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Abstract

This paper examines a class of real-time control systems in which each control task triggers its next
release based on the value of the last sampled state. Prior work [1] used simulations to demonstrate
that self-triggered control systems can be remarkably robust to task delay. This paper derives bounds
on a task’s sampling period and deadline to quantify how robust the control system’s performance will
be to variations in these parameters. In particular we establish inequality constraints on a control task’s
period and deadline whose satisfaction ensures that the closed loop system’s ifiglgzed lies below
a specified performance threshold. The results apply to linear time-invariant systems driven by external
disturbances whose magnitude is bounded by a linear function of the system state’s norm. The plant
is regulated by a full-informatiori{., controller. These results can serve as the basis for the design
of soft real-time systems that guarantee closed-loop control system performance at levels traditionally

seen in hard real-time systems.

I. INTRODUCTION

Computer-controlled systems are often implemented using periodic tasks satisfying hard real-
time constraints. Under a periodic task model, consecutive invocations (also called jobs) of a
task are released in a periodic manner. If the task model satisfies a hard real-time constraint, then
each job completes its execution by a specified deadline. Hard real-time periodic task models
allow the control system designer to treat the computer-controlled system as a discrete-time

system, for which there are a variety of mature controller synthesis methods.
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Periodic task models may be undesirable in many situations. Traditional approaches for
estimating task periods and deadlines are very conservative, so the control task may have greater
utilization than it actually needs. This results in significant over-provisioning of the real-time
system hardware. With such high utilization, it may be difficult to schedule other tasks on the
same processing system. Finally, it should be noted that real-time scheduling over networked
systems may be poorly served by the periodic task model. In many networked systems, tasks
are finished only after information has been successfully transported across the network. It is
often unreasonable to expect hard real-time guarantees on message delivery in communication
networks. This is particularly true for wireless sensor-actuator networks. In these applications,
there may be good reasons to consider alternatives to periodic task models.

This paper considers self-triggered task model in which each task determines the release
of its next job. In reality, one might consider periodic task models as self-triggered tasks since
many implementations release tasks upon expiration of a one-shot timer that was started by
the previous invocation of the task. Under a periodic task model, the period of this one-shot
timer is always a constant value. This paper, however, considers a more adaptive form of self-
triggering in which the value loaded into the one-shot timer is actually a function of the system
state sampled by the current job. Under this “state-based” self-triggering, each task releases its
next job based on the system state. We can therefore consider “state-based” self-triggering as
a closed-loop form of releasing tasks for execution, whereas periodic task models release their
jobs in an open-loop fashion. For simplicity, this paper refers to a “state-based” self-triggered
task model as “self-triggered”.

Self-triggering provides a more flexible way of adjusting task periods. Since task periods
are based on the system’s current state, it is possible to reduce control task utilization during
periods of time when the system is sitting happily at its equilibrium point. The question here is
precisely how much freedom do we have in adjusting task periods in response to variations in
the system state. This paper answers that question by providing bounds on the task periods and
deadlines required to assure a specified levef p&tability. Our results pertain to linear time-
invariant system with state feedback. Since our controller seeks to efisws®bility, we use
a full-information’H,, controller in our analysis. We also assume that the system has a process
noise whose magnitude is bounded by a linear function of the norm of the system state. Under

these assumptions we obtain a set of inequality constraints on the task period and deadlines as a
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function of the system state. On the basis of simulation results, these bounds appear to be tight
and relatively easy to compute, so it may be possible to use them in actual real-time control
systems.

The remainder of this paper is organized as follows. Section Il discusses the prior work related
to self-triggered feedback. Section Il introduces the system model. Section IV derives sufficient
threshold condition that can serve as an event triggering state sampling. In section V, the self-
triggering scheme is presented and the system is shown & séable. Simulations are shown

in section VI. Finally, conclusions and future work are presented in section VII.

[I. PRIOR WORK

To the best of our knowledge there is relatively little prior work examining state-based self-
triggered feedback control. A self-triggered task model was introduced by Velasco et al. [2]
in which a heuristic rule was used to adjust task periods. A self-triggered task model was also
introduced by Lemmon et al. [1] which chose task periods based on a Lyapunov-based technique.
But other than these two papers, we are aware of no other serious work looking at self-triggered
feedback schemes. There is, however, a great deal of related work dealing with so-called event-
triggered feedback, sample period selection, and real-time control system co-design. We'll review
each of these areas in more detail below and then discuss their relationship to the self-triggered
task models.

Traditional methods for sample period selection [3] are usually based on Nyquist sampling.
Nyquist sampling ensures that the sampled signal can be perfectly reconstructed from its samples.
In practice, however, feedback within the control system means the system’s performance will
be somewhat insensitive to errors in the feedback signal, so that perfect reconstruction is much
more than we require in a feedback control system. An alternative approach to the sample
period selection problem makes use of Lyapunov techniques. This was done in Zheng et al.
[4] for a class of nonlinear sampled-data system. Nesic et al. [5] used input-to-state stability
(ISS) techniques to bound the inter-sample behavior of nonlinear systems. The sample periods
obtained by these methods also tend to be very conservative due to the bounding techniques
used.

The prior work on sample-period selection using Lyapunov methods can determine sampling

periods ensuring asymptotic stability in nonlinear systems. For the linear systems we consider,
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these methods can yield very tight estimates on the sampling period. This was actually demon-
strated by Tabuada et al. [6] and the basic technique employed by Tabuada to estimate sample
periods is used in this paper as well.

Another related research direction viewed sample period selection as a “co-design” problem
that involves both the control system and the real-time system. In this case, sample periods are
selected to minimize some penalty on control system performance subject to a schedulability
condition. Early statements of this problem may be found in Seto et al. [7] with more recent
studies in [8] and [9]. The penalty function is often a performance index for an infinite horizon
optimal control problem. It has, however, been demonstrated [10] that such indices are rarely
monotone functions of the sampling period. As a result, it only appears to be feasible to do
off-line determination of these “optimal” sampling periods.

The prior work on co-design really focuses on optimizing performance subject to scheduling
constraints. The scheduling constraints are Liu-Layland [11] schedulability conditions for earliest
deadline first (EDF) scheduling. It is not always clear, however, that these are the best set of
constraints to be using. This paper actually derives a set of constraints on both the periods
and deadlines that we can then use as a quality-of-service (Qo0S) constraint that the real-time
scheduler needs to meet. We do not address the schedulability of these QoS constraints in this
paper, though that is an important research issue that we are still studying.

