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Abstract— Many problems associated with networked sys-
tems can be formulated as network utility maximization (NUM)
problems. Dual decomposition is a widely used distributed al-
gorithm that solves the NUM problem. This approach, however,
uses a step size that is inversely proportional to measures
of network size such as maximum path length or maximum
neighborhood size. As a result, the number of messages ex-
changed between nodes by dual decomposition scales poorly
with respect to these measures. This paper investigates theuse of
an event-triggered communication scheme in distributed NUM
algorithms. Under event triggering, each agent broadcaststo its
neighbors when a local “error” signal exceeds a state dependent
threshold. In particular, this paper proposes an event-triggered
distributed NUM algorithm based on barrier methods. The
paper establishes state-dependent event-triggering thresholds
under which the proposed algorithm converges to the optimal
solution of the NUM problem. Simulation results suggest
that the proposed algorithm reduces the number of message
exchanges by up to two orders of magnitude, and is scale-free
with respect to the above two measures of network size.

I. I NTRODUCTION

A networked system is a collection of subsystems where
individual subsystems exchange information over some com-
munication network. Many problems in networked systems,
like distributed control of sensor-actuator networks [1],re-
source allocation in wireless communication networks [2]
[3] and congestion control in wired communication networks
[4] [5], fall into the general framework of Network Utility
Maximization (NUM) problems. NUM problems maximize
a global separable measure of the networked system’s per-
formance subject to linear constraints on resources.

A variety of distributed algorithms have been proposed to
solve the NUM problem [5] [6] [7] after Kelly’s seminar
work [4]. Among all existing algorithms, the dual decom-
position approach by Low et al. [5] is the most widely
used algorithm for the NUM problem. Low et al. showed
that their dual decomposition algorithm was stable for a
step size that is inversely proportional to two important
measures of network size: the maximum length pathL,
and the maximum number of neighborsS. So as these two
measures get large, the step size becomes extremely small.
Step size determines the number of computations required
for the algorithm’s convergence. Under dual decomposition,
system agents exchange information at each iteration, so that
step size also determines the message passing complexity
of the algorithm. Therefore if we use the “stabilizing” step
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size, dual decomposition will have a message complexity that
scales in a super-linear manner with those two measures of
network size,L andS.

For many networked systems this type of message passing
complexity may be unacceptable. This is particularly true
for systems communicating over a wireless network. In
such systems, the energy required for communication can
be significantly greater than the energy required to perform
computation [8].

This paper presents one way of reducing the message
passing complexity of distributed NUM algorithms. It has
recently been demonstrated [9] that event-triggering in state
feedback control systems can greatly lengthen the average
sampling period of such systems. These results suggest that
the use of event-triggering in a suitable NUM algorithm
may significantly reduce the message passing complexity
experienced by such algorithms. This paper presents a NUM
algorithm based on barrier methods that uses event-triggered
message passing. We prove that the proposed algorithm
converges to the global optimal solution of the NUM prob-
lem. Simulations suggest that the resulting algorithm has a
message passing complexity that is significantly lower than
dual decomposition algorithms.

The rest of the paper is organized as follows. Section
II formally states the NUM problem and reviews the dual
decomposition algorithm. The event-triggered optimization
algorithm is based on a barrier method solution to the NUM
problem which is described in section III. Section IV presents
our event-triggered distributed algorithm based on barrier
methods, and proves its convergence. Simulation results are
shown in section V, and section VI concludes the paper.

