
STABILITY AND PERFORMANCE OF CONTROL SYSTEMS

WITH LIMITED FEEDBACK INFORMATION

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Qiang Ling, B.S., M.S.

Michael D. Lemmon, Director

Graduate Program in Electrical Engineering

Notre Dame, Indiana

May 2005

c© Copyright by

Qiang Ling

2005

All Rights Reserved

STABILITY AND PERFORMANCE OF CONTROL SYSTEMS

WITH LIMITED FEEDBACK INFORMATION

Abstract

by

Qiang Ling

This thesis studies linear control systems with limited feedback information.

The focus is on two types of limitations on the feedback information, dropout

and quantization. By dropout, we mean that the desired feedback measurement

is missed. By quantization, we mean the feedback measurement is described by a

finite number of bits, which introduces “measurement error”. This thesis analyzes

the effect of dropout and quantization on stability and performance of control

systems and develops synthesis methods that improve system performance in the

face of such limited information.

We consider two dropout models, independent and identically distributed

(i.i.d.) processes and Markov chains. For a control system with i.i.d. dropouts,

we provide a necessary and sufficient stability condition and a closed-form expres-

sion for the output’s power spectral density (PSD). Based on this PSD result, we

identify an equivalent linear time-invariant (LTI) system which can be used to

do synthesis. As an example, we design the optimal dropout compensator. For a

control system with dropouts governed by a Markov chain, we provide a necessary

and sufficient stability condition and a method to compute performance measured

by the output’s power. Based on the performance result, we propose a method

Qiang Ling

to design the optimal dropout policy which minimizes the degradation of system

performance under the given dropout rate constraint. We extend the performance

results on Markovian dropouts to distributed control systems.

For a quantized control system, we derive the minimum constant bit rate to

guarantee stability. A dynamic bit assignment policy (DBAP) is proposed to

achieve such minimum bit rate. We also study the performance of quantized sys-

tems. For a noise-free quantized system, we prove that DBAP is the optimal

quantization policy with performance measured by the L-2 norm of the quantiza-

tion error. For a quantized system with bounded noise, performance is measured

by the ultimate upper bound of quantization error. We present both a lower

bound and an upper bound on the optimal performance for quantized systems

with bounded noise. The upper bound can always be achieved by the proposed

DBAP. So DBAP is at least a sub-optimal quantization policy with the known

performance gap.

CONTENTS

FIGURES . vi

TABLES . viii

ACKNOWLEDGMENTS . ix

CHAPTER 1: INTRODUCTION . 1
1.1 Motivation . 2

1.1.1 Computer-controlled systems 3
1.1.2 Networked control systems 4

1.2 Literature review . 7
1.2.1 Related work on Jump Linear Systems 7
1.2.2 Related work on the limited feedback information of net-

worked control systems . 10
1.2.2.1 Sampling . 10
1.2.2.2 Dropout and delay . 12
1.2.3 Related work on quantization 15

1.3 Summary of thesis . 20

CHAPTER 2: STABILITY AND PERFORMANCE OF CONTROL SYS-
TEMS WITH I.I.D. FEEDBACK DROPOUTS 23
2.1 System model . 23
2.2 Stability and wide sense stationarity 25
2.3 Power spectral density . 27
2.4 Equivalent linear time-invariant system 30
2.5 Optimal linear dropout compensation policy 32
2.6 Conclusions . 38
2.7 Appendix: proofs . 39

2.7.1 Proof of Theorem 2.3.1 . 39
2.7.2 Proof of Theorem 2.4.1 . 46
2.7.3 Proof of Theorem 2.4.2 . 46

ii

2.7.3.1 Proof of stability equivalence 47
2.7.3.2 PSD equivalence . 51

CHAPTER 3: STABILITY AND PERFORMANCE OF CONTROL SYS-
TEMS WITH FEEDBACK DROPOUTS GOVERNED BY A MARKOV
CHAIN . 52
3.1 System model . 53
3.2 Stability and wide sense stationarity of control systems with feed-

back dropouts governed by a Markov chain 55
3.3 Performance of control systems with feedback dropouts governed

by a Markov chain . 57
3.4 Optimal dropout policy . 60

3.4.1 Literature review on dropout policy 63
3.4.2 Performance comparison and problem formulation 64
3.4.3 Solving optimization problem 3.4.10 71
3.4.3.1 Computations on f(ε) and ε(ε) 71
3.4.3.2 The existence of global optimal solution to optimization

problem 3.4.10 . 74
3.4.3.3 Gradient method to solve optimization problem 3.4.10 . 75
3.4.3.4 Branch-and-bound method to solve optimization problem

3.4.10 . 75
3.4.3.5 Combination of gradient descent method and branch-and-

bound method . 80
3.4.3.6 Algorithms for searching optimal dropout policy 81
3.4.3.7 Complexity of the DF algorithm 84
3.4.3.8 An example . 86
3.4.4 Guide the real-time scheduling with the achieved optimal

dropout policy . 87
3.4.4.1 Simulation results from [49] 88
3.4.4.2 Simulation results from [50] 92
3.4.5 Verify the optimal dropout policy through a helicopter sim-

ulator . 98
3.4.5.1 Control plant: a Helicopter Simulator 99
3.4.5.2 Control configuration . 100
3.4.5.3 Performance analysis of the travelling dynamics under

dropouts . 103
3.4.5.4 Why don’t experimental results agree with the theoretical

prediction? . 106
3.5 Spatially distributed control systems 107
3.6 Conclusions . 117
3.7 Appendix: proofs . 118

3.7.1 Preliminary lemmas . 118

iii

3.7.2 proof of Theorem 3.2.1 . 127
3.7.3 proof of Theorem 3.2.2 . 129
3.7.4 Proof of Theorem 3.3.1 . 130
3.7.5 Proof of Theorem 3.3.2 . 132
3.7.6 Proof of Theorem 3.5.1: 138

CHAPTER 4: STABILITY OF QUANTIZED CONTROL SYSTEMS . . 141
4.1 Introduction . 141
4.2 Quantized feedback control systems 145
4.3 Preliminary results . 148
4.4 Stability of noise free quantized systems 152
4.5 Stability of quantized systems with bounded noise 157

4.5.1 Mathematical preliminaries 158
4.5.2 Minimum bit rate for BIBO stability 160

4.6 Minimum constant bit rate for stability of quantized systems under
output feedback . 166

4.7 Conclusions . 168
4.8 Appendix: proofs . 169

4.8.1 Proof to Theorem 4.4.1 . 169
4.8.2 Proof to Theorem 4.4.1 . 177

CHAPTER 5: PERFORMANCE OF QUANTIZED LINEAR CONTROL
SYSTEMS . 183
5.1 Introduction . 183
5.2 System model and preliminary results 189
5.3 Optimal bit assignment policy in noise free quantized linear control

systems . 193
5.4 Performance of quantized linear systems with bounded noise under

dynamic bit assignment . 197
5.5 Conclusions . 203
5.6 Appendix: proofs . 204

5.6.1 Proofs of the lemmas in section 5.2 205
5.6.2 Proofs of the lemmas and the theorems in section 5.3 . . . 209
5.6.3 Proofs of the propositions in section 5.4 217

CHAPTER 6: CONCLUSIONS . 225

APPENDIX A: MATHEMATICAL PRELIMINARIES 227
A.1 Convergence of stochastic processes 227
A.2 Wide sense stationary stochastic processes 227
A.3 Kronecker product . 230

iv

BIBLIOGRAPHY . 232

v

FIGURES

1.1 A sampled-data system . 1

1.2 A Networked Control System . 5

1.3 A model-based Networked Control System [52] 12

2.1 A control system with i.i.d. dropouts and dropout compensation . 24

2.2 output power under different dropout rates 29

2.3 Equivalent system . 30

2.4 Redrawn equivalent system . 33

2.5 Performance comparisons under different dropout compensators . 37

2.6 Value function p(∆) for ε = 0.1 38

3.1 A control system with data dropouts 53

3.2 Output power(0 ≤ ε ≤ 6%) . 61

3.3 Output power(7% ≤ ε ≤ 24%) . 62

3.4 (top) Directed graph of 4-state Markov chain; (bottom) Table char-
acterizing different dropout policies Pi (i = 0 − 4) as a function of
the average dropout rate ε. 68

3.5 Performance of various dropout processes 69

3.6 Performance vs. average dropout rate under the optimal dropout
process . 72

3.7 The ordering structure of all subsets in the depth-first algorithm . 83

3.8 Drop-2 policy . 89

3.9 Output power vs. the dropout rate under four different schedulers
(dropout policies) with 246 task sets [49]. 93

3.10 Histograms illustrating overall output signal power for task sets with
utilization between 1.0-1.2 (group 1) and 1.2-1.4 (group 2) [50] 96

3.11 GFDR vs. SSA [50] . 98

vi

3.12 The helicopter simulator . 99

3.13 Control diagram . 102

3.14 Response of travelling rate error 102

3.15 Theoretical predictions of different dropout policies 104

3.16 Performance of the plant under i.i.d. and (2, 3) dropout policies . 105

3.17 Distributed control system and Sensor-Actuator network 108

3.18 Simulation vs. theoretical results 116

4.1 Quantized feedback control system 146

4.2 Response of quantized system . 157

5.1 Quantized control systems . 184

5.2 An equivalent linear control system 186

5.3 Performance of a quantized system 197

5.4 Performance of a quantized system with bounded noise 201

5.5 Performance bounds for a quantized system with bounded noise . 203

vii

TABLES

3.1 THE COMPUTATION COST OF THE BRANCH-AND-BOUND
METHOD (N = 4, M = 3) . 86

3.2 SCHEDULER SCORES FOR 246 TASK SETS. EACH TASK SET
CONTAINS ONE CONTROL SYSTEM WITH THE OPTIMAL
DROPOUT POLICY ENFORCED [49] 92

viii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Professor Michael

Lemmon, for his advisement, his encouragement and his support during my Ph.D.

research. He has continuously provided me with enthusiasm, vision and wisdom.

He is an outstanding researcher to have as a role model for a Ph.D. student.

I would like to thank my thesis committee members, Professor Panos Antsaklis,

Professor Peter Bauer and Professor Sharon Hu, for their helpful comments.

I thank all my friends at Notre Dame, who helped make my time here enjoyable

and memorable.

Finally I am indebted to my parents and family for always supporting and

encouraging me.

This research was partially supported by the Army Research Office under

Grant DAAG19-01-0743 and by the National Science Foundation under Grants

NSF-CCR02-8537 and NSF-ECS02-25265. They are gratefully acknowledged.

ix

CHAPTER 1

INTRODUCTION

A conventional sampled-date control system is shown in figure 1.1. That sys-

tem has two feedback paths, the one from the sensor to the controller and the

one from the controller to the sensor as shown in figure 1.1. The two feedback

Controller

)(/ kTyyk)(/ kTuuk

Plant:)(zH

ZOH/Actuator







+=

++=

 uDxCy

wBuBxA
dt
dx

PP

wuP

Sampling (T)

)(tw

)(tu

)(ty

ku ky

Figure 1.1. A sampled-data system

1

paths are assumed to be perfect in the sense that the controller knows the exact

value of {y(kT)} at sample instants {0, T, 2T, · · · } and the actuator also receives

the control variable {u[kT]} without error at the sample instants. If the above

feedback information is limited, i.e. imperfect, what will happen?

This thesis considers two types of limitations on the feedback information;

dropout and quantization. By dropout, we mean that the desired feedback mea-

surement is not received by the actuator. For control systems, measurements that

are delivered with long delays are usually useless for control purposes and are often

dropped. By quantization, we mean that the feedback measurement is described

by a finite number of bits. There is, of course, a “measurement error” due to the

quantization of the feedback signal. The main goal of this thesis is to analyze the

effect of dropouts and quantization on the stability and performance of control

systems.

This introduction is divided into 3 parts. Section 1.1 discusses the motiva-

tion for studying control systems with limited feedback information. Section 1.2

reviews the related literature. Section 1.3 gives a summary of the chapters that

follow.

1.1 Motivation

This section considers two classes of control systems with limited feedback

information, computer-controlled systems (CCS) and networked control systems

(NCS). They are presented below.

2

1.1.1 Computer-controlled systems

Before computer-controlled systems emerged in the 1950s, the controller in fig-

ure 1.1 was usually realized by hardware, e.g. an electrical network of resistors and

capacitors. Such hardware controllers are difficult to design. It is also difficult to

maintain these controllers. For example, if one wants to change a single parameter

of the controller, the whole electrical network may have to be rebuilt because the

resistors and capacitors are coupled together. When computers were introduced

into control systems to act as controllers, we obtained a computer-controlled sys-

tem (CCS) [3]. In a CCS, controllers are realized by software and their design

and maintenance are greatly simplified, e.g. the control parameter change can be

easily realized through setting a constant in a program. This benefit, however, is

achieved at the cost of additional ADC (analog to digital conversion) and DAC

(digital to analog conversion) and possible failure in accomplishing the control

task.

Because the variables of the plant, {y(kT)} and {u(kT)}, are continuous-

valued and the variables of the computer are discrete-valued, we require an inter-

face converting the continuous signal into the discrete signal (ADC) and vice versa

(DAC). ADC is, in fact, quantization. When the precision of ADC is high, the

quantization error may be neglected or treated as uniformly distributed noise [27].

But high precision ADC’s (analog to digital converters) are usually expensive. One

may, therefore, adopt a less expensive ADC with fewer quantization levels. The

coarse quantization available on such an ADC can greatly degrade overal system

performance. So it is important to quantify the performance degradation under a

given quantization sensitivity.

In a CCS, the controller and the data transmission (from the sensor to the

3

controller and from the controller to the actuator) are realized through processes

executed by a central processing unit (CPU). If the CPU is too busy, some pro-

cesses are not executed before their deadlines so that some expected variables are

not available, i.e. dropped. One may use a computer dedicated to a CCS to avoid

such process failures. But such dedicated hardware may not be an acceptable

design due to economic or power considerations. Another promising choice is to

compute the performance degradation due to process failure. If the degradation

is acceptable, no extra computation (CPU) cost will be needed.

From the above arguments, we see that a CCS is a system whose performance

is limited by dropped and quantized data in the feedback path. By analyzing

the effect of dropout and quantization on system performance, we may put the

appropriate requirements on ADC converter and CPU that result in cost-effective

design meeting customer expectations.

1.1.2 Networked control systems

In recent years there has been considerable interest in networked control sys-

tems (NCS) [7] [65] [70]. What is an NCS? Briefly speaking an NCS is a sampled-

data system whose feedback loops are closed over non-deterministic digital commu-

nication networks. NCS has many advantages, such as efficient resource sharing,

easy maintenance, high system reliability and lower price [7].

In order to give a clear picture of an NCS, we compare the NCS in figure 1.2

to the conventional sampled-data system in figure 1.1. The main difference

between the NCS and the conventional sampled-data system is the introduction

of the communication part, which includes the network and the related converters.

In the following, we briefly describe the mechanism by which an NCS works.

4

Communication

ku

Quantization/Encoding

Decoding/Dropout Compensator

Controller

Quantization/Encoding

Decoding/Dropout Compensator

)(/ kTyyk)(/ kTuu qq
k

kTkS y),(

sc
ky kTkS τ+),(

ku kTkS τ+),(

ca
kku kTkS ττ ++),(

q
ky

Plant:)(zH

ZOH/Actuator







+=

++=

 uDxCy

wBuBxA
dt
dx

PP

wuP

Sampling (T)

)(tw

)(tu

)(ty

Network

Figure 1.2. A Networked Control System

Because the network is digital with finite bandwidth and the “currency” of

the network is the bit, any data must be converted into bits before transmission.

yk, as a continuous-valued signal, must be quantized into a discrete-valued signal.

There are a finite number of such discrete values. The encoder maps every discrete

value to a unique bit sequence of finite length. Such a bit sequence is often called

a symbol. Sy(k) is the symbol produced at time k for the value yk. Quantization

and encoding are usually jointly carried out, so we view them as a whole.

Sy(k) is sent to the controller through a network at time kT . Because the net-

work is non-deterministic (unreliable), the received symbol Sy(k) may be different

from the original symbol Sy(k) and there may be a delay of τ sc
k in the symbol’s

5

transmission. By the decoding policy, Sy(k) is converted into yq
k, which is an

estimate of yk with a delay of τ sc
k . Besides delay, dropout is also an important

property of the NCS. Some symbols may be dropped by the the network due to

transmission error. Some greatly delayed symbols are also treated as dropouts

because in control systems, data whose delivery is greatly delayed may be more

harmful to system stability than receiving no data at all [55]. In the event of

dropouts, no symbol is received by the decoder at the controller side, but the

controller still needs an input. A dropout compensator may therefore be used to

generate an estimate yq(k) based on the previously received data. We, therefore,

combine decoding and dropout compensation together to generate yq(k).

With the estimate yq(k), the controller produces a control uk. uk is usually a

continuous-valued signal. In order to reach the ZOH (zero-order hold)/actuator

through the network, uk has to follow the same coding/decoding procedure as yk,

endures quantization error, transmission delay τ ca
k and possible dropouts. So what

the ZOH/actuator receives is only uq
k, an estimate of uk with the delay of τ ca

k . uq
k

is a discrete-time signal. In order to control a continuous-time plant, uq
k is usually

converted by a ZOH. An actuator may be required for power amplification. So we

view the ZOH and the actuator as a whole.

From the above description of the NCS, we see that the communication link

introduces errors between the measured and true feedback signal. These errors

are due to

1. Dropout.

2. Delay: τ sc
k > 0 and τ ca

k > 0.

3. Quantization error: Due to the finite network bandwidth.

6

Among the non-ideal feedback limitations listed above, we focus on dropout and

quantization. Because of dropout and quantization, the system suffers from esti-

mation error, i.e. yk $= yq
k and/or uk $= uq

k which may degrade system performance.

It is critical to quantitatively analyze the performance degradation due to dropout

and quantization. With the achieved analysis results, we may reduce the system

resources, such as network bandwidth and the network’s quality of service required

to achieved a desired performance level.

1.2 Literature review

As mentioned before, this thesis focuses on dropout and quantization in control

systems with limited feedback information. For a control system with feedback

dropouts, if a measurement packet is dropped, then the system works in the

open loop; otherwise, the feedback loop is closed. The system therefore jumps

between two configurations: open and closed loops. We can, therefore, find a

tight relationship between such systems and jump linear systems, which caught

much interest in the early 1990s. In this section, we first review the literature on

jump linear systems. Second we review the recent progress on network control

systems, a class of control systems with limited feedback information. At the end,

we give a brief review on quantized control systems.

1.2.1 Related work on Jump Linear Systems

A jump linear system can be modeled as follows [36]:






xk+1 = A(rk)xk + B(rk)uk

P (rk+1 = j|rk = i) = pij

(1.2.1)

7

where xk ∈ Rn is the state, uk ∈ Rm is the input, and {rk} is a Markov chain

taking values in a finite set S = {1, 2, · · · , s} with the transition probabilities

defined in eq. 1.2.1 where pi,j stands for the probability of a transition from

state i to state j. A(rk) and B(rk) are functions of rk. When rk = ri (i ∈ S),

A(rk) = Ai and B(rk) = Bi where Ai and Bi are specified real-valued matrices

with appropriate dimensions.

In [36] three types of second moment stability are defined for the jump linear

system in eq. 1.2.1.

Definition 1.2.1 For the jump linear system in eq. 1.2.1 with uk = 0, the equi-

librium point 0 is 1

1. stochastically stable, if for every initial state (x0, r0)

E

[
∞∑

k=0

‖xk(x0, r0)‖2 | x0, r0

]
< ∞, (1.2.2)

where ‖ · ‖ denotes Euclidean norm of a vector.

2. mean square stable, if for every initial state (x0, r0)

lim
k−→∞

E
[
‖xk(x0, r0)‖2 | x0, r0

]
= 0, (1.2.3)

3. exponentially mean square stable, if for every initial state (x0, r0), there exist

constants 0 < α < 1 and β > 0 such that for all k ≥ 0

E
[
‖xk(x0, r0)‖2 | x0, r0

]
< βαk‖x0‖2, (1.2.4)

where α and β are independent of x0 and r0.
1xk(x0, r0) denotes the state at time k for initial conditions x0 and r0.

8

In [36], the above 3 types of stability are proven to be equivalent. So we can focus

our study on mean square stability without loss of generality. In [36], a necessary

and sufficient condition for mean square stability is provided.

Theorem 1.2.1 ([36]) The jump linear system in eq. 1.2.1 with uk = 0 is mean

square stable, if and only if, for any given set of symmetric matrices {Wi > 0 : i ∈

S}, the following coupled matrix equations have positive definite solutions {Mi}.

s∑

j=1

pijA
T
i MjAi − Mi = −Wi (1.2.5)

Remark: Although the above condition is necessary and sufficient, equation

1.2.5 must be verified having a solution {Mi}i=1,··· ,s for arbitrary positive matrices

{Wi}i=1,··· ,s. Fortunately the above stability condition can be reformulated into

the stability of a compound matrix, which is much easier to test.

Theorem 1.2.2 The jump linear system in eq. 1.2.1 with uk = 0 is mean square

stable, if and only if the following matrix A[2] has all eigenvalues within the unit

circle.

A[2] = diag (Ai ⊗ Ai)i=1,2,··· ,s
(
QT ⊗ In2

)
(1.2.6)

where Q = (pij)s×s is the probability transition matrix of the Markov chain {rk}.

In [51], the above stability condition was extended to continuous-time jump linear

systems. Although the condition was claimed to be necessary and sufficient in

[51], only sufficiency has actually been proven. It is [17] that rigorously proves

the necessity for the first time [23]. We came up with a parallel proof of necessity.

Compared to the one in [17], our proof is more direct [15]. We present our proof

in chapter 3.

9

The previous literature [34] has studied controllability and stabilizability of

jump linear systems as well as stability. Performance problem, particularly the

linear quadratic Gaussian (LQG) problem, was also studied for jump linear sys-

tems [35] [51].

Theorem 1.2.3 ([35], [51]) The LQG controller for continuous-time jump linear

systems is the combination of a linear quadratic regulator (LQR) and a Kalman

state filter, i.e. the separation principle is satisfied.

The above theorem can be extended to discrete-time cases. In [55], the above

optimal control law is verified for a special class of discrete jump linear systems.

1.2.2 Related work on the limited feedback information of networked control

systems

There are four major types of non-ideal properties of feedback information

in an NCS, including sampling, delay, dropout and quantization. The discussion

on quantization is moved into subsection 1.2.3. Among the first three types of

non-ideality, dropout is our main focus. We, however, still review the results on

sampling and delay so that a whole picture on an NCS can be presented.

1.2.2.1 Sampling

Because of sampling, the feedback information is available only at sampling

instants. Compared to the continuous-time feedback systems where the measure-

ment is always available, sampling may be treated as a kind of temporal limitation

of feedback information. Although there are some non-periodic sampling methods

[4], the main sampling methods usually assume a periodic form. Sampling period

T is a kind of measure of the attention a system catches [13], or how limited

10

the feedback imformation is. Larger T may mean less resource occupation and

is more desirable. Much effort was made to increase T on the condition that the

performance degradation is acceptable.

In [66], a continuous-time plant is controlled over a network feedback loop. At

time instants ti, the measurement y(ti) is sent so that ŷ(ti) = y(ti), where ŷ(t) is

the input to the controller, i.e. the controller computes the control variable from

ŷ(t). during the transmission intervals, zero order hold is used, i.e. ŷ(t) = ŷ(ti) for

t ∈ [ti, ti+1). The transmission intervals are bounded from above, i.e. ti+1−ti ≤ τ .

The NCS is viewed as an approximation of the directly linked continuous-time

system, whose approximation error is ŷ(t) − y(t) $= 0. It was proven that when τ

is small enough, the stability of the NCS can be guaranteed [66]. The maximum

allowable transfer interval (MATI), i.e. the upper bound of τ , was derived. This

MATI is a function of the parameters of the NCS [66]. It deserves special attention

that the transmission instants are not required to be equal-distance in [66].

In [52], a special sample-hold function is used for the system shown in figure

1.3. x̂(kh) = x(kh) at time instants kh (k = 0, 1, 2, · · ·). During the update

intervals (t ∈ (kh, (k + 1)h)), x̂(t) is governed by the state estimator dynamics.






˙̂x = Âx̂ + B̂u

u(t) = Kx̂(t)

x̂(kh) = x(kh)

(1.2.7)

where K is the state feedback gain. Because Â and B̂ may not perfectly match

A and B, the sampling period h cannot be infinite. The maximum allowable

sampling periond, h is derived [52]. The work was extended to output feedback

NCS by using a state estimator [52]. It was also applied to the NCS with delay

11

Figure 1.3. A model-based Networked Control System [52]

by constructing state predictor based on the known delay [52].

1.2.2.2 Dropout and delay

Dropout means there is no expected measurement at some sampling instants,

i.e. the feedback information is lost. So dropout is a kind of temporal limitation

of feedback information. Delay means that the feedback information is received

a little later than the expected instants. But there is no information loss in the

delayed measurement. So it may not be appropriate to treat delay as a limitation

of feedback information and this thesis doesn’t consider delay under the main goal

of “limited feedback information”. The reason to mention delay here is that the

literature on dropout usually also studies delay and the methods to treat dropout

usually follow the same routines for delay. For completeness, we review dropout

and delay as a whole.

The network delay and/or network dropout can be governed by a stochas-

tic model, which includes Markov chains and i.i.d. (independent identically dis-

12

tributed) processes.

In [55], two models of the time-varying network delay are studied: Markov

chain and i.i.d. process. The NCS with network delay takes the following form.






xk+1 = Axk + Γ0(τk)uk + Γ1(τk)uk−1 + vk

yk = Cxk + wk

(1.2.8)

where xk ∈ Rn, uk ∈ Rm, vk ∈ Rn, yk ∈ Rl and wk ∈ Rl. τk is the network

delay, modeled by a Markov chain or an i.i.d. process. uk is the control to

be designed. vk and wk are uncorrelated Gaussian white noise with zero mean.

Γ0(τk) and Γ1(τk) are the input matrices determined by the delay τk. Under the

specified stochastic delay model, the performance defined in a quadratic form,

E
[
xT

k S11xk + uT
k S22uk

]
, was computed. Furthermore, an optimal LQG controller

was designed, which is a combination of the Kalman filter and the optimal state

feedback controller.

In [55], dropout is specially considered, where dropout is called vacant sam-

pling. Dropout is modeled as a Markov chain with two states, “dropout” and

“no dropout”. The dynamics equation with dropout is similar to eq. 1.2.8. Two

heuristic compensation strategies in event of dropouts are proposed: reusing latest

control, i.e. uk = uk−1, and constructing control from the estimate of the dropped

measurement. Examples were used to compare the two strategies.

In [28], a first order NCS with both input and output noise is studied. In

the NCS, the feedback measurement is dropped in an i.i.d. fashion. In the event

of dropouts, the control will be set to 0. The work presented a necessary and

sufficient condition for mean square stability and found the optimal feedback gain

to minimize the output power. In [59], a necessary and sufficient stability condi-

13

tion of an NCS with i.i.d. dropouts takes an LMI form and stabilizability with

constant state feedback gain was discussed. A Matlab toolbox: Jitterbug [42]

was developed, which can numerically compute both the output power and the

output’s power spectral density under the given network delay and/or dropout

modeled as a Markov chain.

By assuming stochatic models on the NCS, aggressive results can be obtained.

For example, necessary and sufficient stability conditions can be established. It is,

however, always disputable whether the stochastic models are practical. So some

researchers choose weaker a weaker class of models which bound the dropout rate

and the network delay from above.

In [70], the NCS with dropout is studied. It replaces the true switched system

with an “averaged system” and then provides some sufficient stability conditions

on the system. In the stability condition, only average dropout rate is used and

there is no assumption on the dropout pattern. So the results are quite general,

though, at the cost of more conservatism. [70] also gave a good start on network

scheduling of the NCSs. A network is shared among a group of NCSs. It was

shown that the sampling periods of the NCSs can be chosen in some optimal way

to obtain best performance and satisfy the network sharing constraint (all packets

can be successfully transmitted). When the network is overloaded, i.e. the sharing

constraint cannot be satisfied, the stability of all the NCSs may still be guaranteed

by dropping some packets. The dropout policy design was demonstrated through

examples

In [6], discrete network delay is considered, which is really dropout. In the

event of dropouts, the latest control is reused. In that work, the number of

consecutive dropouts at time k, dk, is bounded, i.e. dk ≤ M . Then the control

14

takes the following form.

uk = c0(k)ûk + c1(k)ûk−1 + · · ·+ cM ûk−M

ci(k) =






1, dk = i

0, dk $= i

where uk−l is the control variable designed for dk = l. If one substitutes the above

control law into the system dynamics equation, e.g. an ARMA (autoregressive

moving average) model, we obtain a dynamic system with time-varying parameters

ci(n). So the system with uncertain dropouts is converted into a system with

uncertain parameters. Based on results from robust control theory, a sufficient

condition for the asymptotic stability of the NCS with discrete network delay

(dropout) can be established [6].

1.2.3 Related work on quantization

Because of quantization, the received feedback measurement is different from

the one originally sent. Quantization can be treated as a kind of spatial limita-

tion of feedback information. The literature review here briefly goes through the

history of quantization. A detailed (and technical) review will be found in later

chapters.

Quantization is an old topic. At the beginning of computer-controlled sys-

tems, quantization is treated as ADC (analog-digital) conversion. The quantiza-

tion (ADC) policies at that time are usually static, i.e. the quantization result

depends only on the current measurement input. The major advantage of static

quantization policies is the simplicity of their coding/decoding schemes. They may

be realized through hardware, e.g. an ADC converter. Such quantization policies

15

usually choose uniform sensitivity. Their weakness lies in possible overflow and

underflow, i.e. the distinguishable measurement magnitude is bounded both from

below and from above due to the finiteness of the number of quantization levels. It

was proven that static policies with a finite number of quantization levels cannot

achieve asymptotic stability [19]. The best thing to expect with a finite number of

quantization levels is locally practical stability (i.e. states converge into a bounded

set under “good” initial condition) [69] [5] [21]. The aforementioned static uniform

quantization policy processes all possible measurement with the same sensitivity.

This may result in significant relative quantization error for measurements with

small magnitude and may therefore degrade the system performance. This effect

can be magnified by an example with an infinite number of quantization levels,

where constant uniform sensitivity is enforced everywhere, particularly around the

origin and asymptotic stability cannot be obtained [19].

After digital communication networks are introduced into control systems

(networked control systems), quantization, named as network quantization here,

caught more and more attention because all variables sent over such networks

have to be quantized before transmission. Network quantization may be realized

through software with a powerful processor and the quantization complexity is no

longer a bottleneck. One may therefore pursue more complex quantization poli-

cies for better performance. One choice is static logarithmic quantization policies,

where the quantization levels are marked in a logarithmic scale. Such logarithmic

policies can guarantee almost constant relative quantization error. When an infi-

nite number of quantization levels are available, asymptotic stability under static

logarithmic quantization can be obtained [25] [33]. It was shown in [20] that the

logarithmic quantizer is the least dense among all static quantizers to guarantee

16

asymptotic stability. When there is only a finite number of bits, it is still im-

possible to achieve asymptotic stability with the static logarithmic quantization

policies.

Based on the above arguments, one may ask whether asymptotic stability can be

obtained with a finite number of bits? An affirmative answer is given in [14]. The

creativity in [14] is to choose a dynamic quantization range. In order to illustrate

the dynamic procedure in [14], we compare it against a static quantization policy

with static quantization range P0
2. If the state is known to lie in a set P [k] at

time k, then the system dynamics and the control law are used to predict the state

range P [k+1] at time k+1. P [k+1] must be a subset of P0; otherwise an overflow

happens. Under the static policy, P0 is partitioned with the given number of bits.

Under the dynamic policy in [14], P [k + 1] is partitioned with the same number

of bits. It is usually the case that P [k + 1] is much smaller than P0. So smaller

quantization errors can be expected under the dynamic policy. It is further proven

that asymptotic stability can be achieved if the number of quantization levels is

above a threshold, i.e. a sufficient stability bound on the bit rate is achieved.

A sufficient stability condition is established in [14]. In order to save band-

width, one pursues the minimum bit rate for stability, i.e. a necessary and suffi-

cient stability condition. Following the dynamic quantization range idea in [14],

Tatikonda obtained the desired minimum bit rate for asymptotic stability [61]

[62]. In [53], stability is interpreted in the stochastic sense, i.e. a certain moment

of state converges to 0. The same minimum bit rate as the one in [62] is proven

to guarantee stochastic stability. The minimum bit rate in [62] [53] is achieved

through a time-varying bit-rate configuration. Real networks, however, prefer to

constant bit rates under bandwidth and power constraints [29]. In [48], the con-
2The quantization range of a static policy is a constant set, denoted as P0.

17

stant bit rate constraint is considered and the minimum bit rate for asymptotic

stability is derived.

In the above paragraphs, noise-free quantized systems are assumed and stabil-

ity is characterized as asymptotic stability. If the quantized systems are per-

turbed by bounded noise, stability should be interpreted as BIBO (bounded-

input-bounded-output) stability. The minimum bit rate for quantized systems

with bounded noise has been derived for both time-varying bit rate configuration

[62] and constant bit rate configuration [45].

Based on the previous minimum bit rate results, we know that the quantized

control system is stable (either asymptotically stable or BIBO stable) if an enough

number of bits are available. For a stable quantized system, we may further require

a minimum level of performance 3. More specifically we pursue the quantization

policy which yields the best performance. In [63], the perturbation noise is as-

sumed to be Gaussian and the performance is defined as a linear quadratic form

of the system state. It is shown that the optimal performance decomposes into

two terms. One is determined by the perfect (without quantization) state feed-

back. The other comes from the quantization error. The optimal quantization

policy is the one which minimizes the quantization term in the optimal perfor-

mance equation. Although the results in [63] are intuitively pleasing, they are less

realistic because of their estimation policies. In [63], the state is estimated as the

conditional mean based on the received bit squence. It is not trivial to compute

such conditional mean because the quantization operation is non-linear. It may

therefore difficult to find a recursive way of computing the mean. The only possi-

ble way is to compute it with the probability density function (pdf) of the state.

So the state’s pdf has to be updated at every step which may be unrealistically
3There are various performance indexes which will be specified late.

18

complicated. In [40], a scalar quantized system is studied, the input noise is as-

sumed to be bounded and performance is measured by the eventual upper bound

of quantization error. The relationship between the number of quantization levels

and the packet dropout pattern is established. Note that a simple estimation pol-

icy is chosen in [40] and the proposed quantization policy is realistic. The results

in [40] are extended to 2-dimensional systems in [46] and [47]. In [22], a noise-free

quantized system is considered and the convergence rate of the quantization error

is used to measure system performance. It proves that the quantization policy

proposed in [48] achieves the best (fastest) convergence rate.

Up to now, we have reviewed the literature on quantized control systems.

In fact, quantization is also a hot topic in the information theory community

[27]. The idea of quantization in that community is to transmit a random process

through a channel with finite bandwidth. The configuration is similar to ours. We,

however, cannot apply those results directly to our quantized control systems. The

major reason is “feedback”. In the information theory community, the source of

quantization may be a Guassian process, which is independent of the quantization

error. The quantization error is used only for performance evaluation. In the

quantized control community, the source of quantization is usually the system’s

state (or output). The quantized state is fed back for control purpose. Specifically

we consider the following quantized control system.






x[k + 1] = Ax[k] + Bu[k]

u[k] = Fxq[k]
(1.2.9)

where x[k] ∈ Rn is the state, xq[k] is the quantized version of x[k]. If we treat the

quantized state as the summation of the true state and the quantization error,

19

we can say that the quantization error is fed back. If the quantization error is

large, the control will be less desirable and the range of state will be enlarged so

that the quantization error will be increased. Note that we ususally have a fixed

number of quantization bits. If the quantization range is large, the quantization

error is also large; vice versa. If the number of available bits is too small, the

above “positive” feedback, i.e. large quantization error −→ large state range −→

larger quantization error −→ ..., may destabilize the whole system.

1.3 Summary of thesis

This thesis focuses on two types of limitations on feedback information, dropout

and quantization. It is organized in the following way.