In recent years, a number of researchers have proposed aperiodic and sporadic task models in
which tasks are event-triggered [12]. By event-triggering, we usually mean that the system state is
sampled when some function of the system state exceeds a threshold. The idea of event-triggered
feedback has appeared under a variety of names, such as interrupt-based feedback [13], Lebesgue
sampling [14], asynchronous sampling [15], or state-triggered feedback [6]. Event triggering
usually requires some form of hardware event detector to generate a hardware interrupt to release
the control task. This can be done using either custom analog integrated circuits (ASIC's) or
floating point gate array (FPGA) processors.

The prior work on event-triggered feedback is probably most closely related to this paper’s
work. In particular, the bounds we derive in this paper are based on variations of the event-
triggering conditions used by Tabuada et al. [6]. The conditions given in our paper appear to be

less conservative than the bounds obtained in [6].

June 27, 2007 DRAFT



[1l. SYSTEM MODEL

Consider a linear time-invariant system whose stateR — R" satisfies the initial value

problem,
(t) = Ax(t)+ Bu(t) + w(t)
z(0) = zo

wherewu : ® — R™ is a control input andv : ® — R" is an exogenous disturbance function
in £, such that there exists a positive real constdnt> 0 so that|w(t)|2 < Wz(t)|s for
all £ > 0. In the above equatiold € R"*™ and B € R™*™ are real matrices of appropriate
dimensions.

Since we’re interested in controllers that are finite-gdinstable, we assume there exists a
full-information H,, controller that asymptotically stabilizes the unforced system. In particular,

we assume there exists a symmetric positive definite matrsuch that
i(t) = (A— BBTP)x(t) (1)

has an asymptotically stable equilibrium. The matfix satisfies theH,, algebraic Riccati
equation (ARE),

0=PA+A"P-Q+R (2)

where
Q = PBB'P 3)
R = I+ ;PP (4)

for some real constant > 0. For notational convenience the system matrix of the closed loop
system (equation 1) will be denoted ds; = A — BBT P. The state feedback gain matrix is
K =-B"P.

If we consider the standard, storage functiod/ : ®* — R given by V(z) = 2T Pz for all
x € R" then the preceding assumptions abdutllow us to show that the storage function’s

directional derivative satisfies the dissipative inequality,

V(a(t)) < =llz@)ll3 + w3 (5)
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for all t. Recall that a linear systeri,, is said to be finite gaif, stable if7" is a linear operator
from L, back into£,. The induced gain of’ is
17| = sup ||Tw]|g,-
lwllzy=1
Satisfaction of the dissipative inequality (eq. 5) is sufficient to show that the sybBteharac-

terized by the state equation
i(t) = (A — BBTP)x(t) + w(t) (6)

is finite gain L, stable with an induced gain less than

This paper considers a sampled-data implementation of the closed loop system in equation 6.
This means that the plant’s contral, is computed by a computer task. This task is characterized
by two monotone increasing sequences of time instants; the release time segjuéficeand the
finishing time sequencéf;}7°,. We say these two sequences are admissibte € fi < ri1
for all £ = 0,...,00. The timer, denotes the time when thgh invocation of a control task
(also called a job) is released for execution on the computer’s central processing unit (CPU). At
this time, we assume that the system state is sampled seo,thigo represents thigh sampling
time instant. The timef,, denotes the time when theth job has finished executing. Each job
of the control task computes the controbased on the last sampled state. Upon finishing, the
control job outputs this control to the plant. The control signal used by the plant is held constant
by a zero-order hold (ZOH) until the next finishing tinfg. ;. This means that the sampled-data

system under study in this project satisfies the following set of state equations,

(t) = Ax(t)+ Bu(t) + w(t) (7)
u(t) = —BTPx(r)
for t € [fx, frs1) @and allk = 0,...,00. The state trajectories satisfying equation 7 are

continuous so that the initial state at tinfgis simply z( fx) = limy 5, x(?).

We let Ty, = ryy1 — ry denote thekth inter-release timek(= 0,..., ). T}, can therefore be
interpreted as a time-varying “sampling” period by control engineers and a time-varying “task”
period by real-time system engineers. We 1&f = f, — r, denote the time interval between
the kth job’s release and finishing time. Control engineers would viewas the “delay” of the

kth job whereas real-time system engineers would vigwas the “jitter” of thekth job. If the
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control task satisfies a hard real-time constraint, then the dejays required to lie below a
specified “deadline”.

If we decrease the sampling peridd, and delayD,, in a uniform manner so that the resulting
release and finishing time sequences remain admissible, then the state trajectories generated by
the sampled-data system in equation 7 will converge to state trajectories satisfying the original
closed-loop system equation 6. By construction of the control, we know that this original system
is L, stable with gain less than. This paper's main results establish nontrivial bounds on
the sequence of sampling periofi$,. }2>, and delays{ Dy }%2, such that the resulting release
and finishing time sequences are admissible and the sampled-data system preserves the original

system’sL, stability.

IV. Lo STABILITY

Consider the sampled-data system in equation 7 with a set of admissible release and finishing
time sequences. For all, define thekth job’s error functioney, : [ry, fri1) — R™ by ex(t) =
x(t)—x(rx). This error represents the difference between the current system state and the system
state at the last release timg, This section presents two inequality constraintsepft) (see
theorem 4.1 and corollary 4.2 below) whose satisfaction is sufficient to ensure that the sampled-
data system’sC, gain is less than///5 for some parametes € (0, 1].

Notational conventions: The sufficient conditions derived in this section apply uniformly
to all jobs, k. We may therefore, for notational convenience, drop the job indexith the
understanding that we’re only considering thth job’s error signal. In particular, the times
Th—1, Tky Thae1s Jr» @nd fz1 Will be denoted as—, r, r*, f, and /T, respectively. The system
state at timet € [ry, fr41) Will be denoted as:; and thekth job’s error signale(t), at timet
will be denoted as; = x; — x,. for t € [r, f1).

The following theorem states that if a function of the state e¢f¢t) and stater(t) satisfies
a certain inequality constraint, then the closed loop system in equation 7 is finit€.gatable.

