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Abstract. This paper studies distributed networked systems with data
dropouts and transmission delays. We propose a decentralized event-
triggering scheme, where a subsystem broadcasts its state information
to its neighbors only when the subsystem’s local state error exceeds a
specified threshold. The novelty of this scheme is its complete decentral-
ization, which means that a subsystem’s broadcast decisions are made
using its local sampled data, the maximal allowable transmission delay
of a subsystem’s broadcast is predicted based on the local information,
a subsystem locally identifies the maximal allowable number of its suc-
cessive data dropouts, and the designer’s selection of the threshold only
requires information about an individual subsystem and its immediate
neighbors. With the assumption that the number of each subsystem’s
successive data dropouts is less than the bound identified by that subsys-
tem, if the bandwidth of the network is limited so that the transmission
delays are always greater than a positive constant, the resulting system
is globally uniformly ultimately bounded using our scheme; otherwise,
the resulting system is asymptotically stable.

1 Introduction

A networked control system (NCS) is a system wherein numerous physically cou-
pled subsystems are geographically distributed throughout the system. Control
and feedback signals are exchanged through a real-time network among the sys-
tem’s components. Specific examples of NCS include electrical power grids and
transportation networks. The networking of control effort can be advantageous
in terms of lower system costs due to streamlined installation and maintenance
costs. The introduction of real-time network infrastructure, however, raises new
challenges regarding the impact that communication reliability has on the con-
trol system’s performance. In real-time networks, information is transmitted
in discrete time rather than continuous-time. Moreover, all real networks have
bandwidth limitation that can cause delays in message delivery that may have
a major impact on overall system stability [1].

For this reason, some researchers begun investigating the timing issue in NCS.
One packet transmission problem was considered in [2], [3], where a supervisor
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summarizes all subsystem data into this single packet. As a result such schemes
may be impractical for large-scale systems. Asynchronous transmission was con-
sidered in [4], [5], [6], where derived bounds on the maximum admissible transfer
interval (MATI) that a message can be delayed while still maintaining closed-
loop system stability. All of this prior work confined its attention to control area
network (CAN) buses where centralized computers are used to coordinate the
information transmission.

One thing worth mentioning is that these schemes mentioned above require
extremely detailed models of subsystem interactions and the execution of com-
munication protocols must be done in a highly centralized manner. Both of these
requirements can greatly limit the scalability of centralized approaches to NCS.
On the other hand, because the MATI is computed before the system is de-
ployed, it must ensure adequate behavior over a wide range of possible input
disturbances. As a result, it may be conservative.

To overcome these issues, decentralized event-triggering feedback schemes
were proposed in [7] and [8] for linear and nonlinear systems, respectively, where a
subsystem broadcasts its state information to its neighbors only when “needed”.
In this case, “needed” means that some measure of the subsystem’s local state
error exceeds a specified threshold [9], [10]. In this way, event-triggering makes
it possible to reduce the frequency with which subsystems communicate and
therefore use network bandwidth in a extremely frugal manner. Most recently,
an implementation of event-triggering in sensor-network was introduced in [11].
An important assumption in all preceding work is that no data dropouts and
delays occur in such systems. In real-time network, however, especially wireless
network, data dropouts and delays always exist. Therefore, it suggests a more
comprehensive consideration of such systems.

This paper studies the distributed NCS with data dropouts and transmis-
sion delays. Unlike the prior work that modelled data dropouts as stochastic
processes using a centralized approach [12], [13], we propose a decentralized
event-triggering scheme that enables a subsystem to locally identify the maxi-
mal allowable number of its successive data dropouts. The novelty of this scheme
is its “complete” decentralization. By “complete”, it means that (1) a subsys-
tem’s broadcast decisions are made using its local sampled data, (2) the maximal
allowable transmission delay (also called “deadline”) of a subsystem’s broadcast
can be predicted based on the local information, (3) a subsystem locally identifies
the maximal allowable number of its successive data dropouts, and (4) the de-
signer’s selection of the threshold only requires information about an individual
subsystem and its immediate neighbors.

Our analysis applies to nonlinear continuous systems. With the assumption
that the number of each subsystem’s successive data dropouts is less than the
bound identified by that subsystem, if the bandwidth of the network is limited
so that the transmission delays are always greater than a positive constant,
the resulting NCS is globally uniformly ultimately bounded using our scheme;
otherwise, the resulting NCS is asymptotically stable. We use an example to
illustrate the design procedure.



