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Abstract— This paper studies event-triggered networked con-
trol systems. Event-triggering has an agent broadcasts its
sampled state to its neighbors only when its local error signal
exceeds a given threshold. We provide a sufficient condition
for the existence of “local” events such that the resulting
networked control systems isL2 stable. By “local”, we mean
that each agent’s events are only associated with its own state
information. Based on this condition, we propose a distributed
scheme for each agent to design its local events, using linear
matrix inequalities. This scheme applies to linear systemsand
the resulting event-triggered system is finite-gainL2 stable.
Moreover, we consider data dropouts in networked control
systems and propose a distributed method that enables each
agent to locally identify the maximal allowable number of its
successive data dropouts without loss of the system stability.

I. I NTRODUCTION

Networked Control Systems (NCS) have received a lot of
attention these days. In such a system, numerous subsystems
(also called “agents”) that are physically coupled together
exchange information through a real-time communication
network. Specific examples of NCS include electrical power
grids and transportation networks. The networking of control
effort in NCS can be advantageous in terms of lower system
costs due to streamlined installation and maintenance costs.

The introduction of communication networks, however,
raises new challenges. With a real-time network, the com-
munication media is customarily accessed in a mutually
exclusive manner. In other words, only one agent can trans-
mit its information at a time. Moreover, data has to be
transmitted in a discrete-time manner instead of continuous-
time. Therefore, one important issue in the implementation
of such NCS is to identify the transmission decision logics
that can provide guarantees on overall system performance.

Early work analyzing scheduling of real-time network
traffic was presented in [1]. However, the impact of com-
munication constraints on system performance was not been
addressed in these works. [2] noticed the harmful effect of the
communication delay on the system stability and considered
the one packet transmission problem, where all of the system
outputs were packaged into a single packet. As a result,
agents in the network do not have to compete for channel
access. One packet transmission strategies, however, use a
supervisor to summarize all subsystem data into this single
packet. As a result such schemes may be impractical for
large-scale systems.
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Asynchronous transmissions were considered in [3]. This
work derived bounds on the maximum admissible time
interval (MATI) that a message can be delayed while still
maintaining closed loop system stability. It led to scheduling
methods [4] that were able to assure the MATI was not
violated. Further work was done in [5], [6] to tighten bounds
on the MATI. All this work confined its attention to control
area network buses where centralized computers are used to
coordinate the information transmission with some protocols.

However, in all of the aforementioned work, the com-
putation of the bounds on the MATI and the execution of
the protocols must be done in a highly centralized manner,
which is impractical in large-scaled systems as we mentioned
before. Moreover, because the MATI is computed before the
system is deployed, it must ensure adequate behavior over a
wide range of possible input disturbances. As a result, the
MATI may be conservative. Consequently, the bandwidth of
the network will be higher than necessary to ensure that the
MATI is not violated. These limitations suggest a great need
for distributed approaches to address this timing issue in a
way that enables the NCS to use network bandwidth in an
extremely frugal manner.

Recently, decentralized event-triggering feedback schemes
were proposed in [7] and [8] for asymptotic stability of
linear and nonlinear systems, respectively, where an agent
broadcasts its sampled state to its neighbors only when its
local error signal exceeds a given threshold. Most recently,
an implementation of event-triggering in sensor-network
was introduced in [9]. As mentioned in [10], [11], event-
triggering can dynamically adjust the task periods according
to the variation in system states. This makes it possible to
reduce the frequency with which subsystems communicate
and therefore save network bandwidth.

This paper studies event-triggered NCS with finite-gainL2

stability. We first provide a sufficient condition for the exis-
tence of “local” events such that the resulting event-triggered
NCS is L2 stable. By “local”, we mean that each agent’s
events are only associated with its own state information.
Based on this condition, we propose a distributed scheme
for each agent to design its local events, using linear matrix
inequalities (LMI). This scheme applies to linear systems
and the resulting NCS is finite-gainL2 stable.