Theorem 4.1:Consider the sampled-data system in equation 7 with admissible release and
finishing time sequences. L@tbe any real constant in the open intery@l1) with the matrix

(@ as given in equation 3. If

e ()Qex(t) < (1= B)[lz(®)| + 2, Qu, (8)
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forall t € [fx, frr1) @and anyk = 0, ..., 0o, then the sampled-data system is finite géinstable
with a gain less than/g.

Proof: Consider the storage functiori : ®* — R given by V(z) = 27 Pz for x € "
where P is a symmetric positive definite matrix satisfying the algebraic Riccati equation (eq.
2). The directional derivative of for t € [f, fri1) iS

Vo= gz (Axt BBTPxTer)

1
= —x ([ Q-+ " PP) ry — 22(t)" Qx, + 227 P

2
+ 9 [lwell3 — 227 Qx,
2

—ap (I = Q)ze +7*[lwel; — 22/ Qw, 9)

1
= —mtT(] —Q)ry — vat — §th

IA

Insertz; = e; + x, into the above equation to obtain
Vo< s+ e+ ]’ Qe +a] = 2[er + 2]" Qr + 7 |Jwill3
= w3 + e Qe — w7 Quy + 77 ||we3 (10)
By the assumption in equation 8, we know that equation 10 can be rewritten as
V < =B|zill3 + w3 (11)

This is the dissipative inequality that holds for aldnd is sufficient to ensure the sampled-data
system isL, stable with a gain less thay/(. [ |

In our following work, we’ll find it convenient to use a slightly weaker sufficient condition
for £, stability which is only a function of the state errey(¢). The following corollary states
this result.

Corollary 4.2: Consider the sampled-data system in equation 7 with admissible sequences of
release and finishing times. L& be a real matrix that satisfies equation 3 ahdbe a real

constant in the interval0, 1] such that the matrix
=(1-)1+Q. (12)
has full rank. If the state error trajectory satisfies

ex(t) Mey(t) < 2l Mz, (13)
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for t € [fi, frr1) forall k =0,..., 00, then the sampled data systemds stable with a gain
less thamy /5.
Proof: Equation 13 can be rewritten as

ex(t) Mey(t) = (1—0%)]lex()]3 + en(t) Qex(t)
< (1- 62)Hx7”§ + IZQ*TT
This can be rewritten to obtain

er(t) Qer(t) < (1= %)l ll5 = llex(®)113) + =7 Q,

(L =) lz@®)l3 + 27 Qz,

IA

where we used the fact that
213 = lleclls < [z + ell3 = lz(t)l5-

This inequality is the sufficient condition in theorem 4.1 so we can conclude that the sampled-
data system i€, stable with a gain less thap/. [ |
Remark 4.3:The inequalities in equations 8 or 13 can both be used as the basis for an event-
triggered feedback control system (section Il). Note that both inequalities are trivially satisfied at
t = ry. If we let the delay,Dy, be zero for each job, then by triggering the release tifng$°
anytime before the inequalities in equations 8 or 13 are violated, we will ensure the sampled-data
system’s induced’, gain remains belowy /3. The resulting event-triggered feedback system
is very similar to the state-triggering scheme proposed by Tabuada et al. [6] for asymptotic
stability. The main difference between that result and this one is that our proposed event-
triggering condition provides a stronger assurance on the sampled-data system’s performance
as measured by its induceét} gain. Another important difference is that the threshold condition
in equation 13 is stated in terms of the last sampled stateThe corresponding threshold
condition in [6] is given in terms of the current state. This difference makes it easier to

convert our event-triggering condition into a self-triggered feedback scheme.

V. ADMISSIBLE RELEASE AND FINISHING TIMES

This section establishes sufficient conditions for the existence of admissible sequences of

release and finishing times that ensure the sampled data system in equatiGn Stavle with
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a specified gain. These conditions take the form of admissible bounds on the task sampling
periods, T}, and task delaysD;..

For notational convenience let : [rx, fr+1) — R" be given as

() = (=B +Q =V Mex(t) (14)

where+/ M is a matrix square root andl/ is defined in equation 12. We refer t@ as thekth
job’s “trigger signal”. Note that\/ is dependent on the paramter

We define the functiop : R" — R given by
plx) =vVaTMzx (15)
wherez € R". So if we can guarantee for anyc (0, 1] that

Izl < dp(ar) (16)

for all t € [fy, fry1) for any k = 0,..., 00, then the hypotheses in corollary 4.2 are satisfied
and we can conclude that the sampled-data system is finitefgastable with a gain less than
v/ B

The first major result examines what happens if we use equation 16 as the basis for an
event-triggered feedback control system. In particular, let's assume thaththeb’s releasery,
is precisely that time whelfjz(¢)||. = dp(x,) under the assumption that th¢h job’s delay,
Dy, is zero. The following theorem states a lower bound on the sampling period for which a
sampled-data system with zero delay (& = 0) has an induced’, gain less thany//.

Theorem 5.1:Consider the sampled-data system in equation 7 and assume there exists a non-

negative real constari’ such that||w|. < W/z||» for all ¢ € . Assume that for some

d € (0, 1] that the sequence of release tir{es}°, satisfy

[2(rks1)ll2 = dp(z:) (17)

where f, =, forall £k =0,..., 0c0.
The sequence of release and finishing times is admissible and the sampled-data system is

L,-stable with a gain less thay/ 5. Furthermore, the task sampling periods satisfy

7>t (1 + g AEr) ) (18)
Q po(,)
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11

wherea is a real constant

o= H\/MA\/M_IH + W |[Va| H\/M_l (19)
andy : " — R is a real-valued function given by
poley) = |[VMAga, |, + W | V| 1z, ], (20)
Proof: The time derivative of|z.(t)|, for ¢ € [r, f1) satisfies
Flal, < Vi), = |vaTal,
= |VM (Az, - BB" Pz, +w)
< |[VMAe()||, + [V Aaz, |, + || V]| ] (21)

Since ||wlla < W|xt||2, z¢ = ex(t) + z,, and zx(t) = vV Meg(t), we can bound the preceding

equation (21) as
Lol < |VAIAVET 2
W (IVAINIVAT 5ol + VA 2
= (|varavar™| + wivavaz) s
+| v Az,

= allz(®)ll2 + polzr). (22)

26 (0)ll, + |[VM Aaz,

W VATl

wherea and g : R — R are defined in equations 19 and 20, respectively.