The paper is organized as follows: section 2 formulates the problem; the
decentralized approach to design the local triggering event is introduced in sec-
tion 3; Transmission delays and data dropouts are considered in section 4 and
5, respectively; Simulation results are presented in section 6; In section 7, the
conclusions are drawn.

2 Problem Formulation

Consider a distributed NCS containing N subsystems, denoted as Pi. Let N =
{1, 2, · · · , N}. Zi ∈ N denotes the set of subsystems that Pi can get information
from; Di ⊂ N denotes the set of subsystems that directly drive Pi’s dynamics;
Ui ∈ N denotes the set of subsystems that can receive Pi’s broadcasted in-
formation; Si ∈ N denotes the set of subsystems who are directly driven by
Pi.

The state equation of the ith subsystem is

ẋi(t) = fi(xDi
(t), ui)

ui = γi(xZi
(t))

xi(0) = xi0. (1)

To outline the analysis, we assume xi ∈ R
n for all i. The results can be easily

extended to the case where the states have different dimensions. In equation
(1), xDi

= {xj}j∈Di
, xZi

= {xj}j∈Zi
, γi : R

n|Zi| → R
mi is the given feedback

strategy of agent i satisfying γi(0) = 0, and fi : R
n|Di| × R

mi → R
n is a given

continuous function satisfying fi(0, 0) = 0.
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Fig. 1. The infrastructure of the real-time NCS

This paper considers a real-time implementation of this distributed NCS. The
infrastructure of such an implementation is plotted in figure 1. In such a system,



Pi can only detect its own state, xi. If the local “error” signal exceeds some
given threshold, which can be detected by hardware detectors, Pi will sample
and broadcast its state information to its neighbors through a real-time network.
Therefore, Pi’s control, ui, at time t is computed based on its neighbors’ latest
broadcast states (also called “measured states”) at time t, denoted as x̂Zi

(t). We
assume that the time spent in computing the control and sending the control
back to the plant is zero. The control signal used by Pi is held constant by a
zero-order hold (ZOH) unless one of its neighbors makes another broadcast. This
means that Pi has the following state equation,

ẋi(t) = fi(xDi
(t), ui)

ui = γi(x̂Zi
(t))

xi(0) = xi0. (2)

Subsystem i’s broadcast can characterized by two monotone increasing se-
quences of time instants: the broadcast release time sequence {ri

k}
∞
k=1 and the

broadcast finishing time {f i
k}

∞
k=1, where ri

k ≤ f i
k ≤ ri

k+1 holds for all k =
1, 2, · · · ,∞. The time ri

k denotes the time when the kth broadcast is released
by Pi for transmission through the channel. At this time, we assume there is
no delay between sampling and broadcast release. The time f i

k denotes the time
when the kth broadcast information by Pi is received by its neighbors.

3 Decentralized Broadcast-triggering Events Design

In this section, we study a decentralized approach to characterize the broadcast
time sequence. Inequality constraints on each subsystem’s broadcast release and
finishing time are provided to ensure asymptotic stability of the overall system.
These constraints can be locally determined by individual subsystems. To obtain
the decentralized method, we first introduce a theorem in [8] that provide a
centralized approach to derive the time constraints on ri

k and f i
k. For notation

convenience, we define ei
k : [ri

k, f
i
k+1) → R

n as ei
k(t) = xi(t) − xi(r

i
k) for ∀t ∈

[ri
k, f

i
k+1). Notice that x̂i(t) = xi(r

i
k) for all t ∈ [f i

k, f
i
k+1).

Theorem 1 ([8]). Consider the NCS in equation (2). Assume that there exist

a smooth, proper, positive-definite function V : R
nN → R and class K functions

φi, ψi : R → R for i = 1, · · · , N such that the inequality

∑

i∈N

∂V (x)

∂xi

fi (xDi
, γi(yZi

)) ≤
∑

i∈N

−φ(i‖xi‖2) +
∑

i∈N

ψi(‖xi − yi‖2) (3)

holds for all x, y ∈ R
nN . If for any i ∈ N , there exists a constant ρi ∈ (0, 1)

such that subsystem i’s broadcast release time sequence, {ri
k}

∞
k=1, and finishing

time sequence, {f i
k}

∞
k=1, satisfy

−ρiφi(‖xi(t)‖2) + ψi(‖e
i
k(t)‖2) ≤ 0 (4)

for all t ∈ [f i
k, f

i
k+1) and all k ∈ N, then the NCS is asymptotically stable.