Another contribution of this paper is its consideration
of data dropouts that always happen in real-time network,
but were not considered in [7], [8], [9]. Unlike the prior
work that modelled data dropouts as stochastic processes
using a centralized approach [12], [13], we propose a dis-
tributed method that enables each agent to locally identifythe



maximal allowable number of its successive data dropouts
(MANSD) with the guarantee of NCS’sL2 stability. We use
an example to illustrate the method to compute MANSD as
well as the distributed event design procedure.

The paper is organized as follows: section II formulates
the problem; a sufficient condition for the existence of local
events is presented in section III; a distributed event design
scheme is proposed in section IV; Section V discusses the
data dropouts in event-triggered NCS; Simulation results are
presented in section VI; Section VII draws the conclusions.

II. PROBLEM FORMULATION

Consider a distributed NCS containingN subsystems (also
called “agents”). LetN = {1, 2, · · · , N}. Zi ∈ N denotes
the set of agents that agenti can get information from;
Di ⊂ N denotes the set of agents that directly drive agent
i’s dynamics;Ui ∈ N denotes the set of agents that can
receive agenti’s broadcasted information;Si ∈ N denotes
the set of agents who are directly driven by agenti. Here
i 6∈ Zi ∪ Di ∪ Ui ∪ Si.

The state equation of theith agent is

ẋi(t) = Aiixi(t) + Biui(t) +
∑

j∈Di
Aijxj(t) + Ciwi(t)

ui(t) = Kiixi(t) +
∑

j∈Zi
Kijxj(t),

(1)
wherexi : R → R

n is the state trajectory of agenti, ui :
R → R

m is a control input andwi : R → R
l is an exogenous

disturbance function inL2 space. To simplify the analysis,
we assume that the states/inputs/disturbances of the agents
have the same dimension. The results in this paper can be
easily extended to the case where the dimensions of agents’
states/inputs/disturbances are different from each other.

This paper considers a real-time implementation of this
distributed NCS. In such a system, agenti can only detect
its own state,xi. If the local error signal exceeds some given
threshold, which can be detected by hardware detectors,
agent i will sample and broadcast its state information to
its neighbors through a communication network. Agenti’s
control, ui, at time t is computed based on its neighbors’
latest broadcast states (also called “measured states”) attime
t, denoted aŝxj(t) ∈ R

n. We define the local errorei : R →
R

n by ei(t) = xi(t) − x̂i(t) and e = (eT
1 , · · · , eT

N )T . We
also assume that there is no delay between broadcasting the
sampled state and applying the updated control inputs to the
subplants. The control signal used by agenti is held constant
by a zero-order hold (ZOH) until one of its neighbors makes
another broadcast. This means that agenti has the following
state equation,

ẋi(t) = Aiixi(t) + Biui(t) +
∑

j∈Di
Aijxj(t) + Ciwi(t)

ui(t) = Kiix̂i(t) +
∑

j∈Zi
Kij x̂j(t).

(2)
Therefore, the state equation of the entire NCS is

ẋ(t) = Ax(t) + Bu(t) + Cw(t)

u(t) = Kx̂(t). (3)

In equation (3),x = (xT
1 , · · · , xT

N )T , u = (uT
1 , · · · , uT

N )T ,
w = (wT

1 , · · · , wT
N )T , and

A =





A11 · · · A1N

· · · · · · · · ·
AN1 · · · ANN



 , B =





B1 · · · 0
· · · · · · · · ·
0 · · · BN



 ,

K =





K11 · · · K1N

· · · · · · · · ·
KN1 · · · KNN



 , C =





C1 · · · 0
· · · · · · · · ·
0 · · · CN



 ,

whereAij = 0 if j 6∈ Di andKij = 0 if j 6∈ Zi.
Definition 2.1: The system in equation (3) is said to be

finite-gainL2 stable fromw to x with an induced gain less
thanγ if there exist non-negative constantsγ andξ such that

(∫ ∞
0

‖x(t)‖2
2dt

)
1

2 ≤ γ
(∫ ∞

0
‖w(t)‖2

2dt
)

1

2 + ξ (4)

for any w ∈ L2.
The objective of this paper is to develop distributed event-

triggering schemes to identify the broadcast release time such
that the NCS defined in equation (2) is finite-gainL2 stable.