II. D UAL DECOMPOSITIONNUM A LGORITHM

NUM problem [4] considers a network ofN users and
M links. We letS = {1, · · · , N} denote the set of users
and L = {1, · · · , M} denote the set of links. Each user
generates a flow with a specified data rate. Each flow may
traverse several links before reaching its destination. The set
of links that are used by useri ∈ S will be denoted asLi

and the set of users that are using linkj ∈ L will be denoted
asSj . The NUM problem takes the form

maximize: U(x) =
∑

i∈S Ui(xi)
subject to: Ax ≤ c x ≥ 0

(1)

where x = [x1, ..., xN ]T and xi ∈ R is user i’s data
rate.A ∈ R

M×N is the routing matrix mapping users onto
links andc ∈ R

M is a vector of link capacities. Theji’th
component,Aji, is 1 if user i’s flow traverses linkj and is



zero otherwise. Thejth row of Ax represents the total data
rates going through linkj, which cannot exceed its capacity
cj . The cost functionU is the sum of the userutility functions
Ui(xi). These utility functions represent the reward [4][5]
useri gets by transmitting at ratexi.

NUM problems are often solved using dual decomposition
[5]. The algorithm examines the dual of the NUM problem,
which is

minimize: maxx≥0

{
∑

i∈S Ui(xi) − pT (Ax − c)
}

subject to: p ≥ 0
(2)

wherep =
[

p1 · · · pM

]T
is the Lagrange multiplier

vector (which can be viewed as the price for using each link
[4]) associated with the inequality constraintAx ≤ c. If x∗

andp∗ are vectors solving the dual problem, then it can be
shown thatx∗ also solves the original NUM problem.

Low et al. [5] established conditions under which a pair
of recursions would generate a sequence of user rates,
{x[k]}∞k=0, and link prices,{p[k]}∞k=0, that asymptotically
converge to a solution of the dual problem. Given initial
x[0] andp[0], then for alli ∈ S andj ∈ L, we let

xi[k + 1] = arg max
xi≥0







Ui(xi[k]) − xi[k]
∑

j∈Li

pj [k])







(3)

pj [k + 1] = max







0, pj [k] + γ







∑

i∈Sj

xi[k] − cj













(4)

for k = 0, · · · ,∞. It is showed that a stabilizing step size is

0 < γ < γ∗ =
−2 max(i,xi) ∇

2Ui(xi)

LS
(5)

where L is the maximum number of links any user uses
and S is the maximum number of users any link has. We
can conclude that the computational complexity of dual
decomposition (as measured by the number of algorithm
updates) scales superlinearly withL andS.

III. B ARRIER METHOD NUM A LGORITHM

The event-triggered algorithm presented in this paper is
based on a barrier method for the NUM problem. Barrier
type algorithms have only recently been proposed for use
on the NUM problem. This recent work uses a special
type of barrier method known as the interior-point method
[10]. Primal-dual interior point methods, however, do not
distribute across the network. We therefore have to develop
a barrier method that easily distributes across the network.

In barrier methods, a constrained problem is converted
into a sequence of unconstrained problems, which involve an
added high cost for approaching the boundary of the feasible
region via its interior. The added cost is parameterized by
the barrier parameter. As the barrier parameter decreases to
zero, the added cost becomes increasingly inconsequential.
This progressively allows the iterates to approach the optimal
point on the boundary. As the barrier parameter goes to zero,
the optimal point on the boundary is reached.

Traditional barrier algorithms [11] have only one barrier
parameter. Our algorithms consider a more general case in
which a barrier parameter is associated with each constraint.
Let Fs = {x : x > 0, Ax < c} denote the strict feasible
region. The Lagrangian associated with NUM problem is

L(x; τ, λ) = −
∑

i∈S

Ui(xi) −
∑

i∈S

λi log xi

−
∑

j∈L

τj log(cj − aT
j x) (6)

where τ = [τ1, · · · , τM ] is a vector of barrier parameters
associated with the links inL and λ = [λ1, · · · , λN ] is
a vector of barrier parameters associated with the users in
S. The vectoraT

j = [Aj1, · · · , AjN ] is the jth row of the
routing matrixA.