• In chapter 2, we consider a linear control system with i.i.d. (independent

identically distributed) dropouts. We study the stability condition, derive

the closed-form expression for the output’s power spectral density (PSD),

propose an equivalent linear time-invariant (LTI) system that has the same

stability condition and the same output PSD as the original time-varying

system with dropouts. Therefore the synthesis of the original system can

be performed for the equivalent LTI system. As an example, we show a

dropout compensator design, which is formulated into an optimization prob-

lem among a group of LQG controllers.

• In chapter 3, we study a linear control system with dropouts governed by

a Markov chain. We provide a necessary and sufficient stability condition

and compute its performance characterized by the noise attenuation prop-

erty. Based on the achieved performance results, we design the optimal

dropout policy under an average dropout rate constraint. The obtained op-

20

timal dropout policy is enforced on a real-time control system as a novel QoS

(quality of service) constraint. Simulations show that the scheduling algo-

rithms considering the optimal dropout policies well outperform the others.

The performance computation and optimal dropout policy results are also

extended to distributed control systems.

• In chapter 4, we study the stability of a quantized control system under the

constant bit rate constraint. Minimum bit rate is obtained for both noise-

free quantized systems (for asymptotic stability) and quantized systems with

bounded noise (for BIBO stability). The minimum bit rate results based on

state feedback are extended to the output feedback cases.

• In chapter 5, we study the performance of a 2-dimensional quantized control

system under the constant bit rate constraint. The performance is measured

by the quantization error. The main goal is to find the quantization pol-

icy that optimizes such performance. For noise-free quantized systems, we

obtain the optimal quantization policy, which is a modified version of the

policy in [48], named DBAP (dynamic bit assignment policy). For quantized

systems with bounded noise, we derive both upper and lower bounds on the

optimal performance. The upper bound can be achieved with DBAP. The

lower bound provides a threshold for achievable performance under a given

number of bits. If the performance is required to be better than some level,

we can predict the required number of bits based on the upper bound. All

performance results may be extended to multiple-dimensional diagonalizable

quantized systems.

• In chapter 6, we summarize the achieved results.

21

• In appendix A, we present mathematical preliminaries on stochastic pro-

cesses and Kronecker product, which may be used by Chapters 2 and 3.

22

CHAPTER 2

STABILITY AND PERFORMANCE OF CONTROL SYSTEMS WITH I.I.D.

FEEDBACK DROPOUTS

This chapter studies linear control systems with the feedback information

dropped in an i.i.d. (independent identically distributed) fashion. It is orga-

nized as follows. Section 2.1 presents a mathematical model for such systems.

Section 2.2 provides a necessary and sufficient condition for stability and wide

sense stationarity of such systems. The main result, a closed-form expression of

the output’s power spectral density (PSD), is presented in section 2.3. Based on

the PSD results, a linear time-invariant (LTI) system is obtained in section 2.4.

That LTI system is equivalent to the original time-varying system in the sense of

the same stability condition and the same output’s PSD. This equivalent system

is easy to deal with and can be used to do synthesis for the original system. As an

example, section 2.5 designs the optimal dropout compensator for the equivalent

system. Section 2.6 places some concluding remarks. To improve readability, all

proofs are moved to the appendix, section 2.7.

2.1 System model

We consider a single-input-single-output (SISO) control system with i.i.d.

dropouts in figure 2.1. The system has two inputs, w and d. w is white noise

23

with zero mean and unit variance. d is an i.i.d. binary process with the distribu-

tion of

P (d[k] = 1) = ε, P (d[k] = 0) = 1 − ε (2.1.1)

where ε is the dropout rate. The loop function L(z) is strictly proper. The output

signal y drives a data dropout model:

y[k] =






y[k], d[k] = 0

ŷ[k], d[k] = 1
(2.1.2)

where {ŷ[k]} is the output of the dropout compensator F (z). F (z) is assumed to

be strictly proper. The control signal of L(z) is assumed to be u[k] = w[k] + y[k].

The output power, E [y2] 1 , is taken as the control performance. Such performance

characterizes the noise attenuation of y with respect to w and d.

][ˆ ky

][ky

][ky

-

)(zF ⊗
][kd

][ku][kw
)(zL

Figure 2.1. A control system with i.i.d. dropouts and dropout
compensation

1It will be proven in theorem 2.2.2 that the process {y[k]} is wide sense stationary. Based
on the definition of wide sense stationarity in appendix A, we know E

[
y2[k]

]
is constant with

respect to k. So the time index k is dropped in the output power.

24

Based on the above model, we know the system will jump in an i.i.d. fash-

ion between two configurations: open loop and closed loop. So the state space

equation of the system takes the following form:






x[k + 1] = A[k]x[k] + Bw[k]

y[k] = Cx[k]
(2.1.3)

where P (A[k] = Aclose) = 1 − ε, P (A[k] = Aopen) = ε. Aclose, Aopen, B, C are

system parameters, which come from L(z) and F (z). Assume that L(z) and F (z)

have state space realizations, L(z)
s
=




Ah Bh

Ch 0



 and F (z)
s
=




Af Bf

Cf 0



, then

Aclose =




Ah + BhCh 0

BfCh Af



 , Aopen =




Ah BhCf

0 Af + BfCf



 , B =




Bh

0



 , C =

[
Ch 0

]
.

Throughout this chapter, the following assumptions are taken:

1. w is a white input noise with zero mean and unit variance.

2. The disturbance process {w[k]} is independent from the dropout process

{d[k]}.

3. The initial time of the system is −∞.

2.2 Stability and wide sense stationarity

For a control system, stability is the most important property. We establish

the following stability condition for the system in eq. 2.1.3.

Theorem 2.2.1 The system in equation 2.1.3 is mean square stable if and only

25

if A[2] = (1− ε)Aclose ⊗Aclose + εAopen ⊗Aopen has all eigenvalues within the unit

circle, where ⊗ is Kronecker product defined in Appendix A.

Theorem 2.2.1 is a special case of Theorem 3.2.1 where dropouts are governed by

a Markov chain. So the proof of Theorem 2.2.1 can be obtained directly from

Theorem 3.2.1 which is presented in Chapter 3.

If a system is mean square stable, we know the initial condition will be even-

tually forgotten. By assumption 3, the initial time is −∞. Therefore we can

assume a zero initial state without loss of generality. Thus the output y[k] will be

uniquely determined by the input noise sequence {w[k]}. Because of the station-

arity of {w[k]} ({w[k]} is white), {y[k]} is expected to be wide sense stationary

too (the definition of wide sense stationarity is presented in Appendix A).

Theorem 2.2.2 All linear outputs of the system in equation 2.1.3, i.e. the output

with the form of z[k] = Ex[k] + Fw[k], are wide sense stationary if A[2] = (1 −

ε)Aclose ⊗ Aclose + εAopen ⊗ Aopen has all eigenvalues within the unit circle.

Again the stationarity in theorem 2.2.2 is a special case of the stationarity in

theorem 3.2.2 (presented in Chapter 3) where Markovian dropouts are considered.

So we omit the proof of theorem 2.2.2.

It can be seen that the system is wide sense stationary if it is mean square

stable by theorems 2.2.1 and 2.2.2. Throughout this chapter, we will assume the

system is mean square stable. So the output {y[k]} is wide sense stationary and

we can compute the power spectral densities and cross spectral densities of the

system with i.i.d. dropouts.

26

2.3 Power spectral density

This section states a closed-form expression for the output’s power spectral

density (PSD). The system’s output power is then computed from the PSD. Sim-

ulation results are used to verify the correctness of our predicted system’s output

power. The main result is stated below in theorem 2.3.1. The theorem is proven

in the appendix (section 2.7).

Theorem 2.3.1 Consider the system in equation 2.1.3. Let ỹ[k] = y[k] − y[k].

If the system is mean square stable, the power spectral densities and the ouput’s

power can be computed as






Syy(z) =
∣∣∣ 1
1−D(z)L(z)

∣∣∣
2
|L(z)|2 Sww(z) +

∣∣∣ D(z)L(z)
1−D(z)L(z)

∣∣∣
2

∆
1−ε

Sỹỹ(z) =
∣∣∣L(z)(D(z)−1)

1−D(z)L(z)

∣∣∣
2
Sww(z) +

∣∣∣D(z)(1−L(z))
1−D(z)L(z)

∣∣∣
2

∆
1−ε ,

E [y2] = 1
2π

∫ π

−π Syy (ejω) dω

(2.3.4)

where | · | means magnitude, D(z) = 1−ε
1−εF (z) . When ε = 0, ∆ = 0; when ε > 0, ∆

is the unique positive solution of the following equation

∆ =
1

2π

∫ π

−π

∣∣∣∣
L(ejω)(D(ejω) − 1)

1 − D(ejω)L(ejω)

∣∣∣∣
2

Sww(ejω)dω (2.3.5)

+
1

2π

∫ π

−π

∣∣∣∣
D(ejω)(1 − L(ejω))

1 − D(ejω)L(ejω)

∣∣∣∣
2

dω
1

1 − ε∆

Remark: ∆ is an important parameter in the the output’s PSD expression in eq.

2.3.4. The proof of theorem 2.3.1 shows that ∆ corresponds to the reconstruction

error ỹ[k] = y[k] − y[k].

∆ = E
[
(y[k] − y[k])2]

= ε
[
(y[k] − ŷ[k])2] (2.3.6)

27

where the second equality comes from the fact that y[k] = y[k] for d[k] = 0 and

y[k] = ŷ[k] for d[k] = 1 and P (d[k] = 1) = ε. By eq. 2.3.6, ∆ is determined by

the compensation error y[k] − ŷ[k].

Remark: The power spectral density Syy(z) in equation 2.3.4 consists of two

terms. The first term is the usual term we would expect to see if a wide sense

stationary process w were driving a linear time-invariant (LTI) system with a

feedback gain D(z). The second term in equation 2.3.4 models the explicit effect

the dropout process d has on the system’s output.

Theorem 2.3.1 can be used to make quantitative predictions about the sys-

tem performance as a function of the dropout rate ε. The following example

illustrates such a prediction. Consider a feedback control system with an unstable

loop function L(z) = z+0.8
z2+z+1.7 and a dropout compensator F (z) = 1

z . This dropout

compensator simply reuses the latest feedback measurement when a dropout oc-

curs. The input noise, w, is white Gaussian with zero mean and unit variance.

By theorem 2.2.1, the system is mean square stable for dropout rates below 7.0%.

A Matlab simulink model was written to simulate this system. The simulations

experimentally estimated the output power using the time average

ÊL

[
y2
]

=
1

L

(
y2[L + 1] + y2[L + 2] + · · ·+ y2[L + L]

)
, (2.3.7)

where L is half of the length of the simulation run. By the ergodicity theorem

(theorem 3.3.2) in chapter 3, we know that when ε < 3.9%, the system’s ergodicity

is guaranteed, i.e. limL−→∞ ÊL [y2] = E [y2].

The control system was simulated with various dropout rates between 0 and

6.4%. For each value of ε, we ran 5 different simulations for 200, 000 time steps

and estimated the output power by equation 2.3.7. The simulation results are

28

shown in figure 2.2. When ε < 3.9%, the figure shows close agreement between

the experimentally estimated and theoretically predicted output power. The dis-

agreement between the predicted and experimentally estimated output power is

significant if ε > 4.4%. We believe this is because the system is no longer ergodic

under the large dropout rates. Remember that we are using time-averages to esti-

mate the output power. We can only expect such averages to be a good estimate

of the power when the system is ergodic.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

20

40

60

80

100

120

140

Dropout rate,ε

O
ut

pu
t p

ow
er

, E
[y

2]

Theoretical prediction
Experiments

Figure 2.2. output power under different dropout rates

29

2.4 Equivalent linear time-invariant system

By theorem 2.3.1, we obtained a closed-form expression for the ouput’s PSD,

Syy(z). Such a PSD can also be generated by a constrained LTI system. This LTI

system is shown in figure 2.3. It is equivalent to the original system in the sense

that both system generate the same output’s PSD.

][kw

)(zF

][kn

_

][ky
()L z

ε−1

][~ ky

ε

Figure 2.3. Equivalent system

The equivalent LTI system is driven by two zero-mean white Gaussian noise

processes, w and n, whose variances are 1 and
E[ỹ2]
1−ε respectively. Note that the

variance of the noise process n is dependent on the variance of one output ỹ.

Obviously, the first question we must answer is whether or not this particular LTI

system is well-posed. In other words, does there exist an input noise n such that

E
[
n2

]
=

E [ỹ2]

1 − ε (2.4.8)

30

That question is answered in the affirmative by the following theorem. The theo-

rem is proven in the appendix.

Theorem 2.4.1 Consider the LTI system shown in figure 2.3 with exogenous

white zero-mean Gaussian inputs w and n where E [w2] = 1. If the closed-loop

system is internally stable and the transfer function Gỹn(z) satisfies the inequality,

‖Gỹn‖2
2 < 1 − ε, (2.4.9)

then there exists a unique noise signal n (by unique, we mean the variance of n is

unique) such that

E
[
ỹ2
]

= (1 − ε)E
[
n2

]
(2.4.10)

The LTI system whose existence was established in theorem 2.4.1 is equivalent

to the original time-varying system in figure 2.1 in the sense that both systems

have the same stability conditions and generate the same power spectral densities.

This assertion is stated in the following theorem whose proof will be found in the

appendix (section 2.7).

Theorem 2.4.2 When ε > 0, the LTI system in figure 2.3 is asymptotically stable

and its transfer function Gỹn(z) satisfies

‖Gỹn‖2
2 < 1 − ε (2.4.11)

if and only if the system in eq. 2.1.3 is mean square stable. Furthermore, when

the two systems are stable, they will generate the same power spectral densities,

Syy(z) and Sỹỹ(z).

31

Remark: The power spectral density is a complete description of a process’

second-order moments. By theorem 2.4.2, we know that the two systems, the

equivalent LTI system and the original time-varying system, generate the same

PSDs, Syy(z) and Sỹỹ(z). So they will also generate the same second-order mo-

ments, {Ryy[m]} and {Rỹỹ[m]}. In this chapter, we only care about second-order

moments, such as Ryy[0](= E[y2]) and Rỹỹ[0](= E[ỹ2]). We can, therefore, use

the equivalent LTI system to study the performance of the original time-varying

system.

2.5 Optimal linear dropout compensation policy

In a system with dropouts, the dropout compensator is an essential part.

When a packet is dropped, the dropout compensator will decide what to do in

the absence of data from a pragmatic standpoint. It is important to design the

optimal compensator. By optimal, we mean that the compensator achieves better

performance than any other compensator.

There is little work on optimal dropout compensation. There are several

heuristic compensation strategies, such as holding the latest received data [55],

using constant data [28], and estimating the lost data based on the system dy-

namics [55]. Among these dropout compensators, which one is the best? Examples

have shown that none of the aforementioned strategies is always the best [55] [43].

For mathematical tractability, we confine our attention to the optimal “linear”

compensator. The system in figure 2.1 includes a linear time-invariant compen-

sator F (z). So we need to find the F (z) that optimizes the performance, E [y2].

In [43], we solve this problem by the brute force methods. We first assume that

32

F (z) has the following structure

F (z) =

∑N
j=1 bjz−j

1 +
∑N

i=1 aiz−i
(2.5.12)

where N is prespecified, and bj and ai are compensator parameters. Theorem

2.3.1 may be used to compute the performance, E [y2], which is a function of bj

and ai. We therefore optimize the function with respect to bj and ai. The problem

inherent in this method is that we don’t know how large N should be. This section

uses the equivalent LTI system to propose a dropout compensator design method,

which is not only more efficient than the one in [43], but also guarantees to be

optimal over the class of linear time-invariant compensators.

Theorem 2.4.2 may be used to design F (z) in the equivalent system of figure

2.3. In order to clarify the situation, let’s redraw figure 2.3 as shown in figure 2.4.

0 ()L z

][kw

][ku f
][kz

1−z)(0 zD

][kn

_

][ky ()L z

ε−1

][~ ky

Figure 2.4. Redrawn equivalent system

33

In figure 2.4, D0(z) is a proper transfer function, which is related to F (z) by 2

D0(z) =
ε(1 − ε)zF (z)

1 − εF (z)
(2.5.13)

Equation 2.5.13 presents an one-to-one map between D0(z) and F (z). We can

therefore design F (z) through D0(z). As shown in figure 2.4, D0(z) constructs

the control {uf [k]} from {z[k]}, the output of the generalized plant L0(z). We can

therefore formulate the synthesis of D0(z) into the following optimization problem.

Optimization 2.5.1 minD0(z) E [y2] subject to 3

E
[
ỹ2
]

= (1 − ε)E
[
n2

]
(2.5.14)

E
[
w2

]
= 1

This particular optimization problem is awkward to solve directly because the

dropout noise n has a variance that’s proportional to the reconstruction error’s

variance E [ỹ2]. The size of the reconstruction error’s variance, of course, is depen-

dent on our choice of D0(z). This means that both sides of the equality constraint

are dependent on our choice of D0(z), thereby leading to a problem whose form

is inconsistent with many optimization software packages.

In order to solve our synthesis problem, we need to recast the optimization

problem in equation 2.5.1 into a more standard form. Without loss of generality,

we take ∆ as an additional design parameter that satisfies E [n2] = 1
1−ε∆. We also

note that the error signal ỹ can be rewritten as ỹ[k] = εy[k]− uf [k]− (1− ε)n[k].
2By eq. 2.5.13, we know that F (z) is strictly proper is equivalent to that D0(z) is proper.
3Eq. 2.5.14 implies ‖Gỹn‖2

2 < 1 − ε for ε > 0, which can be briefly proven as follows. By
E

[
ỹ2

]
= ‖Gỹn‖2

2E
[
n2

]
+ ‖Gỹw‖2

2E
[
w2

]
, E

[
w2

]
= 1 > 0 and ‖Gỹw‖2

2 > 0 for ε > 0, we get
E[ỹ2] > ‖Gỹn‖2

2E[n2]. Combining the above inequality and eq. 2.5.14 yields ‖Gỹn‖2
2 < 1 − ε.

34

The reconstruction error’s variance therefore can be written as

E
[
ỹ2
]

= E
[
(εy − uf)

2] + (1 − ε)2 E
[
n2

]
(2.5.15)

Without loss of optimality, We rewrite the equality constraint in eq. 2.5.14 as an

inequality constraint 4

E
[
ỹ2
]

≤ (1 − ε)E
[
n2

]

= ∆

The above inequality can be intuitively interpreted as a constraint on the

reconstruction error. When the equality holds, the tightest constraint is obtained.

So we expect the optimal configuration occurs when the equality holds, i.e. on the

border of the feasible region. In the above inequality, ∆ acts as an upper bound

of the the reconstruction error’s variance, E [ỹ2]. If one substitutes eq. 2.5.15 into

the above inequality, we obtain

E
[
(εy − uf)

2] ≤ ε∆ (2.5.16)

By multiplying both w and n by the same gain 1√
∆

, optimization problem 2.5.1 is

transformed into the following problem.

Optimization 2.5.2 min∆ minD0(z) ∆ · E [y2] subject to

E
[
(εy − uf)

2] ≤ ε (2.5.17)

E
[
n2[k]

]
=

1

1 − ε
,E

[
w2[k]

]
=

1

∆

4In fact, ∆ is the upper bound of the acceptable reconstruction error’s variance.

35

This particular characterization of the synthesis problem is now in a more “stan-

dard” form that can be tackled by existing optimization software.

We solved optimization problem 2.5.2 in two steps. We first note that the

inner optimization problem takes the form of a standard linear-quadratic Gaussian

(LQG) synthesis [2]. We incorporated the constraint into the performance index as

a penalty and solved the unconstrained optimization problem for the augmented

performance index E
[
y2 + λ (εy − uf)

2] where λ is a specified positive number.

The solution of this optimization problem is a standard LQG controller, denoted

as D∆,λ(z). It can be shown that smaller λ will lead to smaller E[y2]. This

relationship between λ and E[y2] stems from the fact that λ plays the role of

a weighting function in the LQG performance objective. A small λ, therefore,

corresponds to a larger penalty being assigned to E[y2]. The idea, therefore,

is to search for the smallest λ whose corresponding controller D∆,λ(z) satisfies

the constraint in eq. 2.5.17. We denote ∆E[y2], under the smallest λ, as p(∆).

This is exactly the optimal value for the inner part of optimization 2.5.2. This

inner optimization problem was solved for a range of fixed ∆, so that p(∆) now

becomes a univariate function showing how the optimum performance E[y2] varies

as a function of the upper bound of the reconstruction error’s variance ∆.

We used the above approach to design an optimal dropout compensator for

the plant in section 2.3. We refer to this as the LQG dropout compensator. We

compared the LQG compensator’s performance against 3 popular heuristics. The

first heuristic sets F (z) = 0 and corresponds to zeroing the control signal when a

dropout occurs. The second heuristic is F (z) = z−1 which is equivalent to reusing

the last feedback measurement when a dropout occurs. The third heuristic uses

an F (z) that minimizes the reconstruction error ∆. We refer to this as the recon-

36

struction compensator. The output power achieved by all dropout compensators

is plotted as a function of the average dropout rate ε in figure 2.5. The figure

shows that the reconstruction estimator and LQG compensation schemes clearly

outperform the other two heuristics. The LQG compensator actually does a little

better than the reconstruction compensator and surprisingly it’s minimum value

does not occur for ε = 0. This is because the LQG compensator is a better

regulator than the default unity output feedback.

0 0.1 0.2 0.3
5

10

15

20

25

30

35

40

45

Dropout rate, ε

O
ut

pu
t P

ow
er

, E
[y2]

Optimal
Estimator
F(z)=0
F(z)=1/z

(a)

Figure 2.5. Performance comparisons under different dropout
compensators

As mentioned in the introduction of this section, the two terms in equation

2.3.4 suggest that the optimal dropout compensator does not always attempt to

minimize the reconstruction error. This fact is illustrated in figure 2.6. This figure

37

plots the optimum performance level, p(∆), achieved for reconstruction errors in

the range 0 < ∆ < 0.8 assuming ε = 0.1. Note that this function is not a

monotonically increasing function of ∆. It has a definite global minimum that

appears to occur for a reconstruction error variance, ∆, of about 0.38. This result

confirms our earlier suspicion that the optimal dropout compensation should not

always try to minimize the reconstruction error.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
8.8

9

9.2

9.4

9.6

9.8

10

10.2

∆

O
ut

pu
t p

ow
er

, E
[y

2]

Figure 2.6. Value function p(∆) for ε = 0.1

2.6 Conclusions

This chapter studied a control system with i.i.d. dropouts. We derived a

necessary and sufficient stability condition and the performance results (a closed-

38

form expression of the output’s power spectral density). The PSD results were

used to obtain a linear time-invariant system that is equivalent to the original

time-varying system with dropouts in the sense of the same stability condition

and the same output’s PSD. This equivalent system was used for synthesis. As a

synthesis example, we designed an optimal dropout compensator for the system

with i.i.d. dropouts.

Because the power spectral density is a full description of the process’ second-

order moments, we know that the “equivalent” system is equivalent to the orig-

inal system with respect to second-order moments. Besides the aforementioned

dropout compensator, we can follow the same procedure to design an optimal con-

troller (with performance measured by the output process’ second-order moment).

This chapter considered a SISO system. Future research should try to extend

these methods to MIMO (multiple-input-multiple-output) systems.

2.7 Appendix: proofs

2.7.1 Proof of Theorem 2.3.1

Let h and f denote the impulse response functions for L(z) and F (z), respec-

tively. Let w denote the exogenous disturbance signal. The signals, y, ȳ, and ŷ

represent the loop function’s output signal, the control signal re-injected into the

plant, and the dropout compensator’s output signal, respectively. These three

signals are related through the convolution equations,






y = h ∗ (y + w)

ŷ = f ∗ y
(2.7.18)

39

We first compute the power cross-spectral densities Syw(z), Syw(z) and Sŷw(z)

relating these output signals to the input w. From equation 2.7.18, we get






Syw(z) = L(z) (Syw(z) + Sww(z))

Sŷw(z) = F (z)Syw(z)
(2.7.19)

For any m, the correlation Ryw may be written as

Ryw[m] = E [y[k + m]w[k]]

= E [y[k + m]w[k]|d[k + m] = 0] P (d[k + m] = 0)

+E [y[k + m]w[k]|d[k + m] = 1]P (d[k + m] = 1)

Because L(z) and F (z) are strictly proper, we know that y[k] and ŷ[k] are inde-

pendent of current and future dropouts, so that the last equation can be rewritten

as

Ryw[m] = E [y[k + m]w[k]]P (d[k + m] = 0)

+E [ŷ[k + m]w[k]]P (d[k + m] = 1)

= (1 − ε)Ryw[m] + εRŷw[m]

We then take the double-sided z-transform of the above equation to obtain

Syw(z) = (1 − ε)Syy(z) + εSŷy(z) (2.7.20)

40

Combining equations 2.7.19 and 2.7.20 generates the following expressions for the

cross-spectral densities,






Syw(z) = D(z)L(z)
1−D(z)L(z)Sww(z)

Syw(z) = L(z)
1−D(z)L(z)Sww(z)

Sŷw(z) = D(z)L(z)F (z)
1−D(z)L(z) Sww(z)

(2.7.21)

where D(z) = 1−ε
1−εF (z) .

The convolutions in equation 2.7.18 also generate the following equations

Syy(z) = L(z−1) (Syy(z) + Syw(z)) (2.7.22)

Syy(z) = L(z)L(z−1)
(
Syy(z) + Syw(z) + Syw(z−1) + Sww(z)

)
(2.7.23)

Sŷŷ(z) = F (z)F (z−1)Syy(z) (2.7.24)

Sŷy(z) = F (z)Syy(z) (2.7.25)

Syŷ(z) = F (z−1)Syy(z) (2.7.26)

There are six unknown spectral densities in these equations, including three PSD’s

Syy,Sŷŷ, and Syy, and three cross-spectral densities Syy, Syŷ, and Sŷy. There are,

however, only 5 equations given above. Since there are six unknowns and only

five equations, we must find another independent equation. The signal y is not

related to y and ŷ through a simple convolution because y switches between these

two signals.

In order to properly model the correlation of such switching signals, it is con-

venient to define single-sided power spectral densities.

S+
xy(z) =

∞∑

m=1

Rxy[m]z−m, S−
xy(z) =

−1∑

m=−∞
Rxy[m]z−m

41

The above definitions imply






Sxy(z) = S+
xy(z) + S−

xy(z) + Rxy[0]

S−
xy(z) = S+

yx(z
−1)

Syy(z) = S+
yy(z) + S+

yy(z
−1) + Ryy[0]

(2.7.27)

The sixth equation will be obtained by deriving an expression for Syy(z). We

first note that for m > 0,

Ryy[m] = E [y[k + m]y[k]]

= E [y[k + m]y[k]|d[k + m] = 0]P (d[k + m] = 0)

+E [y[k + m]y[k]|d[k + m] = 1]P (d[k + m] = 1)

Because L(z) and F (z) are strictly proper, we know that

Ryy = E [y[k + m]y[k]]P (d[k + m] = 0)

+E [ŷ[k + m]y[k]] P (d[k + m] = 1)

= (1 − ε)Ryy[m] + εRŷy[m]

which immediately implies that

S+
yy(z) = (1 − ε)S+

yy(z) + εS+
ŷy(z) (2.7.28)

From the PSD identities in equation 2.7.27, we know that

S+
yy(z) = Syy(z) − S−

yy(z) − Syy[0] (2.7.29)

42

Following a similar derivation to that used in equation 2.7.28 we obtain, for m < 0,

Ryy[m] = (1 − ε)Ryy[m] + εRyŷ[m] (2.7.30)

Taking the single sided z-transform of equation 2.7.30 yields

S−
yy(z) = (1 − ε)S−

yy(z) + εS−
yŷ(z) (2.7.31)

Substituting eq. 2.7.31 into eq. 2.7.29 yields

S+
yy(z) = Syy(z) − (1 − ε)S−

yy(z) − εS−
yŷ(z) − Syy[0] (2.7.32)

Similarly we obtain

S+
ŷy(z) = Sŷy(z) − (1 − ε)S−

ŷy(z) − εS−
ŷŷ(z) − Sŷy[0] (2.7.33)

We now substitute equations 2.7.32 and 2.7.33 into equation 2.7.28 to obtain

S+
yy(z) = (1 − ε)Syy(z) + εSŷy(z) − (1 − ε)2S−

yy(z)

−ε2S−
ŷŷ(z) − ε(1 − ε)S−

yŷ(z) − ε(1 − ε)S−
ŷy(z)

−(1 − ε)Ryy[0] − εRŷy[0] (2.7.34)

43

Substituting eq. 2.7.34 into the third identity in equation 2.7.27 yields

Syy(z) = (1 − ε)
(
Syy(z) + Syy(z

−1)
)

+ε
(
Sŷy(z) + Sŷy(z

−1)
)

−(1 − ε)2
(
S−

yy(z) + S−
yy(z

−1)
)

−ε2
(
S−

ŷŷ(z) + S−
ŷŷ(z

−1)
)

−ε(1 − ε)
(
S−

yŷ(z) + S−
ŷy(z

−1)
)

−ε(1 − ε)
(
S−

yŷ(z
−1) + S−

ŷy(z)
)

−2(1 − ε)Ryy[0] − 2εRŷy[0] + Ryy[0]

We apply the properties of single-sided PSD’s in eq. 2.7.27 to cancel the sum of

single sided PSDs in the above equation to obtain our final expression

Syy(z) = (1 − ε)
(
Syy(z) + Syy(z

−1)
)

+ ε (Sŷy(z)

+Sŷy(z
−1)

)
− (1 − ε)2Syy(z) − ε2Sŷŷ(z) (2.7.35)

−ε(1 − ε)Syŷ(z) − ε(1 − ε)Sŷy(z) + (1 − ε)∆

where

∆ =

(
−2

ε

1 − ε
Rŷy[0] +

1

1 − ε
Ryy[0] +

ε2

1 − ε
Rŷŷ[0]

−2Ryy[0] + (1 − ε)Ryy[0] + εRyŷ[0] + εRŷy[0]) . (2.7.36)

Equations 2.7.22-2.7.26 and 2.7.35 represent 6 independent equations that we

44

can then solve for the 6 PSD’s. In particular, solving for Syy(z) yields the following

Syy(z) =
∣∣∣ L(z)
1−D(z)L(z)

∣∣∣
2
Sww(z) + 1

1−ε

∣∣∣ D(z)L(z)
1−D(z)L(z)

∣∣∣
2
∆ (2.7.37)

Because ỹ[k] = y[k] − y[k], we know that

Sỹỹ(z) = Syy(z) + Syy(z) − Syy(z) − Syy(z)

=
∣∣∣L(z)(D(z)−1)

1−D(z)L(z)

∣∣∣
2
Sww(z) + 1

1−ε

∣∣∣D(z)(1−L(z))
1−D(z)L(z)

∣∣∣
2
∆

which matches the PSD’s stated in the theorem.

A simpler, more meaningful, expression for ∆ can be computed. With the

switching property of y[k], we get the identities, such as Ryy [0] = εRŷy[0] + (1 −

ε)Ryy[0], and then use these identities to simplify the expression in eq. 2.7.36 to

the form ∆ = Rỹỹ[0], where ỹ = y − y. When ε = 0, ỹ = 0 and ∆ = 0.

Because the system in eq. 2.1.3 is stable in the mean square sense, ỹ, as a

linear output, has finite variance by theorem 2.2.2, i.e. Rỹỹ[0] is finite. When

ε > 0, i.e. there is dropouts, we can show that Rỹỹ[0] > 0.

Because Rỹỹ[0] = 1
2π

∫ π

−π Sỹỹ(ejω)dω, we can further reduce this expression to

that stated in eq. 2.3.5. Therefore ∆ = Rỹỹ[0] is a positive solution to eq. 2.3.5

for ε > 0.

Take a close look at eq. 2.3.5. When ε > 0, the first term

1
2π

∫ π

−π

∣∣∣L(ejω)(D(ejω)−1)
1−D(ejω)L(ejω)

∣∣∣
2
Sww(ejω)dω > 0. So eq. 2.3.5 has a positive solution

implies the solution is unique. ♦

45

2.7.2 Proof of Theorem 2.4.1

Because the system is internally stable, a straightforward computation of E [ỹ2]

for the LTI system shows that

E
[
ỹ2
]

= ‖Gỹw‖2
2 + ‖Gỹn‖2

2 E[k2]

Let ∆ = E[k2](1 − ε) = E[ỹ2], then the preceding equation takes the form,

∆ = ‖Gỹw‖2
2 + ‖Gỹn‖2

2

∆

1 − ε (2.7.38)

Eq. 2.7.38 has a unique non-negative solution with respect to ∆ if and only if

1
1−ε‖Gỹn‖2

2 < 1. ♦

2.7.3 Proof of Theorem 2.4.2

The state space model of the equivalent system in figure 2.3 is






xe[k + 1] = Aexe[k] + Bww[k] + Bnn[k]

y[k] = Cyxe[k]

ỹ[k] = Cỹxe[k] + (1 − ε)n[k]

(2.7.39)

where

Bw =




Bh

0



 , Bn = (1 − ε)




Bh

Bf



 ,

Cy =

[
Ch 0

]
, Cỹ = ε

[
−Ch Cf

]

46

and Ae = (1 − ε)A0 + εA1. The matrices A0, A1, Bh, Bf , Ch and Cf are defined

in section 2.1.

2.7.3.1 Proof of stability equivalence

When the equivalent system is asymptotically stable and the con-

straint in eq. 2.4.11 is satisfied

The stability of the LTI system means that ‖Gỹn‖2
2 = CỹWnC2

ỹ +(1−ε)2 where

Wn satisfies the Lyapunov equation

AeWnAT
e + BnBT

n = Wn (2.7.40)

Moreover, because all eigenvalues of Ae lie within the unit circle, we also know

there exists a unique P0 > 0 that satisfies the Lyapunov equation

AeP0A
T
e + I = P0 (2.7.41)

Combining the assumption that ‖Gỹn‖2
2 < 1 − ε with the expression of ‖Gỹn‖2

2

yields

CỹWnCT
ỹ < ε(1 − ε) (2.7.42)

Because this is a strict inequality, we know there exists a small positive real number

γ such that

Cỹ (Wn + γP0)CT
ỹ < ε(1 − ε) (2.7.43)

We now define a symmetric matrix P = Wn + γP0.

47

Based on the matrix definitions in eq. 2.7.39, we know that for any symmetric

matrix P

((1 − ε)A0PAT
0 + εA1PAT

1) − AePAT
e =

1

ε(1 − ε)BnCỹPCT
ỹ BT

n (2.7.44)

In particular, we set P equal to the matrix P defined in the preceding paragraph.

For this particular P we know that CỹPCT
ỹ < ε(1 − ε), so that equation 2.7.44

becomes,

(1 − ε)A0PAT
0 + εA1PAT

1 ≤ AePAT
e + BnBT

n

= (AeWnAT
e + BnBT

n) + γAeP0A
T
e

= Wn + γ(P0 − I)

< Wn + γP0

= P

Therefore there exists a P > 0 such that

(1 − ε)A0PAT
0 + εA1PAT

1 < P. (2.7.45)

We now construct a free jump linear system with the system matrix, A[k], of

the original system in equation 2.1.3.

x[k + 1] = AT [k]x[k] (2.7.46)

We construct a candidate Lyapunov function V [k] = xT [k]Px[k]. Because the

48

switching is i.i.d. in the jump linear system, we use equation 2.7.45 to show that

E [V [k + 1]]

= E
[
xT [k + 1]Px[k + 1]

]

= E
[
xT [k]A[k]PAT [k]x[k]

]

= E
[
xT [k]E

[
A[k]PAT [k]

]
x[k]

]

= E
[
xT [k]

(
(1 − ε)A0PAT

0 + εA1PAT
1

)
x[k]

]

< E
[
xT [k]Px[k]

]

= E [V [k]]

So the system in eq. 2.7.46 is mean square stable. By theorem 2.2.1, we know

(1 − ε)AT
0 ⊗ AT

0 + εAT
1 ⊗ AT

1 = AT
[2] has all eigenvalues within the unit circle.

This implies that A[2] has all eigenvalues within the unit circle and we again use

theorem 2.2.1 to infer the mean square stability of the original system.