III. L OCAL EVENT DESIGN

In this section, we propose a centralized approach to
design local events for agents that are used to trigger the
broadcast. Linear Matrix Inequalities (LMI) are used to
identify the parameters in those events. The resulting event-
triggered NCS is finite-gainL2 stable, as shown in theorem
3.1. We use|S| ∈ N to denote the number of the elements
in a given setS, ‖ ·‖2 to denote2-norm of a vector, and‖ ·‖
to denote the matrix norm.

Theorem 3.1:Consider the NCS in equation (3). Assume
that there exist positive-definite matricesP, Q ∈ R

nN×nN

andWi, Mi ∈ R
n×n, i = 1, 2, · · · , N such that:

P (A + BK) + (A + BK)T P +
1

γ2
PCCT P ≤ −Q (5)

Q − PBKM−1KT BT P ≥ W (6)

P, Q, Mi, Wi > 0, (7)

hold, whereM = diag{Mj}j∈N and W = diag{Wj}j∈N .
If for any i ∈ N , the inequality

−ρix
T
i (t)Wixi(t) + eT

i (t)Miei(t) ≤ 0, (8)

holds for all t ≥ 0 with some ρi ∈ (0, 1), then the
NCS is finite-gainL2 stable with an induced gain less than

γ√
mini{(1−ρi)λmin(Wi)}

.

Proof: Note that, when agenti broadcasts its state,
equation (8) will be trivially satisfied sinceei(t) = 0 at that
time. The well-posedness of equation (8) is established.

ConsiderV̇ with V (x) = xT Px at time t. For notational
convenience, we usex, x̂, e, w, xi, x̂i, ei to denotex(t),
x̂(t), e(t), w(t), xi(t), x̂i(t), ei(t), respectively.

V̇ = xT (PA + AT P )x + 2xT PBKx̂ + 2xT PCw

≤ xT (P (A + BK) + (A + BK)T P +
1

γ2
PCCT P )x

−2xT PBKe + γ2‖w‖2
2

≤ −xT Qx − 2xT PBKe + γ2‖w‖2
2

≤ −xT (Q − PBKM−1KT BT P )x + eT Me + γ2‖w‖2
2



Combining equation (6) and the preceding inequality yields

V̇ ≤ −xT Wx + eT Me + γ2‖w‖2
2

= −
∑

i∈N
xT

i Wixi +
∑

i∈N
eT

i Miei + γ2‖w‖2
2.

Applying equation (8) into the preceding equation yields

V̇ ≤ −
∑

i∈N
(1 − ρi)x

T
i Wixi + γ2‖w‖2

2

≤ −min
i

{(1 − ρi)λmin(Wi)} ‖x‖2
2 + γ2‖w‖2

2

for any t ≥ 0, which is sufficient to show that the NCS in
equation (2) is finite-gainL2 stable with an induced gain
less than γ√

mini{(1−ρi)λmin(Wi)}
.

Remark 3.2:Equation (5), (6) can be rewritten as
[

−P (A + BK) − (A + BK)T P − Q PC

CT P γ2IlN×lN

]

≥ 0

(9)
[

Q − W PBK

KT BT P M

]

≥ 0, (10)

respectively. Therefore, equation (7), (9), (10) form linear
matrix inequalities (LMI), which can be used to compute
the desired matrices.

Remark 3.3:We use the violation of the inequality in
equation (8) to trigger agenti’s broadcast. Notice that this
inequality is only associated withxi(t) and ei(t). The
positive-definiteness ofWi is to ensure the satisfaction of
inequality (8) when broadcasts happen, as shown in the
beginning of the proof. Otherwise, it may lead to continuous
broadcasts of agenti, which is impractical in reality.