Let {τ j [k]}∞k=0 and{λi[k]}∞k=0 be sequences of link (j ∈
L) and user (i ∈ S) barriers, respectively, that are monotone
decreasing to zero. The barrier method solves the NUM
problem by approximately minimizingL(x; τ [k], λ[k]) for
the barrier sequences defined above. Letx∗[k] denote the
approximate minimizer forL(x; τ [k], λ[k]). By the barrier
method in [11], the sequence of approximate minimizers
{x∗[k]}∞k=0 converges to the optimal point of the NUM
problem. The algorithm is formally stated below.

1) Initialization: Select initial ratex0 ∈ Fs. SetK = 0,
τj = τ j [K], λi = λi[K], i ∈ S, j ∈ L, andǫ = ǫ[K].

2) Main Recursive Loop:
Do until:

∥

∥∇xL(x0, τ, λ)
∥

∥ ≤ ǫd

a) Approximately Minimize L(x; τ, λ):
Do until:

∥

∥∇xL(x0; τ, λ)
∥

∥ ≤ ǫ

x = x0 − γ∇xL(x0; τ, λ) (7)

x0 = x

b) Update Parameters:
Set τj = τ j [K + 1], λi = λi[K + 1], i ∈ S,
j ∈ L, andǫ = ǫ[K + 1]. SetK = K + 1.

3) Setx∗ = x0.
In the algorithm above,{ǫ[k]}∞k=0 is a sequence of tol-

erance levels that are monotone decreasing to zero.ǫd is
a terminating tolerance level.γ is a sufficiently small step
size. Note that the inner recursion shown in step 2a is
approximately minimizingL(x; τ, λ) for a fixed set of barrier
vectors using a simple gradient following method.

The computations above can be easily distributed among
the users and links. We will see that in our event-triggered
distributed implementation of the algorithm in section IV.

In dual decomposition and the barrier algorithm shown
above, the exchange of information between users and links
happens each time the gradient following update is ap-
plied. This means that the number of messages passed is
equal to the number of updates required for the algorithm’s
convergence. That number is determined by the step-size,
which may be small, so that the number of messages
passed between links and users will be large. The following
section presents such an event-triggered implementation of
the barrier method NUM algorithm.



IV. EVENT-TRIGGEREDNUM BARRIER ALGORITHM

Implementing the NUM barrier algorithm in a distributed
manner requires communication between users and links.
An event-triggered implementation of the algorithm assumes
that the transmission of messages is triggered by some local
error signal crossing a state-dependent threshold. The main
problem is to determine a threshold condition that results in
message streams ensuring the asymptotic convergence of the
algorithm to the problem’s solution.

We begin by considering the minimization of
L(x; τ [k], λ[k]) for a fixed set of barrier vectors (i.e.
fixed k). Subsection IV-A determines an event threshold
condition ensuring the convergence of the local update
(equation 7) to this minimizer. Subsection IV-B then
considers the case when the barrier vectors areswitchedas
we changek. In particular, we present a distributed update
strategy for the parameters that ensures the convergence of
the algorithm to the NUM problem’s solution.

A. Fixed Barrier Parameter case

This subsection considers the problem of minimizing
L(x; τ, λ) for fixed τ andλ. We can search for the minimizer
using a gradient following algorithm

xi(t) =

∫ t

0





∂Ui(xi(s))

∂xi

+
λi

xi(s)
−

∑

j∈Li

µj(s)



 ds (8)

for each useri ∈ S and where

µj(t) =
τj

cj − aT
j x(t)

(9)

Equation 8 is the continuous-time version of the update
in equation 7. Note that in equation 8, useri can compute
its rate only based on the information from itself, and the
information of µj from those links that are being used by
useri. We can think ofµj as thejth link’s local state. From
equation 9, linkj only needs to be able to measure the total
flow that goes through itself. All of this information is locally
available so the update of the user rate can be done in a
distributed manner.

