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Abstract— This paper studies self-triggering in sampled-data effectively balance the real-time system’s computatia@ost
systems, where the next task release time and finishing time against the control system’s performance.
are predicted based on the sampled states. We propose a | ygcent years, sporadic task models have been considered

new self-triggering scheme that ensures finite-gair, stability - .
of the resulting self-triggered feedback systems. This seme for real-time control. A hardware realization of such madel

relaxes the assumptions in [1] that the magnitude of the praess IS called event-triggering. Under event-triggering thetsyn

noise is bounded by a linear function of the norm of the states are sampled when some error signal exceeds a given
system state. We show that the sample per.i(.)ds generated by threshold [9], [10], [11], [12], [13]. Event-triggering hahe

this scheme are always greater than a positive constant. We ability to dynamically adjust the task periods to variation

also provide dynamic deadlines for delays and propose a way . o o
that may enlarge predicted deadlines without breaking Lo in the system state. This “on-line” property enables event-

stability, especially when the predicted deadlines are vgrshort. ~ triggering to generate longer task periods than periodik ta
Simulations show that the sample periods generated by this models [1].

scheme are longer than those generated by the scheme in [1]. QOne thing worth mentioning is that event-triggering re-
We also show that the prt_adicted deadlines can be extended by quires a hardware event detector that may be implemented
our scheme. Moreover, this scheme appears to be robust to the ~ . . L , .
external disturbances. using custom analog integrated circuits (ASIC’s) or flogyn
point gate array (FPGA) processors. In some applications,
|. INTRODUCTION however, it may be unreasonable or impractical to retrofit an
existing system with such “event detectors”. In these cases
Sampled-data systems are such systems that sample cgdftware approach such as the self-triggered scheme may be
tinuous signals and make control decisions based the sdmplaore appropriate. Under self-triggering the next taskasde
data. Traditional approaches to implement such systerfifne and finishing time are predicted by the processing
are based on periodic task models, in which consecuti\@mputer based on the sampled data.
invocations of a task are released in a periodic manner. A self-triggered task model was introduced by Velasco
Early work [2] is based on Nyquist sampling that ensuregt al. [14] in which a heuristic rule was used to adjust task
perfect reconstruction of the signals. Noticing that petrfe periods. Further work was done by Lemmon et al. [15] which
reconstruction is much more than we require in a feedbaghose task periods based on a Lyapunov-based technique. But
control system, Lyapunov techniques were used to identiffie authors did not provide analytic bounds for task periods
the sample period [3]. Further work was done in [4], [5] toMost recently, Wang et al. [1] provided the first rigorous
bound the inter-sample behavior of nonlinear systems usiR&amination of what might be required to implement self-
input-to-state stability techniques. For networked aointr triggered feedback control systems oy stability. A scaling
systems, the maximum admissible time interval (MATI) wasaw for the execution times of control tasks was derived in
introduced by Walsh et al. [6], where a task can be postpongts] for homogeneous systems with asymptotic stability.
while still maintaining closed-loop system stability. Titgr A critical assumption in [1] is that the magnitude of the
bounds on MATI were obtained in [7], [8]. process noise is bounded by a linear function of the norm of
As we mentioned above, the preceding approaches afg system state. It means that the disturbance shouldvanis
all based on periodic task models. Such models may kg the state is close to the equilibrium. Such disturbances
undesirable in many situations due to their conservats®ne may arise in uncertain systems when there are unmodeled
Under periodic task models, the selection of sample periodgnamics caused by fluctuations in plant parameters. In
is done before the system is deployed. One therefore hasggactice, however, the disturbances usually do not depaend o
ensure adequate behavior over a wide range of uncertaintigise state. With those “independent” disturbances, the self
As a result, these selected periods may be shorter thafygering scheme in [1] cannot theoretically guaranize
necessary, which results in significant over-provisioniig stability of the sampled-data system any more. Therefore, i
the real-time system hardware. This over-provisioning majg really important to relax this assumption so that the-self
negatively impact the scheduling of other tasks on the saneggering scheme can apply to a wider class of systems.
processing system. In these applications it may be better toThis paper extends the work in [1]. We present a new
consider alternatives to periodic task models that can mogelf-triggering scheme that ensures finite-gainstability of
the resulting self-triggered feedback systems. This sehem
fﬁoi?eagng: ﬁgt;'éitgé?ﬁedma&“;gg gf nﬁﬁ?ﬂ‘ﬂf“ﬂ’}gfﬂ%fggz pertains to linear time-invariant systems. The task releas
$he0authors gyratefully ackﬁowledge the pariial fingnciyabmmt of the time and finishing time are predicted as functions of sampled
National Science Foundation (grants NSF-CNS-0720457) states. It relaxes the assumptions in [1] that the magnitude