Theorem 3.1 shows that we need to findWi, Mi to
construct the local events. It follows immediately that the
matrices{Wj}j∈N and {Mj}j∈N required in theorem 3.1
always exist, provided that equation (5) holds. This is stated
in corollary 3.4.

Corollary 3.4: Consider the NCS in equation (2). If equa-
tion (5) holds, then there always exist positive definite
matricesWi, Mi ∈ R

n×n, i ∈ N satisfying equation (6).
Proof: BecauseQ > 0, there must exist a positive

constantε ∈ (0, λmin(Q)). It is easy to verify that

Wi = εIn×n andMi =
‖PBK‖2

λmin(Q) − ε
In×n

satisfy equation (6), (7).
Theorem 3.1 presents a method to design local events

and corollary 3.4 shows the existence of these events. As
mentioned in remark 3.2, equation (5), (6), (7) in theorem
3.1 can be posed as LMI. However, directly solving this LMI
for an admissible solution is a highly centralized approach.
It may not be suitable for large-scale systems. In fact, notice
that in order to design its local event, agenti just needs to
find the matricesWi andMi. This allows the possibility to
decentralize the design procedure. In the following section,
we will further discuss the distributed design scheme.

IV. D ISTRIBUTED DESIGN SCHEME

In this section, we propose a distributed event design
scheme for NCS. In this approach, each agent is associated
with a local LMI problem. The feasibility of these local LMI
implies the feasibility of the centralized LMI in equation (7),
(9), (10), since the solutions to local LMI can be used to
construct the solution to the centralized LMI.

Let take a look at agenti. Assume that

Zi ∪ {i} = {i1, i2, · · · , iqi
} ⊆ N ,

Zi ∪ Di ∪ {i} = {i1, · · · , iqi
, iqi+1, · · · , isi

} ⊆ N .

It is easy to see thatqi = |Zi| + 1 and si = |Zi ∪ Di| + 1.
Without loss of the generality, we assumei1 = i.

For notational convenience, we define four matricesAi ∈
R

n×Nsi , Ki ∈ R
m×nsi , andK̃i ∈ R

m×nqi , Hi ∈ R
nsi×l by

Ai = (Ai,i1 , Ai,i2 , · · · , Ai,isi
) ∈ R

n×nsi ,

Ki = (Ki,i1 , Ki,i1 , · · · , Ki,isi
) ∈ R

m×nsi ,

K̃i = (Ki,i1 , Ki,i1 , · · · , Ki,iqi
) ∈ R

m×nqi ,

Hi =

[

PiCi

0

]

∈ R
nsi×l,

and two functionsFi : R
n×n → R

nsi×nsi andG : R
n×n ×

R → R
nsi×nsi by

Fi(Pi) =

[

Pi(Ai + BiKi)
0

]

∈ R
nsi×nsi ,

Gi(Qi; β) =









Qi 0 · · · 0

0 −βI · · · 0

0 0 · · · 0

0 0 · · · −βI









∈ R
nsi×nsi .

With these matrices and functions, we can define the local
LMI problem associated with agenti:

Problem 4.1 (Local LMI):Given constantsδ, β > 0, find
Pi, Qi, Wi ∈ R

n×n andγi ∈ R such that
[

−Fi(Pi) − FT
i (Pi) − Gi(Qi; β) Hi

HT
i γiIl×l

]

≥ 0, (11)
[

Qi − |Si ∪ Ui|βIn×n − Wi PiBiK̃i

K̃T
i BT

i Pi δInqi×nqi

]

≥ 0, (12)

Pi, Wi > 0, γi > 0. (13)
Here is the distributed event design procedure for NCS.