In the above equation, the link state information is avail-
able to the user in a continuous manner. We now consider
an event-triggeredversion of equation 8. We assume that
the user accesses asampledversion of the link state. In
particular, let’s associate a sequence ofsampling instants,
{T L

j [ℓ]}∞ℓ=0 with the jth link. The timeT L
j [ℓ] denotes the

instant when thejth link samples its link stateµj for the
ℓth time and transmits that state to usersi ∈ Sj . We can
therefore see that at any timet ∈ ℜ, the sampled link state
is a piecewise constant function of time in which

µ̂j(t) = µj(T
L
j [ℓ]) (10)

for all ℓ = 0, · · · ,∞ and anyt ∈ [T L
j [ℓ], T L

j [ℓ + 1]). The
“event-triggered” version of equation 8 takes the form

xi(t) =

∫ t

0





∂Ui(xi(s))

∂xi

+
λi

xi(s)
−

∑

j∈Li

µ̂j(s)



 ds (11)

for all ℓ and anyt ∈ [T L
j [ℓ], T L

j [ℓ + 1]).
Definezi(t) as

zi(t) = ẋi(t) = ∇Ui(xi(t)) +
λi

xi(t)
−

∑

j∈Li

µ̂j(t) (12)

for all i ∈ S. We will refer to zi as theith user state. We
associate a sequence{T S

i [ℓ]}∞ℓ=0 to each useri ∈ S. The
time T S

i [ℓ] is the ℓth time when useri transmits its user
state to all linksj ∈ Li. At any time t ∈ ℜ, the sampled
user state is a piecewise constant function of time satisfying

ẑi(t) = zi(T
S
i [ℓ]) (13)

for all ℓ = 0, · · · ,∞ and anyt ∈ [T S
i [ℓ], T S

i [ℓ + 1]).
We are now in a position to state the main theorem of this

subsection. The proofs of all the theorems and lemmas in
the paper will be found in the appendix.

Theorem 4.1:Consider the Lagrangian in equation 6
where Ui are twice differentiable, strictly increasing, and
strictly concave andA is full rank. Assume fixedλ > 0,
τ > 0 and initial user ratesxi(0) ∈ Fs. Consider the
sequences{T S

i [ℓ]}∞ℓ=0 and{T L
j [ℓ]}∞ℓ=0 for eachi ∈ S, and

eachj ∈ L, respectively. For eachi ∈ S, let the user rate,
xi(t), satisfy equation 11 with sampled link states given by
equation 10. For eachi ∈ S let the user statezi(t) satisfy
equation 12 and assume linkj’s measurement of the user
state satisfies equation 13.

Let ρ be a constant such that0 < ρ < 1. Assume that for
all i ∈ S and allℓ = 0, · · · ,∞, that

z2
i (t) − ρẑ2

i (t) ≥ 0 (14)

for t ∈ [T S
i [ℓ], T S

i [ℓ + 1]). Further assume that for allj ∈ L
and allℓ = 0, · · · ,∞ that

ρ
∑

i∈Sj

1

L
ẑ2

i (t) − LS (µj(t) − µ̂j(t))
2
≥ 0 (15)

for t ∈ [T L
j [ℓ], T L

j [ℓ + 1]). Then the user ratesx(t) asymp-
totically converge to the unique minimizer ofL(x; τ, λ).

Theorem 4.1 provides the basis for constructing an event-
triggered message-passing protocol. This theorem assertsthat
we can use the violation of the inequalities in equations 14
and 15 to trigger the sampling and transmission of link/user
states across the network. At timet = T S

i [ℓ], the inequality
in equation 14 is automatically satisfied. After this sampling
instant, zi(t) continues to change until the inequality is
violated. We let that time instant beT S

i [ℓ + 1] and transmit
the sampled user state to the link. Similarly, linkj compares
the square of the error between the last transmitted link
stateµ̂j and the current link stateµj . At the sampling time
T L

j [ℓ], this difference is zero and the inequality is trivially
satisfied. After that time,µj(t) continues to change or the
link may receive an updated user stateẑi that may result in
the violation of the inequality. We let that time be the next
sampling instant,T L

j [ℓ + 1] and then transmit the sampled
link stateµ̂j to the user.