When the original system is mean square stable We will first prove the

equivalent system is asymptotically stable. We will prove there exist P > 0 such

that

AePAT
e < P (2.7.47)

For any square matrix Q > 0, we construct the following matrix sequence






Pn+1 = (1 − ε)A0PnAT
0 + εA1PnAT

1 + Q

P0 = Q
(2.7.48)

49

By the definition of {Pn}, we can prove

Pn+1 ≥ Pn (2.7.49)

Use the operator vec(), we can transform eq. 2.7.48 into

vec(Pn+1) = A[2]vec(Pn) + vec(Q) (2.7.50)

Because A[2] is stable by theorem 2.2.1, we obtain the limit limn−→∞ vec(Pn) exists

and is finite. By the linearity of vec(), we know limn−→∞ Pn exists and is finite

and definite positive, denoted as P . By eq. 2.7.48, we get

P = (1 − ε)A0PAT
0 + εA1PAT

1 + Q (2.7.51)

By the definition of Ae, we obtain

AePAT
e = ((1 − ε)A0 + εA1) P ((1 − ε)A0 + εA1)

T

= (1 − ε)A0PAT
0 + εA1PAT

1 − ε(1 − ε) (A0 − A1)P (A0 − A1)
T

= P − Q − ε(1 − ε) (A0 − A1)P (A0 − A1)
T

< P

The above third equality uses eq. 2.7.51. By P > 0 and AePAT
e < P , we know

Ae is stable, i.e. the equivalent system is asymptotically stable. In the following,

we will prove the constraint in 2.4.11 is satisfied.

Because the original system is stable in the mean square sense, we know that

by theorem 2.3.1, eq. 2.3.5 has a unique positive solution. We may use the

50

configuration of the equivalent system in figure 2.3 to rewrite eq. 2.3.5 as

∆ = ‖Gỹw‖2
2 + ‖Gỹn‖2

2

1

1 − ε
∆ (2.7.52)

Because ‖Gỹw‖2
2 > 0 for ε > 0, the uniqueness of the solution of the above equation

yields

‖Gỹn‖2
2 < 1 − ε (2.7.53)

2.7.3.2 PSD equivalence

We now show that both systems generate the same power spectral density.

Since the equivalent system is stable, it will generate WSS signals y and ỹ. The

PSD’s for these signals are readily computed as

Syy(z) =
∣∣∣ L(z)
1−D(z)L(z)

∣∣∣
2

Sww(z) +
∣∣∣ D(z)L(z)
1−D(z)L(z)

∣∣∣
2

E [n2]

Sỹỹ(z) =
∣∣∣L(z)(D(z)−1)
(1−D(z)L(z))

∣∣∣
2
Sww(z) +

∣∣∣D(z)(1−L(z))
1−D(z)L(z)

∣∣∣
2
E [n2]

In the above expression, we have already considered the white nature of n, which

yields Snn(z) = E [n2]. From theorem 2.4.1, we know that E[n2] = E[ỹ2]/(1 − ε).

Define ∆0 = E [ỹ2]. Then E [n2] = ∆0
1−ε and ∆0 satisfies eq. 2.4.11. By the

uniqueness of the solution of eq. 2.4.11, we know ∆ = ∆0. Therefore E [n2] = ∆
1−ε .

Substituting this into the above equations for Syy(z) and Sỹỹ(z), yields the same

PSD’s found in theorem 2.3.1. ♦

51

CHAPTER 3

STABILITY AND PERFORMANCE OF CONTROL SYSTEMS WITH

FEEDBACK DROPOUTS GOVERNED BY A MARKOV CHAIN

This chapter considers a control system with dropouts governed by a Markov

chain. It is organized as follows. Section 3.1 presents a mathematical model for

the concerned system. Section 3.2 provides a necessary and sufficient condition

for stability and wide sense stationarity of such systems. Section 3.3 proposes a

method to compute system performance measured by the output power. The com-

putation may be cast as an LMI (linear matrix inequality). Section 3.4 utilizes the

achieved performance result to design the optimal dropout policy under the over-

loading circumstances, for example the communication network is congested. The

optimal dropout policy design is formulated as a BMI (bilinear matrix inequal-

ity) and the resulting optimization problem is solved with a branch-and-bound

method. The optimal dropout policy we obtain works as a guideline for real-

time engineers to design scheduling algorithms. We also did some experiments to

verify the optimality of the proposed dropout policy. Section 3.5 extends the per-

formance results of a system with feedback dropouts governed by a Markov chain,

including the performance computation and the optimal dropout policy design, to

distributed systems. Section 3.6 concludes this chapter with some final remarks.

The appendix, section 3.7 includes all technical proofs.

52

3.1 System model

The block diagram of the concerned system is shown in figure 3.1. H(z) is

the loop function which is the combination of the plant and the controller. H(z)

generates the output signal y. The output signal y and the random dropout

process d drive a model of the feedback channel which generates the feedback

signal y. The loop function, H(z), is driven by the input signal u = y + w where

w is an exogenous noise signal. The system performance is measured by the output

power E[yTy]. 1 Such performance characterizes the noise attenuation of y with

respect to w and d.

][ˆ ky

][ky

][ky

-

1−z ⊗
][kd

][kw][ku
)(zH

Figure 3.1. A control system with data dropouts

The system shown in figure 3.1 has two inputs. The exogenous input distur-

bance process w is assumed to be white with zero mean and unit variance. The

other input is the dropout process d = {d[k]}. When d[k] = 0, the feedback
1It will be proven by Corollary 3.2.1 that E

[
yT [k]y[k]

]
is constant with respect to n. There-

fore the index n in E
[
yT [k]y[k]

]
is dropped.

53

measurement is successfully transmitted over the channel and y[k] = y[k]. When

d[k] = 1, the measurement is dropped by the channel and the feedback signal

simply reuses the last transmitted value, i.e. y[k] = y[k−1]. The random dropout

process, d, has a distribution selected from an underlying Markov chain. The

Markov chain is homogeneous, irreducible and aperiodic with N (N < ∞) states,

{q1, q2, · · · , qN}, and the transition matrix Q = (qij)N×N . At time step n, d[k]

is uniquely determined by the state of the Markov chain q[k], i.e. there exists a

function d[k] = f(q[k]).

We assume that H has a minimal state space realization, H
s
=




AP BP

CP 0



,

where the column number of BP equals to the row number of CP . Thus a state

space representation of the system in figure 3.1 is






x[k + 1] = A[q[k]]x[k] + Bw[k]

y[k] = Cx[k]
, (3.1.1)

where x[k] ∈ Rn, w[k] ∈ Rp, y[k] ∈ Rm(m = p). {A[q[k]]} is a switching matrix-

valued random process. When d[k] = f(q[k]) = 0, A[k] = Aclose; when d[k] =

f(q[k]) = 1, A[q[k]] = Aopen. Aclose =




AP + BP CP 0

CP 0



, Aopen =




AP BP

0 Im



,

B =




BP

0



,C =

[
CP 0

]
, Im denotes an identity matrix with the dimension of

m. The 0 matrices have the appropriate dimensions. For notational convenience,

A[q[k]] is denoted as Ai when q[k] = qi. Obviously Ai = Aclose when d[k] = f(qi) =

0; Ai = Aopen when d[k] = f(qi) = 1. With the above notational conventions, we

54

define the matrix

A[2] = diag (Ai ⊗ Ai)i=1,··· ,N
(
QT ⊗ In2

)
(3.1.2)

Throughout this chapter, the following five assumptions are taken:

1. w is a zero-mean white noise process with unit variance.

2. The dropout process is a Markov chain which is finite, time-homogeneous,

irreducible and aperiodic with transition matrix of Q = (qij)N×N . The

steady state of the Markov chain is denoted as π =

[
π1 π2 · · · πN

]
.

3. The disturbance process, w, is independent from the dropout process .

4. The initial time of the system is −∞.

5. The matrix A[2], defined in equation 3.1.2, is stable, i.e. all eigenvalues of

A[2] lie within the unit circle.

3.2 Stability and wide sense stationarity of control systems with feedback dropouts

governed by a Markov chain

As mentioned in chapter 1, the system with feedback dropouts can be modeled

as a jump linear system, so we adopt the results in [16], [51], [24] and [11] to get

the following stability condition.

Theorem 3.2.1 ([16], [51], [24], [11]) Consider the free control system (w = 0)

given in equation 3.1.1 under assumption 2. It is mean square stable if and only

if the matrix defined in eq. 3.1.2, A[2], is stable, i.e. all eigenvalues of A[2] lie

within the unit circle.

55

In the previous literature, only a sufficiency proof was provided. It is in [17] that

the necessity was rigorously proven for the first time [23]. We came up with an

alternative proof for necessity that is more direct than the proof in [17] ([15]). We

present our proof in the appendix, section 3.7.

If the system is mean square stable, its initial condition will be eventually

forgotten. By assumption 4, the initial time of the system is set to −∞, so

the state {x[k]} will be uniquely determined by the input noise sequence {w[k]}.

The stationarity of {w[k]} ({w[k]} is white) guarantees that {x[k]} is wide sense

stationary, which is presented in the following theorem 3.2.2. The proof of theorem

3.2.2 will be found in the appendix.

Theorem 3.2.2 Consider the system in equation 3.1.1. Under assumptions 1—

5, the state process x = {x[k]} is wide sense stationary.

Remark: Comparing the conditions in theorems 3.2.1 and 3.2.2, we find that the

system is WSS if it is mean square stable. Only when a system is stable does it

make sense to study its wide sense stationarity. So the conditions in theorem 3.2.2

is not only sufficient but also necessary.

The following corollary extends theorem 3.2.2 to show that all linear outputs of

the system are WSS. The proof of corollary 3.2.1 is similar to the one of theorem

3.2.2. So it is omitted.

Corollary 3.2.1 Consider the system in equation 3.1.1. Under assumptions 1—

5, any linear outputs are WSS, where a linear output stands for a signal of the

form z[k] = E[q[k]]x[k]+F [q[k]]w[k] and E[q[k]] and F [q[k]] are matrices switching

between the closed-loop and open-loop configurations.

Remark: Corollary 3.2.1 guarantees the wide sense stationarity for general linear

outputs. It particularly holds for y[k] = Cx[k]. Therefore E
[
y[k]yT [k]

]
is a

56

constant matrix with respect to n. Because E
[
yT [k]y[k]

]
= Trace

(
E
[
y[k]yT [k]

])
,

E
[
yT [k]y[k]

]
is constant with respect to n and the index n in the output power

can be dropped. We measure the system performance by E
[
yTy

]
.

3.3 Performance of control systems with feedback dropouts governed by a Markov

chain

As mentioned in the beginning of this chapter, we measure the system perfor-

mance by the output power. This section computes that power through a group

of Lyapunov equations in theorem 3.3.1. The computed power is a function of

the dropout Markov chain’s transition matrix. Simulation results are presented

to support the correctness of the result. In theorem 3.3.1, the power is measured

by the ensemble average of the output power. In simulations, the power was mea-

sured by the the time average of the output power. Only when the system is

ergodic are the two kinds of averages equal to each other. Theorem 3.3.2 provides

sufficient conditions for the system to be ergodic.

Theorem 3.3.1 Consider the system in equation 3.1.1 under assumptions 1—

5. Denote the conditional correlations as Pi = πiE
[
x[k]xT [k] | q[k − 1] = qi

]
for

i = 1, 2, · · · , N 2 . Then the power of y can be computed as

E
[
yTy

]
= Trace

(
C

N∑

i=1

PiC
T

)
. (3.3.3)

where Pi satisfies the equation

Pi = Ai

N∑

k=1

qkiPkA
T
i + πiBBT , (3.3.4)

2It can be shown that E
[
x[k]xT [k] | q[k − 1] = qi

]
is constant with respect to n due to the

wide sense stationarity in Theorem 3.2.2.

57

Ai = Aclose when f(qi) = 0, Ai = Aopen when f(qi) = 1.

In [16], there is a formal computation of output power for a jump linear system.

Theorem 3.3.1 can be viewed as an application of the results in [16]. We provide

a proof of theorem 3.3.1 in the appendix for completeness.

Remark: Note that the existence of Pi ≥ 0 in eq. 3.3.4 is equivalent to the

mean square stability of the system [16]. From eq. 3.3.4, we see that E
[
yTy

]
is a

function with respect to Q = (qji), denoted as f(Q). Let f(Q) = +∞ if eq. 3.3.4

does not have non-negative definite solution, i.e. the system is not mean square

stable.

Theorem 3.3.1 provides a method for predicting the output signal’s power. We

did simulations to verify the correctness of the prediction. We created a Matlab

simulink model to generate the system’s output signal under specified dropout

conditions. We used these output traces to compute a time average of the output

signal’s power. This time average was taken as an estimate of the system’s true

expected output power E
[
yT y

]
= Trace

(
devec

(
E
[
y[2]

]))
, where the operators

devec(·) and [2] are defined in Appendix A. For a sample path of length 2L time

steps, the time average can be computed as

ÊL

[
yTy

]
= Trace

(
devec

(
ÊL

[
y[2]

]))
, (3.3.5)

where

ÊL

[
y[2]

]
=

1

L

(
y[2][L + 1] + y[2][L + 2] + · · · + y[2][L + L]

)
. (3.3.6)

The following theorem provides the conditions for ÊL

[
y[2]

]
to approach E

[
y[2]

]
.

The proof of theorem 3.3.2 is moved to the appendix for readability.

58

Theorem 3.3.2 Under the assumptions of theorem 3.3.1, if the following two

additional assumptions are satisfied,

1. w is i.i.d., whose fourth order moments exist, i.e. E
[(

wT [k]w[k]
)2
]

< ∞.

2. A[4] = diag(A[4]
i)i=1,··· ,N(QT ⊗ In4) is stable, where n is the dimension of the

system in 3.1.1.

Then

lim
L−→∞

ÊL

[
y[2]

]
= E

[
y[2]

]
in mean square sense, (3.3.7)

where ÊL

[
y[2]

]
, the time average of the process {y [2][k]}, is computed through

equation 3.3.6.

Remark: Theorem 3.3.2 may be used to determine the conditions for the time-

average power ÊL

[
yT y

]
(equation 3.3.5) to converge to the true ensemble average

E
[
yTy

]
predicted in theorem 3.3.1. When the conditions are satisfied, we can

verify theorem 3.3.1 by simply comparing ÊL

[
yT y

]
and E

[
yTy

]
. Otherwise, no

conclusions can be made.

We applied theorems 3.3.1 and 3.3.2 on a simple example. The assumed plant

was unstable with transfer function of H(z) = z+2
z2+z+2 . Assuming positive unity

output feedback, the closed loop transfer function becomes z−1 + 2z−2, which

is stable. The dropout process therefore switches our system between a stable

configuration and an unstable configuration. The input noise, w, is white zero-

mean Gaussian with unit variance. The dropout Markov chain has N = 3 states.

Its transition matrix is Q =





1 − ε ε 0

0 0 1

1 0 0




, where ε is a parameter between 0

59

and 1. This particular Markov chain specifies a soft (m, k) scheduling model with

m = 2, k = 3 [56].

We used theorems 3.2.1 and 3.2.2 to determine that the system is mean square

stable and wide sense stationary when ε ≤ 24.9%. By theorem 3.3.2, we know

when ε < 6.1%, the convergence of the estimate in equation 3.3.7 can be guar-

anteed. This upper bound 6.1% is smaller than the upper stability bound 24.9%

predicted by theorem 3.3.1. The system with i.i.d. dropouts was simulated with

various dropout rates between 0 and 6%. For each value of ε, we ran 5 different

simulations for 200, 000 time steps and then estimated the output power by the

time average in equation 3.3.6. The simulation results are shown in figure 3.2.

The figure shows close agreement between the predicted and the experimentally

estimated power of the output. So we have high confidence in the correctness of

the results stated in theorems 3.3.1 and 3.3.2.

For completeness, we also present results for the system with dropout rates

between 7% and 24%. Figure 3.3 shows that the predicted and the experimentally

estimated power of the outputs disagree under large dropout rates. As discussed

earlier, the disagreement comes from the violation of the ergodicity conditions

in theorem 3.3.2. Figure 3.3 still shows close agreement for dropout rates less

than 10%. This thereby shows that theorem 3.3.2 is somewhat conservative in its

estimate of the ergodic interval with respect to ε.

3.4 Optimal dropout policy

Theorem 3.3.1 establishes the relationship between control performance and

the transition matrix of the dropout Markov chain, Q. In reality, the chan-

nel’s quality of service (QoS), e.g. the network’s QoS, is usually measured by

60

0 0.01 0.02 0.03 0.04 0.05 0.06
4.5

5

5.5

6

6.5

7

7.5

ε

O
ut

pu
t P

ow
er

, E
[yT y

]

Theoretical results
Simulations

Figure 3.2. Output power(0 ≤ ε ≤ 6%)

its throughput rate (the number of packets that are successfully delivered per

unit time) rather than Q. Since our feedback control systems strive to transmit

a feedback measurement every sampling period, the average rate at which such

feedback measurements are dropped actually measures the network’s throughput.

Under some conditions, the dropout rate of a control system has to be above

a certain level, i.e. some feedback packets of the system have to be dropped. The

reason to drop packets lies in the resource sharing. We illustrate this motivation

through a networked control system. In networked control systems, the feedback

path is implemented over a network [7]. Such a network may be shared among

control systems whose performance is measured by the output power and non-

control systems whose performance is measured by the dropout rate. When the

network is congested, every (control or non-control) system may have to drop some

packets to reduce network congestion, which is exactly presented as the preceding

constraint that the dropout rate is above a given threshold. There may exist

61

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

20

40

60

80

100

120

140

ε

O
ut

pu
t P

ow
er

, E
[yT y

]

Theoretical results
Simulations

Figure 3.3. Output power(7% ≤ ε ≤ 24%)

many dropout policies to realize the average dropout rate requirement. Our aim

is to find the optimal dropout policy among all feasible ones. We choose the same

performance measure as section 3.3, the output power. In a word, the objective

of optimal dropout policy design is to minimize the output power with respect to

all possible dropout policies under the average dropout rate constraint.

This section is organized as follows. In subsection 3.4.1, we review the liter-

ature on dropout policies. In subsection 3.4.2, we compare the performance of a

control system under different dropout policies, where the implemented dropout

policies have the same average dropout rate. Based on the comparisons, the

optimal dropout policy design is formulated into an optimization problem. In

subsection 3.4.3, several methods are proposed for solving the dropout policy op-

timization problem, including a gradient descent method and a branch-and-bound

method. In subsection 3.4.4, the achieved optimal dropout policy acts as a guide-

line for real-time engineers to design scheduling algorithms. In subsection 3.4.5, a

62

helicopter simulator is used to verify the achieved optimal dropout policy.

3.4.1 Literature review on dropout policy

The impact that dropout policies have on system stability has been studied

in [32] and [12]. Both of these papers consider a set of decoupled control systems

that share a single communication network as the feedback paths. In [32], an

admission policy is studied in which the control system with the largest error

is given network access. This means that the other control systems must drop

their measurements, i.e. working in the open loop. The paper then provides

a sufficient condition on the control system’s eigenvalues that ensures stability

under the proposed admission (dropout) policy. In [12], examples are used to

demonstrate that the occasional dropping of control tasks enhances overall system

stability, i.e. there exists a dropout policy to both satisfy the resource sharing

(dropout) requirement and guarantee the overall stability. Both of these paper

only analyze the impact specific dropping protocols have on stability. They provide

no guidelines for the selection of “good” dropout policy for performance.

The idea of using dropout policies to characterize network QoS has been re-

cently employed to design real-time schedulers that are more responsive to the

needs of control systems. Prior work in the real-time systems community has

used ad hoc strategies such as “skip-over” [38] and the (m, k)-firm guarantee rule

[57] [9] to control the impact dropouts have on control system performance. The

skip-over constraint [38] can drop a packet every s consecutive transmission at-

tempts. Systems satisfying the (m, k)-firm guarantee rule [57] guarantee that at

least m out of k consecutive transmission attempts are successful. An example

of a prioritized real-time system satisfying (m, k) constraints will be found in [9].

63

The skip-over and (m, k) constraints attempt to control the number of consecutive

dropouts. The intuition behind this approach is that controlling the number of

consecutive dropouts will minimize the impact such dropouts have on the appli-

cation’s performance. This heuristic reasoning has only been validated through

simulations [57] on specific examples. This work, however, provides little in the

way of concrete analysis suggesting that these particular dropout schemes always

result in improved control system stability and performance.

More recently a novel Markov-chain (MC) constraint on the dropout policy

was proposed [49] [50]. The MC-constraint is based on the optimal dropout policy

results in [44] and further developed below. The value of the MC-constraint is that

its enforcement ensures a specified level of application performance. The results

in [49] [50] thereby provide a concrete example where control theoretic approaches

guide the design of real-time schedulers. Subsection 3.4.4 presents such results in

detail.

3.4.2 Performance comparison and problem formulation

Let’s consider a system whose plant is unstable with transfer function L(z) =

z+2
z2+z+2 . Assuming positive unity feedback, the closed loop transfer function be-

comes z−1 + 2z−2, which is stable. The dropout process therefore switches our

system between a stable configuration and an unstable configuration. The in-

put disturbance, w[k], is white noise with zero mean and unit variance. First we

consider a special dropout process {d[k]}, which is generated by a Markov chain

64

{q[k]} that has four states

q[k] =






q1, if d[k − 1] = 0 and d[k] = 0

q2, if d[k − 1] = 0 and d[k] = 1

q3, if d[k − 1] = 1 and d[k] = 0

q4, if d[k − 1] = 1 and d[k] = 1

In other words, the dropout decision, d[k + 1], is made based on the last two

steps of the history, d[k] and d[k − 1]. When q[k] = qi (i = 1, 2, 3, 4) the next

measurement is dropped with probability εi. Denote the dropout rate vector as

ε = [ε1, ε2, ε3, ε4]T . With these notational conventions, the transition matrix from

the dropout process’ Markov chain is

Q =





1 − ε1 ε1 0 0

0 0 1 − ε2 ε2

1 − ε3 ε3 0 0

0 0 1 − ε4 ε4





Let π =

[
π1 π2 π3 π4

]
denote the steady state distribution for this Markov

chain. πi (i = 1, · · · , 4) are computed from the following equation.






∑4
j=1 qjiπj = πi, i = 1, · · · , j

∑4
i=1 πi = 1

(3.4.8)

When the Markov chain characterized by Q is ergodic, equation 3.4.8 has a unique

solution. Some remarks on relaxing this assumption will be placed in section

3.4.3.1.

65

The average dropout rate for this process can therefore be computed as

ε =
4∑

i=1

πiεi

From the structure of Q, we obtain

ε = π2 + π4 (3.4.9)

To emphasize the dependence of ε upon ε, we denote ε as ε(ε). In section 3.3,

we denote E
[
yTy

]
as f(Q). Here Q is determined by ε. So we may replace f(Q)

with f(ε).

A directed graph representing this 4-state Markov chain is shown in figure 3.4.

We can change the actual dropout policy by changing the probabilities, εi. The

table in figure 3.4 defines five different dropout policies that we denote as Pi for

i = 0 to 4. The table’s columns show the dropout probabilities εi for each state qi

as a function of the average dropout rate ε. These dropout policies are described

below:

• Process P0 assumes that at any state qi, the next measurement can be

dropped with probability ε. P0, therefore, generates dropouts in an inde-

pendent and identically distributed manner and so we refer to P0 as the i.i.d.

dropout process

• Processes P1 and P2 are special cases of a dropout process that adheres

to the so-called (m, k)-firm guarantee rule [57]. The (m, k)-firm guarantee

rule is a heuristic constraint used by real-time system engineers. Dropout

processes satisfying the (m, k)-firm guarantee rule require that there are least

m successful transmissions in k consecutive attempts. A quick inspection

66

shows that process P1 satisfies a (1, 3)-firm guarantee constraint and that

process P2 satisfies a (2, 3)-firm guarantee constraint.

• Process P3 is a dropout process that satisfies the constraint that two consec-

utive dropouts occur with probability ε1. So we refer to this as the “drop-2”

process.

• Process P4 is a variant of process P3 that allows extra dropouts with a

probability of ε′. Note that as ε′ goes to zero, process P4 approaches the

drop-2 process, P3.

When the dropout process adheres to a Markov chain, then there may be

a maximum achievable average dropout rate, εmax. For instance, since process

P2 never drops more than 1 packet in 3 consecutive tries, its maximum average

dropout rate will be one third. The maximum achievable dropout rates for each

dropout process are tabulated in table 3.4.

Given a dropout process, we may use theorem 3.2.1 to determine the largest

average dropout rate for which the control system is mean square stable. Let εs

denote this largest stable dropout rate. A direct application of theorem 3.2.1,

for example, shows that our control system is mean square stable under dropout

process, P2, if and only if ε < 0.1662. For this dropout process, therefore, εs =

0.1662. The values for εs are tabulated in table 3.4. From this table it is apparent

that the system’s stability is highly dependent on the random process driving the

data dropouts.

Given a dropout process, we may use theorem 3.3.1 to determine the output

signal power of the example’s control system. The results from this computation

are shown in figure 3.5. In this figure, we see that the output signal power is

a monotone increasing function of the average dropout rate, ε. How quickly

67

ε1 1-ε1

q1

00

q2 01

q4

11

q3
10

ε4

1-ε4

ε2

1-ε2 ε3

1-ε3

 ε1 ε2 ε3 ε4 maxε sε
PPPP0 (i.i.d.) ε ε ε ε ε 0.189
PPPP1 (1,3) 1 1 3

2 2 2
ε
ε

+− +
−

 1 1 3
2 2 2

ε
ε

+− +
−

1 1 3
2 2 2

ε
ε

+− +
−

0 .667 0.189

PPPP2 (2,3)
1 2

ε
ε−

 0 0 0 0.333 0.166

PPPP3 (drop 2)
2 3

ε
ε−

 1 0 0 0.500 0.500

PPPP4 (drop 2)
(3.0'=ε)

(1)
2 (3 2)

ε ε
ε ε ε

′−
′ ′− − −

1 0 ε ′

0.556 0.406

Dropout rate for state qi (i=1-4) Largest stable
dropout rate Dropout Process

Maximum
dropout rate

Figure 3.4. (top) Directed graph of 4-state Markov chain; (bottom)
Table characterizing different dropout policies Pi (i = 0 − 4) as a

function of the average dropout rate ε.

the output signal power increases, however, is dependent on the type of dropout

process driving the system. In particular, for a given average dropout rate, the

figure shows large difference between the performance levels achieved by different

dropout policies. These results, therefore, suggest to us that the average dropout

rate ε is a poor predictor of application (i.e. control system) performance. If

we are to constrain network dropouts in a manner that provides guarantees on

application performance, the results in figure 3.5 suggest we should attempt to

68

force the dropout process to adhere to an underlying Markov process.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250
P0−i.i.d.
P1−(1,3)
P2−(2,3)
P3−drop−2
P4−drop−2

P0−iid

P1−(1,3)
P2−(2,3) P4−drop−2

e’=0.3

P4−drop−2
e’=0.0

Figure 3.5. Performance of various dropout processes

It is interesting to observe that the drop-2 process, P3, significantly outper-

forms the dropout process P2 satisfying the (2, 3)-firm guarantee rule. Not only

does the drop-2 policy have lower output power, but its maximum stable dropout

rate εs is much larger than the rate for dropout process P2. This is somewhat

surprising, as the (m, k)-firm guarantee rule was suggested as a means of limiting

the effect dropped data have on control system performance [57]. From a heuristic

standpoint, the reasoning behind the (m, k) rule seems very plausible. By limit-

ing consecutive dropouts, we may limit the effect of dropouts on system behavior.

The results in figure 3.5, however, demonstrate that this reasoning need not always

69

hold true. For our particular control system, we get better performance by forcing

the real-time system to always drop two consecutive measurements; a policy that

runs directly counter to the intuition behind the (m, k)-firm guarantee rule. The

optimality of the drop-2 rule will certainly not be valid for all control systems,

but it is true in this particular case. It suggests, to our mind, that control theory

may provide a useful tool by which engineers can guarantee the performance of

real-time control systems in the presence of dropped data.

The fact that the drop-2 process outperforms all of the other dropout processes

is no accident. In reviewing the statement of theorem 3.3.1, it is apparent that

we can formulate an optimization problem of the following form

minε1,··· ,ε4 f(ε),

subject to: ε(ε) ≥ ε0

0 ≤ εi ≤ 1, i = 1, · · · , 4

(3.4.10)

This optimization problem seeks to minimize the output signal power, with

respect to the individual dropout probabilities εi in the Markov chain’s transi-

tion matrix. A solution to this optimization problem, if it exists should be the

“optimal” dropout process generated by a 4-state Markov chain. The constraints

imposed on this optimization problem arise from three sources. The first is the

structure constraints imposed by eq. 3.3.4 and 3.4.8. The second is the implicit

stability constraint. It is imposed by setting f(εi) = +∞ when the system is not

mean square stable. The last one that ε(ε) ≥ ε0 simply requires that the aver-

age dropout rate be greater than ε0. The specified drop rate ε0 has the physical

interpretation of the resource occupation that has been allocated to the control

system, thereby leaving sufficient space for other users. The regularizing constant

70

ε0 is chosen by the resource manager and the resulting solution (if it exists) will

always be a Markov chain whose average dropout rate equals ε0.

We now consider the optimization problem 3.4.10. One may arise the follow-

ing questions, “Does the problem have globally optimal solution”, “how can we

find the globally optimal solution if it exists?”, etc. Because optimization prob-

lem 3.4.10 takes a nonlinear form, we don’t have trivial answers to the previous

questions. Subsection 3.4.3 will answer the questions concerned with optimization

problem 3.4.10.

Based on the methods in subsection 3.4.3, we can solve optimization problem

3.4.10. Figure 3.6 plots the output signal power for this particular control system

as a function of the average dropout rate for the “optimal dropout process”.

Solving optimization problem 3.4.10 for ε0 < 0.5 produces the dropout process

P3, “drop-2” described by the table in figure 3.4. Note, however, that this Markov

chain is unable to support dropout rates greater than 0.5. It is still possible,

however, to solve optimization problem 3.4.10 for average dropout rates above

0.5. In this case, we obtain a different optimal Markov chain whose structure

is shown in figure 3.6. In other words, the optimal dropout process changes its

structures in a discontinuous fashion as we increase the average dropout rate. In

this particular example it was impossible to find a 4-state Markov chain dropout

process that was able to support average dropout rates in excess of 0.533.

3.4.3 Solving optimization problem 3.4.10

3.4.3.1 Computations on f(ε) and ε(ε)

f(ε) and ε(ε) are governed by coupled Lyapunov equations in 3.3.4 and 3.4.8.

We assume that the markov chain characterized by Q is ergodic. Under that

71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

 Optimal (drop-2) process

 10.5
2 3

εε ε
ε

< =
−

ε1 1-ε1

q1

00

q2 01

q4

11

q3
10

1

1

1

 Optimal (drop-2) process

 3
4 20.5 εε ε

ε
−> =

1

q1

00

q2 01

q4

11

q3
10

1

1

ε3

1-ε3

output
signal
power

Average dropout rate ε

Output signal power vs
average dropout rate
for the optimal dropout
process

Figure 3.6. Performance vs. average dropout rate under the optimal
dropout process

condition, we know the solution to 3.4.8 ({πi, i = 1, · · · , N}) exists and is unique.

If the system is also mean square stable, then the solution to eq. 3.3.4 ({Pi, i =

1, · · · , N}) also exists and is unique. Eq. 3.3.4 can be solved through the following

LMI (linear matrix inequality) method.






f(εi) = minPi Trace
(
C
∑N

i=1 PiCT
)

s.t. Pi − αI <
∑N

j=1 qjiAjPjAT
j + πiBBT < Pi + αI

Pi ≥ 0, i = 1, · · · , N

(3.4.11)

where α is a small positive number to transform equality constraints to their strict

inequality versions. It is interesting to note that the LMI problem in eq. 3.4.11 has

feasible solutions if and only if the system is mean square stable [16]. Therefore

we assign f(ε) = +∞ if the LMI problem has no solution, which is consistent with

our previous setting when the system is not mean square stable.

72

From eq. 3.3.4 and 3.4.8, we can get not only f(ε) and ε(ε) but also their

derivatives. Suppose the solution to eq. 3.4.8 is {πi}. Because ε(ε) = π2 + π4, we

know

∂ε

∂εl
=
∂ε2
∂εl

+
∂ε4
∂εl

(3.4.12)

where l = 1, · · · , N (N=4). We compute ∂πi
∂εl

by taking the derivative of eq. 3.4.8

with respect to εl






∑N
j=1

∂qji

∂εl
πj +

∑N
j=1 qji

∂πj

∂εl
= ∂πi

∂εl
, i = 1, · · · , N

∑N
i=1

∂πi
∂εl

= 1
(3.4.13)

In the above equations, ∂qji

∂εl
and πj are known. Because of the ergodicity of the

Markov chain, eq. 3.4.13 has a unique solution with respect to { ∂πi
∂εl

}N
i=1 for any

l = 1, · · · , N .

The above method can also be applied to compute ∂f(ε)
∂εl

.

∂f(ε)

∂εl
= Trace

(
C

N∑

i=1

∂Pi

∂εl
CT

)
(3.4.14)

s.t.
N∑

j=1

qjiAj
∂Pj

∂εl
AT

j +
N∑

j=1

∂qji

∂εl
AjPjA

T
j +

∂πi

∂εl
BBT =

∂Pi

∂εl
(3.4.15)

Again we know eq. 3.4.15 has a unique solution with respect to { ∂Pi
∂εl

}N
i=1 if the

system is mean square stable. Therefore we obtain the derivatives of f(ε) in the

mean square stable systems.

Remark: In the above discussions, we assume the Markov chain is ergodic.

When 0 < εi < 1 (i = 1, · · · , N), the Markov chain is ergodic. If that ergodicity

assumption is violated, what will happen? Under that situation, the Markov chain

73

has multiple stationary distributions. For every stationary distribution, we can

evaluate its average dropout rate and output power (performance). Among the

stationary distributions satisfying the average dropout rate constraint, we will

choose the one with the best performance (the minimum output power).

3.4.3.2 The existence of global optimal solution to optimization problem 3.4.10

The feasible set of optimization problem 3.4.10, denoted as Sf , is the cross

product of the set {ε|0 ≤ εi ≤ 1, i = 1, · · · , N}, the set {ε|ε(ε) ≥ ε0} and the set

{ε|f(ε) < ∞}. The last set is really the one where A[2] =
(
QT ⊗ I

)
diag(Ai⊗Ai)N

i=1

is Schur stable, i.e. λmax(A[2]) < 1 (λmax(·) denotes the maximum magnitude of

eigenvalues of a matrix). Because ε(ε) is a continuous function with respect to

ε, the set ε(εi) ≥ ε0 is a closed set. Because λmax(A[2]) continuously depends

on ε, λmax(A[2]) ≤ 1 specifies a closed set. Therefore the set Sc = {ε|0 ≤ εi ≤

1} ∩ {ε|ε(ε) ≥ ε0} ∩ {ε|λmax(A[2]) ≤ 1} is a closed set. The difference between Sf

and Sc is only the boundary, {εi|λmax(A[2]) = 1)}. From eq. 3.3.4, we know f(ε)

is +∞ on that boundary. Therefore we know

min
ε∈Sf

f(ε) = min
ε∈Sc

f(ε) (3.4.16)

Because of the continuity of f(ε) for ε ∈ Sc and Sc is a closed set, we know f(ε)

has a globally optimal (minimum) solution over Sc, which is denoted as f(ε∗).

Again from the continuity of f(ε), we know for any δ > 0, there exists θ such that

f(ε) − f(ε∗) < δf(ε∗), ∀‖ε− ε∗‖2 < θ (3.4.17)

74

This property will be used to guarantee that the global optimal solution can be

determined after a finite number of steps.

3.4.3.3 Gradient method to solve optimization problem 3.4.10

As we show in section 3.4.3.1, f(ε), ε(ε) and their derivatives all can be com-

puted. So we can use the gradient descent method to solve optimization problem

3.4.10. In section 3.4, we used the gradient descent method of MATLAB func-

tion fmincon() to solve optimization 3.4.10. That method needs only the value

functions of f(ε) and ε(ε) and estimates the derivatives from the value functions.