Theorem 1 shows that the satisfaction of equation (4) guarantees asymptotic
stability of the NCS. Based on this theorem, deriving local time constraints is
equivalent to constructing class K functions φi and ψi. The following theorem
provides a decentralized approach to design such class K functions.

Theorem 2. Consider the NCS defined in equation (2). Assume that, for any

subsystem i ∈ N , there exist a continuous, positive-definite functions Vi : R
n →

R, positive constants αi, βi, κi ∈ R, and control law γi : R
n|Zi| → R

mi satisfying

the following two conditions

∂Vi(xi)

∂xi

fi(xDi
, γi(yZi

)) ≤ −αi‖xi‖2 +
∑

j∈Di∪Zi

βj‖xj‖2 +
∑

j∈Zi

κj‖xj − yj‖2(5)

αi − |Si ∪ Ui|βi > 0 (6)

Then φi, ψi : R → R, defined by φi(s) = ais and ψi(s) = bis, satisfy equation

(4) in theorem 1, where ai = αi − |Si ∪ Ui|βi and bi = |Ui|κi.

Proof. It is easy to see that

∑

i∈N

∂V (xi)

∂xi

fi(xDi
, γi(yZi

))

≤
∑

i∈N

−αi‖xi‖2 +
∑

j∈Di∪Zi

βj‖xj‖2 +
∑

j∈Zi

κj‖xj − yj‖2

=
∑

i∈N

(−αi + |Si ∪ Ui|βi) ‖xi‖2 +
∑

i∈N

|Ui|κi‖xi − yi‖2,

where the equality is obtained by resorting the items according to index i. ⊓⊔

Remark 1. Equation (5) and (6) may have a more general form, where αi‖xi‖2,
βj‖xj‖2, and κj‖xj − yj‖2 are replaced by some class K functions. Using the
more general form, however, will require additional assumptions on those class
K functions in the later discussion, such as Lipschitz condition. It will make the
paper hard to read. To outline the main idea of this paper, we just use equation
(5) and (6) as a sufficient condition to construct φi and ψi in theorem 1.

Remark 2. Equation (5) suggests that subsystem i is finite-gain L2 stable from
({xj}j∈Di∪Zi

, {xj − yj}j∈Zi
) to xi.

We will find that it is convenient in the later work to use a slightly weaker
sufficient condition for asymptotic stability where the state error ei

k(t) is bounded
by a function of the sampled data xi(r

i
k) as stated in the following corollary.

Corollary 1. Consider the NCS in equation (2). Assume that equation (3)
holds. If for any i ∈ N , subsystem i’s broadcast release time sequence, {ri

k}
∞
k=1,

and finishing time sequence, {f i
k}

∞
k=1, satisfy

‖ei
k(t)‖2 ≤ ci‖xi(r

i
k)‖2 (7)



for all t ∈ [f i
k, f

i
k+1) and all k ∈ N, where ci :∈ R is defined by

ci =
ρiai

ρiai + bi
, (8)

for some ρi ∈ (0, 1), then the NCS is asymptotically stable.

Proof. By the definitions of ci equation (8), equation (7) is equivalent to

bi‖e
i
k(t)‖2 + ρiai‖e

i
k(t)‖2 ≤ ρiai‖xi(r

i
k)‖2. (9)

for all t ∈ [f i
k, f

i
k+1) and all k ∈ N. Therefore, we have

bi‖e
i
k(t)‖2 ≤ ρiai‖xi(r

i
k)‖2 − ρiai‖e

i
k(t)‖2

≤ ρiai‖xi(r
i
k) + ei

k(t)‖2 = ρiai‖xi(t)‖2

for all t ∈ [f i
k, f

i
k+1) and all k ∈ N. Since the hypotheses of theorem 1 are

satisfied, we can conclude that the NCS is asymptotically stable. ⊓⊔

Remark 3. The inequalities in equations (4) or (7) can both be used as the
basis for a decentralized event-triggered feedback control system. Note that both
inequalities are trivially satisfied at t = ri

k. If we let the delay be zero for each
broadcast (ri

k = f i
k) and assume there are not any data dropouts, then by

triggering the release times {rk}∞k=0 anytime before the inequalities in equations
(4) or (7) are violated, we will ensure the sampled-data system’s stability.