Distributed Event Design Procedure (DEDP)
1 Selectδ, β > 0;
2 For subsystemi,

(1) Solve problem 4.1 forPi, Wi, Qi andγi;
(2) Design the broadcast-triggering event:

−ρix
T
i (t)Wixi(t) + δ(|Ui| + 1)‖ei(t)‖2

2 = 0
for someρi ∈ (0, 1).

Remark 4.2:In DEDP, two parameters,δ andβ, are pre-
selected and all agents share the sameδ and β. We will
discuss how to select these two parameters later (in corollary
4.6 and 4.7). A more general setup is to pre-select a group of
parameters{δi}N

i=1 and{βi}N
i=1. For anyi ∈ N , agenti is

associated with a pair of(δi, βi). In that case, the definitions



of Fi and Gi as well as equation (12) have to be changed
slightly. So does the structure of local events. These changes
will not affect the main results in this paper. To outline the
main idea, we just use two parameters.

The following theorem shows that using DEDP, the result-
ing event-triggered NCS isL2 stable.

Theorem 4.3:Consider the NCS in equation (2). Assume
that for anyi ∈ N , the local LMI in problem 4.1 is feasible
andPi, Qi, Wi ∈ R

n×n, andγi ∈ R are the solutions. If for
any i ∈ N , the inequality

−ρix
T
i (t)Wixi(t) + δ(|Ui| + 1)‖ei(t)‖2

2 ≤ 0, (14)

holds for all t ≥ 0 with some ρi ∈ (0, 1), then the
NCS is finite-gainL2 stable with an induced gain less than

maxi{
√

γ̂i}√
mini{(1−ρi)λmin(Wi)}

.

Proof: Notice that the inequality still holds when
we expand the matrices in equation (11) intonN × nN

dimension by appropriately adding zero. Summing both sides
of the expanded matrix inequalities yields the satisfaction of
equation (9) and therefore equation (5) with

P = diag{Pi}N
i=1, γ = max

i
{√γi}

Q = diag{Qi − |Si ∪ Ui|βIn×n}N
i=1

whereQi − |Si ∪Ui|βIn×n > 0 holds due to equation (12).
Similarly, we canshow the satisfaction of equation (6) with

W = diag{Wi}N
i=1, andM = diag{δ(|Ui| + 1)In×n}N

i=1.

Since the hypotheses in theorem 3.1 are satisfied, we con-
clude that the NCS is finite-gainL2 stable with an induced
gain less than maxi{

√
γ̂i}√

mini{(1−ρi)λmin(Wi)}
.

Remark 4.4:Since the two parametersδ and β are pre-
selected, the local problem associated with agenti only
requires the information on agenti’s system dynamics. To
design the local events, agents do not have to know other
agents’ information. So the design scheme is distributed.

Remark 4.5:The dimensions of the matrices in the left-
hand side of LMI in equation (11) and (12) are(nsi + l)×
(nsi + l) and (nqi + n) × (nqi + n), respectively. They are
much smaller than the dimensions of the matrices in the
left-hand side of LMI in equation in (9) and (10), which are
(nN +lN)×(nN +lN) and2nN×2nN , respectively. Even
whensi = qi = N , which means that each agent is coupled
with all other agents, the local LMI still has a smaller scale.
One thing worth mentioning is that although the dimension
of the local LMI is smaller, conservativeness is introduced
since matricesP andQ are restricted to be block diagonal.

As shown in theorem 4.3, the feasibility of local LMI
determines the existence of local events. To ensure the feasi-
bility, the selection ofδ, β is very important. The following
corollary provides a sufficient condition for the feasibility of
local LMI.

Corollary 4.6: Consider the NCS in equation (2). For any
i ∈ N , if there exist positive-definite matricesPi ∈ R

n×n

such that

Fi(Pi) + FT
i (Pi) + Gi(|Si ∪ Ui|βIn×n; β) < 0 (15)

then there always exists a positive constantδ∗ ∈ R
+, such

that for anyδ ≥ δ∗, the LMI in problem 4.1 is feasible.
Proof: Equation (15) implies that there exists a positive

definite matrixQi ∈ R
n×n such that

Fi(Pi) + FT
i (Pi) + Gi(Qi; β) < 0 (16)

Qi − |Si ∪ Ui|βIn×n > 0 (17)

Since equation (16) holds, we know that there always
exists a positive constantγ∗

i ∈ R
+ such that for allγi ≥ γ∗

i ,
equation (11) holds.