The initial condition is||z;(r)|l2 = 0. Using this in the differential inequality (eq. 22) yields,
MU(‘Z.T‘) a(t—r)
< —— -1 2
()]l < 252 (e ) (23)

forall t € [r, fT).
By assumption-™ = f* (i.e. no task delay) andp(z,) = ||zx(r")]||2, SO we can conclude
that

dp(ey) = 1zl < 220 (pom ) (24)

whereT;, = r™ — r is the task sampling period for job. Solving equation 24 fofl}, yields
equation 18. The righthand side of the inequality 18 is clearly strictly greater than zero, which

implies thatry,; — r, > 0. Thereforer, = fi, < 7.1 which implies that the sequence of
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12

finishing and release times is admissible. Finally we know thatt)|> < dp(z,) for all ¢ €
[Tk, fee1) = [fx, fee1) @and allk = 0, ..., oo, which by corollary 4.2 implies that the system is
L, stable with a gain less thap//. [ ]

Remark 5.2:Note that the righthand side of equation 18 will always be strictly greater than
zero. We can therefore conclude that if we trigger release times when) = ||zx(r")||, then
the sampling period}, can never be zero.

Remark 5.3:The admissibility of sequencds,}>, and{ fx}>, can be restated in terms of
the sequence§D, }2, and {7} ,. By definition, the release and finishing time sequences are
admissible if and only if, < fi < ryq for all k. Clearly this holds if and only i) < D, < T},
for all k.

The previous theorem presumes there is no task delay/l§j.e- 0). Under this assumption,
theorem 5.1 states that triggering release times when equation 17 holds assures the closed-loop
system’s induced’, gain. This theorem, however, also provides a lower bound on the task
sampling period, which suggests that we can also use theorem 5.1 as the basis for state-based

self-triggered feedback. In this scenario, if th#h job would set the next job’s release time as

,uO(xr)
then we are again assured of the system’s indu€edain is less than/g.

Tpa1 = T + i In (1 + dav plr) ) (25)

The problem faced in using equation 25 for self-triggering is the assumption of no task delay. In
many application, task delay may not be small enough to neglect. If we consider non-zero delay,
then the triggering signals appear as shown in figure 1. This figure shows the time history for
the triggering signalsy;_1, zx, andz ;. With non-zero delay, we can patrtition the time interval
[Tk, fr+1) INto two subintervalsry, fr) and[fx, fx+1). The differential equations associated with

subintervalsiry, i) and [fy, fri) are

i(t) = Ax(t) — BBY Pz, +w(t)
and

i(t) = Ax(t) — BB'Px, +w(t),

respectively. In a manner similar to the proof of theorem 5.1, we can use differential inequalities
to boundz(t) for all ¢t € [ry, fri1) and thereby determine sufficient conditions assuring the

admissibility of the release/finishing times while preserving the closed-loop sysfers®bility.
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The next two lemmas (lemma 5.4 and 5.5) characterize the behavigr(©f over these two
subintervals. We then use lemma 5.5 to establish sufficient conditions assuridg-#tability

of the sampled-data system with non-zero delay.

,I .=".‘ i
k-1 ftl| - : Joa B Ii t:l f_.f,-"": - - :
- e - : P il ' --__‘d__,.--"" :
T | | T | | .
! ! l I |r | ] T -
I:L 1 ﬁ 1 rk & : I'k-}-]_ : &_'_1 r}:+3 f]{+2
! ! :
oDy !
k

Fig. 1. Time history ofz,(¢) with non-zero task delay.

Lemma 5.4:Consider the sampled-data system whgteg||, < Wz, for all ¢ € R for
some non-negative redl’. Assume that for someg, r,_; < fr_1 < ry. If for somee € (0, 1),

the kth finishing time f; satisfies
0< D= fr—rr < Li(v,,7,-;€) (26)
for all t € [r, f), then thekth trigger signal,z;, satisfies
212 < ¢(@y, -5t — 1) < €p(z) (27)

for all t € [r, f). In equation 27« is a positive real constant given by equation 19, :

R x R" x (0,1) — R is a real-valued function given by

Li(x,,x,-5€) = lln (1 + eozp(xr)> , (28)
! pa (T, )
¢ : R x R x R — RN is a real-valued function given by
p - 251 (ﬂfr, 1‘7’7) a(t—r)
O(Tp, it —1) = — (e 1) , (29)

p: R — R is given by equation 15, and, : R" x " — R is a real-valued function given by

(@, 2 ) = |VM (Az, — BBTPa,- )|+ W ||VM]| 12, (30)
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Proof: Fort € [r, f), the derivative ofj|z;(¢)||» satisfies the differential inequality,

Ul < a0l = |Viaw], = Vi),

- H\/M (A:pt — BB Pz, + wt)

N

A

= |V (Aex(t) + A, — BBT Pa,- +wy) ||
o (o
+ V21 (A2, — BBTPa,- )|, + W ||VM]| |
= allz®)llz2 + p (@, - ). (31)

The differential inequality in equation 31 along with the initial conditigrir) = 0, allows us

to conclude that

12k ()ll2 < @(y, 2,5 — 1) (32)
forall t € [r, f).
The assumption in equation 26 can be rewritten as
¢(xr, v,—; D) < ep(x;) (33)
¢(z,, x.—;t — 1) is @ monotone increasing function bf- ». Combining this fact with equations
32 and 33 yields
l2(t)ll2 < ¢(2p, 2t — 1) < G2y, 23 Di) < eplay)

which leads to equation 27 holding for alE [r, f). [ |
Lemma 5.5:Consider the sampled-data system in equation 7 wherg, < W||z,||» for some
non-negative reall. For a given integek and some: € (0,1), assume that, | < fr_; <.