Theorem 2 and corollary 1 provide ways to identify the broadcast release
time, ri

k. However, we still do not know how to predict maximal allowable delays
for each broadcast. In other words, we do not have an explicit constraint on f i

k

yet. In the following section, we will consider the bounds on f i
k.

4 Event-Triggering with Delays

In this section, we quantify maximal allowable delays for each subsystems that
will not break the stability of the NCS. An upper bound on the kth broadcast
finishing time is derived in a decentralized manner as a function of the previously
sampled local states.

Before introducing the results, we would like to point out that since we
consider asymptotic stability or uniformly ultimately boundness in this paper,
it is easy to see that the state trajectory of the NCS will fall into some compact
set S ⊂ R

n. Therefore, there always exists pi > 0 such that

fi (xDi
(t), γi (x̂Zi

(t))) ≤ pi (10)

holds for any t ≥ 0 and i ∈ N .
To obtain the upper bound on the delays, we need a lemma to identify the be-

haviour of ei
k−1(t) and ei

k(t) over the time interval [ri
k, f

i
k). Ideally, we hope that

‖ei
k−1(f

i
k)‖2 ≤ ci‖xi(r

i
k−1)‖2 holds. In that case, the constraint ‖ei

k−1(t)‖2 ≤



ci‖xi(r
i
k−1)‖2 will not be violated over [f i

k−1, f
i
k). At the same time, we require

‖ei
k(f i

k)‖2 ≤ δici‖xi(r
i
k)‖2 holds for some δi ∈ (0, 1). This is to ensure ri

k+1 ≥ f i
k

when we use the violation of ‖ei
k(t)‖2 ≤ δici‖xi(r

i
k)‖2 to trigger ri

k+1. The lemma
is stated as follows.

Lemma 1. Consider subsystem i in equation (2). Assume that equation (10)
holds with some pi ∈ R

+. For any k ∈ N, if

‖ei
k−1(r

i
k)‖2 ≤ δici‖xi(r

i
k−1)‖2 (11)

f i
k − ri

k ≤ min

{

(1 − δi)ci
pi

‖xi(r
i
k−1)‖2,

δici

pi

‖xi(r
i
k)‖2

}

(12)

hold with any δi ∈ (0, 1), then

‖ei
k−1(t)‖2 ≤ ci‖xi(r

i
k−1)‖2 (13)

‖ei
k(t)‖2 ≤ δici‖xi(r

i
k)‖2 (14)

hold for all t ∈ [ri
k, f

i
k).

Proof. Consider the derivative of
∥

∥ei
k−1(t)

∥

∥

2
over the time interval [ri

k, f
i
k).

d

dt

∥

∥ei
k−1(t)

∥

∥

2
≤

∥

∥ėi
k−1(t)

∥

∥

2
= ‖ẋi(t)‖2 = ‖fi (xDi

, γi (x̂Zi
)) ‖2 ≤ pi

holds for all t ∈ [ri
k, f

i
k). Solving the preceding inequality with initial condition

∥

∥ei
k−1(r

i
k)

∥

∥

2
implies

∥

∥ei
k−1(t)

∥

∥

2
≤ pi(t− ri

k) +
∥

∥ei
k−1(r

i
k)

∥

∥

2
≤ pi(f

i
k − ri

k) +
∥

∥ei
k−1(r

i
k)

∥

∥

2
(15)

holds for all t ∈ [ri
k, f

i
k). By equation (12), we know

pi(f
i
k − ri

k) ≤ (1 − δi)ci‖xi(r
i
k−1)‖2 (16)

Applying equation (11) and (16) into (15), we know equation (13) holds.
With a similar analysis, we can show the satisfaction of equation (14). ⊓⊔