The gradient descent method converges very fast. That method, however,

may be stuck at local optima. Only when the performance index and the feasible

set are all convex with respect to its arguments is the gradient descent method

guaranteed to converge to the global optimal point. Unfortunately we don’t know

whether f(ε) and ε(ε) are convex with respect to ε. So it is quite possible that

the gradient descent method converges to a local optimal solution. We will search

the globally optimal solution using a branch-and-bound method in the following

subsection.

3.4.3.4 Branch-and-bound method to solve optimization problem 3.4.10

Optimization problem 3.4.10 is nonlinear. The branch-and-bound method will

relax that problem into a linear problem, which will provide lower and upper

bounds on the globally optimal solution. These lower and upper bounds will

be loose when the feasible set is “large”. By branching operations, the method

partitions the feasible set into smaller subsets, over which the bounds will be

tighter. After enough branching operations, the lower bound will approach the

75

upper bound. We can use the gap between the two bounds to approximate the

error in our approximately optimal solution. During the branching operations,

many subsets will be produced. In order to improve computational efficiency,

we have to prune the generated subsets. The above bounding, branching and

pruming ideas come from [64]. Their applications to our example will be explained

as follows.

3.4.3.4.1 Bounds on f(ε∗) Suppose ε lies in a box B = [ε, ε] 3. Following

the arguments in section 3.4.3.2, we know that there exists an ε in B ∩ Sf that

minimizes f(ε). Let ε∗B denote this optimal ε and let f(ε∗B) denote the performance

at ε∗B. f(ε∗B) is an upper bound on f(ε∗).

f(ε∗) ≤ f(ε∗B) (3.4.18)

We state the following upper and lower bounds on f(ε∗B).

Upper bound on f(ε∗B): For any ε′ ∈ B and ε(ε′) ≥ ε0, it is true that

f(ε′) ≥ f(ε∗B) (3.4.19)

It particularly holds for ε, one vertex of B, i.e.

f(ε) ≥ f(ε∗B), if ε(ε) ≥ ε0 (3.4.20)

Lower bound on f(ε∗i): In optimization problem 3.4.10, εi has both a lower

bound εi (= 0) and an upper bound εi(= 1). These bounds are known. Based

on the expression for Q, we obtain lower and upper bounds of qji, denoted as q
ji

3[ε, ε] stands for the set {ε = [ε1, ε2, ε3, ε4]T |εi ≤ εi ≤ εi, i = 1, · · · , 4}.

76

and qji. As argued before, f(ε) and ε(ε) are computed by solving eq. 3.3.4 and

3.4.8. These equations are non-linear (bi-linear to be more precise) with respect

to variables εi, Pi and πi. It is difficult to solve such non-linear equations. If we

substitute the upper or lower bounds qji and q
ji

for qji for these equations, we will

get linear inequalities with respect to Pi and πi. Eq. 3.3.4, for example, is relaxed

into

N∑

j=1

q
ji
AjPjA

T
j + πiBBT ≤ Pi (3.4.21)

N∑

j=1

qjiAjPjA
T
j + πiBBT ≥ Pi (3.4.22)

We therefore formulate an optimization problem over these relaxed linear inequal-

ity constraints.

minPi,πi Trace
{
C
∑N

i=1 PiCT
}

subject to
∑N

j=1 q
ji
AjPjAT

j + πiBBT ≤ Pi

∑N
j=1 qjiAjPjAT

j + πiBBT ≥ Pi

π2 + π4 ≥ ε0
∑N

j=1 q
ji
πj ≤ πi

∑N
j=1 qjiπj ≥ πi

∑N
i=1 πi = 1

(3.4.23)

Denote the optimal solution to the above problem as f(ε, ε). It is obvious that

the feasible set for optimization problem 3.4.10 is a subset of that for optimiza-

tion problem 3.4.23. The two optimization problems have the same performance

77

measurement, so

f(ε, ε) ≤ f(ε∗B). (3.4.24)

We now introduce a small positive number to convert the non-strict inequalities

in optimization problem 3.4.23 into strict inequalities and then solve the resulting

problem using the MATLAB LMI toolbox.

When εi−εi is large, the above two bounds, especially the lower bound f(ε, ε),

can be very loose. But when εi − εi is small, the two bounds will be quite tight.

So an intuitive idea is to decrease εi−εi in a systematic way. When this difference

between f(ε) and f(ε, ε) is smaller than a specified tolerance, we can say that we

have bounded the global optimal solution to the given tolerance level. The above

arguments are realized by the branching procedure in the following subsection.

3.4.3.4.2 Branching operation Suppose we start from a box B(0) = [ε(0), ε(0)].

We equally partition every side of this box into two parts and get 2N sub-boxes

B(1,j) = [ε(1,j), ε(1,j)] (j = 1, · · · , 2N). It is interesting to note that

ε(1,j)
i − ε(1,j)

i =
ε(0)i − ε(0)i

2
(3.4.25)

We therefore expect to get tighter lower and upper bounds on for all sub-boxes

than the ones generated from the original box, i.e.

f(ε(1,j)) − f(ε(1,j), ε(1,j)) ≤ f(ε(0)) − f(ε(0), ε(0)), j = 1, · · · , 2N . (3.4.26)

The cost for this improvement is that we have to solve 2N instances of optimization

problem 3.4.23.

78

If we branch all available boxes at every step, then all side lengths will shrink

to 2−L of their original lengths after L steps of branching. The global optimal

solution is inside one of these subsets. If L is large enough, we know the distance

between the optimal point and any other point in the subset, 1
2L

√
N , is less than

θ so that the performance difference is less than the specified level δ by eq. 3.4.17

(if ‖ε − ε∗‖2 < θ, then f(ε) − f(ε∗) < δf(ε∗)). Under that situation, we may

say that the global optimal solution has been achieved with a tolerance of δ. Of

course, the smaller the δ, the more steps (the larger L) are needed. We now can

give an upper bound on L to achieve the distance θ.

Lmax = log2

(√
N

θ

)
(3.4.27)

3.4.3.4.3 Pruning operation Although we may achieve the global optimal so-

lution within a specified tolerance by the above branching operations, there are

a huge number of subsets generated by the branching operations. If we partition

all subsets at every step, we will have 2LN subsets after L-step branching, which

may be beyond the available computing capability. So we must therefore prune

the achieved subsets. The pruning criterion is based on two types of constraints.

Average dropout rate constraint If the maximum dropout rate of a subset

is below the required level ε0, then that subset should be eliminated. The set

we consider is a box [ε, ε]. It can be proven that the maximum dropout rate is

achieved by the upper vertex ε 4. Correspondingly, the minimum dropout rate is

achieved by the lower vertex ε. If ε(ε) < ε0, the subset [ε, ε] will be eliminated.
4This statement is based on the proposition:

Proposition 3.4.1 If ε ≥ ε′ (in the sense that εi ≥ ε′i (i = 1, · · · , N)), then ε(ε) ≥ ε(ε′).

79

Upper bound of the global optimal solution The performance of any fea-

sible point is an upper bound of the global optimal solution. If we know a feasible

point ε′ with performance f(ε′) and the solution to the relaxed LMI problem for

a subset is above f(ε′), we will eliminate that subset.

Which feasible points should we use to estimate the upper bound on the globally

optimal solution? We can choose the vertices of the subset. If a vertex satisfies the

average dropout rate constraint, we will compute its performance. We store the

best (minimum) performance of all available points in a variable min perform.

Consider a subset B′ = [ε′, ε′]. If

f(ε′, ε′) ≥ min perform, (3.4.28)

then we discard B′ because the performance will not be improved by searching

the points of B′.

Besides the above pruning methods, we usually list all available subsets in an

increasing order by f(ε, ε). At each step we will branch only the first set in that

list. The resulting 2N subsets are then inserted back into the list based on their

values of f(ε, ε). The variable min perform is updated by checking the vertices

of the 2N subsets. If min perform is decreased, then the pruning operations are

performed for the subsets in the list. This pruming mehtod can usually improve

the computational efficiency by discarding the “useless” subsets.

3.4.3.5 Combination of gradient descent method and branch-and-bound method

Although the branch-and-bound method can identify the globally optimal so-

lution (within a given tolerance), that method is computationally intensive. The

gradient descent method usually converges quickly but to a locally optimal solu-

80

tion. We hope that by combining both methods, we can improve the computa-

tional efficiency of the branch-and-bound method.

The gradient descent method will always stop at a feasible point if a feasible

initial condition is given. That feasible point can be used to update min perform,

i.e. the best performance of available feasible points. The execution of the gradient

descent method may help greatly in pruning the unnecessary subsets.

3.4.3.6 Algorithms for searching optimal dropout policy

Here we formally write down the ideas in subsection 3.4.3.5 in an algorithmic

form. There are two searching strategies, the breadth-first (BF) and depth-first

(DF) strategies. We describe the BF strategy in detail and briefly mention the

DF strategy. At the end of this subsection, we will analyze the complexity of the

algorithms, especially the DF strategy.

Breadth-first algorithm

1. Execute the gradient descent method. min perform is set equal to the

performance value attained by the ”‘optimal”’ (probably locally optimal)

solution.

2. Initialize a list of subsets L = {B(0)}, where B(0) = [ε, ε] is specified by the

bounds εi = 0, εi = 1 (i = 1, · · · , N). Initialize the step index k = 0.

3. Choose the first subset in L, B(k), and delete B(k) from L, i.e. L = L/B(k).

Check whether f(ε, ε) is large enough over B(k), i.e.

f(ε, ε) ≥ 1

1 + δ
min perform, (3.4.29)

If eq. 3.4.29 is satisfied, then we have achieved globally optimal solution

81

within a tolerance of δ and we stop this algorithm. Otherwise, go to step 4.

4. Partition every side of B(k) into two equal parts. We get 2N sub-boxes, listed

as B(k,j) (j = 1, · · · , 2N). For every sub-box, we do the following operations.

• Check whether the average dropout rate constraint can be satisfied by

the upper vertex of B(k,j). If not, we know the average dropout rate

constraint can’t be satisfied in B(k,j) and discard it. Otherwise, go

forward to the next operations.

• Compute the performance over the upper vertex of B(k,j), ε. Update

min perform as

min perform = min(min perform, f(ε)) (3.4.30)

• Solve the optimization problem 3.4.23 over B(k,j). Check whether eq.

3.4.29 holds. If it is true, discard B(k,j); otherwise, insert B(k,j) into L

in an increasing order of f(ε, ε).

5. If min perform was changed by eq. 3.4.30, check eq. 3.4.29 over all subsets

of L. If one subset satisfies eq. 3.4.29, it will be eliminated from L.

6. If L is empty, the global optimal solution with tolerance of δ has been

achieved by min perform; otherwise, k = k + 1 and go to step 3.

Depth-first (DF) algorithm The depth-first (DF) algorithm organizes all nodes

(subsets) as the hierachical directed graph shown in figure 3.7.

In figure 3.7, B(k) is a node at the depth of k. After partitioning B(k), we

get m (m ≤ 2N) subnodes B(k+1,j) (j = 1, · · · , m). B(k) is the parents of

B(k+1,j) as the solid arrow shows. B(k+1,j) (j = 1, · · · , m) are sibling to each

82

)(kB

)1,1(+kB)2,1(+kB),1(mkB +

Figure 3.7. The ordering structure of all subsets in the depth-first
algorithm

other. The nodes at the same depth (siblings) are ordered in an increasing way,

i.e. f(εk+1,1, εk+1,1) ≤ f(εk+1,2, εk+1,2) ≤ · · · ≤ f(εk+1,m, εk+1,m) (B(k+1,j) =

[εk+1,j, εk+1,j] for j = 1, · · · , m) as the dashed arrow shows. At the next step,

B(k+1,1) will be processed.

Sometimes m = 0, i.e. no valid children of B(k) has been generated. It means

that B(k) is useless for improving performance. We will discard it and process

the next sibling of B(k). If B(k) has no sibling, we discard the parent of B(k) and

process the sibling of that parent.

The above partitioning and retrospecting procedure will be continued until

there are no nodes left in L, which means that we have achieved the globally

optimal solution within the specified tolerance.

Comparing the BF and DF algorithms, we see that the DF one digs a “hole”

deep enough at one place before trying other places; the BF one digs holes ev-

erywhere. It is hard to say which one is better. For our specific problem, the

two algorithms have almost the same time complexity 5 ; the DF one occupies
5It was shown that the globally optimal solution of that example is achieved by the gradient

descent method. The aim of the branch-and-bound method is only to verify the global optimality
of that solution. The BF and DF will expand the same number of nodes. So they have the same
time complexity.

83

less memory. In the rest of the this section, we will express that time complexity

scaled as a function of the order of the plant and the order of the Markov chain.

3.4.3.7 Complexity of the DF algorithm

The complexity of the algorithm depends on not only the complexity of a single

step but also the number of steps.

3.4.3.7.1 Complexity of a single step B(k) is partitioned into m subnodes

B(k+1,j) (j = 1, · · · , m). For every subnode B(k+1,j), we solve the LMI in equation

3.4.23. What is the complexity of that LMI? Suppose the order of the plant is

M and the Markov chain has N states. There are N matrix decision variables

(Pi, i = 1, · · · , N) with the order of M and N scalar decision variables (πi, i =

1, · · · , N), 2N matrix constraints with the order of M , 2N + 2 scalar constraints.

The complexity is O(N 3M6) [26].

We evaluate one vertex of every subnode B(k+1,j) by solving the LMI in eq.

3.3.4. The time complexity of eq. 3.3.4 is also O(N 3M6).

Summing the above two types of complexity together, we get the complexity

for a single step

O
(
m

(
N3M6

))
(3.4.31)

where m ∈ [0, 2N]. The exact value of m depends on the pruning operations.

3.4.3.7.2 The number of required steps The number of required steps de-

pends on not only the depth of the current node but also on the number of ex-

panded subnodes at each level. Suppose the depth is d and there are m expanded

84

subnodes at every level. The total number of required steps is md+1. We now

discuss the factors that effect m and d.

Comments on d As argued before, the lower bound f(ε, ε) over a box B is

tight when the size of B is small. At the depth of d, the length of every side of B

is 2−d. So the tightness of f(ε, ε) will require large enough d.

Consider the physical meaning of εi (i = 1, · · · , N). They are dropout rates.

For these dropout rates, the difference of 0.01 may be significant. In order to

achieve the precision of 0.01 (i.e. the maximum side length is less than 0.01), d

has to be larger than 7. So it is reasonable that d > 7.

If min perform is updated based only on the evaluation of the vertices of

boxes, i.e. no local optimization is utilized, the required d will be close to Lmax.

If we do local optimization over every box, the optimal solution (perhaps locally

optimal solution) may perform better than the vertices of the box. Therefore

by updating min perform based on local optimization, we may expect d to be

smaller than Lmax.

Comments on m If there is no pruning operation, m = 2N and the number of

required steps is 2Nd at the depth of d. Suppose N = 4 and d = 7. That number is

over 256 million. It may be impossible to deal with so many subsets. Fortunately

pruning operations significantly reduce the number. For small d, the lower bound

f(ε, ε) is less tight, so m may be large. When d increases, that lower bound is

tighter and more subsets are pruned so that m is reduced.

The above comments on d and m are only from a qualitative viewpoint. The

exact values d and m are problem-dependent.

85

3.4.3.8 An example

We apply the combined method to our previous example H(z) = z+2
z2+z+2 . To

our surprise, the results from the gradient descent method are globally optimal,

which is guaranteed by the branch-and-bound method. Table 3.1 shows the cost

to solve the optimization problem under different dropout rates and different tol-

erance δ. The CPU time comes from a Pentium-M 1.4GHz processor.

TABLE 3.1

THE COMPUTATION COST OF THE BRANCH-AND-BOUND

METHOD (N = 4, M = 3)

ε0 δ Number Maximum CPU times

(Dropout Rate) (tolerance) of steps depth (seconds)

0.5 0.01 84 9 204.3

0.4 0.01 61 9 194.7

0.3 0.01 83 9 247.5

0.2 0.01 186 9 568.2

0.1 0.01 913 10 7041.2

0.5 0.001 102 12 245.5

0.4 0.001 89 12 305.3

0.3 0.001 131 12 422.8

0.2 0.001 324 13 2177.8

86

Table 3.1 consists of 5 columns, including ε0 (the given dropout rate level), δ

(the specified tolerance), number of steps, maximum depth (d), and the consumed

CPU time (with the unit of second). We briefly go through table 3.1 as follows.

1. The number of computation steps is almostly proportional to the consumed

CPU time because the time complexity of the DF algorithm is almost con-

stant at every step (there is an exception for dropout rate of 0.4).

2. Under the given tolerance δ, the number of computation steps decreases

as the dropout rate increases. One reason is that more subsets may be

discarded due to violating the average dropout rate constraint under the

higher dropout rate. Another reason is that the lower bound f(ε, ε) is tighter

under higher dropout rates than the one under lower dropout rates.

3. Under the same dropout rate, the number of computation steps and the

maximum depth are both increased when δ is decreased. Smaller δ means

more precise results are desired. So the size of stopping boxes will be smaller

and the depth d will be increased.

Remarks: In this example, N = 4 and M = 3. By the previous analysis, we

know the time complexity for a single step is almostly proportional to N 3M6. So

when N and M increases, the increasing of that complexity will be significant,

although not exponentially. The branch-and-bound may work only for problems

with small size, i.e. smaller N and M .

3.4.4 Guide the real-time scheduling with the achieved optimal dropout policy

In the early part of this section, we derived the optimal dropout policy, which

yields the “best” performance under the given dropout rate constraint. One may

87

ask a question whether this optimal dropout policy is useful in practice? Affirma-

tive answers have been obtained through our cooperation with real-time engineers.

In [49] and [50], a control system shares a single resource (a network or a CPU)

with other control systems (tasks) or non-control systems 6 . An algorithm is

expected to schedule the single resource among all control systems and non-control

systems. It is shown that both dropout rate and window based QoS (Quality of

Service) constraints, such as the (m,k)-firm constraint and the skip-over constraint,

are not appropriate for control systems because of the lack of a control system

performance guarantee. It is pointed out in [49] [50] that the achieved optimal

dropout policy (a Markov chain) form optimization problem 3.4.10 can act as a

novel QoS constraint on the control system, i.e. the scheduler tries to enforce the

optimal Markov chain over the dropout decisions of that control system. In other

words, our optimal policy works as a guideline to real-time scheduling algorithm

design. Many simulations were done, which show that the scheduling algorithms

based on the optimal Markov chain outperform previous scheduling algorithms,

such as the EDF (Earliest Deadline First) algorithm. We may therefore conclude

that our proposed optimal policy does benefit the real-time scheduling community.

In the following, we briefly review some of simulation results in [49] [50].

3.4.4.1 Simulation results from [49]

In [49], a control system is assumed to share a single CPU resource with 4 non-

control systems. It is assumed that the overall system is overloaded, i.e. certain

percentage of dropouts is required. There are 3 priority groups in [49], Must

Finish (MF), Better Finish (BF) and Optional Finish (OF) which are ordered in
6In the real-time scheduling community, a system is usually called a task, for example, a

control task. This section interchangeably uses the two terms system and task.

88

the decreasing priority order. Non-control systems are assigned to either the MF

group or the BF group. Control systems are assigned to either the MF group

or the OF group. The tasks (systems) in the MF group and the BF group are

executed by using the EDF (earliest deadline first) algorithm. The tasks (systems)

in the OF group are executed by using a randomized priority assignment similar

to [37].

The control system here is exactly the one in figure 3.1 with the loop function

H(z) = z+2
z2+z+2 . For such control system, the optimal dropout policy is the drop-2

policy proposed in subsection 3.4.2. This policy is shown in figure 3.8.

ε1 1-ε1

q1

00

q2

01

q4
11

q3
10

1

1

1

Figure 3.8. Drop-2 policy

In figure 3.8, when the state of the control system q[n] stays in either q3 or

q4, the drop-2 policy requires to execute the control task successfully (“0” denots

success and “1” denots failure), i.e. the dropout rate equals 0. So the control

system is put in the MF group when q[n] = q3 or q[n] = q4. When q[n] = q2, the

89

dropout rate is 1, i.e. the drop-2 policy suggests to drop the control task to release

the CPU resource. So the control system is put in the OF group when q[n] = q2.

When q[n] = q1, the dropout rate ε1 is between 0 and 1. Which group should the

control system be put in under the condition of q[n] = q1? Three different heuristic

rules are proposed to answer this question.

1. MC Driven Algorithm (MDA): MDA first estimates the average dropout

rate ε of the control sytem by some offline algorithms. Then the individual

dropout rate ε1 is got from the relationship between ε and ε1 in figure 3.8.

When q[n] = q1, a uniformly distributed random number r ∈ [0, 1) is gener-

ated. If r < ε1, the control system is put in the OF group; otherwise, it is

put in the MF group.

2. Dropout-rate Driven Algorithm (DDA): DDA maintains a long dropout

history window of the control system. From that history window, the aver-

age dropout rate of the control system is estimated, which is denoted as ε̃.

If ε̃ is above a given upper bound εu, i.e. the current average dropout rate

is too high, the control system is put in the MF group. If ε̃ is below a given

lower bound εl, the control system is put in the OF group. If εl ≤ ε̃ ≤ εu,

the algorithm finds the individual dropout rate ε1 corresponding to the av-

erage dropout rate ε̃ as MDA does. The control system is put in the OF

group with probability ε1(ε̃) (In order to emphasize the dependence of ε1 on

ε̃, we add the arguement ε̃).

3. Feedback Driven Algorithm (FDA): FDA also maintains a long dropout

history window of the control system. Besides the average dropout rate ε̃,

FDA estimates the individual dropout rates, for example, estimates ε1 with

ε̃1 based on the history window. As DDA does, FDA puts the control

90

system in the MF group when ε̃ > εu or in the OF group when ε̃ < εl. On

the condition of εl ≤ ε̃ ≤ εu, if ε̃1 > ε1(ε̃), the control system is put in the

MF group; otherwise in the OF group.

In the simulations, 246 task sets were generated. Every task set consists of a

control system and 4 non-control systems. For every task set, the EDF algorithm

and 3 algorithms based on the optimal dropout policy (MDA, DDA, FDA) are

implemented. EDF is compared against MDA, DDA and FDA. The performance

of the non-control systems is measured by their average dropout rates. The per-

formance of the control system is measured by the output power E[yTy]. In the

comparisons, policy A is stated to beat policy B if the output power of the control

system under policy A is less than the one under policy B and the average dropout

rate of every non-control system under policy A is less than the one under policy

B. If the differece between two dropout rates is less than a specified dropout rate

accuracy, the two rates are said to be the same.

A comparison of these results is shown in the following table.

In table 3.2, “EDF vs MDA” means EDF beats MDA based on the above

comparision law. The entry for “EDF vs MDA” under the accuracy 0.001 is 0,

which means there is 0 task sets (out of 246 ones) where EDF outperforms MDA.

The entry for “MDA vs EDF” under the accuracy 0.001 are 49, which means

there is 49 task sets (out of 246 ones) where MDA outperforms EDF. Because

49 > 0, we know MDA outperform EDF. Similarly we can know that both DDA

and FDA outperform EDF. So table 3.2 confirms the efficiency of the enforced

optimal dropout policy (a Markov chain).

Among the 5 systems in every task set, we have a special interest in the

control system. In figure 3.9, each point in the plot depict the output power

91

TABLE 3.2

SCHEDULER SCORES FOR 246 TASK SETS. EACH TASK SET

CONTAINS ONE CONTROL SYSTEM WITH THE OPTIMAL

DROPOUT POLICY ENFORCED [49]

Dropout Rate EDF vs EDF vs EDF vs MDA vs DDA vs FDA vs

Accuracy MDA DDA FDA EDF EDF EDF

0.001 0 0 0 49 43 58

0.01 0 0 0 170 166 88

obtained by applying one scheduling algorithm (dropout policy) to one task set.

The performance under the optimal dropout policy corresponds to the curve below

all the points in each plot. From the plots, one can readily see that the data

corresponding to MDA, DDA and FDA are close to the optimal dropout curve

while EDF in general is not. This is especially true when the dropout rate is high

(say greater than 18%). A horizontal long-dashed line indicating power of 100 is

also shown in the plot for reference. It is clear that EDF resulted in much more

points above this line than the other algorithms. Since this specific control system

is considered unstable when the power value is larger than 100, MDA, DDA and

FDA again outperform EDF greatly in this regard.

3.4.4.2 Simulation results from [50]

Simulations in [49] assumed the configuration with a single control system

(task) and several non-control systems (tasks). The optimal dropout policy (an

MC constraint) is enforced on the control system as a QoS specification. The

92

0 0.1 0.2 0.3 0.4 0.5 0.6
100

102

104

106

108

1010

1012

Dropout rate of the control task

O
ut

pu
t p

ow
er

EDF

0 0.1 0.2 0.3 0.4 0.5 0.6
100

102

104

106

108

1010

1012

Dropout rate of the control task

O
ut

pu
t p

ow
er

MDA

0 0.1 0.2 0.3 0.4 0.5 0.6
100

102

104

106

108

1010

1012

Dropout rate of the control task

O
ut

pu
t p

ow
er

DDA

0 0.1 0.2 0.3 0.4 0.5 0.6
100

102

104

106

108

1010

1012

Dropout rate of the control task

O
ut

pu
t p

ow
er

FDA

Figure 3.9. Output power vs. the dropout rate under four different
schedulers (dropout policies) with 246 task sets [49].

non-control systems are scheduled based on the average dropout rate, which is

more flexible than the MC contraint and may leave enough room for the control

system to satisfy the MC constraint.

Now we extend the above configuration to more general cases where more

than one, to say two, control systems have to be scheduled. In order to guarantee

performance, every control system tries to follow their own MC constraints (i.e.

the optimal dropout policies). It is quite possible that two control systems require

access to the single resource at the same time. It is true that one control system

will not get the expected resource so that it cannot follow its optimal dropout

93

policy. Which system should get the resource? In preliminary studies, EDF was

implemented to resolve this access collision from control systems. It was shown

by simulations that EDF does not work well. Therefore more deliberate methods

are needed to resolve these access collisions inside every group.

In [50], there are also 3 priority groups in [49], Must Finish (MF), Better Finish

(BF) and Better Drop (BD) which are ordered in the decreasing priority order.

We may understand the BD group in [50] as the OF group in [49].

Simulations in [50] consider a task set with 5 control systems, among which 2

systems have the loop function of H(z) = z+2
z2+z+2 , named as MC1 and the others

are an inverted pendulum [1], named as MC2. The optimal dropout policy of

MC1 is the drop-2 policy in subsection 3.4.2. The optimal dropout policy of MC2

is (2,3)-firm guarantee policy. For a control system, suppose its current state

q[n] = qi and the individual dropout rate is εi as shown in figure 3.4 (a). If εi = 0,

the control system is put in the MF group; if εi = 1, it is put in the BD group;

otherwise, it is put in the BF group. Two strategies are proposed to resolve the

access collision of control systems inside every group.

1. State-Sensitivity based Algorithm (SSA): SSA is based on the penalty

due to loss of resource access. If a control system does not get access to

the resource, its performance (as measured by the output power) will be

degraded. The resource is assigned to the control system with the largest

performance degradation. The performance degradation is computed from

Theorem 3.3.1.

2. Grouped Fair Dropout Rate algorithm (GFDR): GFDR is based on

the average dropout rate. A long dropout history window is maintained for

every control system and the average dropout rate is computed based on

94

the history window. Inside every priority group, for example the MF group,

the resource is assigned to the control system with the largest dropout rate.

Sometime “weighted” dropout rates are used for decision. The insight of

GFDR is to guarantee fairness. Note that such fairness is achieved under

the dropout pattern specified by the MC constraints (the optimal dropout

policies).

In simulations, we randomly generated 250 task sets, each of which contains 2

MC1 systems and 3 MC2 systems. Performance is measured by the normalized

output power, which is computed as follows.

P = min

{
Praw − P0

Punstable − P0
, 1

}
(3.4.32)

where P is the normalized performance, Praw is the raw output power estimated

from the simulations, P0 is the output power without dropouts and Punstable is the

upper bound on acceptable performance. If Praw > Punstable, we say the system

is “unstable”. It can be seen the normalized performance P ranges from 0 to

1. The overall performance of 5 control systems is the average of the individual

normalized performance of 5 systems. In the following figure, the histograms of

output power under different scheduling policies are plotted. MDA, DDA and

FDA are the scheduling approaches derived in [49]. WHSA1 and WHSA2 comes

from the literature on window-based constraint [10]. WHSA1 is the weakly hard

system scheduling algorithm puting the constraint of completing 2 consecutive

jobs in any 4-job window on MC1 and the constraint of completing 2 consecutive

jobs in any 3-job window on MC2. WHSA2 is the weakly hard system scheduling

algorithm puting the constraint of completing any 2 jobs in any 4-job window on

MC1 and the constraint of completing any 2 jobs in any 3-job window on MC2.

95

Figure 3.10. Histograms illustrating overall output signal power for task sets
with utilization between 1.0-1.2 (group 1) and 1.2-1.4 (group 2) [50]

In figures 3.10 (a) and (b), “M”, “D”, “F”, “w1”, “w2”, “R”, “G”, “S” rep-

resent MDA, DDA, FDA, WHSA1, WHSA2, FDR, GFDR and SSA respectively,

and each “slice” of the “scheduler type” axis is a histogram of task sets’ overall

output signal powers resulted from using that type of scheduler. Figures 3.10(a)

and (b) plot the distribution of the overall performance of two groups of task sets

for each scheduling algorithm. Each group contains 250 task sets, and each task

set consists of 5 tasks (2 MC1 systems and 3 MC2 systems). In group 1, each

task set’s utilization (or the load it presents to the system) is between 1.0 and 1.2

7. And in group 2 it is between 1.2 and 1.4. From figure 3.10, one can observe
7The task set’s utilization is equivalent to dropout rate level. For example, if such utilization

equals 1.2, the system is overloaded by 20%, i.e. the dropout rate has to be above 20%.

96

that the overall output signal power values of task sets scheduled by GFDR and

SSA tend to be lower, while those of other algorithms tend to be larger. (Recall

that for the control tasks in the experiments, lower output signal power indicates

better performance.) If the overall performance of a task set equals 1, it indicates

that the output signal power of a system is beyond the upper bound and the

system is considered to be unstable (unacceptable). In both groups of task sets,

GFDR and SSA, unlike other schedulers, rarely result in instability. The better

performance of GFDR and SSA can be attributed to the fact that both of them

enforce the MC constraints to resolve the resource collision from control systems.

Figure 3.10(a) and (b) also show that as the task set’s utilization (system load)

increases, GFDR and SSA still manage to achieve good performance while the

performance of other schedulers degrades much faster. In fact, when the system

load is larger than 1.2, we observed that the system performances due to other

schedulers are rarely acceptable (less than 1% of total number of task sets).

To examine the performance difference between to GFDR and SSA, we plot

the stable (i.e. P < 1) task set percentage and the average overall output power at

heavier system loads (task set’s utilization is larger than 1.4) in figure 3.11(a) and

(b). (The performance of SSA and GFDR under lighter system loads is similar, as

shown in figure 3.10) For each utilization range, we generated a group of 250 task

sets. GFDR and SSA are used to schedule task sets in each groups. From figure

3.11, one can see that SSA is indeed better than GFDR. Figure 3.11(a) shows that

as the system load increases, the stable task set percentage of GFDR decreases

much faster than that of SSA. For example, when the utilization is between 1.6

and 1.7, SSA doubles the stable task set percentage achieved by GFDR. In figure

3.11(b), one can see that the average overall output signal power due to SSA is also

97

better than that of GFDR. For the group of task sets whose utilization is between

1.6 and 1.7, the improvement is up to 33%. The better performance of SSA can

be attributed to the careful analysis of the output power based on theorem 3.3.1

which leads to a more effective scheduling decision.

1.4~1.5 1.5~1.6 1.6~1.7 1.7~1.8 1.8~1.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

system load

st
ab

el
 ta

sk
 s

et
s

pe
rc

en
ta

ge

GFDR
SSA

1.4~1.5 1.5~1.6 1.6~1.7 1.7.~1.8 1.8~1.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

system load

av
er

ag
e

ov
er

al
l p

ow
er

 o
f t

as
k

se
ts

GFDR
SSA

Figure 3.11. GFDR vs. SSA [50]

3.4.5 Verify the optimal dropout policy through a helicopter simulator

There is a hardware helicopter simulator in our lab. We tried to use it to

verify the utility of the optimal dropout policy. The conclusion drawn from these

experiments were inconclusive because the noise model for theoretical predictions

(a white noise process) mismatches the noise model for the experiments (a bounded

98

noise process). The theoretical model in eq. 3.1.1 was, unfortunately, less realistic

than expected. Now we start to talk about our experiments.

3.4.5.1 Control plant: a Helicopter Simulator

Our plant is a hardware helicopter simulator shown in figure 3.12. There

Figure 3.12. The helicopter simulator

are 3 DOF (degrees of freedom) in the helicopter simulator, including elevation

dynamics, pitch dynamics and travelling dynamics. Denote the elevation angle as

99

ε, pitch angle as p and travelling rate as r. Their dynamics can be expressed as






Elevation :






Je
d2ε
dt2 = Kf la(Vf + Vb) = Kf laVs

Vs = Kep(ε− εc) + Ked
dε
dt

Pitch :






Jp
d2p
dt2 = Kf lh(Vf − Vb) = Kf lhVd

Vd = Kpp(p − pc) + Kpd
dp
dt

Travelling :






Jt
dr
dt = Kplap

pc = Krp(r − rc) + Kri

∫
(r − rc)

(3.4.33)

where εc, pc and rc are the desired setpoints, Vf and Vb are the input voltages on

the front and back motors respectively, and the rest of the symbols are control

parameters such as Kep, Ked or system parameters, such as Je, Jp.

As eq. 3.4.33 shows, the dynamics of this three dimensonal system are all

second order. This low order nature simplifies the performance analysis. But eq.

3.4.33 omits all nonlinear factors, such as friction and blackslash, and all noises.

3.4.5.2 Control configuration

In section 3.4.2, the dropout policy designed for a linear system is studied.

We try to verify the theoretical optimal dropout policy results on the travelling

dynamics. Our set point is r0 = 20deg/sec, i.e. the system dynamics are linearized

at the point r = r0. ∆r = r−r0 is governed by the third (travelling) sub-equation

in eq. 3.4.33. ∆r is also chosen as the output. In order to simplify notation, we

represent ∆r as r. Note r = 0 means the traveling rate is equal to r0 for the rest

of this subsection.

100

We discretize the traveling dynamics to get






xk+1 = Axk + Buuk + Bwwk

yk = Cxk

uk = f(yk, yk−1, · · ·)

(3.4.34)

where A, Bu and C are system parameters provided by the manufacturer. Bw

stands for the input channel of the noise. We don’t know the value of Bw. {uk} is

the control variable, which is really the pitch angle p. f(·) is a PI law (proportional

and integral law). wk is noise, which may come from an exogenous disturbance,

linearization error or other uncertainty. Note that uk and wk may have different

input channels. So it is possible that Bu $= Bw.

As mentioned above, we use a PI control law, which can be expressed as

uk = f(yk, yk−1, · · ·) = Krpyk + KriT (yk−1 + yk−2 + · · ·) (3.4.35)

In the event of dropouts, i.e. the measurement is not available, the lost measure-

ment is replaced by 0. Why do we choose this dropout compensation policy? The

aim of our control is to keep steady state, i.e. yk = 0. So we expect yk is not far

from the the objective 0.

In section 3.4, we assume {wk} is white. Is that assumption valid? We did

experiments to verify it. In the experiments, we chose T = 20msec. There is

no dropout in the experiments. Thus the whole system can be described by the

control diagram in figure 3.13. As figure 3.14 shows, the system exhibits a strong

periodic oscillation. Its period Tos is exactly determined by the travelling rate,

Tos = 360/r0. One reasonable explanation to the above result is the periodicity

of {wk}. Why is {wk} periodic and Tos = 360/r0? To our best knowledge, it

101

)(zGc
kw ky

Figure 3.13. Control diagram

0 100 200 300 400 500 600 700 800 900
−4

−3

−2

−1

0

1

2

3

4

Time (sec)

T
ra

ve
lli

n
g

 r
a

te
 e

rr
o

r
(d

e
g

/s
e

c)

Figure 3.14. Response of travelling rate error

comes from the friction. When the helicopter simulator flies, its axis will rotate

at the period of Tos. There are many (about 40) sliding contacts on the base of

the simulator. This base may not be perfectly symmetric. The contacting friction

may be stronger at some positions and weaker at the others. So the friction varies

periodically at the period of Tos. In figure 3.13, feedback is used, which is expected

to counteract the oscillation from wk. So the original magnitude of wk may be

larger than the one in figure 3.14.