The threhold conditions shown in equations 14-15 there-
fore provide the basis for an event-triggered scheme to solve



the local minimization problem in step 2a of the NUM barrier
algorithm presented earlier.

B. The switching barrier parameter case

This subsection presents a distributed update strategy for
the barrier parameters and proves the convergence of the
resulting event-triggered distributed algorithm.

For a functionf(t) on t ∈ [0, T ), denotef+(T ) as the
limit of f(t) when t approachesT from the left hand side.

Each useri ∈ S executes the following algorithm. It
is continuously transmitting data at ratexi(t) at time t.
We assume there exists monotone decreasing sequences of
{λi[k]}∞k=0, and {ǫi[k]}∞k=0 that asymptotically approaches
zero.

Algorithm 4.1: User i’s Update Algorithm
1) Parameter Initialization: Set initial ratex0 ∈ Fs. Let

K = 0, T = 0, λi = λi[K], andǫi = ǫi[K].
2) State Initialization: Wait for all neighborsj ∈ Li

to send their link statesµj(T ) and setµ̂j = µj(T ).
Initialize the user state, set̂zi = zi(T ) and transmit
zi(T ) to all links in j ∈ Li.

3) Update User Rate:Integrate the user rate equation

xi(t) =

∫ t

T

zi(s)ds (16)

zi(t) = ∇Ui(xi(t)) +
λi

xi(t)
−

∑

j∈Li

µ̂j (17)

xi(T ) = x0
i (18)

where t ∈ [T, T +) and T + is the time instant when
one of the following conditions is true

a) If z2
i (t)− ρẑ2

i ≤ 0 then broadcastz+
i (T +) to all

links j ∈ Li, and set̂zi = z+
i (T +).

b) Or if user i receives a new link stateµ+
j (T +)

from link j ∈ Li, set µ̂j = µ+
j (T +).

c) Or if |zi(t)| ≤ ǫi, then setλi = λi[K + 1] and
ǫi = ǫi[K + 1]. SetK = K + 1 and notify link
j ∈ Li that useri performed a barrier update.

4) Increment Time: SetT = T +, x0
i = x+

i (T +) and go
to step 3.

A similar algorithm is executed by all linksj ∈ L. Link j
can continuously monitor the link stateµj(t) at any timet ∈
ℜ. We assume there exists a monotone decreasing sequence
{τ j [k]}∞k=0 that asymptotically approaches zero.

Algorithm 4.2: Link j’s Update Algorithm
1) Parameter Initialization: Set K = 0, T = 0, τj =

τ j [K] and setIi = 0 for eachi ∈ Sj .
2) State Initialization Measure the local link state. Trans-

mit µj(T ) to all usersi ∈ Sj and setµ̂j = µj(T ).
Wait for users to returnzi(T ) for all i ∈ Sj , and set
ẑi = zi(T ).

3) Link Update: Continuously monitor the link state
µj(t) for all t ∈ [T, T +) whereT + is the time instant
when one of the following events occur

a) If
ρ

∑

i∈Sj

1

L
ẑ2

i ≤ LS (µj(t) − µ̂j)
2

then set̂µj = µ+
j (T +) and broadcast the updated

link stateµ+
j (T +) to all usersi ∈ Sj .

b) Or if link j receives a new user statez+
i (T +) for

any i ∈ Sj , then set̂zi = z+
i (T +).

c) Or if link j receives notification that useri
performed a barrier update, setIi = 1.

4) Update Barrier Parameter: If Ii = 1 for all i ∈ Sj ,
then setτj = τ j [K + 1], resetIi = 0 for all i ∈ Sj .
SetK = K + 1.