Remark 4. We can actually substitute the assumption in equation (10) by the
following inequality

fi (xDi
, γi (x̂Zi

)) ≤
∑

j∈Di

L1
ij‖xj‖2 +

∑

j∈Zi

L2
ij‖x̂j‖2

with L1
ij, L

2
ij ≥ 0. With the preceding inequality, if Di ⊆ Zi, we may obtain

a tighter bound on delays other than the one given by equation (12) using
comparison principle; if Di 6⊆ Zi, with an addition assumption that ‖xi‖2 ≤ qi
for any i ∈ N and some qi ≥ 0, we can still get a tighter bound on delays
using similar analysis. However, the discussion of the topology of communication
graph and the complexity of these new bounds may keep the readers away from
the main purpose of this paper that is how to decentralize the event-triggering
scheme. Since using new bounds will lead to the same conclusion, we just use
the assumption in equation (10) to make the analysis easy to understand.



With lemma 1, we can present the following theorem where the upper bounds
on delays of subsystems’ broadcasts are given to guarantee asymptotic stability
of the event-triggered NCS.

Theorem 3. Consider the NCS in equation (2). Assume that equation (3) holds

and fi (xDi
, γi (x̂Zi

)) ≤ pi with some pi ∈ R
+. If, for any i ∈ N , the broadcast

release time ri
k+1 is triggered by the violation of the inequality

‖ei
k(t)‖2 ≤ δici‖xi(r

i
k)‖2 (17)

for some δi ∈ (0, 1) and the broadcast finishing time, f i
k+1, satisfies

f i
k+1 − ri

k+1 ≤ min

{

(1 − δi)ci
pi

‖xi(r
i
k)‖2,

δici

pi

‖xi(r
i
k+1)‖2

}

, (18)

then the NCS is asymptotically stable.

Proof. Since the hypotheses in lemma 1 hold, we have

‖ei
k(t)‖2 ≤ ci‖xi(r

i
k)‖2 (19)

hold for all t ∈ [ri
k+1, f

i
k+1) and all k ∈ N.

We also know by equation (17) that

‖ei
k(t)‖2 ≤ δici‖xi(r

i
k)‖2 (20)

holds for all t ∈ [ri
k, r

i
k+1) and all k ∈ N.

Combining equation (19), (20) yields

‖ei
k(t)‖2 ≤ ci‖xi(r

i
k)‖2 (21)

for all t ∈ [ri
k, f

i
k+1) and all k ∈ N. Therefore, by corollary 1, the NCS is asymp-

totically stable. ⊓⊔

Remark 5. Notice that the maximal allowable delay of subsystem i’s k + 1st
broadcast only depend on local information. In other words, subsystem i can
predict the deadline by itself. The cost of such decentralization is that the dead-
lines will go to zero as the state converges to the equilibrium.

In theorem 3, subsystem i predicts the deadline for its k+1st broadcast delay
at time ri

k+1 when the state xi(r
i
k+1) is sampled. It is more reasonable to have

subsystem i predict the deadline for its k + 1st delay ahead of time, such as at
time ri

k. Corollary 2 provides such a deadline as a function of xi(r
i
k).

Corollary 2. Assume that all hypotheses in theorem 3 are satisfied except that

equation (18) is replaced by

f i
k+1 − ri

k+1 ≤ min

{

(1 − δi)ci
pi

‖xi(r
i
k)‖2,

δici(1 − δici)

pi

‖xi(r
i
k)‖2

}

, (22)

then the NCS is asymptotically stable.



Proof. By the definition of ci in equation (8), we know ci < 1 and therefore
1−δici > 0 with δi ∈ (0, 1). Based on equation (17), we know (1−δici)‖xi(r

i
k)‖2 ≤

‖xi(r
i
k+1)‖2. So equation (22) implies the satisfaction of equation (18). ⊓⊔

As we can see from equation (18) in theorem 3, the predicted deadlines for
subsystem i’s broadcast delays go to zero as the state converges to the equi-
librium point. If the channel capacity is not taken into account, this result is
acceptable. However, if the bandwidth of the network is limited, the broadcast
delays have to be greater than a positive constant. In that case, the overall sys-
tem will not be asymptotically stable. Instead, the state will eventually stay in a
small neighborhood of the equilibrium, which means that the system is globally
uniformly ultimately bounded. The size of the neighborhood depends on the
length of the maximal delay. The results are formally stated as follows.