From the above analysis, we see that {wk} is almost deterministic and periodic.

102

One may wonder whether we can totally cancel it. It is hard to say yes or no. If

Bu = Bw, i.e. the controller and the noise have the same input channel, we can

cancel {wk} by setting uk = −wk + u′
k. If Bu $= Bw, we have no way to cancel wk.

We, unfortunately, don’t know whether Bu = Bw.

3.4.5.3 Performance analysis of the travelling dynamics under dropouts

Our main concern is to verify the results on the dropout policy in section 3.4.

The system equation is






xk+1 =






Aclosexk + Bwwk, dk = 0

Aopenxk + Bwwk, dk = 1

yk = Cxk

(3.4.36)

By estimating Bw with Bu and assuming {wk} is white with unit variance, we

apply Theorem 3.3.1 to predict the performance p = E[y2
k]. We compare several

policies shown in figure 3.15 To our disappointment, the difference between

dropout policies is not significant. For example, when the average dropout rate

is 25%, the difference among the four policies is less than 10%. By utilizing the

design methods in subsection 3.4.2, we may find a better policy and amplify the

difference. We now take a look at the maximum eigenvalue of system matries.

λmax(Aclose) = 0.9991,λmax(Aopen) = 1.0004 (3.4.37)

where λmax(·) stands for the maximum magnitude of the eigenvalues. It can be

seen that λmax(Aclose) is quite close to λmax(Aopen), i.e. the difference between the

closed-loop and open loop configurations is not significant. So it is not surprising

103

0 0.05 0.1 0.15 0.2 0.25
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 iid
(3,1)
(3,2)
old(4,2)

Figure 3.15. Theoretical predictions of different dropout policies

that there is little different between the various policies in figure 3.15.

Although the improvement due to the dropout policy is not very exciting, there

is still improvement. The next question is whether such improvement (about 10%)

can be demonstrated through experiments. We enforced i.i.d. and (2, 3) policies

in the experiments. The results are shown in figure 3.16. Comparing figure

3.15 and 3.16, we can list the following disagreement between empirical results

and theoretical prediction.

• By theoretical prediction in figure 3.15, the performance is worse when the

average dropout rate is higher. The experimental results, however, demon-

strate little difference among different dropout rates.

• At the same dropout rate, the difference among different trials in figure 3.16

seems unacceptable, especially for the i.i.d. dropout policy. For example,

the performance variation at the rate of 10% is about 100%. (2, 3) policy

104

0 0.05 0.1 0.15 0.2 0.25
0.5

1

1.5

2

2.5

3

3.5

4

dropout rate

m
ea

n(
y2)

Performance of the helicopter simulator

iid
(2,3)

Figure 3.16. Performance of the plant under i.i.d. and (2, 3) dropout
policies

seems better with smaller performance variation.

• We expected the (2, 3) policy to be better than the i.i.d. policy on the basis of

our theoretic prediction. Due to the large performance variations, however,

it is hard to see whether such performance predictions can be verified from

the experiments.

Based on the above conclusions, we may wonder whether the theoretical predic-

tion or the experiments are wrong. After carefully thinking, we find out nothing

is wrong and the disagreement comes from that fact that the noise {wk} doesn’t

satisfy the white noise assumption for theoretical prediction. The following dis-

cussion attempts to explain the reasons for this the disagreement.

105

3.4.5.4 Why don’t experimental results agree with the theoretical prediction?

The travelling dynamics are governed by eq. 3.4.34. For convenience, we

rewrite that equation down.






xk+1 = Axk + Buuk + Bwwk

yk = Cxk

uk = f(yk, yk−1, · · ·)

(3.4.38)

The control law f(· · ·) is a PI one, whose proportional gain is much larger than its

integral gain. So uk is approximately proportional to yk when yk is large enough.

In event of dropouts, the measurement is replaced with 0. If the dropouts occur

when yk is large, uk will deviate much from its desired value, which leads to

inefficiently counteracting wk. We can imagine at the next step, i.e. time n + 1,

yk+1 will be larger than the expected one. It can be seen that the larger the lost

measurement yk, the larger performance degradation at time n + 1. So the wise

dropout decision is to drop small yk. But what did the experimental policies do?

I.i.d. policy drops data in an i.i.d. fashion. If we are lucky, the dropped

measurments are all small and better performance, i.e. smaller output power, can

be achieved. Otherwise, we drop some large measurements and the performance is

made worse. This may be the reason that under the same dropout policy, different

trials yield quite different performance.

The performance variation of different trials under (2,3) policy is smaller than

the variation under i.i.d. policy. Why? It can be explained by the effect of

consecutive dropouts. By the discussions in the last paragraph, if we drop yk,

yk+1 will be larger (perhaps much larger) than the expectation. The larger yk,

the larger degradation of yk+1. If consecutive dropouts happen, i.e. yk+1 is also

106

dropped, we can imagine the degradation of yk+2 will be very significant. Therefore

consecutive dropouts are even more harmful on performance than dropout rate.

(2, 3) policy tries to separate dropouts apart (in any 3 consecutive packets, there

is at most 1 dropout). So it is not surprising to see smaller performance deviation

under the (2, 3) policy.

Now we are clear that it is the noise wk that yields the disagreement between

theoretical prediction and experimental results.

3.5 Spatially distributed control systems

This section extends the main result in theorem 3.3.1 to a spatially distributed

control system that implements the control over a sensor-actuator network. The

system under study is shown in figure 3.17. This system [18] is a linear array

of masses that are linked together by springs. Each mass (node) has an embed-

ded processor attached to it that can measure the node’s local state (position

and velocity) and then transmit that information to its neighboring nodes. This

transmitted information is then used by the embedded processor to compute a

control input.

We first assume that the continuous-time dynamics of the system have been

discretized in time. So we let x[n1, n2] denote the state of the n2th node at time

instant n1. The state x is a 2-dimensional vector characterizing the position and

velocity of the node with respect to its equilibrium position. The state satisfies

the following recursive equations,






x[n1 + 1, n2] = Ax[n1, n2] + B(x[n1, n2 − 1] + x[n1, n2 + 1])

+F (u[n1, n2] + w[n1, n2])

z[n1, n2] = Cx[n1, n2]

(3.5.39)

107

Embedded
sensor/actuators

Communication network

… …
x[n1 , n2-2] structure

M M
k k k k k

M M M M

K(z) K(z) K(z)
K(z) K(z) K(z)

w[n1 ,n2]

x[n1 , n2-1] x[n1 , n2] x[n1 , n2+1]

u[n1 ,n2]

Figure 3.17. Distributed control system and Sensor-Actuator network

for n1 ≥ 0 and any n2. z[n1, n2] is an output signal that is used to characterize

overall system performance. A, B, C and F are appropriately dimensioned real-

valued matrices. There are two inputs to this equation; the disturbance w[n1, n2]

and the control u[n1, n2]. The disturbance w is a zero-mean white noise process in

both time and space. The control input is computed by the embedded processor.

Each node has a processor attached to it. The processor measures the node’s

local state x[n1, n2] and it transmits this information to its neighbors upon request.

We assume that the nodes are synchronized in time and that in each sampling

interval the node decides whether or not to access its neighbor’s state. This means

that a node first ”requests” that its neighbors send data to it and then the proces-

sor computes its control input u[n1, n2] upon receiving this data. If neighboring

state information has been received, then the control input is computed according

to the following equation,

u[n1, n2] = K0x[n1, n2] + K1(x[n1, n2 − 1] + x[n1, n2 + 1]) (3.5.40)

where K0 and K1 represent control gain matrices that have been chosen by the

control engineer. Since our network may occasionally drop measurements, the

108

processor needs to use a different control signal if the neighboring state data is

not received. In this case, the processor simply sets u[n1, n2] = 0.

Data may be dropped by the network. These dropouts occur for two reasons.

The first reason is that the medium is unreliable. A transmitted measurement has

a finite probability f of being lost due to link failure. This probability is assumed

to be statistically independent of the state of the measurement’s source. Dropouts

will also occur because a node explicitly decides NOT to request neighboring state

measurements. This occurs because an overload management policy requires nodes

to drop a certain percentage of measurements when the network is congested. In

particular, the network assigns each processor a maximum allowable transmission

rate which is represented as a lower bound, ε0 on the node’s actual dropout rate.

The size of ε0 depends on the amount of network congestion.

Because dropouts cause us to switch between two different control laws, the

system’s state space model takes the form of a jump linear system [51]. In par-

ticular, let’s define a dropout process that is denoted as d[n1, n2]. It is a binary

random process in which d[n1, n2] = 1 if a dropout occurs and is zero otherwise.

Under the dropout process, our system equations take the form,

x[n1 + 1, n2] = A[n1, n2]x[n1, n2] + B[n1, n2](x[n1, n2 − 1] + x[n1, n2 + 1])

+Fw[n1, n2]

z[n1, n2] = Cx[n1, n2]

109

where A[n1, n2] and B[n1, n2] are matrix valued random processes such that

A[n1, n2] =






A0 = A + FK0 if no dropouts occur (i.e., d[n1, n2] = 0)

A1 = A if a dropout occurs (i.e., d[n1, n2] = 1)

B[n1, n2] =






B0 = B + FK1 if no dropouts occur (i.e., d[n1, n2] = 0)

B1 = B if a dropout occurs (i.e., d[n1, n2] = 1)

Application performance will be measured by the average power in the con-

trol system’s output signal. This measures how well the system suppresses the

effect that the disturbance w[n1, n2] has on the system’s shape. In particular

we assume that w is a white noise process whose covariance matrix is R =

E
[
w[n1, n2]wT [n1, n2]

]
. The control objective is to minimize the noise power in

the node’s state. So a natural measure of application performance is the average

power,

‖z‖2
P = Trace

(
E
[
z[n1, n2]z

T [n1, n2]
])

= Trace
(
CP 0C

T
)

where P 0 is the variance matrix

P 0 = E
[
x[n1, n2]x

T [n1, n2]
]

(3.5.41)

Note that this example presumes that all nodes are “identical” (spatially invariant)

and temporally stationary, so that the above covariance matrix is independent of

n1 and n2.

The following theorem extends theorem 3.3.1 to this spatially distributed sys-

tem. This theorem provides an infinite set of equations that can be solved for the

covariance matrix P 0. This theorem’s proof will be found in the appendix.

110

Theorem 3.5.1 Let w[n1, n2] be a zero-mean white noise process with variance R.

Let x[n1, n2] satisfy a jump linear system equation that is driven by a Markov chain

with transition matrix Q = [qij]N×N with stationary distribution π = [π1, π2, · · · , πN].

If E
[
xT [n1, n2]x[n1, n2]

]
< ∞ (i.e. mean square stable) , then

P 0 = E
[
x[n1, n2]x

T [n1, n2]
]

=
N∑

i=1

P
i,i
0 (3.5.42)

where P
i,i
0 satisfy the following infinite set of equations.

P
i,i
0 =

N∑

l=1

[
qliAiP

l,l
0 AT

i + 2πiBiP
l,l
0 BT

i

]
(3.5.43)

+
N∑

l,m=1

[
πiBi

(
P

l,m
2 +

(
P

l,m
2

)T
)

BT
i

]

+
N∑

l,m=1

[
qliAi

(
P

l,m
1 +

(
P

l,m
1

)T
)

BT
i + qmiBi

(
P

l,m
1 +

(
P

l,m
1

)T
)

AT
i

]
+ πiR

P
i,j
1 = Bi

(
P

i,j
1

)T
BT

j +
N∑

l=1

[
πjqliAiP

l,l
0 BT

j + πiqljBiP
l,l
0 AT

j

]

+
N∑

l,m=1

[
qliqmjAiP

l,m
1 AT

j + πiqljBiP
l,m
1 BT

j + πjqmiBiP
l,m
1 BT

j

]

+
N∑

l,m=1

[
πjqliAiP

l,m
2 BT

j + πiqmjBiP
l,m
2 AT

j + πiπjBiP
l,m
3 BT

j

]

P
i,j
k =

N∑

l,m=1

[
qliqmjAiP

l,m
k AT

j + 2πiπjBiP
l,m
k BT

j

]

+
N∑

l,m=1

[
πjqliAi

(
P

l,m
k+1 + P

l,m
k−1

)
BT

j + πiqmjBi

(
P

l,m
k+1 + P

l,m
k−1

)
AT

j

]

+
N∑

l,m=1

[
πiπjBi

(
P

l,m
k−2 + P

l,m
k+2

)
BT

j

]

for k ≥ 2 and i, j = 1, . . . , N .

111

Remark: Note that theorem 3.5.1 presumes the system is already mean square

stable. This condition may be difficult, in general, to verify and we provide no

characterization of the system’s stability.

Remark: Equations 3.5.43 is an infinite set of linear equations that we solve

for the matrices P
i,j
k . In particular, these matrices are the following conditional

expectations.

P
i,j
k = πiπjE

[
x[n1, n2]x

T [n1, n2 + k] | q[n1 − 1, n2] = qi,

q[n1 − 1, n2 + k] = qj] , k $= 0

P
i,i
0 = πiE

[
x[n1, n2]x

T [n1, n2] | q[n1 − 1, n2] = qi

]

P
i,j
0 = 0, i $= j

We can solve these equations numerically in a recursive manner. In particular,

we generate a sequence {P i,j
k [L]}∞L=0 of matrices that converges to the true P

i,j
k as

L goes to infinity. In particular, we insert the matrices P
i,j
k [L] into the righthand

side of equation 3.5.43 and take the matrices on the lefthand side of the equation

as P
i,j
k [L + 1]. By eq. 3.5.42, we estimate P 0 by

P 0[L] =
N∑

i=1

P
i,i
0 [L] (3.5.44)

We want to compute P 0. So if ‖P 0[L + 1]− P 0[L]‖∞ < δ (δ is tolerance), we will

stop the recursive computation.

112

There is a trick to pick the initial condition for {P i,j
k [0]}. We let

P
i,i
0 [0] = πiR

P
i,j
0 [0] = 0, when i $= j

P
i,j
k [0] = 0, when k $= 0

Based on the above initial conditions and the update rule of P
i,j
k [L], we know, at

the recursion step L,

P
i,j
k [L] = 0, when k ≥ 2L + 1 (3.5.45)

So we only need to consider the recursion of P
i,j
k [L + 1] (k = 0, 1, 2, · · · , 2L + 2)

8, i.e. only 2L + 3 equations need to be computed. We can, therefore, obtain P 0

under a specified dropout policy.

As we did in section 3.4, we can use theorem 3.5.1 to pose an optimization

problem whose solution is the ”optimal” dropout policy for this distributed sys-

tem. To state this optimization problem, we again consider the 4-state Markov

chain that was considered in section 3.4. Recall that εi is the probability of not

transmitting a message when the Markov chain is in state qi. We also assume

that there is a finite probability f , that a transmitted message will not reach its

8Of course we may still do recursive computations on P
i,j
k [L + 1] (k ≥ 2L + 3), but we are

sure they are all 0

113

destination. With these notational conventions we obtain the transition matrix,

Q =





(1 − ε1)(1 − f) ε1 + f(1 − ε1) 0 0

0 0 (1 − ε2)(1 − f) ε2 + f(1 − ε2)

(1 − ε3)(1 − f) ε3 + f(1 − ε3) 0 0

0 0 (1 − ε4)(1 − f) ε4 + f(1 − ε4)





We solved the optimization problem (eq. 3.4.10) for this specific system. The

system matrices (Ai, Bi) when the Markov chain is in state qi are

A1 = A3 = A + BK

B1 = B3 = 0

A2 = A4 = A

B2 = B4 = B

where A =




0.9990 0.0100

−0.1999 0.9990



, B =




0.0005 0

0.1000 0



, C =




1.0 0

0 0.1



, F = B,

K =




−93.2580 −10.4700

0 0



. From these equations we see that the closed-loop

distributed system is really a group of decoupled subsystems. When a dropout

occurs there is no control (i.e. u[n1, n2] = 0) and the physical coupling between

subsystems reasserts itself.

For our particular problem, Matlab’s optimization toolbox was used to numer-

ically solve the preceding optimization problem by the gradient descent method.

These optimizations were done assuming a link failure rate, f , of 0.3 and an av-

erage dropout rate ε0 between 0.05 and 0.85. The solutions are the transition

114

probabilities εi. We found that these probabilities took the following form,

[ε1, ε2, ε3, ε4] =






[x1, 0, 0, 0] , ε0 < 0.2237

[1, 0, x3, 0] , 0.2237 < ε0 < 0.4117

[1, x2, 1, 0] , 0.4117 < ε0 < 0.5833

[1, 1, 1, x4] , 0.5833 < ε0

where x1, x2, x3, x4 are determined by the average dropout rate condition. In

reviewing the transition probabilities given above, it is apparent that the optimal

policy is a soft (2, 3)-policy for ε0 < 0.2237. For dropout rates above this level,

however, the structure of the optimal policy changes to allow higher dropout rates.

The plot in figure 3.18 compares the performance under the ”optimal” dropout

policy (solid line) and an i.i.d. dropout policy (dashed line). This is the perfor-

mance computed using our theoretical results. We also simulated the distributed

system using a MatLab SimuLink model. All of the simulations assumed 27 nodes

with the endpoints having free boundary conditions. The results for these simula-

tions are plotted as ∗ and o. We simulated 3 different runs at 6 different dropout

rates for 100,000 iterations. In the simulations, we used time averages to estimate

the signal power. The theoretical predictions show that the optimal policy is in-

deed better than the i.i.d. policy. The simulation results show close agreement

with the theoretical predictions for a wide range of dropout rates.

The Markov chains derived in this section form the basis of an overload man-

agement policy that is easily implemented on an embedded processor. In particu-

lar, a number of these ”optimal” Markov chains would be determined for a range

of overload conditions (ε0) and a range of link failure rates (f). We store these

transition probabilities in a table that is indexed with respect to ε0 and f . The

115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

dropout rate

co
st

 =
 p

ow
(z

)

cost vs dropout rate for different dropout policies

optimal policy
i.i.d. policy

Figure 3.18. Simulation vs. theoretical results

overload management policy used by each node is a concrete instantiation of the

optimal Markov chain whose transition probabilities are loaded from this table

based on 1) the transmission rate (1 − ε0) that was allocated to the node and 2)

based on the link failure rate (f) that was estimated by the node. What should

be apparent is that the resulting policy is adaptive with respect to link failure rate

and the allocated transmission rate . Moreover, since these chains are solutions

to the optimization problem, we know that this policy degrades application per-

formance as little as possible. In other words, we have provable guarantees that

this approach makes optimum use of the allocated transmission rate to the local

controller. The simulation and theoretical results shown in figure 3.18 suggest

that hardware implementations of such policies should also perform well.

116

3.6 Conclusions

This chapter studies the control system with dropouts governed by a Markov

chain. A necessary and sufficient condition is established for stability and wide

sense stationary for such systems. The system performance, measured by the out-

put power, is computed. Based on the achieved performance results, the optimal

dropout policy is designed. The performance computation and optimal dropout

policy results are extended to distributed systems.

This chapter obtains the optimal dropout policy by solving an optimization

problem through gradient descent method or branch-and-bound method. The

gradient descent method is only guaranteed to find a locally optimal solution.

Although the branch-and-bound method is guaranteed to converge to a neighbor

of the globally optimal solution, its computational complexity is high, especially

when the dimension of the system or the order of the dropout Markov chain is

large. So it is desirable to develop more efficient method to solve the optimization

problem.

The optimal dropout policy in section 3.4 makes the decision when a packet

can be dropped. It can also be viewed as a sampling method. Although the

system is sampled periodically, some samples are dropped on purpose. Suppose

the sampling period to be T0 and the dropout rate to be ε0. Then the average

sampling period is

T =
T0

1 − ε0
. (3.6.46)

T is a measurement of network utilization. The smaller T , the more network uti-

lization. For specified T , we have infinite choices (T0, ε0) satisfying the constraint

117

in eq. 3.6.46. Of course we will prefer the choice which achieves the optimal (min-

imum) control performance. Is the periodic sampling (T0 = T, ε0 = 0) necessarily

optimal? There is no answer yet.

3.7 Appendix: proofs

Throughout this section, the following notational conventions will be followed.

The system transition matrix in equation 3.1.1 is

Φ(k; m) =






∏k−1
l=m A[q[l]], if m < k

In, if m ≥ k
,

where In is an identity matrix with the dimension of n. With this matrix, the

system’s state at time instant n can be expressed as x[k] = Φ(k; 0)x[0] when the

input disturbance w = 0. The following n2 × (kn2) matrix CI is frequently used

CI =

[
In2 In2 · · · In2

]
.

3.7.1 Preliminary lemmas

Denote the initial condition of the jump linear system in 3.1.1 as x[0] = x0,

q[0] = q0 and the distribution of q0 as p =

[
p1 p2 · · · pN

]
(P (q[0] = qi |q0) =

pi).

A conditional expectation is defined as

Φi[k] = P (q[k] = qi | q0)E
[
(Φ(k; 0))[2] | q[k] = qi, q0

]
, i = 1, 2, · · · , N.(3.7.47)

Specifically Φi[0] = piIn2 (i = 1, · · · , N). Based on the definition of Φi[k], we

118

obtain

E
[
(Φ(k; 0))[2] | q0

]
=

N∑

i=1

Φi[k]. (3.7.48)

By combining all Φi[k](i = 1, 2, · · · , N) into a bigger matrix, we define

VΦ[k] =

[
ΦT

1 [k] ΦT
2 [k] · · · ΦT

N [k]

]T

. (3.7.49)

Thus VΦ[0] = pT ⊗ In2 .

The necessity proof of theorem 3.2.1 needs the following 3 preliminary lemmas.

Lemma 3.7.1 If the jump linear system in eq. 3.1.1 is mean square stable, then

lim
k→∞

E
[
(Φ[k; 0])[2]|q0

]
= 0, ∀q0 (3.7.50)

proof of Lemma 3.7.1: Because the system is mean square stable, we get

lim
k−→∞

E
[
x[2][k]|x0, q0

]
= 0, ∀x0, q0 (3.7.51)

The expression of x[k] = Φ(k; 0)x0 yields

lim
k−→∞

E
[
(Φ(k; 0)x0)

[2] |x0, q0

]
= 0, (3.7.52)

Φ(k; 0) is an n × n matrix. So we denote it as Φ(k; 0) = [a1(k), a2(k), · · · , an(k)],

where ai(k) is a column vector. By choosing x0 = ei (ei is an Rn×1 vector with

the ith element as 1 and the others as 0), eq. 3.7.52 yields

lim
k−→∞

E
[
a[2]

i [k]|q0

]
= 0, i = 1, 2, · · · , n (3.7.53)

119

For any two random vectors y and z, we know

∣∣E[yTz]
∣∣ <

√
E[yTy]E[zT z] (3.7.54)

By eq. 3.7.53, 3.7.54 and the definition of Kronecker product, we obtain

lim
k−→∞

E [ai[k] ⊗ aj [k]|q0] = 0, i $= j (3.7.55)

By the definition of the Kronecker product, we know

(Φ(k; 0))[2]

= [a1[k] ⊗ a1[k], · · · , a1[k] ⊗ an[k], · · · , an[k] ⊗ a1[k], · · · , an[k] ⊗ an[k]]

So eq. 3.7.53 and 3.7.55 yield

lim
k→∞

E
[
(Φ[k; 0])[2]|q0

]
= 0, ∀q0♦ (3.7.56)

Lemma 3.7.2 If the jump linear system in eq. 3.1.1 is mean square stable, then

lim
k→∞

Φi[k] = 0, i = 1, · · · , N ; ∀q0. (3.7.57)

proof of Lemma 3.7.2: Choose any z0, w0 ∈ Rn. Lemma 3.7.1 guarantees

lim
k−→∞

E
[
(z[2]

0)T (Φ(k; 0))[2]w[2]
0 | q0

]
= 0. (3.7.58)

By the definition of the Kronecker product, we know

E
[
(z[2]

0)T (Φ(k; 0))[2]w[2]
0 | q0

]
= E

[(
zT
0 Φ(k; 0)w0

)2 | q0

]
. (3.7.59)

120

By eq. 3.7.47, 3.7.48 and 3.7.59, we get

E
[(

zT
0 Φ[k; 0]w0

)2 | q0

]

=
N∑

i=1

P (q[k] = qi | q0)E
[(

zT
0 Φ[k, 0]w0

)2 | q[k] = qi, q0

]
. (3.7.60)

Because P (q[k] = qi | q0)E
[(

zT
0 Φ[k; 0]w0

)2 | q[k] = qi, q0

]
≥ 0, the combination

of eq. 3.7.58 and 3.7.60 yields

lim
k→∞

P (q[k] = qi | q0)E
[(

zT
0 Φ(k; 0)w0

)2 | q[k] = qi, q0

]
= 0, (3.7.61)

Φ(k; 0) is an n×n matrix, so it can be denoted as Φ(k; 0) = (amj(k))m=1,··· ,n;j=1,··· ,n.

In eq. 3.7.61, we choose z0 = em and w0 = ej and get

lim
k→∞

P (q[k] = qi | q0)E
[
(amj(k))2 | q[k] = qi, q0

]
= 0, (3.7.62)

where i = 1, 2, · · · , N , m = 1, · · · , n and j = 1, · · · , n. By the definition of Φi[k],

we know the elements of Φi[k] take the form of

P (q[k] = qi | q0)E [am1j1(k)am2j2(k) | q[k] = qi, q0]

where m1, m2, j1, j2 = 1, · · · , n. So eq. 3.7.62 guarantees

lim
k→∞

Φi[k] = 0, ∀q0.♦ (3.7.63)

Lemma 3.7.3 VΦ[k] is governed by the following dynamic equation

VΦ[k] = A[2] VΦ[k − 1]. (3.7.64)

121

with VΦ[0] = pT ⊗ In2.

proof of Lemma 3.7.3: By the definition in eq. 3.7.47, we recursively compute

Φi[k] as follows.

Φi[k] = P (q[k] = qi | q0)E
[
(A[q[k − 1]]Φ(k − 1; 0))[2] | q[k] = qi, q0

]

= P (q[k] = qi | q0)E
[
(A[q[k − 1]])[2](Φ(k − 1; 0))[2] | q[k] = qi, q0

]

= P (q[k] = qi | q0)
N∑

j=1

P (q[k − 1] = qj | q[k] = qi, q0)

E
[
(A[q[k − 1]])[2](Φ(k − 1; 0))[2] | q[k] = qi, q[k − 1] = qj, q0

]

=
N∑

j=1

A[2]
j (P (q[k] = qi | q0)P (q[k − 1] = qj | q[k] = qi, q0))

E
[
(Φ(k − 1; 0))[2] | q[k] = qi, q[k − 1] = qj , q0

]

Because Φ(k − 1; 0) depends on only {q[k − 2], q[k − 1], · · · , q[0]} and the jump

sequence {q[k]} is Markovian, we know

E
[
(Φ(k − 1; 0))[2] | q[k] = qi, q[k − 1] = qj, q0

]

= E
[
(Φ(k − 1; 0))[2] | q[k − 1] = qj , q0

]
(3.7.65)

The probability P (q[k] = qi | q0)P (q[k − 1] = qj | q[k] = qi, q0) can be computed

122

as

P (q[k] = qi | q0)P (q[k − 1] = qj | q[k] = qi, q0)

= P (q[k − 1] = qj , q[k] = qi | q0)

= P (q[k] = qi | q[k − 1] = qj , q0)P (q[k − 1] = qj | q0)

= P (q[k] = qi | q[k − 1] = qj)P (q[k − 1] = qj | q0)

= qjiP (q[k − 1] = qj | q0) (3.7.66)

Substitute eq. 3.7.65 and 3.7.66 into the expression of Φi[k], we get

Φi[k] =
N∑

j=1

qjiA
[2]
j Φj [k − 1], (3.7.67)

After combining Φi[k](i = 1, 2, · · · , N) into VΦ[k] as eq. 3.7.49, we get

VΦ[k] = A[2]VΦ[k − 1] (3.7.68)

We trivially get VΦ[0] from Φi[0] by eq. 3.7.49. ♦

For any initial distribution p, we can put a bound on E
[
Φ(k; 0)ΦT (k; 0)

]
in

the following lemma.

Lemma 3.7.4 Consider the system in equation 3.1.1 under assumptions 1—5.

There exists a positive semi-definite matrix Φ0 such that

E
[
Φ(k; 0)ΦT (k; 0)

]
≤ σk

0Φ0

where σ0 = λmax

(
A[2]

)
.

Proof: Considering the initial distribution of q0, E
[
Φ(k; 0)ΦT (k; 0)

]
can be com-

123

puted as

E
[
Φ(k; 0)ΦT (k; 0)

]
=

N∑

i=1

P (q0 = qi)E
[
Φ(k; 0)ΦT (k; 0)|q0 = qi

]
(3.7.69)

By the definition of VΦ[k], eq. 3.7.69 can be rewritten as

E
[
Φ(k; 0)ΦT (k; 0)

]
=

N∑

i=1

P (q0 = qi)devec (CIVΦ,qi[k]) (3.7.70)

where we add a new subscript qi in VΦ to emphasize the initial condition q0 = qi.

By Lemma 3.7.3, we know VΦ,qi[k] is expressed as

VΦ,qi[k] = Ak
[2]VΦ,qi[0], (3.7.71)

where VΦ,qi[0] is determined by the initial condition. Because λmax(A[2]) = σ0, we

put the following bound,

devec (CIVΦ,qi[k]) ≤ σk
0Φqi (3.7.72)

where Φqi is a constant semi-definite matrix which depends on qi. Define Φ0 =
∑N

i=1 Φqi. Relaxing the bound in eq.3.7.72, we get

devec (CIVΦ,qi[k]) ≤ σk
0Φ0 (3.7.73)

Substituting eq. 3.7.73 for all i into eq. 3.7.70 yields

E
[
Φ(k; 0)ΦT (k; 0)

]
= σk

0Φ0 ♦ (3.7.74)

124

The shift-invariance property of the dropout Markov chain yields that

E
[
Φ(k; l)ΦT (k; l)

]
= E

[
Φ(k − l; 0)ΦT (k − l; 0)

]
. So the following upper bound

holds

E
[
Φ(k; l)ΦT (k; l)

]
≤ σ(k−l)

0 Φ0. (3.7.75)

When the system in equation 3.1.1 is asymptotically stable in the mean square

sense, we can ignore the initial state by taking the initial time at −∞ and express

the state x[k] as the following lemma.

Lemma 3.7.5 Consider the system in equation 3.1.1 with initial time of −∞.

Under assumptions 1—5, the state x[k] can be expressed with the following infinite

series.

x[k] =
∞∑

l=0

Φ(k; k − l)Bw[k − l − 1]. (3.7.76)

Furthermore,

E
[
xT [k]x[k]

]
< ∞.

Proof: If the infinite series in equation 3.7.76 makes sense, x[k] can obviously

be computed as the equation. So we just need to prove that the infinite series in

equation 3.7.76 is convergent in the mean square sense.

Denote the partial summation in equation 3.7.76 as

S(p, q) =
p+q∑

l=p

Φ(k; k − l)Bw[k − l − 1], (3.7.77)

125

where p ≥ 0, q ≥ 1. It can be shown that

√
E [ST (p, q)S(p, q)] (3.7.78)

≤
p+q∑

l=p

√
E
[
(Φ(k; k − l)Bw[k − l − 1])T (Φ(k; k − l)Bw[k − l − 1])

]

Now consider a single term of the summation in equation 3.7.78.

E
[
(Φ(k; k − l)Bw[k − l − 1])T (Φ(k; k − l)Bw[k − l − 1])

]

= Trace
(
E
[
Φ(k; k − l)Bw[k − l − 1]wT [k − l − 1]BTΦT (k; k − l)

])

= Trace
(
E
[
Φ(k; k − l)BRww[0]BTΦT (k; k − l)

])
.

Let σB = λmax(BRww[0]BT), then

E
[
(Φ(k; k − l)Bw[k − l − 1])T (Φ(k; k − l)Bw[k − l − 1])

]

≤ σBTrace
(
E
[
Φ(k; k − l)ΦT (k; k − l)

])
.

By equation 3.7.75, we put an upper bound:

E
[
(Φ(k; k − l)Bw[k − l − 1])T (Φ(k; k − l)Bw[k − l − 1])

]
(3.7.79)

≤ σBσ
l
0Trace(Φ0).

With the preceding relation, we get

√
E [ST (p, q)S(p, q)] ≤

√
σBTrace(Φ0)

p+q∑

l=p

σl/2
0

≤ Mσp/2
0 ,

where M =
√

σBTrace(Φ0)

1−√
σ0

.

126

Because σ0 < 1, limp→∞ supq≥1 E
[
ST (p, q)S(p, q)

]
= 0. So we know that the

summation in equation 3.7.76 is convergent in the mean square sense.

If we set p = 0 and q = ∞, S(p, q) = x[k]. So

E
[
xT [k]x[k]

]
≤ M

< ∞. ♦

3.7.2 proof of Theorem 3.2.1

proof of Necessity of Theorem 3.2.1: By Lemma 3.7.2, we get

lim
k−→∞

VΦ[k] = 0 (3.7.80)

By Lemma 3.7.3, we get VΦ[k] = Ak
[2]VΦ[0] and VΦ[0] = pT ⊗ In2 . Therefore eq.

3.7.80 yields

lim
k−→∞

Ak
[2](p

T ⊗ In2) = 0 (3.7.81)

for any p, the initial distribution of q0.

Ak
[2] is a Nn2 ×Nn2 matrix. We write Ak

[2] as Ak
[2] = [A1(k), A2(k), · · · , AN (k)]

where Ai(k) (i = 1, · · · , N) is a Nn2 × n2 matrix. By taking pi = 1 and pj = 0

(j = 1, · · · , i − 1, i + 1, · · · , N), eq. 3.7.81 yields

lim
k−→∞

Ai(k) = 0 (3.7.82)

Thus we get

lim
k−→∞

Ak
[2] = 0. (3.7.83)

127

So A[2] is Schur stable.

proof of Sufficiency of Theorem 3.2.1: Under the given initial condition

x[0] = x0, q[0] = q0, the state x[k] at time n can be expressed as

x[k] = Φ(k; 0)x0 (3.7.84)

The conditional variance of x[k] can be computed as

E
[
xT [k]x[k]|x0, q0

]

= Trace
(
devec

(
E
[
Φ[2](k; 0)|q0

]
x[2]

0

))

= Trace

(
devec

(
N∑

i=1

P (q0 = qi)E
[
Φ[2](k; 0)|q0 = qi

]
x[2]

0

))

= Trace

(
devec

(
N∑

i=1

P (q0 = qi)CIVΦ,qi[k]x[2]
0

))

= Trace

(

devec

(
N∑

i=1

P (q0 = qi)CIA
k
[2]VΦ,qi[0]x[2]

0

))

(3.7.85)

where the first equality comes from eq. 3.7.84 and the definitions of devec(·) and

[2], the third equality comes from the definition of VΦ[k] (kote that we add the

subscript qi to emphasize the dependence of VΦ[k] on q0 = qi), and the fourth

equality comes from Lemma 3.7.3. By assumption 5, we know A[2] is stable. So

limk−→∞ Ak
[2] = 0. Considering the expression in eq. 3.7.85, we obtain

lim
k−→∞

E
[
xT [k]x[k]|x0, q0

]
= 0, ∀x0, q0.♦ (3.7.86)

128

3.7.3 proof of Theorem 3.2.2

As shown by lemma 3.7.5, x[k] exists in the mean square sense and has finite

variance. So we just need to prove the mean of x[k] is constant and the correlation

E
[
x[k + m]xT [k]

]
is shift-invariant with respect to n.