of the process noise is bounded by a linear function of thfer ¢ € [fx, fx+1) and allk =0, ..., co. We define the error
norm of the system state. We show that the sample periods: R — R™ ase¥ = z; — x,, for all t € [rg, fri1)-
generated by this scheme are always greater than a positiveDefinition 2.1: The system (4) is said to be finite-gaih
constant. We also provide dynamic deadlines for delays amsthble fromw to x with an induced gain less thanif there
propose a way that may enlarge predicted deadlines withoetist non-negative constantsandd such that

breakingl stability, especially when the predicted deadlines - 1 - 1

are very short. Simulations show that the sample periods (/ ||a:t||§dt) <~ (/ ||wt||§dt) +6 (5)
generated by this scheme are longer than those generated by \Jo 0

the scheme in [1]. We also show that our scheme can exte

the predicted deadlines. Moreover, this scheme appeass to In [1], a self-triggering scheme was proposed to ensure

robust to the external disturbances. finite-gain Lo stability of the sampled-data system in equa-
This paper is organized as follows. In section Il the prob- 9 2 y P y q

. : : . tion (4) fromw to x. But it is not applicable for allv in Lo
lem is formulated. Section Ill and IV present self-trigaeri space. The scheme is based on the assumptior| ahé <
schemes for the sampled-data systems without/with dela : P -

respectively. Simulation results are presented in section th.HQ holds for someli” > 0. In practice, however, .
Finally, conclusions are stated in section VI, the disturbances usually do not depend on the state, with

which the self-triggering scheme in [1] cannot theoretjcal

PBdr any w satisfying (f;* Hth%dt)% < o0.

Il. SYSTEM MODEL guarantee’s stability of the sampled-data system any more.

Consider a linear time-invariant system whose state  In this paper, we try to find a self-triggering scheme that

[0, 00) — R satisfies the initial value problem, can relax the assumptions in [1] with the guarantee of finite-
gain Lo stability of the sampled-data system framto z.

T = Awi+ Biug + Bowy In other words, we try to find a self-triggering scheme such

whereu : [0,00) — R™ is a control input andv : [0, 0) —  thatL stability can be preserved for amyin £, space. For

R! is an exogenous disturbance functiondn space. In the notation convenience, I&}, = r;41—7) denote theésth inter-
above equationd € R"*", B; € R**™ and B, € R"*! release time (known as “sample period”) abgd = fr — r

are real matrices of appropriate dimensions. denote the time interval between théh job’s release and
Assume the unforced system is asymptotically stabilizeinishing time (known as “delay”).
by the controller IIl. SELF-TRIGGEREDSYSTEMS WITHOUT DELAYS
uy = —Bf P, () In this section, we consider the sample-data systems where

task delays are zerd);, = 0). We try to find a self-triggering
scheme that ensures finite-gaip stability of such systems.
The main idea is that: we first seek some inequality congtrain
0=PA+ATP—Q+1+ %PBQBQTP (2) onrk (= fi) such thatl, stability can be guaranteed; then
8l we derive the self-triggering scheme that can ensure the
where satisfaction of this constraint.
Before we show the desired inequality constraint, we need
Q=PBBP (3) a lemma to help the proof, which provide an upper bound
for some real constant > 0. For notational convenience, for the derivative of the storage function. To make the paper
let A, = A— B,BfP. easy to read, we put all of the proofs in the appendix.
This paper considers a sampled-data implementation of theLemma 3.1:Consider the sampled-data system in equa-
closed-loop system. This means that the plant’s control, tion (4). LetV : R” — R™ be a positive definite function
is computed by a computer task. This task is characterizeatisfyingV/ (x) = z¥ Px with the matrixP given in equation
by two monotone increasing sequences of time instant&). For any real constam € (0, 1], the directional derivative
the release time sequengey};°, and the finishing time of V' satisfies
sequence{ fx}22,. The time r, denotes the time when 2 2 9 2 T ok T
the kth in;{/oc};;ioon of a control task (also called a job) isV < =0 lwella + 7 ol + (er) Me; —ay, Nar, (6)
released for execution on the computer’s central procgssiholds for allt € [fx, fx+1) and anyk =0, ..., co whereM,
unit (CPU). The timef), denotes the time when théith job N satisfy
has finished executing. Each job of the control task computes (1= I+ Q )
the controlu based on the last sampled state. Upon finishing, 1
the control job outputs this control to the plant. The cohtro N = -(1-)1+0Q, (8)
signal used by the plant is held constant by a zero-order hold ) ) 2. ] . )
(ZOH) until the next finishing timefy.1. This means that respectively with the matrix) defined in equation (3).