Equation (17) implies that there exists a positive definite
matrix Wi ∈ R

n×n such that

Qi − |Si ∪ Ui|βIn×n − Wi > 0 (18)

which suggests that there always exists a positive constant
δ∗ ∈ R

+ such that for allδ ≥ δ∗, equation (12) holds.
Corollary 4.6 suggests thatδ must be large enough to

guarantee the feasibility of the local LMI, provided equation
(15) holds. We still need to know how to selectβ. In the
following corollary, we show that the satisfaction of equation
(15) is independent of the selection ofβ.

Corollary 4.7: If there exist a positive-definite matrix
Pi ∈ R

n×n and a positive constantβ ∈ R such that equation
(15) holds, then for anŷβ > 0, the pair β̂

β
Pi and β̂ also

satisfies equation (15).
Proof: This can be easily proven by the definitions of

Fi andGi.
Remark 4.8:Corollary 4.7 means that the existence ofPi

satisfying equation (15) is independent of the value ofβ. As
to the existence of events, we just need to arbitrarily pick a
positive constantβ in the first step of DEDP.

V. DATA DROPOUTS

In the previous sections, we did not consider data dropouts.
In other words, whenever a broadcast release is triggered, the
agent will sample and transmit its local state to its neighbors
successfully. Data dropouts, however, frequently happen in
NCS. In this section, we study the NCS with data dropouts.
In particular, we consider the networks in which the agent
will not be notified when transmission fails. An assumption
is that data dropouts only happen when the sampled states
are sent to the controllers through the network.

In such a system, when the hardware detector located at
agenti detects the occurrence of the local event, the local
state will be sampled and ready to be transmitted to its
neighbors through the channel. At the same time, the event
will be automatically updated fromk to k+1 with the newly
sampled state. Once the transmission fails, the controllers
will not receive the sampled state and, therefore, the control
inputs will not be updated. Notice that in this case, the local
event is updated, but the control inputs are not.

In the following discussion, we provide a distributed
approach that enables each agent to locally determine the
maximal allowable number of successive data dropouts
(MANSD) of that agent with the guarantee of stability of
the NCS. The idea is to have events happen earlier than the



violation of the inequality in equation (14) so that even if
some data is lost, equation (14) can still be satisfied.

Before we introduce the results, we need to define two
different types of broadcast release: the triggered release,
ri
j , and the successful release,bi

k. ri
j is the time when

the jth broadcast of agenti is released, but not necessarily
transmitted successfully.bi

k is the time when thekth suc-
cessful broadcast of agenti is released. Obviously,{bi

k}∞k=1

is a subsequence of{ri
j}∞j=1. Notice that x̂i(t) = xi(b

i
k)

for all t ∈ [bi
k, bi

k+1). For notational convenience, we define
ê

j
i : R → R

n as ê
j
i (t) = xi(t) − xi(r

i
j) for t ∈ [ri

j , r
i
j+1).

Theorem 5.1:Consider the NCS in equation (2). Assume
that for anyi ∈ N , the local LMI in problem 4.1 is feasible.
If for any i ∈ N , the next broadcast release time,ri

j+1, is
triggered by the violation of

−ρi‖xi(t)‖2 + σi‖êj
i (t)‖2 ≤ 0, (19)

for someρi ∈ (0, 1), where

σi =
√

δ(|Ui|+1)
λmin(Wi)

(20)

and the largest number of successive data dropouts,di ∈ Z,
satisfies

di < log(

1+
ρi
σi

)

(

1 + 1
σi

)

− 1 (21)

then the NCS is still finite-gainL2 stable.
Proof: For notational convenience, we assumebi

k =
ri
0 < ri

1 < · · · < ri
di

< ri
di+1 = bi

k+1 over [bi
k, bi

k+1).
Notice that for anyt ∈ [bi

k, bi
k+1), there must bej ∈

{0, 1, · · · , di} so thatt ∈ [ri
j , r

i
j+1). Consider‖ei(t)‖2 over

the time interval[ri
j , r

i
j+1).