5) Increment Time: SetT = T + and go to step 3.
In the preceding algorithms, the parametersλi, τj , andǫi

are switched according to the parameter sequences{λi[k]},
{τ j [k]}, and {ǫi[k]}, respectively. These switches occur
at discrete time instants. Provided an infinite number of
switches occur, we can guarantee that the sequence of pa-
rameters used by the algorithm also asymptotically approach
zero. The following lemma establishes that this occurs.

Lemma 4.2:In algorithms 4.1- 4.2. For eachi ∈ S, let

{T λ
i [k]}

MS
i

k=0 denote the sequences of all time instants when

λi and ǫi switch values. For eachj ∈ L, let {T τ
j [k]}

ML
j

k=0

denote the sequence of all time instants whenτj switches
values. ThenMS

i andML
j are infinite for alli, j.

The following lemma provides a lower bound on
L̇(x; τ, λ) for fixed barrier parameters.

Lemma 4.3:Under the assumptions of theorem 4.1, for
all t ≥ 0,

−
5

2

∑

i∈S

z2
i (t) ≤

dL(x(t); τ, λ)

dt
≤ 0 (19)

We can now show that algorithms 4.1-4.2 asymptotically
converge to the solution of the NUM problem.

Theorem 4.4:Under the assumptions ofUi, A, andρ in
theorem 4.1, the data ratesx(t) generated by algorithms 4.1-
4.2 converge asymptotically to the unique solution of the
NUM problem.

V. SIMULATION

This section presents simulation results.

A. Simulation Setup

Denotes ∈ U [a, b] if s is a random variable uniformly
distributed on[a, b]. Given M , N , L and S, we randomly
generate a network withM links andN users, where|Sj | ∈
U [1, S], j ∈ L, |Li| ∈ U [1, L], i ∈ S. We make sure that
at least one link (user) hasS users (L links). User i is
assignedUi(xi) = αi log xi, whereαi ∈ U [0.8, 1.2]. Link
j is assigned capacitycj ∈ U [0.8, 1.2]. Both algorithms are
simulated. The optimal ratex∗ and its corresponding utility
U∗ are calculated using a global optimization technique.

Define error as (for both algorithms)

e(k) =
∣

∣

∣

U(x(k)) − U∗

U∗

∣

∣

∣ (20)

where x(k) is the rate at thekth iteration. e(k) is the
‘normalized deviation’ from the optimal point at thekth
iteration. In both algorithms, we count the number of it-
erationsK for e(k) to decrease to and stay in the neigh-
borhood{e(k)|e(k) ≤ ed}. In dual decomposition, message



passings from the links to the users occur at each iteration
synchronously. SoK is a measure of the total number of
message exchanges. In our event-triggered algorithm, events
occur asynchronously. We add the total number of triggered
events and the number of message passings associated with
the barrier parameter updates, and divide this number by
M . This works as an equivalent iteration numberK for
our event-triggered algorithm, and is a measure of the total
number of message exchanges.

The default settings are as follows:ρ = 0.5, ed = 1%,
M = 60, N = 150, L = 8, S = 15. Initial condition
xi(0) = 0.95 minj∈L cj/N , ∀i ∈ S, which is kept inFs.
Choosing the initial conditions can be done in a distributed
way through message passings, however, we will not discuss
this issue here. In dual decomposition, initialpj = 0 for j ∈
L, and the step sizeγ is calculated using equation 5. In our
algorithm,{λi[k]}∞k=0, {ǫi[k]}∞k=0, {τ j [k]}∞k=0 are chosen as
{0.1k}∞k=0, {5 × 0.1k}∞k=0, {0.1k}∞k=0, respectively.