where P € R™*™ is a symmetric positive semi-definite
matrix satisfying theH ., algebraic Riccati equation (ARE),

M

the sampled-data system under study satisfies, Remark 3.2:Notice that even for the systems with non-
. zero delays, lemma 3.1 is applicable. In fact, we will also
i = Az + Biu + Bowy (4)  use this lemma in the proof of theorem 4.1, where the self-

w, = -—BIPz,, triggered systems with non-zero delays are considered.



The inequality constraint on the task release time (it ito trigger the next task’s release with the guarantee of
also task finishing time since we assume the task delay ssability of the systems. Notice that equation (13) can be
zero) is presented in the following lemma. For the notatiorewritten as

convenience, we defing : R™ — R asp(z) = VT Nuz, W@ )? [ 200—F1)  gertt—fr) | 3
N _— " - ( - + 242t fi)
o R — IIR as pu(zy,) = [WMAazy, |2, and a = a o o a N (14)
|WVMAVM . < plar)*(t = fr)
Lemma 3.3:Consider the sampled-data system in equady taking the integration.
tion (4). Assumerg = 0 andry = f; for all k € Z*. Let Lemma 3.3 provides a constraint on the task release time.

#3 be any positive constant in the intervdl, 1] such that It is easy to see that if we can find some> f; that

the matrix M defined in equation (7) has full rank. Given amakes the equality in equation (14) hold, the next task
positive constant € R, if release time can be predicted. However, it is difficult to
@) obtain such solutions in an explicit form. An alternativeywa

; (@ )? ) / is to get an estimate of the solution that can ensure the
2 [ B (el —1)7dt < [74 p(ay,)?dt (10)  satisfaction of equation (10). In this way, stability can
hold for all k € Z* with N defined in equation (8), then still be maintained. This is formally stated in theorem 3.6,

the sampled-data system is finite-galp stable fromw to where a self-triggerin_g scheme is presented. :
2 with an induced gain less thay where Theorem 3.6:Consider the sampled-data system in equa-

_ tion (4). Assumerg = 0 andr, = fi for all k € Z™.
- Vr2e2+2|| VB, || (e‘”—l)2' (11) Let 3 be any positive constant if0, 1] such that the matrix

Remark 3.4:The inequaﬁtﬁy constraint proposed in [1] is M defined in equation (7) has full rank. Given a positive
(T MeF < play,)? for all t € [ry, frs1). The self- constantr € R, if the next task release time,,; satisfies
— Tk Y *

Tk STkJrl grk—i-r,and

triggering scheme in [1] enforces this inequality consiai i < g1 < 1 4 min{7, Ly (2,)}, (15)
thereby assuring the overall systents stability. This in- . . o
equality, however, can be relaxed. It is easy to see that ti all k¥ € Z™, whereL, : R” — R is given by

preceding inequality implies the integral inequality civait 1 (1 n ap(z.,) ) 20
=1In = T
f f Li(z,,)=1 @ V2||VMAqz, " 16
D) Mefdt < [2F p(ay, )2 dt 12y Lilen) & [, xm:O( )

and the proof of lemma 3.3 shows that the constraint ir}1 i .
equation (12) is sufficient to assuf® stability. then there exists a positive constgrguch thatl, (z,, ) > &

Nevertheless, the constraint in equation (12) is still itasu fOr @l & € Z and the sampled-data system is finite-géin

able for a practical self-triggering scheme. This is beeaustable fromw to z with an induced gain less thap which

it makes use otF which also contains the disturbaneg. " is defined in. equa_ltion (11),' : :
Since the exact value of the disturbance is unknown, we Remark 3.7:The introduction ofr is the safety require-

cannot use (12) to predict the future time when we expeff€nt Of systems. Itrequires the system updates at least ever

inequality (12) to be violated. 7 unit-time so that some accidents can be detected. Notice
There are several ways of handling this issue. One af?@!7 also affects the induced gain.

proach (that was used in [1]) is to fordev|j> < W]|ze|2, Remgrk 3.8:The self-triggering scheme can bg., =

thereby forcing the noise strength to decrease as the systéfnt mini7, Li(zy, )} for all k € Z. Then Li(zy,) = ¢

approaches its equilibrium point. This assumption may bactually impliesT}, > min{r, £} > 0.