Corollary 3. Assume that all hypotheses in theorem 3 are satisfied except that

equation (18) is replaced by

f i
k+1 − ri

k+1 ≤ min

{

(1 − δi)ciǫ

pi

,
δiciǫ

pi

}

(23)

for some positive constant ǫ ∈ R
+, then the NCS is globally uniformly ultimately

bounded.

Proof. Following a similar analysis to the proof of theorem 3, we know that
V̇ ≤

∑

i∈N −(1 − ρi)ai‖xi(t)‖2 for ‖xi(t)‖2 ≥ ǫ with some ρi ∈ (0, 1), which
means that the NCS is globally uniformly ultimately bounded. ⊓⊔

5 Event-Triggering with Data Dropouts

In the previous sections, we did not consider the occurrence of data dropouts.
In other words, whenever a broadcast release is triggered, the local state of the
related subsystem will be sampled and transmitted to its neighbors successfully.
In this section, we take data dropouts into account, which frequently happen in
NCS. We assume that data dropouts only happen when the sampled states are
sent to the controllers through the network.

Let us take a look at what happen in the system when a data package is lost.
We first consider the case where the network uses Transmission Control Protocol
(TCP). By TCP, the subsystem will be notified if transmission fails. So when
data dropouts happens, the subsystem just needs to keep sending the newly
sampled state unless it is transmitted successfully. Also, the local triggering
event will not be updated until transmission succeeds. So it is a trivial case.

A more interesting thing happens with the network using User Datagram
Protocol (UDP). By UDP, the subsystem will not be notified when transmission
fails. In that case, when the hardware detector located at subsystem i detects
the occurrence of the local event, the local state will be sampled and ready
to be transmitted to its neighbors through the channel. At the same time, the



event will be updated from k to k + 1 with the newly sampled state. Once the
transmission fails (in other words, the sampled state is lost), the controllers will
not receive the sampled state. So the control inputs will not be updated. Notice
that in this case, the local event will be updated, but the control inputs will not.

In the following discussion, we intend to address the number of data dropouts
in such NCS (UDP) with the guarantee of stability. In fact, we provide a de-
centralized approach that enables each subsystem to locally identify the largest
number of its successive data dropouts that the subsystem can tolerant. The idea
is to have events happen earlier than the violation of the inequality in equation
(17) so that even if some data is lost, equation (17) can still be satisfied.

Before we introduce the results, we need to define two different types of re-
lease: the triggered release, r̂i

j , and the successful release, ri
k. r̂i

j is the time
when the jth broadcast of subsystem i is released (but not necessarily transmit-
ted successfully). ri

k is the time when the kth successful broadcast of subsystem
i is released. Obviously, {ri

k}
∞
k=1 is a subsequence of {r̂i

j}
∞
j=1. For notation con-

venience, we define êi
j : R → R

n as êi
j(t) = xi(t) − xi(r̂

i
j).

Theorem 4. Consider the NCS in equation (2). Assume that equation (3) holds

and fi (xDi
, γi (x̂Zi

)) ≤ pi with some pi ∈ R
+. If, for any i ∈ N and some

δi ∈ (0, 1), the next broadcast release time is triggered by the violation of

‖êi
j(t)‖2 ≤ δ̂ici‖xi(r̂

i
j)‖2 (24)

for some δ̂i ∈ (0, δi), the kth successful broadcast finishing time, f i
k, satisfies

f i
k − ri

k ≤ min

{

(1 − δi)ci
pi

‖xi(r
i
k−1)‖2,

δ̂ici(1 − δici)

pi

‖xi(r
i
k−1)‖2

}

, (25)

and the largest number of successive data dropouts, ni ∈ Z, satisfies

ni ≤ log(1+δ̂ici)
(1 + δici) − 1 (26)

then the NCS is still asymptotically stable.

Proof. Consider subsystem i over the time interval [ri
k, f

i
k+1). For notation con-

venience, we assume ri
k = r̂i

0 < r̂i
1 < · · · < r̂i

ni
< r̂i

ni+1 = ri
k+1. Since the

hypotheses in lemma 1 hold, we have ‖ei
k(t)‖2 ≤ δ̂ici‖xi(r

i
k)‖2 for all t ∈ [ri

k, f
i
k)

and all k ∈ N. Since ‖ei
k(r̂i

1)‖2 = δ̂ici‖xi(r
i
k)‖2, we have f i

k ≤ r̂i
1, namely that

subsystem i does not release broadcasts during [ri
k, f

i
k).