‖ei(t)‖2 = ‖xi(t) − xi(b
i
k)‖2

≤ ∑j−1
p=0 ‖xi(r

i
p+1) − xi(r

i
p)‖2 + ‖xi(t) − xi(r

i
j)‖2

=
∑j−1

p=0 ‖ê
p
i (r

i
p+1)‖2 + ‖êj

i (t)‖2

holds for∀t ∈ [ri
j , r

i
j+1).

Applying equation (19) into the preceding equation yields

‖ei(t)‖2 ≤ ∑j−1
p=0

ρi

σi
‖xi(r

i
p+1)‖2 + ρi

σi
‖xi(t)‖2 (22)

for all t ∈ [ri
j , r

i
j+1) and allj = 0, 1, · · · , di.

For any t ∈ [ri
j , r

i
j+1), ‖êj

i (t)‖2 = ‖xi(t) − xi(r
i
j)‖2 ≤

ρi

σi
‖xi(t)‖2 holds. Therefore, we have

‖xi(r
i
j)‖2 ≤

(

1 + ρi

σi

)

‖xi(t)‖2. (23)

Similarly, we have

‖xi(r
i
p+1)‖2 ≤

(

1 + ρi

σi

)

‖xi(r
i
p+2)‖2 (24)

for p = 0, 1, 2, · · · , j − 2. Equation (23), (24) imply that

‖xi(r
i
p+1)‖2 ≤

(

1 + ρi

σi

)j−p

‖xi(t)‖2 (25)

for p = 0, · · · , j−1. Applying equation (25) into (22) yields

‖ei(t)‖2 ≤ ∑j−1
p=0

ρi

σi

(

1 + ρi

σi

)j−p

‖xi(t)‖2 + ρi

σi
‖xi(t)‖2

≤
(

(

1 + ρi

σi

)di+1

− 1

)

‖xi(t)‖2

(26)

for all t ∈ [ri
j , r

i
j+1). Since t is arbitrarily selected over

[bi
k, bi

k+1), equation (26) holds for allt ∈ [bi
k, bi

k+1).

By equation (21), we know that
(

1 + ρi

σi

)di+1

− 1 < 1
σi

.

So there must be a positive constantκi ∈ (0, 1) such

that
(

1 + ρi

σi

)di+1

− 1 ≤ κi

σi
< 1

σi
holds. Combining this

inequality with equation (26) yields‖ei(t)‖2 ≤ κi

σi
‖xi(t)‖2

with κi ∈ (0, 1) for all t ∈ [bi
k, bi

k+1). Since the hypotheses
in theorem 4.3 are satisfied, we conclude that the NCS
is finite-gain L2 stable with an induced gain less than

maxi{√γ
i
}√

mini{(1−κi)λmin(Wi)}
.

Remark 5.2:By equation (21), we know that each agent’s
MANSD can be identified locally, depending on the selection
of ρi. If agent i wants its MANSD to be large,ρi must
be small. In general, however, smallρi will result in short
broadcast periods (ri

j+1 − ri
j). Therefore, there is a tradeoff

between the MANSD and the broadcast period.