For reference convenience, we write down the expression of x[k] from equation

3.7.76 again.

x[k] =
∞∑

l=0

Φ(k; k − l)Bw[k − l − 1]. (3.7.87)

So the mean of x[k] can be computed as

E[x[k]] =
∞∑

l=0

E[Φ(k; k − l)B]E [w[k − l − 1]]

= 0,

where the first equality follows from the independence between dropouts and w;

the second equality follows from the fact w is zero-mean.

The correlation E
[
x[k + m]xT [k]

]
can be expressed as

E
[
x[k + m]xT [k]

]

=
∞∑

k1=0

∞∑

k2=0

E
[
Φ(k + m; k + m − k1)Bw[k + m − k1 − 1]wT [k − k2 − 1]

BTΦT (k; k − k2)
]

By the white nature of w, we know

w[k + m − k1 − 1]wT [k − k2 − 1] =






Rww[0], When m − k1 = −k2

0 otherwise

129

Combine the above two equations, we obtain

E
[
x[k + m]xT [k]

]
=

∞∑

l=0

E
[
Φ(k + m; k − l)BRww[0]BTΦT (k; k − l)

]
.

Because the dropout Markov chain is time-homogeneous and the initial time is

set to −∞, the dropout Markov chain stays in the steady state.

Then E
[
Φ(k + m; k − l)BRww[0]BTΦT (k; k − l)

]
is shift-invariant with respect to

k. Therefore E
[
x[k + m]xT [k]

]
is constant with respect to k and {x[k]} is WSS.

♦

3.7.4 Proof of Theorem 3.3.1

Corollary 3.2.1 guarantees that {y[k]} is WSS. Then the power of y can be

computed as

E
[
yT [k]y[k]

]
= Trace

(
E
[
y[k]yT [k]

])

= Trace
(
devec

(
E
[
y[2][k]

]))

= Trace
(
devec

(
C [2]E

[
x[2][k]

]))
.

The above equation shows E
[
x[2][k]

]
has to be computed in order to get E

[
yT [k]y[k]

]
.

Because the initial time is set to −∞, the dropout Markov chain can be as-

sumed to remain at steady state, i.e. P (q[k] = qi) = πi (i = 1, 2, · · · , N). Let

Pi[k] = πiE
[
x[2][k] | q[k − 1] = qi

]
. Then

E
[
x[2][k]

]
=

N∑

i=1

Pi[k].

130

Pi[k + 1] can be recursively computed as follows.

Pi[k + 1]

= πiE
[
(A[k]x[k] + Bw[k])[2] | q[k] = qi

]

= πiA
[2]
i E

[
x[2][k] | q[k] = qi

]
+ πiB

[2]µw2

= πiA
[2]
i

N∑

l=1

E
[
x[2][k] | q[k] = qi, q[k − 1] = ql

]
P (q[k − 1] = ql | q[k] = qi)

+πiB
[2]µw2

= πiA
[2]
i

N∑

l=1

E
[
x[2][k] | q[k − 1] = ql

]
P (q[k − 1] = ql | q[k] = qi) + πiB

[2]µw2

= A[2]
i

N∑

l=1

qliPl[k] + πiB
[2]µw2, (3.7.88)

where µw2 = vec(Rww[0]) (vec(·) is defined in appendix A, the second equality

follows from E [x[k] ⊗ w[k]] = 0 (because x[k] depends linearly on only the past

noise inputs {w[k − 1], w[k − 2], · · · } and w is white); the fourth equality follows

from the Markov property of the dropouts.

Let VP [k] =

[
P T

1 [k] P T
2 [k] · · · P T

N [k]

]T

. Then the recursive computations

on Pi[k] yield

VP [k + 1] = A[2]VP [k] + πT ⊗ (B[2]µw2). (3.7.89)

Because the initial time is set to −∞, the solution of the above equation is

VP [k] =
k∑

l=−∞

Ak−l
[2]

(
πT ⊗ (B[2]µw2)

)

=
∞∑

m=0

Am
[2]

(
πT ⊗ (B[2]µw2)

)

= constant,

131

where the second equality comes from the substitution of the variable , m = k− l;

the infinite series in the second equality exists and is bounded because A[2] is

stable.

Because VP [k] = constant, Pi[k] is also constant with respect to k. Then Pi[k]

and Pi[k + 1] in equation 3.7.88 all can be simplified as Pi. Taking the operation

devec(·) over eq. 3.7.88 will yield the final result. ♦

3.7.5 Proof of Theorem 3.3.2

In this proof, the dropout Markov chain is assumed to stay at the steady state

π =

[
π1 π2 · · · πN

]
, i.e. P (q[k] = qi) = πi. The notations in the proof of

theorem 3.3.1, Pi and VP [k], are reused. Because VP [k] is constant with respect

to n (with the initial time −∞), it is usually simply denoted as VP .

At the begining, the wide sense stationarity of {y [2][k]} is proved.

y[2][k] = C [2]x[2][k]. (3.7.90)

So {y[2][k]} is WSS if {x[2][k]} is WSS. From the proof of theorem 3.2.2, we know

E
[
x[2][k]

]
= E [x[k + 0] ⊗ x[k]] is constant with respect to k, which is denoted as

µx2. From the proof of theorem 3.3.1, we know

µx2 =
N∑

i=1

Pi

= CI

∞∑

l=0

Al
[2]

(
πT ⊗

(
B[2]µw2

))
.

To prove the wide sense stationarity of {x[2][k]}, we only need to show that

E
[(

x[2][k + m]
)T

x[2][k]
]

exists and is shift-invariant with respect to k. Before

132

that, we establish the following two propositions

lim
k−→∞

x[2][k] ⊗ x[2][k] = 0, when w = 0; (3.7.91)

E
[(

x[2][k]
)T

x[2][k]
]

< ∞, when w is an i.i.d. process. (3.7.92)

Obviously x[2][k] ⊗ x[2][k] = x[4][k]. Define

P4,i[k] = πiE
[
x[4][k] | q[k − 1] = qi

]
,

and

VP4[k] =

[
P T

4,1[k] P T
4,2[k] · · · P T

4,N [k]

]T

.

When w = 0, we get VP4[k] = A[4]VP4 [k − 1] with arguments similar to

the ones used in the proof of theorem 3.2.1. Because of the stability of A[4],

we know limn−→∞ VP4[k] = 0. Because E
[
x[2][k] ⊗ x[2][k]

]
= (CI ⊗ In2)VP4[k],

limn−→∞ x[2][k] ⊗ x[2][k] = 0, i.e. the proposition in equation 3.7.91 holds. Then

we know the effect of the initial conditions on the variance (correlation) of x[2][k]

can be eventually forgotten. So we can assume zero initial conditions without loss

of generality.

Because the proposition in equation 3.7.91 holds, the expression of x[k] in

equation 3.7.76 still holds in the fourth moment sense. We write it down again.

x[k] =
∞∑

l=0

Φ(k; k − l)Bw[k − l − 1].

133

Denote the partial summation in the above infinite series as

S(p, q) =
p+q∑

l=p

Φ(k; k − l)Bw[k − l − 1],

where p ≥ 0, q ≥ 1. It can be shown that 9

4

√
E
[
(S [2](p, q))T S [2](p, q)

]

≤
p+q∑

l=p

4

√
E
[
Trace

(
(Φ(k; k − l)Bw[k − l − 1]) (Φ(k; k − l)Bw[k − l − 1])T

)]2

≤
p+q∑

l=p

4

√

nTrace

(
E
[
(Φ(k; k − l)Bw[k − l − 1]) (Φ(k; k − l)Bw[k − l − 1])T

]2
)

(3.7.94)

Because λmax(A[4]) = σ4 < 1, we can similarly put the following upper bound.

E
[
Φ(k; k − l) (Φ(k; k − l))T

]2
≤ Φ4σ

l
4

where Φ4 is a constant positive definite matrix.

Thus we get an upper bound on the single term in eq. 3.7.94.

nTrace

(
E
[
(Φ(k; k − l)Bw[k − l − 1]) (Φ(k; k − l)Bw[k − l − 1])T

]2
)

< σk
4M4

9Eq. 3.7.94 comes from the fact that

E
[
(a1 + a2 + · · · + aN)2

]
≤ N

(
E[a2

1] + E[a2
2] + · · · + E[a2

N]
)

(3.7.93)

where ai is random variable.

134

where M4 is a positive constant. Then we get the upper bound on S(p, q)

4

√
E
[
(S [2](p, q))T S [2](p, q)

]
<

4
√

M4

1 − 4
√
σ4
σp/4

4

If we set p = 0 and q = ∞, S(p, q) = x[k]. So

E
[(

x[2][k]
)T

x[2][k]
]

≤
4
√

M4

1 − 4
√
σ4

< ∞

i.e. the proposition in equation 3.7.92 holds. Then we know that

E
[(

x[2][k + m]
)T

x[2][k]
]

exists. Following the proof of theorem 3.2.2, we know

E
[(

x[2][k + m]
)T

x[2][k]
]

is shift-invariant with respect to k. So {x[2][k]} is WSS.

In order to guarantee the ergodicity of {x[2][k]}, we have to show that

lim
m−→∞

E
[
x[2][k + m] ⊗ x[2][k]

]
− µ[2]

x2
= 0 (3.7.95)

Define Fi[m] = πiE
[
x[2][k + m] ⊗ x[2][k] | q[k + m − 1] = qi

]
(Because of the shift-

invariance of the dropouts and the input noise,

E
[
x[2][k + m] ⊗ x[2][k] | q[k + m − 1] = qi

]
is constant with respect to k), VF [m] =[

F T
1 [m] F T

2 [m] · · · F T
N [m]

]T

. Then

E
[
x[2][k + m] ⊗ x[2][k]

]
= (CI ⊗ In2)VF [m].

135

When m ≥ 1, Fi[m] can be recursively computed as

Fi[m] = πiE [(A[k + m − 1]x[k + m − 1]

+Bw[k + m − 1])[2] ⊗ x[2]
n | q[k + m − 1] = qi

]

= πi(A
[2]
i ⊗ In2)E

[
x[2][k + m − 1] ⊗ x[2][k] | q[k + m − 1] = qi

]

+(πiB
[2]µw2) ⊗E

[
x[2][k] | q[k + m − 1] = qi

]

= (A[2]
i ⊗ In2)

N∑

l=1

qliFl[m − 1] + (B[2]µw2) ⊗
N∑

l=1

qli(m)Pl.

where µw2 = vec(Rww[0]), qli(m) = P (q[k + m − 1] = qi | q[k − 1] = ql) and

qli = P (q[k] = qi | q[k − 1] = ql). We want to determine Fi[m] when m −→ ∞.

We know limm−→∞ qli(m) = πi, so that

lim
m−→∞

N∑

l=1

qli(m)Pl = πi

N∑

l=1

Pl = πiµx2.

Then we can replace the update of Fi[m] in the above equation with its limiting

value as m → ∞ to obtain

Fi[m] = (A[2]
i ⊗ In2)

N∑

l=1

qliFl[m − 1] + πi(B
[2]µw2) ⊗ µx2 (3.7.96)

So

VF [m] = (A[2] ⊗ In2)VF [m − 1] + (π ⊗ (B[2]µw2)) ⊗ µx2 (3.7.97)

136

Based on the above update, we get the following limit

lim
m−→∞

VF [m] =
∞∑

l=0

(A[2] ⊗ In2)l
(
(π ⊗ (B[2]µw2)) ⊗ µx2)

)

=
∞∑

l=0

(Al
[2] ⊗ In2)

(
(π ⊗ (B[2]µw2)) ⊗ µx2)

)

=

(
∞∑

l=0

Al
[2](π ⊗ (B[2]µw2))

)
⊗ µx2

Recall that

µx2 = CI

∞∑

l=0

Al
[2](π ⊗ (B[2]µw2))

and

E
[
x[2][k + m] ⊗ x[2][k]

]
= (CI ⊗ In2)VF [m].

So we get

limm−→∞ E
[
x[2][k + m] ⊗ x[2][k]

]
− µx2 ⊗ µx2

= (CI ⊗ In2)
(∑∞

l=0 Al(π ⊗ (B[2]µw2))
)
⊗ µx2 − µx2 ⊗ µx2

=
(
CI

∑∞
l=0 Al(π ⊗ (B[2]µw2))

)
⊗ (In2µx2) − µx2 ⊗ µx2

= µx2 ⊗ µx2 − µx2 ⊗ µx2

= 0.

This means that {x[2][k]} is ergodic and so {y[2][k]} is also ergodic. ♦

137

3.7.6 Proof of Theorem 3.5.1:

Note that if q[n1, n2] = qi and q[n1, n2 + k] = qj , then the states at time n1 +1

can be written as

x[n1 + 1, n2] = Aix[n1, n2] + Bi(x[n1, n2 − 1] + x[n1, n2 + 1]) + Fw[n1, n2]

x[n1 + 1, n2 + k] = Ajx[n1, n2 + k] + Bj(x[n1, n2 + k − 1] + x[n1, n2 + k + 1])

+Fw[n1, n2 + k]

Here, when q[n1, n2] = qi, we denote A(q[n1, n2]) and B(q[n1, n2]) as Ai and Bi

respectively.

So we use this to write out for k ≥ 2,

P
i,j
k

= πiπjE
[
x[n1 + 1, n2]x

T [n1 + 1, n2 + k] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]

= πiπjAiE
[
x[n1, n2]x

T [n1, n2 + k] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]
AT

j

+ πiπjAiE
[
x[n1, n2]x

T [n1, n2 + k − 1] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]
BT

j

+ πiπjAiE
[
x[n1, n2]x

T [n1, n2 + k + 1] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]
BT

j

+ πiπjBiE
[
x[n1, n2 − 1]xT [n1, n2 + k] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]
AT

j

+ πiπjBiE
[
x[n1, n2 − 1]xT [n1, n2 + k − 1] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]
BT

j

+ πiπjBiE
[
x[n1, n2 − 1]xT [n1, n2 + k + 1] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]
BT

j

+ πiπjBiE
[
x[n1, n2 + 1]xT [n1, n2 + k] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]
AT

j

+ πiπjBiE
[
x[n1, n2 + 1]xT [n1, n2 + k − 1] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]
BT

j

+ πiπjBiE
[
x[n1, n2 + 1]xT [n1, n2 + k + 1] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]
BT

j

138

There are nine conditional expectations in the above equation. The first ex-

pectation can be simplified as follows,

πiπj E
[
x[n1, n2]x

T [n1, n2 + k]|q[n1, n2] = qi, q[n1, n2 + k] = qj

]

=
N∑

l,m=1

πiπjE
[
x[n1, n2]x

T [n1, n2 + k] | q[n1, n2] = qi, q[n1, n2 + k] = qj ,

q[n1 − 1, n2] = ql, q[n1 − 1, n2 + k] = qm]

P (q[n1 − 1, n2] = ql, q[n1 − 1, n2 + k] = qm|q[n1, n2] = qi, q[n1, n2 + k] = qj)

=
N∑

l,m=1

πiπjE
[
x[n1, n2]x

T [n1, n2 + k]|q[n1 − 1, n2] = ql, q[n1 − 1, n2 + k] = qm

]

P (q[n1 − 1, n2] = ql|q[n1, n2] = qi)P (q[n1 − 1, n2 + k] = qm|q[n1, n2 + k] = qj)

= πiπj

N∑

l=1

N∑

m=1

P
l,m
k

qmjqli

πiπj

=
N∑

l=1

N∑

m=1

qliqmjP l,m(L)

The second expectation can be simplified as shown below. The third, fourth,

and seventh expectations have similar derivations and aren’t shown.

πiπjE
[
x[n1, n2]x

T [n1, n2 + k − 1] | q[n1, n2] = qi, q[n1, n2 + k] = qj

]

= πiπjE
[
x[n1, n2]x

T [n1, n2 + k − 1] | q[n1, n2] = qi

]

= πiπj

N∑

l,m=1

E
[
x[n1, n2]x

T [n1, n2 + k − 1]|q[n1, n2] = qi, q[n1 − 1, n2] = ql,

q[n1 − 1, n2 + k − 1] = qm] P (q[n1 − 1, n2] = ql, q[n1 − 1, n2 + k − 1] = qm|q[n1, n2] = qi)

= πiπj

N∑

l,m=1

E
[
x[n1, n2]x

T [n1, n2 + k − 1]|q[n1 − 1, n2] = ql, q[n1 − 1, n2 + k − 1] = qm

]

P (q[n1 − 1, n2] = ql | q[n1, n2] = qi)P (q[n1 − 1, n2 + k − 1] = qm)

= πj

N∑

l,m=1

qliP
l,m
k+1

139

The fifth expectation can be simplified as shown below. The sixth, eight, and

ninth expectations have similar deriviations and aren’t shown,

πiπjE
[
x[n1, n2 − 1]xT [n1, n2 + k − 1]|q[n1, n2] = qi, q[n1, n2 + k] = qj

]

= πiπjE
[
x[n1, n2 − 1]xT [n1, n2 + k − 1]

]

= πiπj

N∑

l,m=1

P
l,m
k

With these simplifications inserted into the original system equaqtion, we ob-

tain the third equation in theorem 3.5.1. A similar derivation can be used to

obtain the first two equations. ♦

140

CHAPTER 4

STABILITY OF QUANTIZED CONTROL SYSTEMS

4.1 Introduction

In recent years there has been a considerable amount of work studying the

stability 1 of quantized feedback control systems [19][69] [5] [21] [20] [33] [25] [14]

[41] [62] [61] [53] [30]. These papers may be classified into two groups: static and

dynamic quantization policies. Static policies [19] [69] [5] [21] [20] [33] [25] presume

that data quantization at time k is only dependent on the data at time k. Such

policies are sometimes said to be memoryless. In dynamic policies [14] [41] [62] [61]

[53] [30] data quantization at time k depends on data at time instants less than or

equal to k. The major advantage of static quantization policies is the simplicity of

their coding/decoding schemes. In [19], however, it was proven that static policies

with a finite number of quantization levels cannot achieve asymptotic stability.

A finite number of quantization levels can only achieve practical stability (i.e.

states converge into a bounded set) [69] [5] [21]. When an infinite number of

quantization levels are available, sufficient bounds for asymptotic stability under

static quantization were derived in [33] [25] using robust stability methods. It

was shown in [20] that the least dense static quantizer with an infinite number of

quantization levels is the logarithmic quantizer.
1For noise-free quantized systems, the concerned stability is asymptotic stability, i.e. the

state converges to 0. For quantized systems with bounded noise, the concerned stability is
BIBO (bounded-in-bounded-output) stability, i.e. the state will be eventually bounded.

141

Dynamic policies have been shown to achieve asymptotic stability with a fi-

nite number of quantization levels [14]. These policies presume that the state,

x[k] ∈ RN , at time instant k lies inside a set P [k] called the uncertainty set. If P [k]

converges to 0, i.e. every point in P [k] converges to 0, then the system is asymp-

totically stable. The basic approach was introduced in [14]. In that paper the

uncertainty set, P [k], is a rectangle centered at the origin. P [k] is partitioned into

MN small rectangles. Denote the small rectangles as Pi[k] (i = 0, 1, · · · , MN −1).

If x[k] ∈ Pj[k] then the index j is transmitted. Based on the received symbol, j,

the encoder knows x[k] ∈ Pj [k] and comes up with an estimate of x[k] for control

purpose. Note that the encoder may receive j with certain delay. At time k + 1,

the uncertainty set Pj [k] is propagated to set P [k + 1] using what we know of the

plant’s dynamics. That paper provided sufficent conditions for the convergence

of the sequence, {P [k]}, to zero. A later paper [41] extends [14] by removing the

center assumption on P [k] and providing a tighter sufficient stability condition.

A significant generalization of the approach in [14] was presented in [62] [61].

Suppose the eigenvalues of the quantized system are denoted as λi for i = 1, . . . , N

and assume P [k] is shaped like a rectangle. Let the ith side of P [k] be equally

partitioned into 2Ri[k] parts, i.e. Ri[k] bits are assigned to the ith dimension (Ri[k]

must be an integer). The total number of bits is R[k] =
∑N

i=1 Ri[k], i.e. there

are Q[k] = 2R[k] quantization levels at time k. The approach discussed in [62]

[61] assumes a time-varying bit rate policy in which R[k] varies over time, but

has an average value R = limT→∞
1
T

∑T−1
k=0 R[k]. In [62] [61], it is shown that the

quantized system is asymptotically stabilizable if and only if

R >
N∑

i=1

max(0, log2 |λi|) (4.1.1)

142

In [53], stability is interpreted in the stochastic sense. A necessary and sufficient

condition similar to equation 4.1.1 is provided for the moment of x[k] to converge

to 0.

In real networks, constant bit rates may be more desirable than time-varying

bit rates due to power and bandwidth efficiency [29]. This chapter therefore

focuses on constant bit rate policies in which R[k] = R for all k and R is a

constant. In [62] a sufficient condition for asymptotic stability under constant bit

rates is given as

R =
N∑

i=1

Ri >
N∑

i=1

max (0, 1log2 |λi|2) . (4.1.2)

where 1·2 means 1x2 = min {n|n > x, n ∈ N}. There can be a significant gap

between the bounds in equations 4.1.1 and 4.1.2, so it is natural to ask whether

there exists a tighter bound than the one in equation 4.1.2 for the constant bit

rate case. That is precisely the question addressed in this chapter.

This chapter shows that a lower bound on the number of quantization levels

required for asymptotic stability is given by the equation

Q = 2R ≥
⌈

N∏

i=1

max(1, |λi|)
⌉

. (4.1.3)

We then introduce a dynamic bit assignment policy (DBAP) that actually

achieves this bound. This bit assignment is done as follows. Suppose P [k] is a

parallelogram, there are Q = 2R quantization levels and Q is an integer. At every

step, only the “longest” side of P [k] (in the sense of a weighted length) is equally

partitioned into Q parts; the other sides aren’t partitioned. Because no side is

always the longest, the bit assignments are dynamic rather than static. We prove

143

that the lower bound in equation 4.1.3 is realized by this policy in section 4.4. In

other words, we achieve the minimum bit rate for asymptotic stability under the

constant bit rate constraint [48].

Up to now we have reviewed the literature on asymptotic stability, i.e. the

concerned stability for noise free quantized systems. Besides noise free quantized

system, there are some quantized systems perturbed by bounded noise. Significant

attention has also been caught on stability of such bounded system, i.e. BIBO

stability. In [30], sufficient BIBO stability conditions are provided for the quan-

tized systems with diagonalizable system matrices. In [62], the minimum bit rate

for BIBO stability is derived under the time-varying bit rate configuration. The

achieved minimum (average) bit rate is exactly specified by eq. 4.1.1. When the

constant bit rate constraint is considered, it is shown in [62] that BIBO stability

is achievable if the bit rate R satisfies eq. 4.1.2. Again there may exist a gap

between the bounds in eq. 4.1.1 and 4.1.2. In section 4.5, we derive the minimum

bit rate for BIBO stability under the constant bit rate configuration, which is

specified by eq. 4.1.3 and achieved by a modified version of DBAP.

Most of the aforementioned papers focus on state quantization. In reality, the

system state is not necessarily available. Perhaps what we have is only output. For

such systems, there are two types of quantization strategies, quantizing the output

directly or first estimating the state and then quantizing the estimated state. In

[61] [54], the second strategy is implemented and the minimum bit rate (for both

asymptotic stability and BIBO stability) is achieved under the time-varying bit

rate configuration. In [58], the first strategy, i.e. the direct output quantization, is

implemented under the constant bit rate constraint and sufficient (BIBO) stability

conditions are achieved based on l1 control theories. The novelty of [58] lies in its

144

bit allocation, which allocates the available bits to both the current output and

the previous outputs. In section 4.7, we comment on implementing the second

strategy, i.e. quantizing the estimated state, on an output feedback system and

obtaining the minimum bit rate (for both asymptotic stability and BIBO stability)

under the constant bit rate constraint.

This chapter is organized as followes. Section 4.2 formally defines the quan-

tized feedback control system. Section 4.3 reviews notational conventions and

preliminary results. Section 4.4 derives the minimum constant bit rate for asymp-

totic stability of noise free quantized systems. Section 4.5 derives the minimum

constant bit rate for BIBO stability of quantized systems with bounded noise.

Section 4.6 comments on extending the results on the state feedback systems to

the output feedback case and derives the minimum constant bit rate for asymp-

totic stability and BIBO stability. Section 4.7 summarizes the achieved results.

The proofs to all theorems are found in the appendix, section 4.8.

4.2 Quantized feedback control systems

This paper studies a quantized feedback control system with dropouts, which is

shown in figure 4.1. For the system in figure 4.1, let x[k] ∈ RN be the state. The

state, x[k], is quantized into one of Q symbols and sent over the communication

channel. The transmitted symbol s[k] is received by the decoder with one step

delay s′[k] = s[k − 1] or is dropped s′[k] = φ. A dropout is denoted as that the

decoder receives the empty signal, φ. We assume that the average dropout rate

is denoted as ε with a detailed dropout model given later. The decoder uses the

received symbols {s′[k]} to estimate the state. This estimate is denoted as xq[k],

which can also be viewed as a quantized version of x[k]. The control input u[k]

145

plant

[1] [] [] []

[] []q

x k Ax k Bu k w k

u k Fx k

+ = + +
=

Encoder

][][kPkx ∈

}1,,1,0{][−∈ Qks 

[]w k

Decoder

Channel
][' ks

][kxq

Figure 4.1. Quantized feedback control system

is then constructed from xq[k]. In figure 4.1, the input signal, w[k], represents an

exogenous noise that satisfies

‖w‖∞ ≤ M (4.2.4)

A noise free system is a special case of the systems in figure 4.1 by setting M = 0.

The plant in figure 4.1 is a discrete-time linear system whose state equations

are






x[k + 1] = Ax[k] + Bu[k] + w[k]

u[k] = Kxq[k]
(4.2.5)

We study stability under the following assumptions

1. (A, B) is controllable where A is in real Jordan canonical form, i.e. A =

diag(J1, J2, · · · , Jp) [31]. Ji is an ni × ni real matrix with a single real

146

eigenvalue λi or a pair of conjugate eigenvalues λi and λi. All eigenvalues

λi are assumed to be unstable, i.e. |λi| > 1.

2. The initial condition x[0] lies in a parallelogram P [0].

3. Transmitted symbols, s[k], are dropped at the rate of ε symbols per trans-

mission. The precise definition of ε will be found in equation 4.2.7. We

assume that the encoder and decoder both know whether a dropout has

occurred.

4. Both the encoder and the decoder know the system matrices (A and B),

the coding-decoding policy and the control law. They also agree upon the

initial uncertainty set, i.e. P [0].

Assumption 2 requires that the initial state is known to lie within a specified

parallelogram P [0]. This set may be written as

P [0] = xq[0] + U [0]

where xq[0] is the center of P [0] and U [0] is a parallelogram centered at the origin

and defined in equations 4.3.10-4.3.11.

Assumption 3 comes from the non-determinism of the network. We introduce

a dropout indicator d[k],

d[k] =






1, the symbol at time k is dropped

0, otherwise
(4.2.6)

147

We assume that the dropout model satisfies

ε = lim
L−→∞

1

L

L∑

i=1

d[i + k0], (4.2.7)

for all k0 ≥ 0 where ε is the “average” dropout rate and the convergence in

equation 4.2.7 is uniform with respect to k0.

Assumption 4 requires that the coder and the decoder deal with the same

initial uncertainty, and share the same coding-decoding policy and control law

so that the symbol produced by the encoder can be correctly interpreted by the

decoder. This is a strong assumption for it requires that the encoder and decoder

are “synchronized”. Maintaining such synchronization in a fault-tolerant manner

requires further study, but that study is not done in this thesis.

4.3 Preliminary results

This section introduces notational conventions and outlines a proof for the

bound in equation 4.1.3. For the matrix A in assumption 1, let

γ(A) =
p∏

i=1

(max(1, |λi|))ni (4.3.8)

We assume all eigenvalues of A are unstable. So γ(A) = |det(A)|, where det(·) is

the determinant of a matrix.

The state x[k] at time k is quantized with respect to a parallelogram repre-

senting the quantization “uncertainty”. These uncertainty sets are represented

as

P [k] = xq[k] + U [k] (4.3.9)

148

where xq[k] ∈ RN is the center of P [k] and U [k] is a parallelogram with its

center at the origin. The parallelogram U [k] is formally represented by a set of

vectors {vi,j[k] ∈ Rni} where i = 1, . . . , p and j = 1, . . . , ni. The “side” of the

parallelogram associated with the ith Jordan block in A is denoted as the convex

hull

Si[k] = Co

{
v : v =

ni∑

j=1

(±1

2
)vi,j [k]

}
(4.3.10)

The entire parallelogram, U [k], may therefore be expressed as the Cartesian prod-

uct of the sides, Si[k]. In other words

U [k] =
p∏

i=1

Si[k] (4.3.11)

We illustrate the definitions in eq. 4.3.10 and 4.3.11 through a 2-dimensional

example. Suppose A =




λ 1

0 λ



. U [k] is specified by {v1,1[k], v1,2[k]}. S1[k] in

eq. 4.3.10 is the convex hull of 4 vertices.

S1[k] = Co

{
1

2
v1,1[k] +

1

2
v1,2[k],

1

2
v1,1[k] − 1

2
v1,2[k]

−1

2
v1,1[k] +

1

2
v1,2[k],−1

2
v1,1[k] − 1

2
v1,2[k]

}

U [k] =
1∏

i=1

Si[k] = S1[k]

The volume of U is defined as vol(U) =
∫

x∈U 1 · dx. The “size” of U [k] is

measured by its diameter dmax(U [k]). The diameter of U is defined as

dmax(U) = sup
x,y∈U

‖x − y‖2 (4.3.12)

149

where ‖ · ‖2 denotes Euclidean 2-norm of a vector. The quantization error is

defined as e[k] = x[k] − xq[k]. By equation 4.3.9, we know e[k] ∈ U [k]. When

a quantization policy is used, we will generate a sequence of uncertainty sets,

{U [k]}. The following lemma asserts that the convergence of the diameter of U [k]

is equivalent to asymptotic stability of the system.

Lemma 4.3.1 The system in equation 4.2.5 is asymptotically stable (with M = 0)

if and only if the sequence of uncertainty sets, {U [k]}, satisfies

lim
k−→∞

dmax(U [k]) = 0. (4.3.13)

Lemma 4.3.1 can be proven in a manner analogous to that found in Lemma 3.5.1

of [61]. For a quantized system with bounded noise, we can get results similar to

those in Lemma 4.3.1.

Lemma 4.3.2 The system in equation 4.2.5 is BIBO stable (with M > 0) if and

only if the sequence of uncertainty sets, {U [k]}, satisfies

lim sup
k−→∞

dmax(U [k]) < ∞. (4.3.14)

Remark: By Lemmas 4.3.1 and 4.3.2, we know the convergence and boundedness

of the state {x[k]} are equivalent to the convergence and boundedness of the

quantization error {e[k]} with e[k] ∈ U [k]. Therefore the ongoing discussions will

focus on the evolution of U [k].

A lower bound on the number of quantization levels required to stabilize the

feedback control system is stated below in theorem 4.3.1. We only sketch the

proof of this theorem as the proof’s method directly follows that used in [30].

150

Theorem 4.3.1 Under assumptions 1 - 4, if the quantized feedback system in

equation 4.2.5 (with M = 0) can be asymptotically stabilized, then the number of

quantization levels, Q, satisfies

Q ≥
⌈
γ(A)

1
1−ε

⌉
(4.3.15)

Sketch of Proof: The volume of U [k] (in the worst case) is updated by

vol(U [k + 1])






≥ |det(A)|
Q vol(U [k]), d[k] = 0

= |det(A)|vol(U [k]), d[k] = 1

Because of asymptotic stability, lemma 4.3.1 implies vol(U [k]) → 0 as k → ∞.

This volume limit, together with the dropout rate of ε, yields

|det(A)|
Q1−ε

< 1 (4.3.16)

Because γ(A) = |det(A)| and Q is an integer, we obtain the lower bound in

equation 4.3.15. ♦

Similarly we can get a corollary corresponding to Theorem 4.3.1 for the quan-

tized system with bounded noise. Its proof is omitted.

Corollary 4.3.1 Under assumptions 1 - 4, if the quantized feedback system in

equation 4.2.5 (with M > 0) can be stabilized in the BIBO sense, then the number

of quantization levels, Q, satisfies

Q ≥
⌈
γ(A)

1
1−ε

⌉
(4.3.17)

151

4.4 Stability of noise free quantized systems

This section presents the dynamic bit assignment policy (algorithm 4.4.1) and

states a theorem (theorem 4.4.1) asserting that the lower bound in Theorem 4.3.1

is achieved by this bit assignment policy. Therefore the minimum bit rate (for

asymptotic stability) is achieved under the constant bit rate constraint.

The following algorithm dynamically quantizes the state x[k] for the feed-

back system in equation 4.2.5 under assumptions 1- 4. The algorithm updates

a parallelogram, P [k] containing the state at time k. This parallelogram, P [k],

is characterized by, xq[k], the center of the parallelogram, and U [k], the uncer-

tainy set. The uncertainty set U [k] is formed from a set of vectors {vi,j[k] ∈ Rni}

(i = 1, . . . , p and j = 1, . . . , ni) according to equations 4.3.10-4.3.11. The un-

certainty set U (I,J)[k] is a modification of U [k] that is formed from the vectors
{
v′

i,j[k]
}

where v′
i,j = vi,j if (i, j) $= (I, J) and v′

i,j = vi,j/Q if (i, j) = (I, J). The

basic variables updated by this algorithm are therefore the collection of vectors

{vi,j[k]} and xq[k]. The quantized signal that is sent between the encoder and

decoder at time k is denoted as s[k]. This quantized signal is equal to one of

Q discrete symbols. The following algorithm consists of two tasks that are exe-

cuted concurrently, the encoder and decoder tasks. Each task’s first step starts its

execution at the same time instant.

Algorithm 4.4.1 Dynamic Bit Assignment:

Encoder/Decoder initialization:

Initialize xq[0] and {vi,j[0]} so that x[0] ∈ xq[0] + U [0] and set k = 0.

Encoder Task:

152

1. Select the indices (I, J) by

(I, J) = arg max
i,j

‖Jivi,j[k]‖2 .

2. Quantize the state x[k] by setting s[k] = s if and only if

x[k] ∈ xq[k] + x(I,J)
s + U (I,J)[k]

where

x(I,J)
s =

[
0 · · · 0 vT 0 · · · 0

]T

(4.4.18)

and v = −Q+(2s−1)
2Q vI,J [k] for s = 1, . . . , Q.

3. Transmit the quantized symbol s[k] and wait for acknowledgement

4. Update the variables

vi,j [k + 1] = Jivi,j[k]

xq[k + 1] = (A + BK)xq[k]

5. If decoder ack received:

vI,J [k + 1] :=
1

Q
vI,J [k + 1]

xq[k + 1] := xq[k + 1] + Ax(I,J)
s[k]

where x(I,J)
s[k] is defined in equation 4.4.18.

6. Update time, k := k + 1 and return to step 1.

153

Decoder Task:

1. Update the variables

vi,j [k + 1] = Jivi,j[k]

xq[k + 1] = (A + BK)xq[k]

2. Wait for quantized data, s[k], from encoder.

3. If data received:

vI,J [k + 1] :=
1

Q
vI,J [k + 1]

xq[k + 1] := xq[k + 1] + Ax(I,J)
s[k]

where x(I,J)
s[k] is defined in equation 4.4.18. Then send ack back to the encoder.

4. Update time index, k := k + 1, and return to step 1.

Remark: This algorithm assumes the variables {vi,j [k]} and xq[k] are “syn-

chronized” at the beginning of the kth time interval. Furthermore, we assume the

“ack” from decoder to the encoder is reliably transmitted.

Remark: The decision in step 1 of the encoder algorithm is made on the

uncertainty set at time k + 1, rather than k. This was motivated by preliminary

studies which showed that using the kth uncertainty set may perform poorly when

some of the λi are large.

Theorem 4.4.1 Let Q =
⌈
γ(A)

1
1−ε

⌉
. The feedback system in equation 4.2.5 is

asymptotically stable under the quantizer in algorithm 4.4.1. Furthermore for any

154

∆η > 0, there exists a finite λ∆η > 0 such that

dmax(U [k]) ≤ λ∆η (η + ∆η)k/N (4.4.19)

where η = γ(A)
Q1−ε

In order to improve readability, we move the proof of theorem 4.4.1 to the ap-

pendix, section 4.8.