justified if the noise term is generated by state-dependent |v. SELE-TRIGGEREDSYSTEMS WITH DELAYS

modeling uncertainty, but in general i_f the distu_rbanc_e is This section introduces a self-triggering scheme for the
independent of the process model, this assumption will bseampled-data systems where the task delays are not zero.

overly restr|c_t|ve. . . . In this case, the differential equations associated with tw
We were interested in remove the earlier assumption i

[1] so thatw; can be any signal i, space. We were able |'ﬂtervals[rk, f) andlfy, fi1) are

to do this about splitting up the effect that the sampledestat iy = Axy— BB Px,_, + Bow; and

z,, and the noisev, has on the local errorf. This allows iy = Az, — B1BT Px,, + Bowy,

us to isolate those term containing. so we can bound ) _ )
f}.cik+l(e?)TMe?dt as a function ofw, plus another term respectively. We derive bounds on the sample period and

that is only dependent of the sampled state. The second @Sk delays to ensurés stability of the systems. Based
term leads to the inequality in equation (10) and the terfi" these bounds, a self-triggering scheme is proposed. The
related tow, contributes to the induced gain analysis is similar to that used in theorem 3.6 except that

Remark 3.5:Lemma 3.3 actually implies an event-the behaviour of the error}, needs to be characterized
triggering scheme for zero-delay systems. The system cffferently over the intervalgry, fi) and [fy, fy+1). Due
use the violation of the inequality to the space limitation, we will not show the bounds on

b (o )? ) . errors over these two intervals. The self-triggering sobiem

2 [; =t (e —1)7ds < [} plan,)?ds  (13) s formally stated in the following theorem.



Theorem 4.1:Consider the sampled-data system in equahe vectorr = [ y g 60 0 }T wherey was the cart’s
tion (4). Let3 be any positive constant in the inten@l, 1]  position andd was the pendulum bob’s angle with respect
such that the matrid/ defined in equation (7) has full rank. to the vertical. The system’s initial state was the vector
Given three positive constaat 71,72 € R and a positive z, = [ 098 0 02 0 ]T, The controller isu = Kz,

sequencedy } 22, satisfyingd_ >, 6x < oo, if whereK = [ 2 12 378 210 |. The Lyapunov function
« the initial condition isrg = f, =0, for the continuous closed-loop systemli§z) = v Pz,
o the k + 1th task release timey, ; satisfies where P satisfies ARE equation (2) with = 200.
) We first used the self-triggered feedback scheme, associ-
Tkt = fr + min{7y, eLa(zr,)}, (17 ated with equation (17) and (18) in theorem 4.1, to trigger
for all k € Z*, whereL, : R — R is defined by the sampling. The parameters arg = 0.15, » = 0.05,

e = 0.8, andd, = 0. In this case, the task release times
1 __oplar) were generated at timg, using the equation
~In (l—i— 7] |2) Zp,, 70 g 6 g q

LQ(Irk) = \/MAclw,\k
00 Ty, =0 Trt1 = fr +min{7, eLa(z, )}
o thek + 1th task finishing timef; ., satisfies and the finishing times were assumed to satisfy
mln {7—2, (1 — E)LQ(x’I‘k)aL3(x7‘k+17x7‘k;§k+1)} fk+1 — Tk+1 +
> fe41 —7er1 20, (18) min {72, (1 = €)La(2r, ), La(rysr» Try i Ohs1) )
whereLs : R" x R" x R — R is defined by which means the delays are equal to the deadlines.
L3(2ry,\s Trys Okt1) The top plot of figure 1 shows the state trajectories
114 /P2 (@ry ) +20k 1 versus time in the resulting self-triggered feedback syste
@ V8ea(ritm2) ||V M (Az,, , ~B:1Bf Pz, )[|, )7 Obviously, the state converges to zero. The bottom plot of

then the sampled-data system is finite-g#in stable from figure 1 is the sample periods (cross) and deadlines (dot)

w to z with an induced gain less than a positive constant generated in the system versus time. We can see a range of
. variations in periods and deadlines. The average period and