VI. SIMULATIONS

This section presents simulation results demonstrating
the decentralized event-triggering scheme. The systemunder
study is a collection of carts, which are coupled together
by springs (figure 1). Theith subsystem state is the vector
xi =

[

yi ẏi

]T
where yi is the ith cart’s position. We

assume that at the equilibrium, all springs are unstretched.
The state equation for theith cart is equation (2), where

Aii =

[

0 1
−µik 0

]

, Bi =

[

0
1

]

, (27)

Aij =

[

0 0
νijk 0

]

, Ci =

[

1
1

]

. (28)

In the preceding equation, we havek = 5 is the spring
constant,µ1 = µN = 1 and µi = 2 for i = 2, · · · , N − 1.
Also νij = 1 for i 6∈ {1, N} and j ∈ {i − 1, i + 1} and
ν12 = νN,N−1 = 1. Otherwise,νij = 0.

u1 u2
u3

Fig. 1. Three carts coupled by springs

The control input of subsystemi is

ui = Kiix̂i + Ki,i−1x̂i−1 + Ki,i+1x̂i+1,

whereK11 = KNN =
[

−4 −6
]

, Kii =
[

1 −6
]

for
i = 2, · · · , N−1, andKi,i−1 = Ki,i+1 =

[

−5 0
]

except
that K10 = KN,N+1 = 0.

We considered the case withN = 3. We setδ = 100 and
β = 1. Local LMIs were solved using MATLAB toolbox.
With ρi = 0.2 for i = 1, 2, 3, the triggering events are

−0.2‖xi(t)‖2 + 2.31‖êj
i(t)‖2 = 0, for i = 1, 3

−0.2‖xi(t)‖2 + 3.04‖êj
i(t)‖2 = 0, for i = 2

according to equation (19) and the MANSDs for agents are
all 3 according to equation (21). In the following simulation,



we assume that the number of successive data dropouts in
each agent is equal to that agent’s MANSD.
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Fig. 2. State trajectory and successful broadcast periods for an event-
triggered NCS

We ran the event-triggered NCS for 10 seconds without
disturbances. The initial statex0 was randomly generated
satisfying‖x0‖∞ ≤ 1. The numbers of triggered broadcasts
by agent 1, 2, 3 are 244, 303, 231, respectively. The numbers
of successful broadcasts by agent 1, 2, 3 are 61, 75, 57,
respectively. From the top plot of figure 2, we can see that
the system is asymptotically stable. The successful broadcast
periods (bi

k+1 − bi
k) of the agents are shown in the bottom

plot of figure 2 that vary in a wide range. It demonstrates
the ability of event-triggering in adjusting sampling periods
in response to variations in the system’s states.

We then ran the system for 40 seconds withN = 10 and
added an external disturbance into agent 1, where|w1(t)| ≤
0.1 for t ∈ [3, 7] and w(t) = 0 otherwise. The successful
broadcast periods of agent 1 (cross), 7 (diamond), 10 (dot)
are plotted in Figure 3. We see from the figure that agent 1’s
broadcast periods become short when the disturbance comes
in during t ∈ [3, 7]. It is because event-triggering can adjust
the agent’s broadcast periods in response to variations in the
system’s external inputs. Although no disturbance directly
comes into agent 7, its periods are also reduced several
seconds after the disturbance comes into agent 1. So are
the periods of agent 10. This is because the effect of the
disturbance into agent 1 is passed to each agent, from 1 to
10. Agent 2 is affected by the changes in agent 1; agent 3
is affected by the changes in agent 2, and so on. The spatial
distance causes a time delay. Therefore the periods of agents
are largely reduced during different time intervals.

VII. C ONCLUSIONS

This paper studies event-triggered NCS. We provide a
sufficient condition for the existence of local events such that
the resulting event-triggered NCS isL2 stable. Based on this
condition, we propose a distributed scheme for each agent
to design its local events, using linear matrix inequalities.
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Fig. 3. Successful broadcast periods versus time in an event-triggered NCS
with disturbances

This scheme applies to linear continuous-time systems and
the resulting event-triggered system is finite-gainL2 stable.
Moreover, we consider data dropouts in NCS and propose
a distributed method that enables each agent to locally
identify the maximal allowable number of its successive data
dropouts without loss of the system stability.
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