For anyn € (e, 1], let
d’r] :fk+L2(xr;x'r*;Dkvn)7 (34)

where L, : " x R" x ® x (0,1] — R is given by

no(x,) — ¢(x,, v ; D) )
po(z,) + ad(z,, x,—; Dy) )

1
LQ(fL‘rax'r*; Dkﬂ?) = a In (1 +o (35)
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0 S Dk; S Ll(xraxr*;e) (36)
then
d, > fx, and (37)

Iz6(@)ll2 < mp(a,) for all ¢ € [fi, dy] (38)

Proof: The hypotheses of this lemma also satisfy the hypotheses of lemma 5.4 so we know
that

21 (f)ll2 < @(xr, 75 Di) < ep(x,) < np(,). (39)
By equation 35 and 39, we have
Lo(p, 23 Diym) >0
which implies
dy > fi
Assume the system staig satisfies the differential equation
iy = Ar, — BB" Px, + w;

for t € [f, d,]. Using an argument similar to that in lemma 5.4, we can show [that)||-

satisfies the differential inequality

CZHZk(f)Hz < a2k (t)ll2 + po (). (40)

Equation 39 can be viewed as an initial condition on the differential inequality in equation

40. Solving the differential inequality, we know for allc [f;, d,],

2Ol < Dy, D) + LT (gon 7). @)

Because the right side of equation 41 is an increasing function wé get
()2 < ™Dy, z,—; Dy) + MOS) (e2=D —1) = np(a,). (42)
for all ¢ € [fx, d,). u
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According to lemma 5.5, for a constahte (¢, 1), if r+ = f + Lo(z,, x,—; Dy, d) and f+ <
[+ La(zy,x—; Dg, 1), we will always havel|z,(r)|2 < dp(z,) and ||zi(fF)|l2 < p(z,). We
will use this fact below to characterize a self-triggering scheme that preserves the sampled-data
system induced’, gain. Theorem 5.7 formally states this self-triggering scheme. The proof of
theorem 5.7 requires the following lemma showing that the longest allowable task delay given
in lemma 5.4 is bounded below by a positive functionof.

Lemma 5.6:Consider the sampled-data system whigig||, < W||z||, for all ¢ € R where
W is a non-negative real constant. Assume that for a constanie, 1), the release time~

andr satisfy

[zk-1(r)ll2 < dp(x,-) (43)

for any givenk. Then there exists a functigh: " x (0,1) x (0,1) — R+t such that the function

L : R x R™ x (0,1) — R given by equation 28 satisfies the bound

Lyi(zy, xp-;€) > &(x,-;€,0) > 0. (44)

Proof: First note thate, = e,_1(r) + z,- implies that

[2r—ll2 = lex—a(r)ll2 < llzrllz < flzll2 + llex—1(r)l2

We now use this inequality to boundzx,) and y;(z,, z,-) as a function ofr,.-.

A lower bound onp(z,) is obtained by noting that

ple)) = |[Via,|, = |[VE(er(r) + 2.,
> VM-l = (1)
> plz,-) = 6p(,-) (45)

(1 —=0d)p(z,-) = &u(w-;6) (46)
An upper bound on (z,, z,-) can be obtained by noting that
() = |VM (Az, = BB Pa,- )|+ WIVM]||l2,l>
= |VM (Aaz,- + Aex ()], + WIVM |2 + exa(r)]s
< ||VMAaz,- |+ WIVM]||z- |2
| VIAVIE s )|+ WIVMIVAL 20
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< |[VATAaz,- |+ WIVMIll,- 2
" (HMA\/M_IH - WH\/MHH\/M_III) Sp(ar-)

= po(wr-) + adp(a,-) = Gl 6) (47)

Putting both inequalities together we see that

Li(z,,x,-5€) = 11n<1+6a pla) )>

a 1(z, x,
1 1(z,-50)
>
=t (” <xr,5>>
1 (1—5)/)(:67«—)
= “Inl1 =E&(x,-56,0) >0 48
o n( +€aa5p(xr—)+uo(xr—) ersed) > (48)
which completes the proof. [ |

With the preceding technical lemma we can now state a self-triggered feedback scheme which
can guarantee the sampled-data system’s indutedain. The basis for this self-triggering
scheme will be found in the following theorem.

Theorem 5.7:Consider the sampled-data system in equation 7 whex8, < W |x;||, for

all t € R whereW is some non-negative real constant. For given(0,1) andé € (¢, 1), we
assume that

« The initial release and finishing times satisfy
roi=19=fo=0
. For any non-negative integét the release times are generated by the following recursion,
ree1 = fr+ Lo(@(ry), 2(ry-1); D, 0) (49)
and the finishing times satisfy
Tet1 < frr1 < Thgr + §(2(1);5 €, 0). (50)

where L, is given in equation 35 ang is given in equation 48. Then the sequence of release
times, {r.}?2,, and finishing time{ ;. }7°,, will be admissible and the sampled-data system is
finite gain £, stable with an induced gain less thapjs.

Proof: From the definition of¢ in equation 48, we can easily see ti{dt:,;¢,0) > 0
for any non-negative integer. We can therefore use equation 50 to conclude that the interval

[7kt1, Th1 + &(2r; €,0)] 1S nonempty for allk.
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Next, we insert equation 49 into equation 50 to show that

ferr < e HE(@(me); €, 6)
< i+ La(x(ry), 2(re-1); Dk, 0) + &(x(r1)); €, 0)
= fk+L2(l‘(7”k),$(’l"k_1);Dk,1) (51)

for all non-negative integers.
With the preceding two preliminary results, we now consider the following statement about
the kth job. This statement is that

1) re < fo < Tey1

2) ||z(t)[l2 < 0p(x(re)) for all t € [fi, rera,

3) and ||z (t)]|2 < p(x(ry)) for all ¢t € [fx, frr1]-
We now use mathematical induction to show that under the theorem’s hypotheses, this statement
holds for all non-negative integefs

First consider the base case wher- 0. According to the definition of., (equation 35) we

know that
Lo (o, x0; Do, 0) = Lo(x0, x0; Dy, d) > 0
We can therefore combine equations 50 and 49 to obtain
ro = fo < fo+ La(wo, x0; Do, 6) = 11 (52)

which establishes the first part of the inductive statement when0.
Next note that

Dy =0 < Li(z(ro), z(r_1); €). (53)

If we use the fact thai € (¢, 1) C (0, 1] in equations 49 and 53, we can see that the hypotheses
of lemma 5.5 are satisfied. This means thag(t)||» < dp(z(ro)) for all ¢t € [fo, 1] which
completes the second part of the inductive statemenk fer0.