Remark 4.2:By the self-triggering scheme proposed "Ndeadline are.1057 and 0.0056, respectively. It shows that

theorem 4.1, the: + 1th task release time is determined . . - : :
. . self-triggering can efficiently adjust the sample periodd a
whent = f;, and the deadline for the + 1th task delay is ; . .
. deadlines in response to changes in the control system.
determined when = r,,,. 7y and, are used to bound the

time intervals|fx, rx+1) and [rg41, fr+1), respectively, for

the consideration of the system security. 4 ‘ ‘ ‘ ‘
Remark 4.3:By the definition ofL,, it is easy to see that sl —

there exists a positive constaéwE R* such thatls(x,, ) > g .l \

£ > 0. This implies the sample periods generated by this se § §

triggering scheme are always greater than a positive canst. £ N

Remark 4.4:The introduction of;, can increase the value . ‘ ‘ ‘ ‘ ‘
of Ls(z,,,zr,_,;0k). This suggests that by appropriat o 2 4 6 8 10 12 14 16 18 20

A ) time
selectingd,, we can to some extent enlarge the deadlines.
+  deadlines| |
h

may be useful when the predicted deadlines are very sh

o
N

o
e
3

+

In that case, some largk is desirable. How to efficiently
identify 65, might be an interesting topic in the future.

V. SIMULATIONS
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In this section, we used the inverted pendulum problem 0 e s
[1] to demonstrate the proposed self-triggered scheme. 1 ime
plant’s linearized state equations were
0 1 0 0 0 Fig. 1. A self-triggered feedback system
. 0 0 —mg/M 0 1/M 5 _ _ _
ro= 0 0 0 1 1%t 0 u We then seth, = 1% and re-run the simulation. Notice
0 0 g/t 0 —1/(M¢) that Z;; 5@ < oo. The resulting self-_tnggered f_eedl_o_ack
— Az + Bu system is still stable. However, the predicted deadlingkim

system are much longer than those in the system ayita 0.
where)M was the cart mass; was the mass of the pendulumThis is shown in Figure 2 that plots the deadlines in the
bob, ¢ was the length of the pendulum arm, apdwas systems withh, = % (circle) andd;, = 0 (dot). It suggests
gravitational acceleration. For these simulations, wélet  that appropriate selection 6f can result in longer deadlines.
10, m = 1, £ = 3, andg = 10. The system state was It provides the possibility of avoiding very short deadbne
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Fig. 2. 5A comparison between the deadlines generated byygterss with
6, = 1% (circle) ands;, = 0 (dot)

Then, how to efficiently allocate the resource (selectipp
would be an interesting research topic.
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Fig. 3. A self-triggered feedback system with externalutisancew(t)

We also examined the robustness of our self-triggereéjeri

feedback system to the external disturbance witk= 0.15,
5 = 0.05, ¢ = 0.8, and §, = 0. The disturbancew;,

was assumed to be a random variable uniformly distributed

over [—0.2,0.2]. The results are plotted in figure 3. The

external inputs. Based on the results of this simulatiom, ou
self-triggering scheme appears to be robust to the external
disturbance.

Finally, we compared our self-triggering scheme &
0.5, ¢ = 1) and the self-triggering scheme in [1] with a
noise process satisfyingu:||2 < 0.01||z¢||2 (W = 0.01). In
both of the cases, we assume the delays are zero. Recall that
the self-triggering scheme in [1] requirdsy, || < W||z¢|2
holds for somel’’ > 0 and thek + 1th task releasery 1,
is triggered in the following way:

allvVMazy, |2
|| \% MAclemH2

where M = (1 — 3%)I + PBBTP > 0 with somej ¢
(0,1) anda = |[VMAVM || + WIVMB||VM |.
We set = 0.5 (the value of3 did not significantly affect
the simulation results).

The simulation results show the minimal/average/maximal
periods generated by our self-triggering scheme and the
scheme proposed in [1] ar8.0220/0.1574/0.2290 and
0.0210/0.0626,/0.1030, respectively. It is obvious that our
self-triggered scheme generates much longer sample geriod

1
Tk+1—rk+—1n<1+
a

VI. CONCLUSIONS

This paper proposes a new self-triggering scheme that
ensures finite-gai, stability of the resulting self-triggered
feedback systems. This scheme relaxes the assumptioris in [1
that the magnitude of the process noise is bounded by a linear
function of the norm of the system state. We show that the
sample periods generated by this scheme are always greater
than a positive constant. We also provide dynamic deadlines
for delays and propose a way that may enlarge predicted
deadlines without breaking, stability, especially when the
predicted deadlines are very short. Simulations show that
the sample periods generated by this scheme are longer than
those generated by the scheme in [1]. We also show that our
scheme can extend the predicted deadlines. Moreover, this
scheme appears to be robust to the external disturbances.