Remark: Theorem 4.4.1 characterizes the bit rate R with the number of

quantization levels Q, i.e. Q = 2R. In that theorem, we enforce the constant

bit rate constraint only through the integer constraint on Q, which may not be

enough. For example, Q = 3 may require R = 1.59bits which can not be realized

by a constant bit rate constraint. In fact the constant bit rate constraint is

equivalent to the integer constraint on R. With this constraint considered, we

obtain the following minimum bit rate

Corollary 4.4.1 The minimum constant bit rate to guarantee asymptotic stability

of noise-free quantized systems is

R =

⌈
1

1 − ε
log2 (γ(A))

⌉
(4.4.20)

The proof to the above Corollary directly comes from Theorems 4.3.1 and 4.4.1

by considering Q = 2R and the integer constraint on R. So it is omitted here.

Remark: We now compare the two sufficient stability conditions in equations

155

4.1.2 and 4.1.3. For convenience, we rewrite these two conditions as

Q = 2R ≥
N∏

i=1

2*log2(|λi|)+ (4.4.21)

Q ≥ 1
N∏

i=1

|λi|2 (4.4.22)

Considering the ceiling operations above, we know that the bound in equation

4.4.22 is equal to or smaller than that in equation 4.4.21. We use the following

example to illustrate this difference more clearly. Let A =




1.8 0

0 1.1



. The

bound in equation 4.4.21 is Q ≥ 4. The bound in equation 4.4.22 is Q ≥ 2. So

the latter bound is better (smaller).

We offer an intuitive explanation for this difference. The quantization policy

in [61] deals seperately with the two subsystems

x1[k + 1] = 1.8x1[k] + b1u[k] (4.4.23)

x2[k + 1] = 1.1x2[k] + b2u[k] (4.4.24)

Every subsystem is unstable and therefore needs at least 2 quantization levels (1

bit). So by equation 4.1.2, we need at least 2×2 = 4 quantization levels. Although

the two subsystems are unstable, however, it can be seen that they are not too

unstable. If we assign 2 quantization levels to every subsystem, there exists excess

stability margin because 1.8
2 < 1 and 1.1

2 < 1. This paper’s dynamic bit assignment

policy considers the two subsystems as a whole. It should be possible to combine

the two stability margins together so that fewer quantization levels are required.

This is precisely the case in this example. Figure 4.2 shows the reponse of the

quantized system under our dynamic bit assignment policy in which only 1 bit is

156

used to quantize the feedback. The plot clearly shows that this system converges

to zero. The “chattering” in this plot arises from the fact that the algorithm

quantizes only one component of the state at a time.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Time, k

||v
2,

1[k
]||

2

Figure 4.2. Response of quantized system

4.5 Stability of quantized systems with bounded noise

The plant of this section is a quantized system with bounded noise (M >

0). The main concern is BIBO stability, i.e. the eventual boundedness of the

state. Section 4.4 considers a noise-free quantized system and studies asymptotic

stability, i.e. the convergence of the state. The difference between the plants

in two sections is the injected bounded noise. For linear systems, such noise

157

will not affect stability, i.e. the asymptotic stability of the noise-free linear system

implies the BIBO stability of the corresponding linear system with bounded noise.

The quantized systems are, however, nonlinear due to the nonlinear quantization

operation. So it is not trivial to derive the minimum bit rate for BIBO stability,

although we know the minimum bit rate for asymptotic stability. In this section,

we consider the constant bit rate constraint as argued in section 4.1.

4.5.1 Mathematical preliminaries

In section 4.3, we assume the uncertainty set U [k] in eq. 4.3.9 is a parallel-

ogram. For the quantized system with bounded noise, we assume U [k] to be a

special parallelogram, a rectangle. More specifically, U [k] is a rectangle with side

lengths {Li,j [k]}i=1,··· ,p;j=1,··· ,ni.

U [k] =
p∏

i=1

ni∏

j=1

[−Li,j [k], Li,j [k]] (4.5.25)

We stack all side lengths into a vector

L[k] =
[
L1,1[k], · · · , L1,n1[k], · · · , Lp,1[k], · · · , Lp,np[k]

]T
(4.5.26)

For notation simplicity, we denote U [k] as

U [k] = rect(L[k]) (4.5.27)

Correpsonding to the block diagonal structure of A = diag(Ji)
p
i=1, we define two

matrices H = diag(Hi)
p
i=1 and K = diag(Ki)

p
i=1 where Hi and Ki have the same

dimension as Ji (i = 1, · · · , p). Hi and Ki are defined as follows.

158

When λi is real,

Hi = I,

Ki =





|λi| 1 0 · · · 0

0 |λi| 1 · · · 0
...

...
...

...
...

0 0 0 · · · |λi|





ni×ni

.

When λi = |λi|ejθi is complex,

Hi = diag
(
r(θi)−1, · · · , r(θi)−1

)
,

Ki =





|λi|I E 0 · · · 0

0 |λi|I E · · · 0
...

...
...

...
...

0 0 0 · · · |λi|I





ni×ni

where r(θi) =




cos(θi) sin(θi)

−sin(θi) cos(θi)



, E =




1 1

1 1



.

Define the new state variable z[k] = Hkx[k] [61]. The transformed system’s

dynamics satisfies the following state equations [61].

z[k + 1] = HAz[k] + Hk+1Bu[k] + w[k] (4.5.28)

where w[k] = Hk+1w[k]. By the boundedness of w[k] and the structure of H , we

know w[k] is still bounded,

‖w[k]‖∞ ≤ M (4.5.29)

159

where M = 2M .

The boundedness of z[k] is equivalent to that of x[k], so we will study z[k]

instead of x[k]. The state z[k] lies in a rectangle Pz[k].

z[k] ∈ Pz[k] = zq[k] + Uz[k]. (4.5.30)

where zq[k] is the center of Pz[k] and Uz[k] = rect(Lz[k]) with rect(·) defined in

eq. 4.5.27. The update rules of zq[k] and Lz[k] will be presented later.

By Lemma 4.3.2 and the fact supx[k]∈U [k] ‖x[k] − xq[k]‖2 ≤ dmax(U [k]) ≤

2 supx[k]∈U [k] ‖x[k]−xq[k]‖2, we know that the eventual boundedness of x[k]−xq[k]

is equivalent to that of x[k]. By the transformation z[k] = Hkx[k] and zq[k] =

Hkxq[k] and the boundedness of all elements of Hk and
(
Hk

)−1
, we know the

boundedness of x[k] − xq[k] is equivalent to that of z[k] − zq[k]. The bound of

z[k] − zq[k] is measured by Lz[k]. Therefore the eventual boundedness of x[k]

can be equivalently studied through Lz[k]. For notation simplicity, we omit the

subscript z in Pz[k], Uz[k] and Lz[k] from now. Such omission should not result

in any confusion since the rest of this section studies only z[k] and zq[k].

4.5.2 Minimum bit rate for BIBO stability

By Corollary 4.3.1, we get a lower bound on Q for BIBO stability. This section

introduces a modified version of the dynamic bit assignment policy (DBAP) in

section 4.4 and proves it achieves that bound, thereby demonstrating the minimum

bit rate for BIBO stability as specified by Corollary 4.3.1 is achievable by DBAP.

DBAP updates a rectangle, P [k] containing the state z[k] at time k. This

rectangle, P [k], is characterized by, zq[k], the center of the rectangle, and U [k],

the uncertainty set. The uncertainty set U [k] is formed from its side lengths L[k]

160

according to equation 4.5.27. LIk,Jk [k] is a modification of L[k] through

LIk,Jk
i,j [k] =






Li,j [k], (i, j) $= (Ik, Jk)

Li,j [k]/Q, (i, j) = (Ik, Jk)
(4.5.31)

The basic variables updated by this algorithm are therefore L[k] and zq[k].

At every time step, the side of U [k] with the longest weighted length a2
i,jLi,j[k]

(i = 1, · · · , p; j = 1, · · · , ni) is partitioned into Q equal parts, where ai,j is defined

in equation 4.5.32. Thus U [k] is partitioned into Q smaller rectangles. The index

of the smaller rectangle which z[k] lies within is sent from the encoder to the

decoder at time k and is denoted as s[k]. The following algorithm describes two

tasks that are executed concurrently, the encoder and decoder algorithms. Each

task’s first step starts its execution at the same time instant. Before presenting the

quantization algorithm, we define the weighting parameters ai,j (i = 1, · · · , P ; j =

1, · · · , ni), together with 3 other parameters ρ0, ε1 and ε0.

ai,j =






ρ−ni+j
0 , real λi;

ρ
−ni

2 + j
2

0 , complex λi, even j

ρ
−ni

2 + j+1
2

0 , complex λi, odd j

(4.5.32)






ρ0 > maxp
i=1

(
3Q
ε0

, (|λi| + ε0)Q
)

Q1−ε−ε1 > (1 + Qε0)
N γ(A)

ε1 > 0, ε0 > 0

(4.5.33)

Algorithm 4.5.1 Dynamic Bit Assignment:

Encoder/Decoder initialization:

Initialize zq[0] and L[0] so that z[0] ∈ zq[0] + U [0] and set k = 0.

Encoder Algorithm:

161

1. Select the indices (Ik, Jk) by

(Ik, Jk) = arg max
i,j

(
a2

i,jLi,j [k]
)

(4.5.34)

2. Quantize the state z[k] by setting s[k] = s if and only if

z[k] ∈ zq[k] + z(Ik ,Jk)
s + rect(L(Ik,Jk)[k])

where

z(Ik ,Jk)
s =

[
0 · · · 0 l 0 · · · 0

]T

(4.5.35)

and l = −Q+(2s−1)
2Q LIk,Jk

[k] for s = 1, . . . , Q.

3. Transmit the quantized symbol s[k] and wait for acknowledgement

4. Update the variables

L[k + 1] = KL[k] + [M, · · · , M]T

zq[k + 1] = HAzq[k] + Hk+1BGH−kzq[k]

5. If decoder ack received:

L[k + 1] = KLIk ,Jk[k] + [M, · · · , M]T

zq[k + 1] = zq[k + 1] + HAz(Ik ,Jk)
s[k]

where z(Ik ,Jk)
s[k] is defined in equation 4.5.35.

6. Update time, k = k + 1 and return to step 1.

162

Decoder Algorithm:

1. Update the variables

L[k + 1] = KL[k] + [M, · · · , M]T

zq[k + 1] = HAzq[k] + Hk+1BGH−kzq[k]

2. Wait for quantized data, s[k], from encoder.

3. If data s[k] received:

L[k + 1] = KLIk ,Jk[k] + [M, · · · , M]T

zq[k + 1] = zq[k + 1] + HAz(Ik ,Jk)
s[k]

where (Ik, Jk) is determined similarly to equation 4.5.34 and z(Ik ,Jk)
s[k] is defined

in equation 4.5.35. Then send ack back to the encoder.

4. Update time index, k = k + 1, and return to step 1.

Remark: In algorithm 4.5.1, the side is measured by the weighted length

a2
i,jLi,j [k] rather than the direct length Li,j [k]. We demonstrate its motivation

through an example. Let A =




λ 1

0 λ



, where λ > 1. Suppose we make the

partition decision based on L1,j [k] (j = 1, 2). When L1,1[k] > L1,2[k], we can

follow the procedure in algorithm 4.5.1 to obtain






L1,1[k + 1] = λ
QL1,1[k] + L1,2[k] + M

L1,2[k + 1] = λL1,2[k] + M
(4.5.36)

163

We will encounter a problem when L1,1[k] is close to L1,2[k], i.e. L1,1[k] ≈ L1,2[k].

Under that condition, equation 4.5.36 can be written as






L1,1[k + 1] ≈ (1 + λ
Q)L1,1[k] + M

L1,2[k + 1] = λL1,2[k] + M
(4.5.37)

It can be seen that both L1,1[k] and L1,2[k] have been increased. So the uncer-

tainty of U [k] has been increased, which is not what we expect. If we keep the

above partition decision based on L1,j [k], then L1,j [k] (j = 1, 2) will eventually di-

verge. The reason for such divergence is the coupling between L1,1[k] and L1,2[k].

When L1,1[k] and L1,2[k] are comparable, partitioning L1,1[k] may decrease neigher

L1,1[k] nor L1,2[k], as shown above. But when L1,1[k] is much larger than L1,2[k],

partitioning L1,1[k] does decrease it. This fact inspired us to use the weighted

lengths a2
1,jL1,j [k], where a1,1 = ρ−1

0 << 1 and a1,2 = 1. If a2
1,1L1,1[k] > a2

1,2L1,2[k],

it is guaranteed that

L1,1[k] >> L1,2[k] (4.5.38)

So L1,1[k+1] < L1,1[k] (when L1,1[k] is large compared to M), i.e. the uncertainty

is decreased.

The above discussions are applicable for general Ji. Note that ai,ni = 1 (i =

1, · · · , P). If ni = 1, the weighted length rule reduces into the direct length rule.

Remark: Now we compare the quantization policy in this section and the

quantization policy in section 4.4. The obvious difference between them is that

noise-free systems are considered in section 4.4 and systems with bounded noise

are studied here. Because of the exogenous noise, the method in section 4.4 is not

applicable here. In section 4.4, the uncertainty set U [k] takes the form of a super-

164

parallelogram. It deserves special attention that U [k] is the tightest uncertainty

set in the sense that every point in U [k] can be reached by some initial condition.

In this section, the uncertainty set U [k] is assumed to be rectangular. After

one step, U [k] evolves into a set U1[k + 1]. Due to the effect of noise, U1[k + 1] is

neither a rectangle nor a parallelogram for a non-diagonalizable system matrix. We

therefore overbound U1[k +1] with a larger rectangle U [k +1]. So the uncertainty

set in this paper is not as tight as that in section 4.4. One may suspect that

the quantization policy in this paper is more conservative and would need more

quantization levels, i.e. larger Q than that in section 4.4. But suprisingly, this

does not appear to be the case. Theorem 4.5.1 states that the system in this paper

can be stabilized with the same smallest Q as that in section 4.4.

Theorem 4.5.1 Let Q =
⌈
γ(A)

1
1−ε

⌉
. The quantized linear system in equation

4.2.5 is BIBO stable under the dynamic quantizer in algorithm 4.5.1, i.e. the

state x[k] is eventually bounded for bounded noise w[k].

The proof is found in the appendix, section 4.8.

Theorem 4.5.1 characterizes the bit rate R with the number of quantization

levels Q, i.e. Q = 2R. Similarly to Corollary 4.4.1, we may consider the integer

contraint on R and obtain following minimum bit rate result.

Corollary 4.5.1 The minimum constant bit rate to guarantee BIBO stability for

quantized systems with bounded noise is

R =

⌈
1

1 − ε log2 (γ(A))

⌉
(4.5.39)

The proof to the above Corollary directly comes from the ones of Corollary 4.3.1

and Theorem 4.5.1 by considering Q = 2R and the integer constraint on R. So it

165

is omitted here.

4.6 Minimum constant bit rate for stability of quantized systems under output

feedback

In sections 4.4 and 4.5, we consider the minimum constant bit rate for stability

of quantized systems under state feedback. If what we have is only output rather

than state, what is the minimum bit rate? In [61] and [54], the question is answered

under the time-varying bit rate configuration. We give an answer to the question

under the constant bit rate constraint. The concerned plant is






x[k + 1] = Ax[k] + Bu[k] + w[k]

y[k] = Cx[k]
(4.6.40)

where (A, B) is controllable, (C, A) is observable and w[k] is bounded. The output

y[k] is quantized into R bits where R is an integer, i.e. the constant bit rate

constraint is considered. How large should R be in order to guarantee BIBO

stability? Because state is the full description of the system, the minimum bit

rate under state feedback is a lower bound for output feedback, which is presented

in the following corollary.

Corollary 4.6.1 The minimum bit rate to guarantee BIBO stability under output

feedback must satisfy

R ≥
⌈

1

1 − ε log2 (γ(A))

⌉
(4.6.41)

A lower bound on stabilizable R is provided in eq. 4.6.41. We will construct a

quantization policy which guarantees the equality in eq. 4.6.41 holds, i.e. the

166

minimum bit rate is achieved.

Because the system in eq. 4.6.40 is observable, we can construct a Luenberger

observer.

x̂[k + 1] = Ax̂[k] + Bu[k] + L(Cx̂[k] − y[k]) (4.6.42)

where L is chosen so that A − LC is stable. Denote the observation error as

ê[k] = x[k] − x̂[k]. ê[k] is governed by

ê[k + 1] = (A − LC)ê[k] + w[k] (4.6.43)

Because (A − LC) is stable, {ê[k]} is bounded

‖ê[k]‖∞ ≤ E < ∞, ∀k ≥ 0 (4.6.44)

Let w[k] = Lê[k]. By the boundedness of {ê[k]}, we know {w[k]} is also bounded

‖w[k]‖∞ ≤ M, ∀k ≥ 0 (4.6.45)

The observer in eq. 4.6.42 is man-made and its state is available for the encoder.

We may virtually consider eq. 4.6.42 as our quantized system, i.e.






x̂[k + 1] = Ax̂[k] + Bu[k] + w[k]

u[k] = F x̂q[k]
(4.6.46)

where x̂q[k] is the quantized version of x̂[k] and F is a stabilizing state feedback

gain, i.e. A + BF is stable. Eq. 4.6.46 is exactly the model considered in section

4.5. By theorem 4.5.1 (Corollary 4.5.1), we know when R =
⌈

1
1−ε log2 (γ(A))

⌉
,

167

the eventual boundedness of x̂[k] can be guaranteed by algorithm 4.5.1. Because

x[k] = x̂[k] + ê[k], we get

‖x[k]‖∞ ≤ ‖x̂[k]‖∞ + ‖ê[k]‖∞ (4.6.47)

Consider the bound on ê[k] in eq. 4.6.44 and the eventual boundedness of x̂[k],

we know x[k] is eventually bounded. Therefore we get the following statement.

Proposition 4.6.1 The minimum constant bit rate to guarantee BIBO stability

of quantized systems under output feedback is

R =

⌈
1

1 − ε log2 (γ(A))

⌉
(4.6.48)

Remark: For noise-free quantized system under output feedback, we may achieve

the similar minimum constant bit rate as proposition 4.6.1.

4.7 Conclusions

This chapter considers the constant bit rate constraint in quantization and

presents the minimum number of quantization levels for asymptotic stability (for

a noise-free quantized system) and the minimum number of quantization levels for

BIBO stability (for a quantized system with bounded noise) under such constraint.

Its major contributions lie in the proposed dynamic quantization policy, DBAP

which can achieved the minimum number of quantization levels. Such results are

extended to achieve the minimum constant bit rate for stability with the integer

constraint enforced on the bit rate. The minimum constant bit rate result is also

extended to the quantized system under output feedback.

168

4.8 Appendix: proofs

4.8.1 Proof to Theorem 4.4.1

The following lemma follows from basic algebra, so its proof is omitted.

Lemma 4.8.1 Let Ji be as defined in assumption 1. For any non-zero vi ∈ Rni,

lim
k−→∞

‖Jk+1
i vi‖2

‖Jk
i vi‖2

= |λi|

By algorithm 4.4.1, we know vi,j [k] is a scaled version of Jk
i vi,j [0]. Therefore lemma

4.8.1 guarantees that for any ε0 > 0, there exists K1 such that

(1 − ε0)|λi| ≤
‖Jivi,j[k]‖2

‖vi,j[k]‖2
≤ (1 + ε0)|λi|, (4.8.49)

for k ≥ K1 and any i and j.

Define the average dropout rate as

εl,k =
1

l

l−1∑

i=0

d[k + i] (4.8.50)

Since εl,k −→ ε as l −→ ∞, we know that for any δ0 > 0, there exists M > 0 such

that

ε− δ0 ≤ εl,k ≤ ε+ δ0, (4.8.51)

for all l ≥ M and all k.

We prove that the uncertainty set U [k] converges to zero by first showing

that the “volume” of this set (as defined by the product of side lengths p[k] =
∏p

i=1

∏ni

j=1 ‖vi,j[k]‖2) converges exponentially to zero.

169

Lemma 4.8.2 Assume Q ≥ 1γ(A)
1

1−ε 2 and let η = γ(A)
Q1−ε . For any ∆η > 0, there

exist constants p∆η and K3 such that for all k ≥ K3

p[k] ≤ p∆η(η + ∆η)k (4.8.52)

Proof: For any small numbers ε0, δ0, there exists K3 and M such that equation

4.8.49 and 4.8.51 hold. So we limit our attention to k ≥ K3 and l ≥ M . From

time k to k + l − 1, there are (1 − εl,k)l sucessfully quantized measurements. So

p[k + l] =
1

Q(1−εl,k)l

p∏

i=1

ni∏

j=1

‖J l
ivi,j [k]‖2.

Equations 4.8.49 and 4.8.51 let us bound p[k + l] as

p[k + l] ≤
(
γ(A)

Q1−ε−δ0
(1 + ε0)

N

)l

p[k]

Note that if Q ≥ 1γ(A)1/(1−ε)2, then η < 1. Choose K3 and M large enough to

make ε0 and δ0 arbitrarily small. We can couple this choice with the fact that

η < 1 to infer that γ(A)
Q1−ε−δ0

(1 + ε0)N < min(1, η + ∆η). If we let

p∆η = (max(p[K3], · · · , p[K3 + M − 1]))
(

γ(A)
Q1−ε−δ0

(1 + ε0)N
)−M−K3

,

then p[k] ≤ p∆η (η + ∆η)k for k ≥ K3. ♦

For the preceding lemma to imply that U [k] goes to zero, we must establish

that each side of the parallelgram gets quantized an infinite number of times. In

particular let Ti,j denote the time instants when side vi,j was successfully quan-

170

tized. In other words,

Ti,j = {k : Ik = i, Jk = j, d[k] = 0}

Define T∞ = {(i, j) : card(Ti,j) = ∞} where card(I) is the cardinality of set I.

The following lemma shows that card(Ti,j) = ∞,

Lemma 4.8.3 If vi,j [0] $= 0, then card(Ti,j) = ∞

Proof: This lemma is proven by contradiction. Suppose vI,J [0] $= 0 but

card(TI,J) < ∞, then there exists a large number Ku such that Ku ≥ K1 and such

that the side vI,J is never quanitzed after time Ku. The update rule for vI,J in our

algorithm requires vI,J [k+1] = JIvI,J [k] for all k ≥ Ku +1. Applying lemma 4.8.1

to this equation yields ‖JIvI,J [k]‖2 ≥ c0((1 − ε0)|λI |)k−Ku for all k ≥ Ku where

c0 = ‖JIvI,J [Ku]‖2. By choosing ε0 small enough, we can guarantee (1−ε0)|λi| > 1

for all i = 1, . . . , p, which implies that ‖JIvI,J [k]‖ is bounded below by a monotone

increasing function of k.

Now consider any other side vi,j where (i, j) $= (I, J) and card(Ti,j) = ∞.

Define Ki,j = min {k | k ∈ Ti,j, k ≥ Ku}. In other words, Ki,j is the first time

instant after Ku when side vi,j is quantized again. From our algorithm, we know

that

‖vi,j[Ki,j + 1]‖2 =
1

Q
‖Jivi,j[Ki,j]‖2 ≥

1

Q
‖JIvI,J [Ku]‖2 = cQ (4.8.53)

where cQ = c0/Q $= 0. For k ≥ Ki,j + 1, if vi,j[k] is not successfully quantized,

then

‖vi,j [k + 1]‖2 = ‖Jivi,j[k]‖2 ≥ (1 − ε0)|λi|‖vi,j[k]‖2 (4.8.54)

171

If vi,j [k] is successfully quantized then

‖vi,j[k + 1]‖2 =
1

Q
‖Jivi,j[k]‖2 ≥

1

Q
‖JIvI,J [Ku]‖2 = cQ (4.8.55)

Combining equations 4.8.53, 4.8.54, and 4.8.55, in addition to (1 − ε0)|λi| > 1,

guarantees ‖vi,j[k]‖2 ≥ cQ for all k ≥ Ki,j + 1. Now define the product of part of

the side lengths as p′[k] =
∏

(i,j)∈T∞ ‖vi,j[k]‖2 and let K = max(i,j)∈T∞ Ki,j + 1 By

equation 4.8.55 we know that for k ≥ K

p′[k] ≥ cN ′

Q (4.8.56)

where N ′ = card(T∞). Equation 4.8.56 is an eventual lower bound on p′[k].

We may repeat the procedure used in lemma 4.8.2 to obtain an upper bound

on p′[k] of the form

p′[k] ≤ p′δη′(η
′ + ∆η′)k (4.8.57)

where ∆η′ > 0 is any chosen tolerance, p′
∆η′ is a constant, and η′ = 1

Q

∏
(i,j)∈T∞ |λi| <

γ(A)
Q1−ε < 1. We choose ∆η′ small enough so that η′ +∆η′ < 1. Thus limk→∞ p′[k] =

0, which contradicts the eventual lower bound in equation 4.8.56. ♦

This note assumes that vi,j [0] $= 0 for all i, j. So lemma 4.8.3 guarantees

card(Ti,j) = ∞ for all i, j. Thus there must exist K2 > K1 such that

card (Ti,j ∩ [K1, K2]) ≥ M (4.8.58)

for all i, j, where [K1, K2] is the set of integers from K1 to K2. In the following

discussion, we assume k ≥ K2 and we let (i0, j0) = arg mini,j ‖Jivi,j[k]‖2. We

172

define

l(i0, j0, M, k) = min {m : card ([k − m, k − 1] ∩ Ti0,j0) = M} (4.8.59)

where l(i0, j0, M, k) is the shortest length of time prior to time instant k in which

the side vi0,j0 was quantized exactly M times.

The following lemma establishes the “fairness” of the algorithm by showing

that l(i0, j0, M, k) is uniformly bounded with respect to i0, j0, and k.

Lemma 4.8.4 There exists a constant lM such that for k ≥ K2

l(i0, j0, M, k) ≤ lM . (4.8.60)

Proof: Throughout this proof, we denote l(i0, j0, M, k) as l. Let’s first consider

(i, j) $= (i0, j0). Let li,j denote the number of times side vi,j was successfully

quantized in the interval [k− l, k−1]. Then the update equations in our algorithm

imply that

Jivi,j [k] =
1

Qli,j
J l

i(Jivi,j[k − l]) (4.8.61)

By inequality 4.8.49, we obtain

‖Jivi,j[k]‖2 ≤
((1 + ε0)|λi|)l

Qli,j

∥∥Jivi,j[k − l]
∥∥

2
(4.8.62)

When (i, j) = (i0, j0), we know that side vi0,j0 was updated exactly M times

during [k − l, k − 1]. So the algorithm’s update equations imply that

Ji0vi0,j0[k] =
1

QM
J l

i0

(
Ji0vi0,j0[k − l]

)
(4.8.63)

173

Using inequality 4.8.49 in equation 4.8.63 yields

‖Ji0vi0,j0[k]‖2 ≥ ((1 − ε0)|λi0 |)
l

QM
‖Ji0vi0,j0[k − l]‖2 (4.8.64)

From the definitions of (i0, j0) and l, we also know that

∥∥Ji0vi0,j0[k − l]
∥∥

2
≥

∥∥Jivi,j[k − l]
∥∥

2
(4.8.65)

‖Ji0vi0,j0[k]‖2 ≤ ‖Jivi,j[k]‖2 (4.8.66)

Inserting equations 4.8.62, 4.8.64 and 4.8.65 into equation 4.8.66, yields,

((1 − ε0)|λi0|)
l 1

QM
≤ ((1 + ε0)|λi|)l 1

Qli,j
(4.8.67)

There are at most l(ε + δ0) dropouts during [k − l, k − 1]. So li,j satisfies the

inequality,

∑

(i,j),=(i0,j0)

li,j ≥ l − l(ε+ δ0) − M = (1 − ε− δ0)l − M (4.8.68)

Multiply inequality 4.8.67 over all (i, j) not equal to (i0, j0) and use equation 4.8.68

to obtain

((1 − ε0)|λi0 |)
l(N−1) 1

Q(N−1)M
≤



(1 + ε0)
N−1

∏

(i,j),=(i0,j0)

|λi|




l

1

Ql(1−ε−δ0)−M

The above inequality may be solved with respect to l to show that l ≤ li0 where

li0 = MN ln(Q)

(N−1) ln
(

1−ε0
1+ε0

)
+N ln(|λi0 |)+ln

(
Q1−ε

γ(A)

)
−δ0 ln(Q)

174

Letting lM = maxi0 li0 gives the desired bound. ♦

The following lemma establishes that the sides are balanced in the sense that the

ratio ‖vi1,j1[k]‖2/‖vi2,j2[k]‖2 is uniformly bounded for all i1, j1, i2, j2, and k ≥ K2.

Lemma 4.8.5 For k ≥ K2 and all i1, j1, i2, and j2, there exists a finite constant

r such that

‖vi1,j1[k]‖2

‖vi2,j2[k]‖2
≤ r. (4.8.69)

Proof: For any i1, i2, j1, and j2, equation 4.8.49 implies that

‖vi1,j1[k]‖2

‖vi2,j2[k]‖2
≤ α‖Ji1vi1,j1[k]‖2

‖Ji2vi2,j2[k]‖2
, (4.8.70)

where α = 1+ε0
1−ε0

maxi1,i2
|λi1 |
|λi2 |

.

Following the arguments used in the preceding lemma, we know that

‖Jivi,j [k]‖2

‖Ji0vi0,j0[k]‖2
≤

|λi|l

Qli,j
(1 + ε0)l‖Jivi,j [k − l]‖2

|λi0 |l
QM (1 − ε0)l‖Ji0vi0,j0[k − l]‖2

≤ QM

(
|λi|
|λi0|

)l (1 + ε0
1 − ε0

)l

≤ r0

where

r0 = QM

(
max
i1,i2

|λi1 |
|λi2 |

)lM (
1 + ε0
1 − ε0

)lM

,

and lM is the bound in lemma 4.8.4.

175

At time k we know ‖Ji0vi0,j0[k]‖2 is the smallest among ‖Jivi,j[k]‖2, so

‖Ji1vi1,j1[k]‖2

‖Ji2vi2,j2[k]‖2
≤ r0, (4.8.71)

for all i1, i2, j1, and j2. Let r = r0α to obtain the desired bound. ♦

Proof of theorem 4.4.1: This theorem follows from the direct application of

lemmas 4.8.5 and 4.8.2. Let K0 = max(K2, K3). At the beginning, we will limit

our attention to k ≥ K0 so that lemmas 4.8.5 and 4.8.2 are true. Lemma 4.8.5

shows that
‖vi1,j1 [k]‖2

‖vi2,j2 [k]‖2
≤ r, for all i1, j1, i2, and j2. Choose vi1,j1 to be the longest

side, to obtain maxm,n ‖vm,n[k]‖2

‖vi,j [k]‖2
≤ r which we may rewrite as

‖vi,j[k]‖2 ≥
1

r
max
m,n

‖vm,n[k]‖2 (4.8.72)

The above relationship, the definition of p[k], and lemma 4.8.2 yield

max
m,n

‖vm,n[k]‖2 ≤ r N
√

p∆η(η + ∆η)
k
N (4.8.73)

U [k] is a parallelogram with sides vi,j [k]. The triangle inequality implies

dmax(U [k]) ≤
P∑

i=1

ni∑

j=1

‖vi,j[k]‖2 ≤ N max
m,n

‖vm,n[k]‖2

Substituting equation 4.8.73 into the above bound on dmax(U [k]) yields dmax(U [k]) ≤

λ0(η + ∆η)
k
N where λ0 = Nr N

√
p∆η. By choosing

λ∆η = max

(
max

m∈[1,K0−1]

(
dmax (U [m]) (η + ∆η)−

m
N
)
,λ0

)

we can guarantee that equation 4.4.19 holds for all k. ♦

176

4.8.2 Proof to Theorem 4.4.1

The proof to theorem 4.5.1 is broken into several intermediate lemmas. Before

the proof, we define two functions, ri,j[k] (i = 1, · · · , P ; j = 1, · · · , ni) and p[k].

ri,j[k] is a modified version of the side length Li,j [k]. p[k] is the product of ri,j [k]

p[k] =
P∏

i=1

ni∏

j=1

ri,j[k]

When λi is real,

ri,ni[k] = max(Li,ni[k], ρ0M)

ri,j[k] = max(ai,jLi,j [k], ri,j+1[k]),

for j = 1, 2, · · · , ni − 1

When λi is complex,

ri,j [k] = max(Li,j [k], ρ0M),

for j = ni − 1 and ni

ri,j [k] = max(ai,jLi,j[k], ri,j+2[k], ri,j+3[k]),

for j = 1, 3, · · · , ni − 3

ri,j [k] = max(ai,jLi,j [k], ri,j+1[k], ri,j+2[k]),

for j = 2, 4, · · · , ni − 2

The relationship between the growth-rate of ri,j[k] and the one of p[k] is the key

point to the proof of theorem 4.5.1. First we establish a general upper bound on

the growth rate of ri,j[k].

177

Lemma 4.8.6

ri,j[k + 1]

ri,j[k]
≤ |λi| + ε0, ∀i, j (4.8.74)

where ε0 is defined in equation 4.5.33.

Sketch of Proof: This lemma is proven by mathematical induction. There are

two cases to consider, when λi is complex and when λi is real. If λi is real we first

show that equation 4.8.74 holds for j = ni. We then show that if equation 4.8.74

holds for j = j0, it must also hold for j0 − 1, thereby completing the induction. A

similar inductive argument can be made when λi is complex. ♦

The bound in lemma 4.8.6 is quite loose. When p[k] is larger than

p1 =
P∏

i=1

(
ρ0M

ai,1

)ni

(4.8.75)

, we can place a tighter bound on the growth rate of rIk,Jk
[k].

Lemma 4.8.7 If p[k] > p1 (see eq. 4.8.75) and d[k] = 0 (there is no dropout at

time k), then

rIk,Jk
[k + 1]

rIk,Jk
[k]

≤ |λIk
|

Q
+ ε0 (4.8.76)

where ε0 is defined in equation 4.5.33.

Sketch of proof: By the quantization policy, we know

a2
Ik,Jk

LIk,Jk
≥ a2

i,jLi,j , ∀i, j (4.8.77)

178

First prove that

a2
Ik,Jk

LIk,Jk
> ρ0M (4.8.78)

It can be achieved through contradiction method. If eq. 4.8.78 is violated,

a2
i,jLi,j ≤ ρ0M for ∀i, j, which yields p[k] ≤ p1. Contradiction!

Second prove that

rIk,Jk
[k] = aIk,Jk

LIk,Jk
[k] (4.8.79)

It can be obtained through the definitions of ri,j[k] and equations 4.8.77 and 4.8.78.

Third prove two bounds on LIk ,Jk
[k + 1] for d[k] = 0

LIk,Jk
[k + 1] ≥ |λIk

|
Q

LIk,Jk
[k] (4.8.80)

LIk,Jk
[k + 1] ≤

(
|λIk

|
Q

+ ε0

)
LIk,Jk

[k] (4.8.81)

Those bounds can be obtained from the updating rule of LIk,Jk
[k].

Fourth prove that when d[k] = 0,

rIk,Jk
[k + 1] = aIk,Jk

LIk,Jk
[k + 1] (4.8.82)

It can be established from equations 4.8.77, 4.8.80 and lemma 4.8.6.

Finally equations 4.8.79, 4.8.81 and 4.8.82 yield the result. ♦

Lemma 4.8.8 There exists finite k such that

p[k] ≤ p1 (4.8.83)

179

where p1 is defined in equation 4.8.75.

Sketch of proof: Suppose equation 4.8.83 is violated for all k. When d[k] = 0,

we can use lemmas 4.8.6 and 4.8.7 to show

p[k + 1] ≤ η0p[k] (4.8.84)

where η0 = (1+Qε0)
Nρ(A)

Q .

When d[k] = 1, lemma 4.8.6 yields

p[k + 1] ≤ η0Qp[k] (4.8.85)

Consider a window [k, k + l). Denote the dropout rate in the window as εl,k =
∑k+l−1

m=k d[k]

l . Define the maximum difference between εl,k and ε (the average in the

long run) as εl = max |εl,k − ε|. By the dropout model in equation 4.2.7, we know

liml−→∞ εl = 0. Therefore εl < ε1 for large enough l.