B. Scalability with respect toS

In this simulation, we fixM , N , L and varyS from 7
to 26. For eachS, both algorithms were run300 times,
and each time a random network which satisfies the above
specification is generated. The meanmK and standard devi-
ation σK of K are computed for eachS. mk works as our
criteria for comparing the scalability of the two algorithms.
Figure 1 plots the iteration numberK (in logarithm scale)
as a function ofS for both algorithms. The asterisks above
representmK for dual decomposition, while the circles be-
low correspond to our event-triggered algorithm. The dotted
vertical line around each asterisk and circle corresponds to
the interval [mK − σK , mK + σK ] for each differentS
denoted by thex-axis.
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Fig. 1. Iteration numberK as a function ofS for both algorithms.

For our event-triggered algorithm, whenS increases from
7 to 26, mK does not show noticeable increase, and it
varies between93 and192. The standard deviationσK varies
between20 and80. For dual decomposition,mK increases
from 0.148 × 104 to 1.040 × 104. σK at the same time
increases from0.197 × 103 to 1.222 × 103. Our event-
triggered algorithm is up to two order magnitude faster than
the dual decomposition. We can also see that, unlike dual

decomposition, which scales superlinearly with respect toS,
our algorithm on the other hand is virtually scale-free.

C. Scalability with respect toL

This simulation is similar to subsection V-B except that
we varyL from 4 to 18 instead ofS. Figure 2 plotsK (in
logarithm scale) as a function ofL for both algorithms. For
our algorithm, whenL increases from4 to 18, mK does not
show noticeable increase, and it varies between95 and224.
σK varies between24 and88. We notice that, however, our
event-triggered algorithm has worse performance whenL is
small. For dual decomposition,mK increases from1.774×
103 to 8.631 × 103. σK at the same time increases from
0.183×103 to 1.26×103. Our event-triggered algorithm is up
to two order magnitude faster than the dual decomposition,
and is virtually scale-free with respect toL.
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Fig. 2. Iteration numberK as a function ofL for both algorithms.

The reason the event-triggered algorithm has worse perfor-
mance at smallL is beacuse the parameters we choose work
poorly for those cases. The choice of barrier parameters can
sometimes greatly affect the performance of our algorithm.
We will investigate how to optimally choose these parameters
in future work.

VI. CONCLUSION

This paper presents an event-triggered distributed NUM
algorithm based on the barrier methods. Simulation results
suggest that the proposed algorithm is scale-free with respect
to two measures of network size, and reduces the number of
message exchanges by up to two orders of magnitude when
compared to existing dual decomposition algorithms.

VII. A PPENDIX

A. Proof of Theorem 4.1

Proof: For convenience, we do not explicitly include
time dependence in the proof. For allt ≥ 0 we have



−L̇(x; τ, λ) =

N
∑

i=1

zi[∇Ui(xi) −

M
∑

j=1

µjAji]

≥
N

∑

i=1







1

2
z2

i −
1

2
[

M
∑

j=1

(µj − µ̂j)Aji]
2







(21)

≥
1

2

N
∑

i=1

z2
i −

1

2

N
∑

i=1







|Li|

M
∑

j=1

[(µj − µ̂j)Aji]
2







(22)

≥
1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 (23)

Consider the term1
2ρ

∑N

i=1 ẑ2
i , we have

1

2
ρ

N
∑

i=1

ẑ2
i =

1

2
ρ

N
∑

i=1

L
1

L
ẑ2

i (24)

=
1

2
ρ

M
∑

j=1

N
∑

i=1

1

L
ẑ2

i Aji +
1

2
ρ

N
∑

i=1

(L − |Li|)
1

L
ẑ2

i (25)

Remember|Li| ≤ L for i ∈ S, this means

−L̇(x; τ, λ) ≥
1

2

N
∑

i=1

[z2
i − ρẑ2

i ] +

1

2

M
∑

j=1







ρ
∑

i∈Sj

1

L
ẑ2

i − LS(µj − µ̂j)
2







(26)

This means if the inequalities in equations 14 and 15 hold,
then L̇(x; τ, λ) ≤ 0 is guaranteed for allt. Using the prop-
erties ofUi, we know for any fixedτ andλ, L(x; τ, λ) has
an unique minimizerx∗(τ, λ). Suppose the corresponding
Lagrangian isL(x∗; τ, λ) and defineV (x) = L(x; τ, λ) −
L(x∗; τ, λ). It is trivial to seeV (x) is a Lyapunov function
for the system. Moreover,̇V (x) = 0 meansL̇(x; τ, λ) = 0,
this can only happen atx∗(τ, λ). As a result,x∗(τ, λ) is
asymptotically stable. Proof complete.