APPENDIX

Proof: [Proof of Lemma 3.1] Consider the directional
vative of V for ¢ € [fx, fr+1):

V = 9Y (Az, — BBf Px,, + Bow)

2
= —al(I-Q)x — vat - %ngxt ,

top plot of figure 3 shows the state trajectories of the self- +72 Hthg — 227 Quzy,
triggered feedback system. The system still converges to a < -2l (I-Q)zy ++2 Hthg - 227 Qx,, .

small neighborhood of the equilibrium point. The bottomtplo

of figure 3 provides the sample periods (cross) and deadlinesinsertz; = e} + z,, into the above equation to obtain

(dot) generated by this system. Although the periods and
deadlines still vary a lot, they are in general much smaller

IN

2+ (ef +20,) " Q (ef + 2,

than those in the non-disturbance case. The average period ) (ef + xrk)TQ% g Ithllg

and deadline ar6.0535 and0.0021, respectively. This veri-
fies the ability of self-triggered feedback systems in atitjgs

= B lwill2 = (1= B2 a2+ ()" Qe

sample periods in response to changes in the control system’ —:vfk Qr, +7° Hthg . (29)



Notice that We now take a look at the second term in the right side of
the inequality above. For notational convenience, we define

oz = ||€t+%||2—||€tHz+H~’%||z+2Met
2 Jr+1 t 2
= el b e Vo Gy, ([0 i ot i) - 29
> = [lebll; + 5 llen - g :

) . ] ) (2_0) Using Cauchy-Schwarz inequality, we have
Applying equation (20) into equation (19), we obtain
. 2 t s
Vo<l (el e s) (e VB edas)
T —s
+(eh) Qeb = a7, Qan +9% Junl3 < (ff, et=1ds) (ffk e(t=2) || VB, |ws|§ds)
= B [lzell3 + 42 lwill3 + ()" Mel — a7, Na,,
where M and N are defined by equation (7) and (8), for all ¢ € [fx, fi+1)- Therefore,

respectively. ] W. < 9w ( a(t—s) g ) )
Proof: [Proof of Lemma 3.3] By lemma 3.1, we know b= f ffk ‘ ° 9
. T a(t—s) 2
V< =Bl + 22 ol + (eb)” Mek T, N, (f . ’”MB?H b ) @5)
for all t € [f, fu+1). Integrating both sides of the inequality = 2ffk+1 = (vt — 1)
above ont over the interval fy, fx+1), we obtain: toa(t—s) 2 2
Frtt Vdt < 9 f,c+1 g Fri1 2 f ’ v MBQH ”wst ds | dt.
I3 —B lell5 dt +~2 [754 el
_|_ffk+1 ( t) Mek —:z:,TkN:chdt Equation (9) implies0 < 741 — 1 < 7. By the

(21) assumption that, = f holds for allk € 7+, we have
Let us consider the termffk+1 (eF)" Mekdt, in the 0 < fer1—fr < 7. Therefore, equation (26) can be reduced
inequality in equation (21). We will show an upper bound or®S

this term. Let® = {t € [fe, fet1) : H\/Mef } The Wi

time derivative of||v/Me¥ ||, for t € [fr, fk+1)\<I> satisfies < 2 (eo7 — f’c+1 ffk a(t—s) ’\/_Bg‘ |[ws |2 dsdt
%H\/Mef , < H\/Hé,’f = metHg _ 2 ffk+1 [F ot ’\/_BQH Jwa 2 dtds
— H\/M(A:rt - B,Bf Pz, +ngt) ’2 = 2D ffk“ ( olfeta=s) 1 H\/_BQH stHz ds,
< H\/MAef ) + H\/MACIITk ) + ’\/MBzH llwelly where the first equality is obtained by reversing the((?r7d)er of
< a H\/MefH n H\/MAclxrk L H\/MB2H el integration. Applyingfx+1 — fi < 7 in equation (27) yields
where the rightha2nd sided derivati\2/e is used when fy. Wi < Wifzﬂz (eo™ —1)? fk“ [ws |13 ds. (28)