Consider ‖ei
k(t)‖2 for any t ∈ [r̂i

j , r̂
i
j+1). We have

‖ei
k(t)‖2 = ‖xi(t) − xi(r

i
k)‖2 ≤

j−1
∑

l=0

‖xi(r̂
i
l+1) − xi(r̂

i
l )‖2 + ‖xi(t) − xi(r̂

i
j)‖2

for ∀t ∈ [r̂i
j , r̂

i
j+1). Applying equation (24) into the preceding equation yields

‖ei
k(t)‖2 ≤

j
∑

l=0

δ̂ici‖xi(r̂
i
j)‖2 (27)



for all t ∈ [r̂i
j , r̂

i
j+1). Therefore,

‖ei
k(t)‖2 ≤

ni
∑

l=0

δ̂ici‖xi(r̂
i
l )‖2 (28)

holds for all t ∈ [ri
k, r

i
k+1).

Because ‖êi
j(r̂

i
j+1)‖2 = ‖xi(r̂

i
j+1) − xi(r̂

i
j)‖2 = δ̂ici‖xi(r̂

i
j)‖2, we have

‖xi(r̂
i
j+1)‖2 ≤ (1 + δ̂ici)‖xi(r̂

i
j)‖2

and therefore

‖xi(r̂
i
j+1)‖2 ≤ (1 + δ̂ici)

j+1‖xi(r̂
i
0)‖2 = (1 + δ̂ici)

j+1‖xi(r
i
k)‖2 (29)

for j = 0, 1, 2, · · · , ni.
Applying equation(29) into (28) yields

‖ei
k(t)‖2 ≤

ni
∑

l=0

δ̂ici(1 + δ̂ici)
l‖xi(r

i
k)‖2 =

(

(1 + δ̂ici)
ni+1 − 1

)

‖xi(r
i
k)‖2 (30)

for all t ∈ [ri
k, r

i
k+1).

By equation (26), we know (1+ δ̂ici)
ni+1−1 ≤ δici. Therefore, equation (30)

implies ‖ei
k(t)‖2 ≤ δici‖xi(r

i
k)‖2 for all t ∈ [ri

k, r
i
k+1). Since the hypotheses in

corollary 2 are satisfied, we conclude that the NCS is asymptotically stable. ⊓⊔

Remark 6. By equation (26), we know the maximal allowable number of each
subsystem’s successive data dropouts can be identified locally, depending on the
selection of ci, δi, and δ̂i. If subsystem i wants the maximal allowable number of
data dropouts to be large, δ̂i must be small enough. In general, however, small
δ̂i will result in short broadcast periods. Therefore, there is a tradeoff between
the maximal allowable number of data dropouts and the broadcast periods.

Similar to corollary 3, we have the following result for the case with fixed
transmission deadlines.

Corollary 4. Assume that all hypotheses in theorem 4 are satisfied except that

equation (25) is replaced by

f i
k − ri

k ≤ min

{

(1 − δi)ciǫ

pi

,
δ̂iciǫ

pi

}

(31)

for some small positive constant ǫ > 0, then the NCS is still globally uniformly

ultimately bounded.

Proof. Following a similar analysis to the proof in theorem 4, we have ‖ei
k(t)‖2 ≤

δici‖xi(r
i
k)‖2 for all t ∈ [ri

k, r
i
k+1). Since the hypotheses in corollary 3 are satis-

fied, we conclude that the NCS is globally uniformly ultimately bounded. ⊓⊔



Based on the preceding results, we are able to present the decentralized event-
triggering scheme.

Decentralized Event-Triggering Scheme
1. Select positive constants βi, κi ∈ R

+ for i = 1, · · · , N ;
2. For subsystem i,

(1) Find Vi : R
n → R, αi ∈ R

+, and γi : R
n|Zi| → R

mi

satisfying equation (5), (6);
(2) Compute pi satisfying equation (10);
(3) Select ρi ∈ (0, 1) and compute ci based on equation (8);

(4) Select δi ∈ (0, 1), δ̂i ∈ (0, δi) and use the violation of the inequality
in equation (24) to trigger the broadcast release;

(5) Predict the deadline for the delay in the kth successful broadcast of
subsystem i (f i

k − ri
k) at ri

k−1 by equation (25) or equation (31);
(6) Identify the maximal allowable number of successive data dropouts

by equation (26).