Now define the time
dy = fo + La(x(ro), x(r-1); Do, 1)
Equation 53 again implies that the hypotheses of lemma 5.5 are satisfied, so that

Izo()l2 < pla(ro)) for all ¢ € [fo, di]. (54)
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From equation 51, we know thgt < d?. We can also combine equations 50 and 52 to conclude
that fo < f1. We therefore know thdtfy, f1] C [f1, d?] which combined with equation 54 implies
that

120(8)l]2 < p(x(ro)) for all £ € [f1,dY]

This therefore establishes the last part of the inductive statement=$o0.
We now turn to the general case for ahy For a givenk let's assume that the statement

holds. This means that

I /. (55)
lze(@)]l2 < dp(z(re))  forallt € [fi, ri] (56)
lze@)ll2 < plz(ry)  forallt € [fi, fri] (57)

Now consider thet + 1st job. Because equation 56 is true, the hypothesis of lemma 5.6 is

satisfied which means there exists a functjfofgiven by equation 48) such that
0 < &(z(re));€,6) < Li(@(rpe1), 2(r); €).
We can use this in equation 50 to obtain
0 < Dit1 = frrr — T < §(@(rp); €,0) < Li(@(rps), o(re); €).- (58)

From equation 58 and the fact that (0,1) we know that the hypotheses of lemma 5.5 hold

and we can conclude that

Jrr1 < Thio (59)
[2es1ll2 < dp((ry1)) for all & € [frir, rea). (60)

Combining equation 50 with the above equation 59 yields < fi.1 < 12 Which establishes
the first part of the statement for the cdse 1. Equation 60 is the second part of the statement.

Finally let

d’f“ = fra1 + Lo(x(rge1), 2(rg); Dy, 1)

Following our prior argument for the case whén= 0, we know that the validity of equation

58 satisfies the hypotheses of lemma 5.5. We can therefore conclude that
lzsr(®)l2 < pla(rien)) for all t € [frpr, dit] (61)
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According to equation 51f,,, < d"*'. We can therefore combine equations 50 and 59 to
show thatf,., < fryo and therefore conclude thaf,. 1, fii2] C [fes1, diT']. Combining this
observation with equation 61 yields:.1(t)||2 < p(x(rk41)) for all ¢ € [fri1, fri2] Which
completes the third part of the inductive statement for dasel.

We may therefore use mathematical induction to conclude that the inductive statement holds
for all non-negative integers. The first part of the statement, of course, simply means that the
sequences$r; >, and{ f;}°, are admissible. The third part of the inductive statement implies
that the hypotheses of corollary 4.2 are satisfies, thereby ensuring that the system’s iiguced
gain is less than/z. [ |

Remark 5.8:¢(x,;¢,0) serves as the deadline for the del@y in theorem 5.7.

Remark 5.9:By the way we constructet] we see that it controls when the next job’s finishing
time. We might therefore expect to see a largeesult in larger sampling periods. This is indeed

confirmed by the analysis. Since
Ty > 11 — fro = Lo(zr, 7,3 Dy, 6)

and sincel, is an increasing function of we can see that larger result in larger sampling
periods.
Remark 5.10:By our construction of the parameterwe see that it controls the current job’s

finishing time. Since this
Dy = fr — e < &(25¢€,0)

and sincet is an increasing function of, we can expect to see the allowable delay increase as
we increase. Note also that is a decreasing function of so that adopting a longer sampling
period by increasing will have the effect of reducing the maximum allowable task delay.

The following corollary to the above theorem shows that the task periods and deadlines
generated by our self-triggered scheme are all bounded away from zero. This is important in
establishing that our scheme does not generate infinite sampling frequencies.

Corollary 5.11: Assume the assumptions in theorem 5.7 hold. Then there exist two positive

constants;, (; > 0 such that

T, > G
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and

E(zr;€,0) > G
Proof: From theorem 5.7, we know

fo = e < &(wri€,6) < Li(xy, 2,5 €)
Therefore, by lemma 5.4,

126(F)ll2 < é(ar, 20— D) < ep(ay)
Let us first take a look at},. From equation 49, we have

T},

v
<
o
+
—

|
=

1 op(x,) — P(@y, x—; Di)
o« n (1 + to(x,) + ad(z,, x,—; Dk)>
i 5p(,) — epl,)
= ol <1 T o) + aep(%))
SR (= MVl >
T« VM Aall||2 ]l + WIVM|[[|2 ]2 + ceX(v/M)]|2 |5
=Ly <1+a (G-9MVM) )
e} |VMAqy|| + W || VM| + ceX(v/'M)
= >0 (62)

It is easy to show that
ea(l — H)AVM) 650
+ WV +saX(VM))

i) = (HH Ny

VI. SIMULATION

The following simulation results were generated for event-triggered and self-triggered feedback
systems. The plant was an inverted pendulum on top of a moving cart. The plant’s linearized

state equations were

01 0 0] 0] 1]
sy |00 M0 Y | 0 e

00 0 1 0 1

00 g 0] | —1/0) | 0
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where M was the cart massp was the mass of the pendulum babwas the length of the
pendulum arm, ang was gravitational acceleration. For these simulations, w&/let 10, ¢ = 3,
andg = 10. The system state was the vector { y g 60 0 r wherey was the cart’s position
and § was the pendulum bob’s angle with respect to the vertical. The control imputwas
generated by either an event-triggered or self-triggered controller. The functicas an external
disturbance to the system. The system’s initial state was the vg@t@r{ 098 0 02 0 '

We designed a continuous-time state feedback control system (equation 1) in which the
performance level;y, was set t0200. Solving the Riccati equation in equation 2 yielded a

positive definite matrix” such that the state-feedback gains were
B'"P=| -2 —12 —-378 —210 ] :

The state trajectory of the resulting closed-loop system is denoted belaw &gure 2 plots
the system states as a function of time under the assumptiomthat 0 for all ¢. Figure 2 is

therefore the impulse response of the inverted pendulum system.