Using standard comparison principle on the preceding

equation over the interval € [fx, fr+1) with the initial Combining equation (24) and (28)' we obtain

conditionH\/Me’} H = H\/Me’ij =0, we have jf:+1 VMek 2
2
H\/Mef < H‘/_A 12y ||, (ealt=1k) — 1) < 2J"fk+1 ||‘/_1121sz|| (ext=1i) — )th (29)
2
alt—s 42 V_B 2 f 2
+ Jf, e | VB, |l ds AT (e 2 0 o 2.
for all t € [fe, frs1) because|v/ ek ‘ —0forall t € ®. Therefore, equation (21) can be further reduced as
Notice that equation (22) yields 2 ffikﬂ Vdt
2 = ) J
|vazet|. < oIz ly (pate—p) _1)? < [l thngdtﬂ?jfj*l w12 dt
2 fk+l
T Nz, dt
+2 ([f, et ]F&H s ds) ~Ji ||m"z 5 )
(23) ffk+1 # (ea(t_fk) — 1) dt
forall t € [fx, fx+1). Integrating both sides of the inequality 2H\/_B2H (o7 —1)2 Frtr ws|2 ds
in equation (23) ort over the interval fi, fx+1), we have Ik o2
f 2 = _62 fjjf:ﬂ H tHth— fikﬂ xz;NIdet
f:+1 ‘ \/]\46,{C th + 72 4 M (eom— _ 1)2) f}.cfk+1 ”wtlgdt
< 2J"J‘k+1 ||‘/_A<1””Tk|| ( alt—fr) _ )2d (24) "

2
v [l DAzl (oemp 1) ar

ol (g ( a(t 9 ‘\/_BQHHwSszS) dt. i - )




Applying equation (10) in equation (30), we obtain Using standard comparison principle on the preceding
e - ) equation over the interval € [ry, fi) with the initial
St vt < =57 [3E (|5 dt conditionH\/Mefka =0, we have
2

2||vM B (31)
+ (7 ”ai” (e — 1)2) JE w3 dt.

H“WH < WA =B B P Dy (pate-n) _ 1)

Summarizingk in both sides of the inequality above from .
0 to oo , we obtain +f exlt=9) ‘V B2H [wsl|, ds

: (34)
0o 00 2

fo Vdt < —? fo [l dt for all ¢t € [ry, fi.) becausd|v/MeF|| =0 forall t € ®;.

t

2

2 2” MB2H2 ar _ 1)\2 0 2
+ (7 + = (e D7) o Nwells dt, Let &, — {te [ frst) : H\/ etH _0} Following
2

which is sufficient to show that the sampled-data system lge similar analysis in the proof lemma 3.3, the time deriva-
for ¢ € [fr, frr1)\ P2 satisfies

finite-gain £, stable fromw to = with an induced gain less V€ of H v et‘
\/720¢2+2H\/MBQH2(80‘7—71)2

than . ] d
o /T k
Proof: [Proof of Theorem 3.6] By the assumptioh/ p H Mey H2 < H vV Me; H2 + H VMAazy,||,
defined in equation (7) has full rank. As a resiNtdefined in n H\/_B H ]
2 tll2 >

equation (8) also has full rank and > N > 0. Therefore,

by the definition ofZ, in equation (16), we have where the righthand sided derivative is used when f.

Using standard comparison principle on the preceding
1 2y Amin (V) ||z | . . . A~
Li(z,) > sIn(1+ o (AT A ”zjk” equation over the interval € [fx, fk+1) with the initial
2 condition
1 @ )\min(N)
- _hl 1"’— >O, \/MA 7BBTP

« 2)\max(A31A4Acl) H /Me];_k S H ( Lry, ; 1 x"'k—l)”g (eOLDk _ 1)

which guarantees the well-poseness of equation (15). + fT’;’“ e (fr=s) ’\/MBQH llws ||, ds

Notice that equation (15) implies

Vit . obtained from equation (34), we have
VA (atriin—n) Z 1) 4T Nay, <0, (32)

si fi for all k € Z*, th ion ab b H etH
incer, = f; for all k € Z*, the equation above can be . ;
rewritten as < eolts f)HF(A - BlBl Pori )l (gap 1)
VT Aaze | ( apse 2 ety [ enth=s) ||y W B o] s
O 776 (ea(jk+1 fk) _ 1) —_ .':CT er,«
- 2”\/_A = H 9 Tk k H\/_A lm"k” ( t fk) )
> ATl (e 1), N, G
(33) +ff M By | [, ds

for all s € [fx, fxr1). Therefore, integrating both sides of (35)
this inequality ons over [f, fr.1) implies that satisfaction holds for allt € [fx, fx+1) since ||V Mef|| = 0 for all

of equation (10). Since the hypotheses in lemma 3.3 arez &,. By squaring both sides of the inequality in equation
satisfied, we can conclude that the sampled-data system(3%), we obtain