B. Proof of Lemma 4.2

Proof: We will first show thatMS
i is infinite for all

i ∈ S, then showML
j is infinite for all j ∈ L.

Rememberλi andǫi are switched according to{λi[k]}∞k=0

and{ǫi[k]}∞k=0. This means after finite or infinite switches,
they will converge to their equilibriaλ∗

i , ǫ∗i respectively
[12]. Assumeλi and ǫi are at the equilibrium, then by the
algorithm, for each linkj, τj is also at its equilibrium. This
means we now have fixedτ∗, λ∗, ǫ∗. Suppose at least one
userr has a nonzero equilibriumǫ∗r . From theorem 4.1,zr(t)
enters the|zr(t)| ≤ ǫr neighborhood in finite time for any
ǫr > 0. If we chooseǫr to be any element in the sequence
{ǫr[k]}∞k=0 that is smaller thanǫ∗r , then a user switch will
occur for userr according to the algorithm, which contradicts
the assumption thatǫr is already at its equilibrium. This
meansǫ∗i = 0, ∀i ∈ S. As a result, we know for each user
i, MS

i is infinite.
Next we show for each linkj, ML

j is also infinite. Define
T (0) = maxi∈S T λ

i [0]. Then on t ∈ [0, T (0)], each user
i ∈ S has completed at least one switch. By algorithm 4.2,

each link j ∈ L also has completed at least one switch.
Repeatedly using this argument, we can partition[0, +∞)
into

⋃∞

k=0[T
(k), T (k+1)). On each time interval, each link

j ∈ L has completed at least one switch. SinceMS
i is infinite

for eachi, there are infinite such intervals. This meansML
j

is also infinite for eachj ∈ L. Proof complete.

C. Proof of Lemma 4.3 (Can be easily shown.)

D. Proof of Theorem 4.4

Proof: By lemma 4.2, there are infinite user switches
for each user. Let{T [k]}∞k=0 be the sorted sequence of all

the elements in{T λ
i [k]}

MS
i

k=0 for all i ∈ S. We can partition
[0, +∞) into

⋃∞

k=0[T [k], T [k + 1]). Here T [k] is the time
instant when a user barrier switch occurs for any user. On
[T [k], T [k + 1]), we have fixedτ, λ, ǫ. By lemma 4.3,

|zi(t)| ≤ ǫ̃i(t),−
5

2

N
∑

i=1

ǫ̃2i (t) ≤ −
5

2

N
∑

i=1

z2
i (t) ≤ L̇(x; τ, λ) ≤ 0

whereǫ̃i(t) = ǫi[k − 1], t ∈ [T λ
i [k], T λ

i [k + 1]).
Define f(t) = − 5

2

∑N
i=1 ǫ̃2i (t), Also ∀i ∈ S, define

gi(t) = ǫ̃i(t). Then f(t) and gi(t) are nondecreasing
functions of t that converges to0. This means|zi(t)| and
L̇(x; τ, λ) converge to zero ast → ∞. From equation 26
and the user and link events in algorithms 4.1-4.2, we get

lim
t→∞

{−
∂L

∂xi

} = lim
t→∞

zi(t) − lim
t→∞

∑

j∈Li

(µj(t) − µ̂j(t)) = 0

Since ∂L
∂xi

is a continuous function ofx, we have
limt→∞ xi(t) = x∗

i ,∀i ∈ S. This completes the proof.
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