Fig. 2. State Trajectories of Continuous-time Closed-loop System (eq. 1)

A. Event-triggered Feedback

This subsection presents simulation results for an event-triggered control of the inverted
pendulum. In this simulation, the next release (after reledseas triggered wher{z,.(¢)||*> =
dp(z,) whered was set td).7. Recall that the trigger signat, is dependent on a parameter

(see equation 14). For all of the following simulations wegdet 0.5. The task delays were set
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equal to the deadline predicted in equation 48. In other wérds- &(x(ry_1;€,0) > 0 wheree
was chosen to be.65. The external disturbance in this simulation was set to zeroui&.= 0
for all ¢).
Let z(¢) denote the event-triggered system’s response atttitret z.(¢) denote the continuous-
time control system’s state. Figure 3 plots the error sigiadt) — x.(t)||» as a function of time.
This plot, therefore shows the difference between the event-triggered system and the original
continuous-time closed loop system. The error signal is small over time, thereby suggesting that

the continuous-time and event-triggered systems have nearly identical impulse responses.

11X - x,0 I,

Fig. 3. State Error|{z(t) — z.(t)]|2) versus time for an event-triggered control systen=(0.7, ¢ = 0.65, w(t) = 0)

Figure 4 plots the task periods}, (crosses) and deadlines, (dots) generated by the event-
triggering scheme. The plot shows that the sampling periods generated by event-triggering range
from 0.023 to 2.368 seconds with an average period(o849 seconds. This is a very wide range
and indeed supports the assertion that event-triggering can substantially reduce the sampling
frequency without adversely effecting system performance.

It is instructive to compare the sampling periods in figure 4 against the periods that would
have been generated by the event-triggering scheme in [6]. The event-triggering scheme in [6]

samples the state when
er (t)Pey(t) = pa (t)Px(t).

P is a positive definite matrix associated with a control Lyapunov functign) = =7 Px for

the closed loop system with state feedback gdinsSincel” is a control Lyapunov function,
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Fig. 4. Sampling periods and deadlines generated by event-triggered feedbadk7, ¢ = 0.65, andw(t) = 0)

we can find a matrix{ such that the directional derivative of the unforced closed loop system
satisfies the inequality’ < —z”Hz. In the above equation, is the real constant

_ AalP) An(H)
P~ 2\ (P)|PBE]|

where\,,(P) and Ay (P) denote the minimum and maximum eigenvalues of matjxespec-

tively. For this particular simulation, we used tle associated with our controller to obtain

p = 4.17 x 1071, This event-triggering threshold generates sampling periods betieérand

10~* seconds. This is much smaller than the sampling periods generated by event-triggering
using the threshold condition in corollary 4.2. The reason for this difference is that the condition
number of ourP matrix is extremely large due to the great difference in the time constants

associated with the dynamics of the cart and pendulum bob.

B. Self-triggered Feedback

The simulations in this subsection examined the self-triggering feedback scheme associated
with equations 49 and 50 in theorem 5.7. In this case the task release times were generated at

time f; using the equation
i1 = Jx + La(x(ry), 2(rg-1), Di, 0)
and the finishing times were required to satisfy

fer1 = fu +&(x(r1); €, )
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We again controlled the inverted pendulum plant of the preceding subsection in which the external
disturbancew was again zero. The and § parameters were the same as in the preceding
subsection taking valugs65 and0.7, respectively.

Let x(¢) denote the self-triggered system’s response andhe continuous-time system’s
response. Figure 5 plots the error sighalt) — x.(t)||» as a function of time. The error signal
is again small over time, thereby suggesting that the continuous-time and self-triggered systems

have nearly identical impulse responses

10 = %0,

o © © o o

o © kb B B B 9
(s3] = N B o o] N

o
o
>

o
o
5

o
o
o

o

1
10 15 20

o
3}

Fig. 5. State error|f@(t) — z(¢)||2) versus time for a self-triggered control systefn= 0.7, ¢ = 0.65, w(t) = 0).

Figure 6 plots the task period%;, (crosses) and deadlines, (dots) generated by the self-
triggered scheme. The sampling periods range betvie@2y to 0.187. This is an order of
magnitude lower than the periods generated by the event-triggered scheme in the preceding
subsection. These sampling periods, however, still show significant variability. The shortest and
most aggressive sampling periods occured in response to the system’s non-zero initial condition.
Longer and relatively constant sampling periods were generated once the system state has
returned to the neighborhood of the system’s equilibrium point. This seems to confirm the
conjecture that self-triggering can effectively adjust task periods in response to changes in the
control system’s external inputs.

Figures 7 and 8 show what happens to task periods and deadlines when wedvaned
e. In figure 7,6 = 0.7 and e was varied between.1, 0.4 and 0.65. The top two plots show
histograms of the sampling period (left) and deadline (right)efer 0.65. The middle two plots

are histograms of the sampling periods and deadlines fof).4. The bottom two plots display
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Fig. 6. Sampling period and predicted deadline for a self-triggered system in which.7 ande = 0.65.

results where = 0.1. Examining the three histograms on the left side of figure 7 shows little
change in sampling period as a functioneofThe three histograms on the right side of figure
7 show significant variation in deadline as a functiore.oThese results are consistent with our
earlier discussion in remark 5.10. Recall tlhatontrols the time when théth task finishes. So
by changinge we expect to see a large impact on the predicted deadjinand little impact

on the task period.

Sampling Periods with €=0.65 Predicted Deadlines with £=0.65
100
50 50
@
4 0 2 o
L 0 005 01 015 02 =3 0 0.005 0.01 0.015
Q) ©
o Sampling Periods withe=0.4 & Predicted Deadlines with €=0.4
2 200 © 100
=1 2
E =
& 100 g s0
s 5
§ o c 0
5 0 005 01 015 02 8 0 0.005 0.01 0.015
2 3
E Sampling Periods with €=0.1 ﬁ Predicted Deadlines with £=0.1
B 100 & 100
50 50
0 0
0 005 01 015 0.2 0 0.005 0.01 0.015

Sampling Period Predicted Deadline

Fig. 7. Histogram of sample period and predicted deadline for a self-triggered system indwhi6tr ande € {0.1,0.4,0.65}.

Figure 8 is similar to figure 7 except that we keegdixed at 0.1 and varyd from 0.15

(bottom) to 0.4 (middle) to 0.9 (top). These histograms show that as we increasee also
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enlarge the task periods. Recall thatontrols the time intervalf,,; — fi. so that what we
observe in the simulation is again consistent with our comments in remark 5.9. As we increase
the sampling period, however, we can expect smaller predicted deadlines because the average
sampling frequency is lower. This too is seen in the histograms on the righthand side of figure
8.