finite-gain Lo stable fromw to x with an induced gain less

2
thany = A e . |vazet
Proof: [Proof of Theorem 4.1] Letd; = < ge20(—fi) | VM (Az,, —BiBT Pe,, )2 (P — 1 2
{t € [rk, fr) H\/ efll = 0} The time derivative = o?
420 (t—1x) ( [T et ‘,/—B2 ds)
of H\/ ef H fort € [rk,fk)\tbl satisfies VT
_;’_4% (ea(t fr) _ 1)
d 2
—|VMeF|| <||VMéF|| = ||VMi, +4 ([r =9 ||/ MBy|| [|Jws]|, ds
dt o o 2 I 2 (36)
— s T )
= H M (A, — BBy Py, + B2wt)H2 holds for allt € [fk, fx+1). By equation (17) and (18), we
< w Hx/ﬁef + H\/M (Az,, — B.BT Pz ) ‘ have fi+1 — fr <11 + 2. Therefore, equation (18) implies
- 2 " BraiPY that

i [ . ;
2| t“g 482a(t7fk)||m(Asz igBlTPszA)”z eaDk_l)Q (37)

where the righthand sided derivative is used wheary,. < 1ol Na,, + 6




holds for all¢t € [f%, fx+1). Again, by equation (17) and
(18), we havefi1 — fr < La(zy, ), Which implies that

2
H \% MAclIrk 2 1
4—2 (ea(ti‘fk) — 1) < —ZCT Nz
a? = 97Tk Tk

holds for allt € [fx, fr+1). Applying equation (37) and (38)
into equation (36) yields

(38)

( 2a(Ty +T2)

Applying equation (42) and (43) into (41), we obtain
f-fk+1 vt

52 ffk+1 |$Ct||2dt+’7 J"fk+1 ‘thth_i_ffkﬂ& dt
)(2""2—1)H\/_32H

4|\ B ||
(A

% fk lwsll3 ds
a(Ti+72) _ 1) fk+1 ”wS”2 ds.

Summarizings in the inequallty above fror to oo yields

2
|varet], Iy

Vdt

< ol Na,, + 0 <= Jy HthzdtJr(Tl +72) 2520
a(t=s) |/ +fo HU’SszS
+ (f e MB, ‘ st||2ds) Va2 +||[VMB; ||* (221472 —1) (2072 —1) pa(e (1 +72) 1))
(o3 f Ot —S .
4e20(t—fr) (f kgalfi—s) ‘,/ BQH ||ws||2ds) a? (44)

(39)
for all t € [fx, fr+1). By lemma 3.1, we know

Since )’
to show the sampled-data system is finite-g&in stable
from w to z with an induced gain less than

v 0k < o0, the inequality above is sufficient

V<=3 w3 97 w3 + (F) " Mef — 2T, Na, (40)

\/72a2+||m32 ”2 ((e2o¢(7'1 +7-2),1)(620m2 ,1)+4(ea(n +72)71)2)

holds for allt € [fx, fxr1) With V(z) = 2T Pz. Applying

equation (39) into the preceding inequality implies that
Vo< =B |l 4 A el + 6

a2t 10) ([T eali=s) || /M By stHst)

+4. ([}, e || VB, ||w5|\2ds)

holds for allt € [fx, fx+1). Integrating both sides of the
preceding inequality om over [fi, fr+1) yields

ffk“ Vvt
62 fk+1 th”th‘F’Y ffk+1 ‘thth_’_ffkﬂ& dt
jfk“ 4eza<t 50 ([ et ‘\/—BQHHMSHQcm) dt
[ a (g e |V BQHHwSHst) dt.
(41)
Let us now take a look at the fourth item in the right [7]

side of the inequality in equation (41). By Cauchy-Schwarz
inequality, we have

(1]

(2]
(3]

(4

(5]

(6]

(8]
ffk+1 4€2a(t fx) (ffk a(fr—s)
fle 420t 1) dt.

VATB,[ s ds) o

[10]

f f ? 2
[P eethimags [ HWBQJ\ s |3 ds
_2 ( 2a(fk+1—fk) _ 1) 1 ( 2a(f—rk) _ 1) . [11]
VIIB| [ fw, )2 ds
2 (,2a(T1+712) 1 2ar: ? e
<3 (e 1) g (e ) [T
fk 1 ||ws||2d5 3]

(42)

Following the similar analysis used in lemma 3.3, wgy
obtain an upper bound on the fifth item in the right side

of the inequality in equation (41):

ffk+14(ff ]\/ BQH st||2ds) dt
< AT ertrrr - 1) e s

[15]

a(t—s)

(43) [16]

af .
[ |
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