6 An Illustrative Example

This section presents simulation results demonstrating the decentralized event-
triggering scheme. The system under study is a collection of coupled carts (figure
2), which are coupled together by springs. The ith subsystem state is the vec-

tor xi =
[

yi ẏi

]T
where yi is the ith cart’s position. We assume that at the

equilibrium of the system, all springs are unstretched.

u1 u2
u3

Fig. 2. Three carts coupled by springs

The state equation for the ith cart is ẋi = Aixi + Biui + Hi,i−1xi−1 +

Hi,i+1xi+1 where Ai =

[

0 1
−µik 0

]

, Bi =

[

0
1

]

, Hij =

[

0 0
νij 0

]

.

In the preceding equation, we have k = 5 is the spring constant, µ1 = µN = 1
and µi = 2 for i = 2, · · · , N −1. Also νij = 1 for i 6∈ {1, N} and j ∈ {i−1, i+1}
and ν12 = νN,N−1 = 1. Otherwise, νij = 0.

The control input of subsystem i is

ui = Kix̂i + Li,i−1x̂i−1 + Li,i+1x̂i+1, (32)

where K1 = KN =
[

−4 −6
]

, Ki =
[

1 −6
]

for i = 2, · · · , N − 1, and Li,i−1 =

Li,i+1 =
[

−1 0
]

except that L10 = LN,N+1 = 0.
We first considered the case with N = 3. According to the decentralized

event-triggering scheme, we obtained c2 = 0.3622 and c1 = c3 = 0.4451. The



initial state xi0 of subsystem i was randomly generated satisfying ‖xi0‖2 ≤ 1. We

set pi = 20, ǫ = 0.1, δ̂i = 0.9, and δ̂i = 0.2. We ran the event-triggered system
for 8 seconds with the assumption that the number of successive data dropouts
are the same as the maximal allowable number and the delay is equal to the
deadline. The simulation results show that the system is asymptotically stable,
but not globally uniformly ultimately bounded as we stated in corollary 4. This
is because the decentralization leads to the conservativeness of the theoretical
results. The data of this simulation is listed in table 1.

Table 1. Results on Running a Decentralized Event-Triggered Networked System

Subsystem 1 Subsystem 2 Subsystem 3

Maximal Allowable Number of 2 3 2
Successive Data Dropouts

Predicted Deadline 2.226 × 10−4 1.811 × 10−4 2.226 × 10−4

Number of Broadcasts Release 153 229 155

Number of Successful Broadcasts 50 56 50

Average Period of Broadcasts 0.0523 0.0349 0.0516

Average Period of Successful Broadcasts 0.1600 0.1429 0.1600

We then examine the relationship between the maximal allowable number
of successive data dropouts, ni, and the predicted deadline. In particular, we
studied subsystem 1. We changed δ1 from 0 to 1 and δ̂i from 0 to δ1. The other
parameters remain the same. The resulting changes in ni and the deadline are
shown in figure 3, where each pair of ni and the deadline is associated with a pair
of (δi, δ̂i). We may see from the plot that as ni increases, the predicted deadline

decreases. That is because large ni suggests tiny δ̂i and large δi, which results
in short deadline according to equation (31).
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Fig. 3. Maximal allowable number of successive data dropouts versus the deadline



7 Conclusions

This paper studies distributed NCS with data dropouts and transmission de-
lays. We propose a decentralized event-triggering scheme for such systems. The
novelty of this scheme is its complete decentralization, which means that a sub-
system’s broadcast decisions are made using its local sampled data, the maximal
allowable transmission delay of a subsystem’s broadcast is predicted based on the
local information, a subsystem locally identifies the maximal allowable number
of its successive data dropouts, and the designer’s selection of the threshold only
requires information about an individual subsystem and its immediate neighbors.
Our analysis applies to nonlinear continuous systems. With the assumption that
the number of each subsystem’s successive data dropouts is less than the bound
identified by that subsystem, if the bandwidth of the network is limited so that
the transmission delays are always greater than a positive constant, the resulting
system is globally uniformly ultimately bounded using our scheme; otherwise,
the resulting system is asymptotically stable.
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