Sampling Periods with =0.9 Predicted Deadlines with 3=0.9
0

50

0
0 0.005 0.01 0.015 0.02
Predicted Deadlines with 6=0.4

0
0 0.05 01 015 0.2
Sampling Periods with =0.4

200

100 I

0
0 0.005 0.01 0.015 0.02
Predicted Deadlines with 3=0.15

100

'

0
0 005 01 015 0.2
Sampling Periods with =0.15

Distribution of Sampling Periods
Distribution of Predicted Deadlines

200

100 100

0 0
0 005 01 015 0.2 0 0.005 0.01 0.015 0.02
Sampling Period Predicted Deadline

Fig. 8. Histogram of sample period and predicted deadline for a self-triggered system inewhieh andd € {0.15,0.40.9}.

The results in this subsection clearly show that we can effectively bound the task periods and
deadlines in a way that preserves the closed loop systém'stability. An interesting future
research topic concerns how we might use these bounds on period and deadline in a systematic

manner to schedule multiple real-time control tasks.

C. Self-triggered versus Periodically Triggered Control

The simulations in this subsection directly compare the performance of self-triggered and
"comparable” periodically triggered feedback control systems. These simulations were done
on the inverted pendulum system described above. The self-triggered simulations assumed that
e = 0.65 andd = 0.7 and task delays were set equal to the deadlines given by the furgction

The state trajectories were compared against periodically triggered systemsowitiparable
task period and delays. The comparable task periods were chosen from the sample periods
generated by a self-triggered system whose exogenous inputs were chosen to be a noise process

in which ||w(t)||z < 0.01||2(¢)|]2. The delay was set equal to the minimum predicted deadline.
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Figure 9 plots the sample periods,, and predicted deadlines generated by such a self-triggered
system. After the initial transient in response to the system’s non-zero initial condition, the
sampling periods converge onto a periodic signal in which the sample periods range between
0.055 to 0.104. The mean sample period over the interval when the system is near its equilibrium
point is taken as the "comparable” period for a periodically triggered control system. This

comparable period was0673. The comparable delay was set to the minimum predicted deadline

which was0.004.

0.12

0.1r

0.08

IR

0.06

0.04

R T

0.02

)

Fig. 9. Sample periods generated by a self-triggered system(0(65 andé = 0.7) driven by a noise process.

It is interesting to note thal), shows significant periodic variation in figure 9. Other sim-
ulations have shown similar results. These observations suggest that the choice of "optimal”
sampling period has its own dynamic that leads to a period variation in the sampling periods.
One interesting issue for future research is whether or not we can take advantage of this variability

in the scheduling of multiple real-time control tasks.
We compared the self-triggered and periodically triggered system’s performance by examining

their normalized state errorg;(¢), given by
[V((t)) — V(x(t))]
V(z(t))
where V(z) = 2Pz and P is the positive definite matrix satisfying the algebraic Riccati

E(t) =

equation 2. This normalization of the state error allows us to fairly compare those states (i.e. the
pendulum bob angle) that are most directly affected by input disturbances. The results from this

comparison are shown in figure 10. This figure plots the time history of the normalized error,
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E(t), for the inverted pendulum using the input signalt) = wu(t) + v(t) wherev is a white

noise process such thak(t)||; < 0.01fz(t)[|; andp : ® — R takes the values

sgn(sin(0.7¢)) if 0 <t < 10
p(t) = -
0 otherwise
The functionyu is a square wave input to the system that we’ll use to see how the self-triggered
and periodically triggered systems react to external disturbances. The figure plots the normalized
error for the self-triggered system and a comparable periodically triggered system. As noted
above the period for the periodically-triggered system was chosen from the "steady-state” sample

periods generated by the self-triggered system (see figure 9).

0.07

= E(t) for self-triggered system
— - — - E(t) for periodically triggered system

Fig. 10. Normalized errorE(t), versus time for a self-triggered system=t .65 andé = 0.7) and a periodically triggered

system whose period was chosen from the sample periods shown in figure 9.

Figure 10 clearly shows that the self-triggered error is significantly smaller than the error of
the periodically triggered system. This error is a direct result of the self-triggered system’s ability
to adjust its sample period. Figure 11 plots the sampling periods generated by the self-triggered
system for the preceding system. This plot shows that the sampling period readjusts and gets
smaller when the square wave input hits the system over the time infervél. These results
again demonstrate the ability of self-triggering to successfully adapt to changes in the system’s

input disturbances.
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Fig. 11. Sampling period versus time for the self-triggered system (.65 andd = 0.7) with a square wave input over the

time interval(0, 10].

VIlI. CONCLUSION

This paper has presented a state-dependent threshold inequality whose satisfaction assures
the inducedf, gain of a sampled-data linear state feedback control system. We derive state-
dependent bounds on the task periods and deadlines enforcing this threshold inequality. These
results were used to present an event-triggered feedback scheme and self-triggered feedback
scheme with guaranteef, stability. Simulation results show that the proposed event and self-
triggered feedback schemes perform better than comparable periodically triggered feedback
controllers. The results in this paper, therefore, appear to provide a solid analytical basis for the
development of aperiodic sampled-data control systems that adjust their periods and deadlines
to variations in the system’s external inputs.

There are a number of open directions for future study. The bounds derived in this paper
can be thought of as quality-of-control (QoC) constraint that a real-time scheduler must enforce
to assure the application’s (i.e. control system’s) performance level. This may be beneficial
in the development of soft real-time systems for controlling multiple plants. The bounds on
task period and deadline suggest that real-time engineers can adjust both task period and task
deadline to assure task set schedulability while meeting application performance requirements.
It would be interesting to see whether such bounds can be used in generalizations of elastic

scheduling algorithms [16] [17]. This might allow us to finally build soft real-time systems

June 27, 2007 DRAFT



31

providing guarantees on application performance that have traditionally been found only in hard
real-time control systems.

To our best knowledge, this is the first rigorous examination of what might be required to
implement self-triggered feedback control systems. Self-triggering on single processor systems
may not be very useful since event-triggers can often be implemented in an inexpensive manner
using programmable gate arrays (FPGA) or custom analog integrated circuits (ASIC). If, however,
we are controlling multiple plants over a wireless network, then the inability of such networks
to provide deterministic guarantees on message delivery make the use of self-triggered feedback
much more attractive. An interesting future research direction would explore the use of self-

triggered feedback over wireless sensor-actuator networks.
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