriumjf. From theorem 4.1z,.(¢)
enters thelz,.(t)| < e, neighborhood in finite time for any

¢, > 0. If we chooseg, to be any element in the sequence

{& [k]}72, that is smaller thar;, then a user switch will

occur for user according to the algorithm, which contradicts

the assumption that, is already at its equilibrium. This
meanse; = 0, Vi € S. As a result, we know for each user
i, M7 is infinite.

Next we show for each link, MjL is also infinite. Define
TO® = max;es TH0]. Then ont € [0,7], each user

each linkj € £ also has completed at least one switch.
Repeatedly using this argument, we can partitjont+oo)
into |y, [7), 7(*:+1)). On each time interval, each link
j € L has completed at least one switch. Sifdg is infinite

for eachi, there are infinite such intervals. This med\a’#

is also infinite for eacty € £. Proof complete. [ ]

C. Proof of Lemma 4.3 (Can be easily shown.)
D. Proof of Theorem 4.4

Proof: By lemma 4.2, there are infinite user switches
for each user. Le{T[k]};2, be the sorted sequence of all

the elements i{T}[k] 24:0 for all € S. We can partition

[0, +00) into Uy [T[k], T[k + 1]). Here T'[k] is the time
instant when a user barrier switch occurs for any user. On
[T[k], Tk + 1]), we have fixedr, A, e. By lemma 4.3,

N N

whereé;(t) = &k — 1], t < [T’\[k] k[Ic +1)).

Define f(t) ——ZZ L€2(t), Also Vi € S, define
gi(t) = &(t). Then f(¢) and g;(t) are nondecreasing
functions oft that converges t®. This means|z;(¢)| and
L(x;7,)\) converge to zero as — oo. From equation 26
and the user and link events in algorithms 4.1-4.2, we get

22(t) < L(I;T, A) <0

l\JIO’Y

|Z1( )| < 61

l\JIO’Y

oL N
tlggo{—a—} = lim z(t) — lim > (u;(t) — 1;(£)) = 0
JEL:
- is a continuous function ofz, we have
lim—oo x;(t) = z},Vi € S. This completes the proof. ®
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