From time k to k + l, equations 4.8.84 and 4.8.85 have been implemented for

l(1 − εl,k) and lεl,k times respectively. Thus

p[k + l]

p[k]
=

(
ρ(A)(1 + Qε0)N

Q1−εl,k

)l

≤
(
ρ(A)(1 + Qε0)N

Q1−ε−εl

)l

(4.8.86)

Let ηl = ρ(A)(1+Qε0)N

Q1−ε−εl
and f(l) = ηl

l . For large enough l, ηl < 1. So liml−→∞ f(l) =

0. From equation 4.8.86, we know

lim
l−→∞

p[k + l] ≤ p[k] lim
l−→∞

f(l) = 0

180

The above result contradicts our assumption that p[k] > p1 for all k. Therefore

this lemma must be true. ♦

In the proof of lemma 4.8.8, we define a sequence f(l). It was shown that

liml−→∞ f(l) = 0. Therefore the maximum of f(l) is finite and achieved by finite

l. The maximum of f(l) is defined as

f0 = max
l

f(l) (4.8.87)

Lemma 4.8.9 p[k] is eventually bounded, i.e. there exists k1 such that

p[k] ≤ p1f0 (4.8.88)

for all k ≥ k1.

Sketch of proof: By lemma 4.8.8, there exists k = k1 such that p[k1] ≤ p1.

For any k > k1, define l = k − k1. Equation 4.8.86 yields

p[k] ≤ f(l)p[k1] ≤ f0p[k1] ≤ f0p1♦

Final proof to theorem 4.5.1: By the definition of ri,j[k], we know ri,j[k] ≥

ai,jLi,j [k], ri,j[k] ≥ ρ0M . The two lower bounds, in addition to the the definition

p[k] =
∏P

i=1

∏ni

j=1 ri,j[k], yield

Li,j[k] ≤ 1

ai,j

p[k]
(
ρ0M

)N−1 (4.8.89)

By the definition of ai,j, we know that 1
ai,j

≤ ρN
0 . Substituting this bound into

181

equation 4.8.89 yields

Li,j[k] ≤ ρN
0

p[k]
(
ρ0M

)N−1 (4.8.90)

From lemma 4.8.9, we know p[k] is eventually bounded by f0p1. Considering

equation 4.8.90, we get the following eventual bound

Li,j[k] ≤ ρN
0

f0p1(
ρ0M

)N−1 (4.8.91)

As argued before, the eventual boundedness of Li,j[k] implies that of z[k] and x[k].

182

CHAPTER 5

PERFORMANCE OF QUANTIZED LINEAR CONTROL SYSTEMS

5.1 Introduction

As a control system, we require the quantized system not only to be stable

but also to perform well. In chapter 4, the stability of quantized systems is

studied. It is shown that when the available bit rate is above the “minimum” bit

rate, the stability of quantized systems can be guaranteed. By stability, we mean

asymptotic stability for noise-free quantized systems, i.e. the state converges to

0 and BIBO stability for quantized systems with bounded noise, i.e. the state is

eventually bounded. Although several quantization policies can achieve the above

stability, they may perform quite differently. For example different policies may

yield different state convergence rates for noise-free systems and different state

bounds for systems with bounded noise. It is natural to pursue the quantization

policy with the “best” performance, which is exactly the topic of this chapter.

The feedback system studied in this paper is shown in figure 5.1. In this figure,

x[k] ∈ 4n is the system state at time k. This state is generated by a discrete-time

linear time-invariant system called the plant. The system state is transformed into

a discrete-valued symbol, s[k], by the encoder. The symbol is transmitted over a

channel and is then transformed by the decoder into a quantized version of the

state, xq[k] ∈ 4n . The plant uses this quantized state and a noise signal, w[k], as

183

inputs. The noise signal w[k] ∈ 4n is assumed to be bounded as

‖w‖∞ ≤ M

where M is some known constant. A noise free quantized system is a special case

of the system in figure 5.1 with M = 0.

plant

[1] [] [] []

[] []q

x k Ax k Bu k w k

u k Fx k

+ = + +
=

Encoder

][][kPkx ∈

}12,,1,0{][][−∈ kRks 

[]w k

Decoder

Channel
][' ks

][kxq

Figure 5.1. Quantized control systems

The encoder first assumes that x[k] ∈ 4n lies in a known subset P [k] ⊂ 4n

which we call the state’s scope. The encoder then partitions P [k] into a finite

number of subsets. The index of the subset containing x[k] is taken as the

symbol, s[k] representing the state. This index takes values in the set SR =

{0, 1, 2, . . . , 2R[k] − 1} where R[k] is the number of bits transmitted over the chan-

184

nel per measurement at time k. The encoder can therefore be represented as a

potentially time-varying map Enc : 4n → SR. The channel is assumed to be error

free with a constant delay of d steps, so that s′[k] = s[k−d]. The decoder uses the

received symbol s′[k] to compute a single point estimate of the state. This esti-

mate is denoted as xq[k] and the decoder can also be represented as a potentially

time-varying map Dec : SR → 4n. The triple (P [k], Enc, Dec) is referred to as a

quantization policy.

For a given bit sequence {R[k]}, we can identify several different quantization

policies. Policies whose state scope P [k] is time-invariant are said to be static.

Dynamic policies adjust the state scope P [k] (zooming-in and zooming-out) at

every time step to obtain a tight bound on x[k]. Dynamic quantization policies

may be further classified by how they assign their R[k] bits. In particular, let bi[k]

denote the number of bits the encoder allocates to represent the ith component

of the state x[k]. The total number of bits must equal R[k]

R[k] =
n∑

i=1

bi[k] (5.1.1)

The policy used for deciding bi[k] (i = 1, · · · , n) is called a bit assignment pol-

icy. A static bit assignment assumes bi[k] is a constant for all k. A dynamic bit

assignment allows bi[k] to be time-varying. This thesis pursues the “best” bit as-

signment policy which minimizes the specified performance under the bit resource

given in eq. 5.1.1. What performance index should we choose? In order to answer

that question, we study the effect of quantization on the system state {x[k]}.

It can be seen from figure 5.1 that the quantization policy takes x[k] as in-

put and xq[k] as output. Their difference, i.e. the quantization error, is defined

as e[k] = x[k] − xq[k]. The quantized system in figure 5.1 can be equivalently

185

transformed into the following linear system with {w[k]} and {e[k]} as inputs.

plant

[1] [] [] []

[] []q

x k Ax k Bu k w k

u k Fx k

+ = + +
=

][kx

[]w k

+
_

][ke

][kxq

Figure 5.2. An equivalent linear control system

The system in figure 5.2 is linear, so its state x[k] can be decomposed into 2

terms.

x[k] = x[k] + xe[k] (5.1.2)

where x[k] is incurred by the initial condition x[0] and the exogeneous noise {w[k]}

and xe[k] comes directly from the quantization error {e[k]}. We may say that

the effect of quantization error is to introduce the term xe[k]. For noise free

quantized systems, the size of {xe[k]} can be measured by L2 norm (‖xe‖2 =
(∑∞

k=1 xT
e [k]xe[k]

) 1
2) [39]. The aim in designing a quantization policy is to make

‖xe‖2 as small as possible, i.e. to minimize the effect due to quantization. Denote

186

the transfer function from {e[k]} to {xe[k]} as Gxe,e(z). Then we get [39]

‖xe‖2 ≤ ‖Gxe,e(z)‖∞‖e‖2 (5.1.3)

where ‖Gxe,e(z)‖∞ denotes the H∞ norm of Gxe,e(z). Gxe,e(z) is determined by

controller design and is out of our control. So minimizing ‖xe‖2 is equivalent

to minimizing ‖e‖2 in eq. 5.1.3, i.e. the optimal quantization policy is to

minimize ‖e‖2. The quantization error {e[k]} is effected by the initial condition

x[0] (for noise-free quantized systems). So we measure performance by the worst

case of ‖e‖2,

sup
x[0]∈P [0]

‖e‖2 (5.1.4)

For quantized systems with bounded noise, the quantization error {e[k]} is even-

tually bounded [45] but not summable. We can measure the size of {e[k]} with its

eventual bound limN−→∞ sup{eT [k]e[k]}∞k=N . By repeating the above arguments

on noise-free quantized systems, we can see that in order to mitigate the effect of

{e[k]} on {xe[k]}, the optimal quantization policy is to minimize {e[k]} with the

following defined performance.

sup

x[0] ∈ P [0]

{w[k]}∞k=0

lim
N−→∞

sup{eT [k]e[k]}∞k=N (5.1.5)

Note that we consider the worst case for all possible x[0] and {w[k]}∞k=0 in eq.

5.1.5.

Compared to the rich literature on stability of quantized systems, the literature

187

on performance of quantized systems is relatively scarce. In [30], the perturbation

noise {w[k]} is assmed to be Gaussian and the performance is defined as a linear

quadratic form of the system state {x[k]}. Simulations were made to compare

the performance under different quantization policies. In [63], the configuration

similar to [30] is considered. It is shown that the concerned optimal performance

decomposes into two terms. One is determined by the perfect (without quantiza-

tion) state feedback . The other comes from the quantization error. The optimal

quantization policy is the one to minimize the term due to quantization error,

which agrees with our discussion on minimizing the performance specified in eq.

5.1.4 and 5.1.5. Although the results in [63] are intuitively pleasing, they are less

realistic because of their estimation policies. In [63], the state is estimated as

the conditional mean based on the received symbols {s′[k]}. It is not trivial to

compute this conditional mean because the quantization operation is non-linear

and it is difficult to find a recursive way to compute that mean. The only possible

way is to compute it with the probability density function (pdf) of the state. So

the state’s pdf has to be updated every step which may be unrealistically compli-

cated. In [40], a scalar quantized system is studied, the input noise is assumed to

be bounded and performance is measured by the eventual upper bound of quan-

tization error which is really the L∞ norm of {e[k]}. The effect of the number

of quantization levels and the packet dropout pattern on performance is studied.

Note that a simple estimation policy is chosen in [40] and the proposed quanti-

zation policy is realistic. The results in [40] will be extended to 2-dimensional

systems in this chapter. In [22], a noise-free quantized system is considered and

the convergence rate of quantization error is used to measure system performance.

It proves that the quantization policy proposed in [48] achieves the best (fastest)

188

convergence rate.

This chapter is organized as follows. Section 5.2 presents the mathematical

model of the quantized system, the used quantization alogrithm, one special bit

assignment policy named as Dynamic Bit Assignment Policy (DBAP) and

some preliminary results. Section 5.3 studies a noise-free quantized system and

proves that the performance defined in eq. 5.1.4 is optimized by the proposed

DBAP. Section 5.4 studies a quantized system with bounded noise and comes

up with both a lower and an upper bounds on the optimal performance defined

in eq. 5.1.5. It deserves special attention that the obtained upper performance

bound can be achieved by the proposed DBAP. So DBAP may be treated as a sub-

optimal quantization policy with the known performance gap. Section 5.5 includes

a summary of achieved results in this chapter and some remarks on relaxing the

assumptions. All proofs are placed in the appendix, section 5.6.

5.2 System model and preliminary results

The quantized system in figure 5.1 can be modeled as






x[k + 1] = Ax[k] + Bu[k] + w[k]

u[k] = Fxq[k]
(5.2.6)

We assume that

1. (A, B) is controllable and F is a stabilizing state feedback gain.

2. A is diagonalizable. For simplicity, we focus on the two-dimensional case of

A = diag(λ1,λ2) and λi > 1 (i = 1, 2).

3. The system is driven by bounded process noise, ‖w‖∞ ≤ M .

189

4. Fixed bit rate is assumed, i.e. R[k] = R.

5. The network is error-free with 1 step delay, i.e. s′[k] = s[k − 1].

The quantization method used in this paper originates from the uncertainty

set evolution method introduced in [14] and [61]. This approach presumes that

the encoder and the decoder agree that the state lies within the set P [k] which

has the form of

x[k] ∈ P [k] = xq[k] + U [k], ∀k ≥ 0. (5.2.7)

where xq[k] is the center of P [k]. By assumption 2, we restrict our attention to a

two-dimensional system. So the uncertainty set U [k] may be characterized as

U [k] = rect(L1[k], L2[k])

= [−L1[k], L1[k]] × [−L2[k], L2[k]].

In this equation L1[k] and L2[k] are non-negative and they represent the half-

length of the sides of the rectangular set U [k]. We define the quantization error

as e[k] = x[k] − xq[k]. Just prior to time k we know that e[k] ∈ U [k] where we

refer to U [k] as the uncertainty set at time k. We then partition both sides of

U [k]. The first side, L1[k], is partitioned into 2b1[k] equal parts and the second

side, L2[k], is partitioned into 2b2[k] equal parts. We impose a constant bit rate

constraint on our bit assignment which requires that

b1[k] + b2[k] = R (5.2.8)

190

for all k. After a new measurement of the state x[k] is made, then the encoder

knows that

x[k] ∈ xq
s[k][k] + Us[k][k]

where xq
s[k][k] is the center of the smaller subset and the set

Us[k][k] = rect

(
L1[k]

2b1[k]
,
L2[k]

2b2[k]

)

The index of this smaller subset, s[k], is transmitted across the channel and the

decoder reconstructs the state at time k + 1 using the equations






x[k + 1] ∈ xq[k + 1] + U [k + 1]

U [k + 1] = rect(L1[k + 1], L2[k + 1])

xq[k + 1] = Axq
s[k][k] + BFxq[k]

L1[k + 1] = λ1

2b1[k] L1[k] + M

L2[k + 1] = λ2

2b2[k] L2[k] + M

(5.2.9)

The choice for bi[k] (i = 1, 2) represents a bit assignment policy. With the re-

quirement that b1[k]+b2[k] = R, we’re confining our attention to constant bit rate

quantization schemes. The motivation for doing this is that many communication

systems work best under a constant bit rate [29].

This chapter is interested in the performance achievable under various bit

assignment policies. In particular, we measure performance using equations 5.1.4

and 5.1.5. Note that by definition

|ei[k]| ≤ Li[k], i = 1, 2 (5.2.10)

191

This inequality becomes equality for the specific choice of x[0] and {w[k]}, e.g.

x[0] = [L1[0], L2[0]]T and w[j] = [M, M]T , ∀j, that maximizes ‖e‖2 defined in eq.

5.1.4 or limN−→∞ sup{e2
1[k] + e2

2[k]}∞k=N in eq. 5.1.5.

One bit assignment policy used in this chapter is a variation of the bit assign-

ment policy found in chapter 4 We still call it dynamic bit assignment policy or

DBAP. DBAP is a recursive algorithm that generates bi[k] as follows.

Algorithm 5.2.1 Dynamic Bit Assignment Policy

1. Initialize b1[k] = 0 and b2[k] = 0,

and set L1 = λ1L1[k] and L2 = λ2L2[k].

2. For q = 1 to R

I = argmaxi∈{1,2}Li.

bI [k] := bI [k] + 1 and LI = LI/2.

The following lemma provides a closed-form characterization of bi[k] (i = 1, 2)

generated by DBAP.

Lemma 5.2.1 The bit assignment algorithm, DBAP, generates the following bit

assignments

b1[k] = R − b2[k] (5.2.11)

b2[k] =






0, 1
2R+1λ1L1[k] ≥ λ2L2[k]

R, 1
2−R−1λ1L1[k] ≤ λ2L2[k]

[
1
2

(
R − log2

(
λ1L1[k]
λ2L2[k]

))]
, otherwise

(5.2.12)

where [·] is the downward rounding function in which [1.5] = 1.

192

The fundamental insight behind DBAP may be interpreted as “keeping L1[k+

1] and L2[k + 1] as balanced as possible”. This balancing idea is demonstrated

through the following lemma.

Lemma 5.2.2 Under DBAP, there exists a finite k0 > 0 such that

0.5 ≤ L1[k]

L2[k]
< 2, ∀k ≥ k0 (5.2.13)

5.3 Optimal bit assignment policy in noise free quantized linear control systems

For a noise free quantized system, we measure its performance with the index

defined in eq. 5.1.4. Specifically we consider a N -step version of that performance

index.

JN = max
x[0]∈P [0]

N∑

k=1

(
e2
1[k] + e2

2[k]
)

(5.3.14)

The inequality in eq. 5.2.10 (|ei[k]| ≤ Li[k]) becomes equality for the specific

choices of x[0], e.g. x[0] = [L1[0], L2[0]]T , that maximize e2
1[k] + e2

2[k] for all k.

This means that JN in equation 5.3.14 may be rewritten as

JN =
N∑

k=1

(
L2

1[k] + L2
2[k]

)
(5.3.15)

This section characterizes the bit assignment policy that minimizes the perfor-

mance index, JN , in equation 5.3.15. Our optimization problem is formally stated

as follows,

min{b1[k],b2[k]}N−1
k=0

∑N
k=1(L

2
1[k] + L2

2[k])

subject to b1[k] + b2[k] = R,
(5.3.16)

193

where b1[k], b2[k] ∈ N . Let b = {b1[j], b2[j]}N−1
j=0 denote the optimal solution to this

problem. Optimization problem 5.3.16 is an integer programming. The general

integer programming is, unfortunately, NP hard [67]. We will circumvent the NP

complexity by first considering a sequence of simpler problems and then showing

that the solutions to these simpler problems also solve the original problem and

furthermore that they are generated by the proposed DBAP.

Consider the following sequence of minimization problems indexed by k for

k = 1, . . . , N .

min{b1[j],b2[j]}k−1
j=0

(L2
1[k] + L2

2[k])

subject to b1[j] + b2[j] = R,
(5.3.17)

where b1[j], b2[j] ∈ N . The solution to the kth subproblem will be denoted as

b(k) = {b(k)
1 [j], b(k)

2 [j]}k−1
j=0 . The following lemma establishes the basic relationship

between subproblems 5.3.17 and the original problem 5.3.16. In the following

lemma, we say b(k−1) ⊂ b(k) if and only if b(k−1)
i [j] = b(k)

i [j] for j < k − 1.

Essentially this means that b(k−1) is a prefix of b(k).

Lemma 5.3.1 If {b(k)}N
k=1 solves the sequence of subproblems 5.3.17 such that

b(k−1) ⊂ b(k) for k = 2, . . . , N , then b(N) solves the original problem 5.3.16.

Rather than directly solving subproblem 5.3.17, we consider a relaxed problem

of the form

mins1[k],s2[k]

(
λk
1

2s1[k] L1[0]
)2

+
(

λk
2

2s2[k] L2[0]
)2

subject to s1[k] + s2[k] = kR
(5.3.18)

where s1[k], s2[k] ∈ N . In these relaxed problems, we interpret si[k] as the number

of bits used to represent the ith component of the state up to time k. In other

194

words, we let si[k] =
∑k−1

j=0 bi[j]. Let s(k) = {s1[k], s2[k]} denote the solution to the

kth relaxed subproblem. Note that Li[k] = λk
i

2si[k] Li[0] (i = 1, 2) by eq. 5.2.9. So

subproblems 5.3.17 and 5.3.18 have the same performance index. In subproblems

5.3.18, the constant bit rate constraint (equation 5.2.8) implies that the summed

numbers of bits satisfy,

s1[k] + s2[k] = kR (5.3.19)

So this problem relaxes problem 5.3.17 by only minimizing the cost index with

respect to the bit sum, rather than the individual history of assigned bits, i.e.

the feasible set is extended. The following lemma states the solution for problem

5.3.18.

Lemma 5.3.2 The solution to the kth problem in equation 5.3.18 is

s1[k] = kR − s2[k] (5.3.20)

s2[k] =






0, λk
1

2kR+1 L1[0] ≥ λk
2L2[0]

kR, λk
1

2−kR−1 L1[0] ≤ λk
2L2[0]

[
1
2

(
kR − log2

(
λk
1L1[0]

λk
2L2[0]

))]
, otherwise

(5.3.21)

It is important to note a similarity between equation 5.3.21 in lemma 5.3.2 and

the characterization of the bit assignment generated by DBAP in equation 5.2.12

in lemma 5.2.1. The following lemma formalizes this relationship by asserting that

the sequence of summed bits, s(k), generated by DBAP indeed solve the relaxed

problem 5.3.18 while enforcing the additional reqirements that b1[k] + b2[k] = R

and si[k] =
∑k−1

i=1 bi[k]. These additional constraints are precisely those that were

195

relaxed in going from problem 5.3.17 to 5.3.18, so DBAP also solves the original

sequence of subproblems in equation 5.3.17.

Lemma 5.3.3 Let {bi[k]} denote the bit sequence generated by the proposed DBAP.

If we let

si[k] =
k−1∑

j=0

bi[j], i = 1, 2

then s(k) = {s1[k], s2[k]} also solves the k−th relaxed minimization problem in

equation 5.3.18.

Based on Lemmas 5.3.1, 5.3.2 and 5.3.3, we establish the optimality of our

proposed DBAP for noise-free quantized linear systems.

Theorem 5.3.1 Dynammic bit assignment (DBAP) generates a bit assignment

that solves optimization 5.3.16.

Example: The plant with system matrices

A =




1.1 0

0 1.8



 , B =




1

1





Let the feedback gain matrix be F = [1.7,−4.6] and let R = 2. By static bit

assignment policy [41] [62],

b1[k] = 1, b2[k] = 1 (5.3.22)

From figure 5.3 it is clear that DBAP performs better than the static bit assign-

ment policy.

196

0 5 10 15 20 25 30
16

18

20

22

24

26

28

30

N

J N

DBAP
Static

Figure 5.3. Performance of a quantized system

5.4 Performance of quantized linear systems with bounded noise under dynamic

bit assignment

From [45], we know the quantization error {e[k]} for a quantized system with

bounded noise is bounded. By eq. 5.1.5, the concerned performance is defined as

J = sup

x[0] ∈ P [0],

{w[k]}∞k=0

lim
N−→∞

1

N

N∑

k=1

e2
1[k] + e2

2[k] (5.4.23)

The inequality in eq. 5.2.10 (|ei[k]| ≤ Li[k]) becomes equality for the specific

choice of x[0] and {w[k]}, e.g. x[0] = [L1[0], L2[0]]T and w[j] = [M, M]T , ∀j, that

maximizes e2
1[k] + e2

2[k] for all k. This means that J in equation 5.4.23 may be

197

rewritten as

J = lim
N−→∞

sup{L2
1[k] + L2

2[k]}∞k=N (5.4.24)

Different bit assignments will achieve various performance levels, J (as defined

in equation 5.4.24), for the same constant bit rate, R. We may therefore consider

the optimal achievable performance, J ∗, as generated by the following optimization

problem,

minimize limN−→∞ sup{L2
1[k] + L2

2[k]}∞k=N

with respect to {b1[k]}∞k=0, {b2[k]}∞k=0

subject to b1[k] ∈ N , b2[k] ∈ N

b1[k] + b2[k] = R

(5.4.25)

The optimization problem 5.4.25 is an integer programming, which is known

NP hard [67]. Furthermore there are an infinite number of decision variables

{b1[k], b2[k]}∞k=0 in that optimization problem. So it is very difficult to solve it. In-

stead of searching for the optimal performance in eq. 5.4.25, we try to bound the

optimal performance J∗ under the assumption that J∗ exists. The main results

stated below identify a lower bound, J , and an upper bound, J , on J ∗. More-

over, we demonstrate that these bounds are sometimes achievable by various bit

assignment policies.

Proposition 5.4.1 J∗ is bounded below by

J∗ ≥ J = 2p0 (5.4.26)

198

where J∗ satisfies optimization problem 5.4.25 and p0 is the positive solution to

p0 = ρp0 + 2
√
ρM

√
p0 + M2 (5.4.27)

where ρ = λ1λ2/2R < 1

Furthermore, if

1

2

(
R + log2

(
λ1

λ2

))
is an integer. (5.4.28)

then the inequality in equation 5.4.26 holds with equality.

Proof: See section 5.6

One important consequence of the above proposition is that if the condition

in equation 5.4.28 holds, then the optimal performance level, J ∗, is achieved by a

static bit assignment policy. This result is stated in the following proposition.

Proposition 5.4.2 If the condition in equation 5.4.28 holds, we construct a static

quantization policy with

b1[k] = b1 =
1

2

(
R + log2

(
λ1

λ2

))

b2[k] = b2 = R − b1

The performance under the above static policy achieves the lower bound in propo-

sition 5.4.1.

Jstatic = J

=

(
M

1 − λ1

2b1

)2

+

(
M

1 − λ2

2b2

)2

(5.4.29)

199

Proof: See section 5.6.

An upper bound on J∗ is obtained using algorithm 5.2.1 (DBAP) in section

5.2. The following proposition formally states this bound.

Proposition 5.4.3 The optimal performance J ∗ is bounded above by

J∗ ≤ J

= 2
(
ρpαug(2) + 2M

√
ρ
√

pαug(1) + M2
)

where ρ = λ1λ2/2R, g(α) = 0.5 (20.5α + 2−0.5α), and pαu satisfies the equation

pαu = ρpαu + 2
√
ρM

√
pαug(1) + M2 (5.4.30)

Proof: See section 5.6.

Remark: Let JDBAP denote the performance level achieved by our proposed

DBAP algorithm. The proof for proposition 5.4.3 actually shows that the per-

formance achieved by DBAP is bounded above by J (i.e. JDBAP ≤ J). By the

optimality nature of J∗, this means that J∗ ≤ JDBAP ≤ J .

Example: The quantized plant has the system matrices

A =




λ1 0

0 λ2



 , B =




1

1





with state feedback matrix F = [1.7,−4.6] and noise bound M = 1. It is assumed

that R = 2.

We first study the effect of the eigenvalue ratio λ2/λ1 on the achievable per-

formance J under various bit assignment policies. In particular, we fixed λ1 = 1.1

and varied λ2 subject to the constraint that λ2 > λ1. Simulations were used to

200

evaluate the performance, J , achieved using the dynamic bit assignment described

in algorithm 5.2.1 assuming R = 2.

Figure 5.4 plots the lower bound, J (Jl), of proposition 5.4.1 and the upper

bound, J (Ju), of proposition 5.4.3 as a function of λ2/λ1. This figure also plots the

performance level, Jstatic, achieved using the aforementioned static bit assignment

policy as well as the performance level, JDBAP, using DBAP.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
101

102

103

λ2/λ1

Pe
rfo

rm
an

ce

λ1=1.1, R=2, M=1

Jl, Lower bound of J*

Ju, Upper bound of JDBAP
Jstatic, Staic policy
JDBAP from simulations

Figure 5.4. Performance of a quantized system with bounded noise

These results show that the gap, ∆J = J − J is small and almost constant for

201

varying λ1
λ2

(∆J
J ≈ 10%). The results show that performance achieved by the static

policy lies within the specified bounds until λ2/λ1 ≥ 1.3. At this point, the static

policy no longer appears to be optimal. For the DBAP, we see that our proposed

algorithm actually generates the same static bit assignment for λ2/λ1 < 1.3. For

λ2/λ1 ≥ 1.3, the performance of the DBAP appears to closely follow the upper

bound J from proposition 5.4.3. These results appear to support the preliminary

conclusion that our proposed bit assignment policy (DBAP) is nearly optimal with

respect to the performance measure defined in eq. 5.1.5 This observation has led

us to conjecture that perhaps the DBAP can indeed be considered an optimal bit

assignment policy.

We then study the effect of the bit rate, R, on the gap ∆J = J − J . In this

particular case we chose λ1 = 1.1 and λ2 = 1.6 and allowed R to vary between

1 and 10. Figure 5.5 plots the upper and lower performance bounds, J (Ju)

and J (Jl), as a function of R. It can be seen that the gap, ∆J appears to be

relatively tight for this example and that the gap asymptotically approaches zero

as R goes to infinity. Both observations are not that surprising. The equation

characterizing the lower bound (eq. 5.4.27) and the upper bound (eq. 5.4.30) have

nearly identical forms in which the size of the gap is governed by ρ. Numerical

evaluation shows that this gap is small and asymptotically approaches zero when

R increases.

The results shown above can be interpreted as bounds on a type of rate-

distortion function for feedback control systems. This observation is emphasized

in figure 5.5 where we plot the effective distortion measure for a control system

(its achieved performance level) as a function of the bit rate, R. The fact that

there are bit assignment policies (or what we might call coding policies) that

202

2 3 4 5 6 7 8
2

4

6

8

10

12

14

16

18

20

22

R(bits/interval)

J,

Pe
rfo

rm
an

ce

λ1=1.1, λ2=1.6, M=1

Jl, Lower bound of J*

Ju, Upper bound of J*

Figure 5.5. Performance bounds for a quantized system with bounded
noise

appear to achieve J∗ suggests that assignment policies such as DBAP may be

extremely useful in developing source codes for control systems implemented over

communication networks.

5.5 Conclusions

One of the two primary results in this chapter is that the optimal performance

of a noise-free quantized system can be achieved by the proposed dynamic bit

assignment policy (DBAP), i.e. DBAP is the pursued optimal quantization

policy. The other primary result shows that the optimal performance of a quan-

tized system with bounded noise can be tightly bounded above and below. The

203

upper bound can be achieved by our proposed dynamic bit assignment policy

(DBAP). Under certain situations, the lower bound can be achieved by a static

bit assignment policy. In our opinion, the fact that these bounds are achievable

has great significance for the feedback control of dynamic systems over communi-

cation networks.

While the derivation in this chapter was restricted to a 2-dimensional system,

the results can be extended for n-dimensional diagonalizable systems. When the

system matrix is n-dimensional real and diagonal, U [k] may be overbounded by

a rectangular set whose side lengths are L1[k], · · · , Ln[k]. The bit assignment

strategy used in algorithm 5.2.1 may be used to allocate bi[k] (i = 1, · · · , n) in

a similar manner to that described in this paper. If the system matrix is 2-

dimensional and diagonalizable with complex eigenvalues ρejθ, then we can rotate

the coordinate axes by θ every step as in [61]. The new system matrix under the

rotated coordinates will be real and diagonal, so algorithm 5.2.1 can still be used.

5.6 Appendix: proofs

This section uses the following notational conventions.

γ[k] =
L1[k]

L2[k]
(5.6.31)

p[k] = L1[k]L2[k] (5.6.32)

ρ =
λ1λ2

2R
(5.6.33)

g(α) = 0.5

(√
2α +

1√
2α

)
. (5.6.34)

204

Note that g(α) is a strictly increasing function of α for α ≥ 0. The stability

condition in [45] requires

ρ < 1 (5.6.35)

The following technical lemma is frequently used. Its proof is straightforward and

omitted here.

Lemma 5.6.1 If x, y > 0 and xy = β, then

x + y = 2
√
βg(| log2(x/y)|). (5.6.36)

5.6.1 Proofs of the lemmas in section 5.2

Proof of Lemma 5.2.1: We prove this lemma using mathematical induction

on R. When R = 1, Lemma 5.2.1 trivially holds.

Suppose Lemma 5.2.1 holds for R = R1. We try to prove that it also holds for

R = R1 + 1. By the assumption, we know

b2[k](R1, L1[k], L2[k])

=






0, 1
2R1+1λ1L1[k] ≥ λ2L2[k]

R1,
1

2−R1−1λ1L1[k] ≤ λ2L2[k]
[

1
2

(
R1 − log2

(
λ1L1[k]
λ2L2[k]

))]
, otherwise

(5.6.37)

where the inclusion of arguments R1, L1[k] and L2[k] is to emphasize the depen-

dence of b2[k] on R1, L1[k] and L2[k]. We now compute b2[k](R1 + 1, L1[k], L2[k]).

There are 3 different cases to consider based on γ[k].

205

Case 1: In this case,

γ[k] ≥ λ2

λ1
2(R1+1)+1

The procedure in algorithm 5.2.1, selects b2[k] = 0, which satisfies eq. 5.2.12. So

lemma 5.2.1 holds for this case.

Case 2: In this case

γ[k] ≤ λ2

λ1
2−(R1+1)−1

Algorithm 5.2.1 assigns b2[k] = R1 + 1, which also satisfies eq. 5.2.12. So lemma

5.2.1 also holds for this case.

Case 3: In this case,

λ2

λ1
2−(R1+1)−1 < γ[k] <

λ2

λ1
2(R1+1)+1

This case can be further decomposed into two subcases; λ1L1[k] ≥ λ2L2[k] and

λ1L1[k] < λ2L2[k].

• If λ1L1[k] ≥ λ2L2[k], then algorithm 5.2.1 assigns the first bit to L1[k]. So

b2[k] (R1 + 1, L1[k], L2[k])

= b2[k]

(
R1,

L1[k]

2
, L2[k]

)
(5.6.38)

Since γ[k] < λ2
λ1

2(R1+1)+1 and λ1L1[k] ≥ λ2L2[k], we can infer that

2−R1−1 < 2−1 <
λ1

L1[k]
2

λ2L2[k]
< 2R1+1. (5.6.39)

206

By the assumption that lemma 5.2.1 holds for R = R1, we therefore see that

b2[k]

(
R1,

L1[k]

2
, L2[k]

)

=

[
1

2

(

R1 − log2

(
λ1

L1[k]
2

λ2L2[k]

))]

=

[
1

2

(
(R1 + 1) − log2

(
λ1L1[k]

λ2L2[k]

))]
(5.6.40)

Substituting eq. 5.6.40 into eq. 5.6.38 yields

b2[k](R1 + 1, L1[k], L2[k])

=

[
1

2

(
(R1 + 1) − log2

(
λ1L1[k]

λ2L2[k]

))]

The above expression for b2[k](R1 +1, L1[k], L2[k]) agrees with eq. 5.2.12 for

R = R1 + 1. So Lemma 5.2.1 holds for this sub-case.

• If λ1L1[k] < λ2L2[k], algorithm 5.2.1 assigns the first bit to L2[k]. So

b2[k] (R1 + 1, L1[k], L2[k])

= 1 + b2[k]

(
R1, L1[k],

L2[k]

2

)

We can compute b2[k]
(
R1, L1[k], L2[k]

2

)
in a similar manner to show that

b2[k](R1 + 1, L1[k], L2[k]) satisfies eq. 5.2.12 with R = R1 + 1.

Because Lemma 5.2.1 holds for both sub-cases, it holds for λ2
λ1

2−(R1+1)−1 <

γ[k] < λ2
λ1

2(R1+1)+1. Since Lemma 5.2.1 holds for all three cases on γ[k], it must

hold for R = R1 + 1. So by mathematical induction we know the lemma is true

for all R ≥ 1. ♦

Proof of Lemma 5.2.2: From equation 5.2.12, there are three kinds of bit

207

assignment decisions. We now consider the evolution of the side length ratio

γ[k] = L1[k]
L2[k] under each decision.

• Case 1: In this case,

γ[k] ≥ λ2

λ1
2R+1.

By the decision in eq. 5.2.12, the side length ratio is updated as

γ[k + 1] =
λ1
2R L1[k] + M

λ2L2[k] + M

≤
λ1
2R L1[k]

λ2L2[k]

=
λ1

λ22R
γ[k]

where the inequality comes from λ1
2R L1[k] > λ2L2[k] and M ≥ 0. Because

ρ = λ1λ2
2R < 1 and λ2 > 1, we know λ1

λ22R < 1 and γ[k] exponentially decreases.

Note that although γ[k] decreases, it is still true that γ[k + 1] > λ2
λ1

2−R−1.

• Case 2: In this case,

γ[k] ≤ λ2

λ1
2−R−1.

Similarly to the above case, we see that

γ[k + 1] =
λ1L1[k] + M
λ2
2R L2[k] + M

≥ λ12R

λ2
γ[k]

γ[k] therefore increases exponentially. It is also true that γ[k +1] < λ2
λ1

2R+1.

208

• Case 3: In this case

λ2

λ1
2−R−1 < γ[k] <

λ2

λ1
2R+1

By the bit assignment policy in eq. 5.2.12, we obtain

0.5 ≤
λ1

2b1[k] L1[k]
λ2

2b2[k] L2[k]
< 2 (5.6.41)

Considering the update rule Li[k + 1] = λi

2bi[k] Li[k] + M (i = 1, 2), eq. 5.6.41

yields

0.5 < γ[k + 1] < 2 (5.6.42)

The assumptions on λ1,λ2 and R guarantee that

λ2

λ1
2−R−1 < 0.5 < 2 <

λ2

λ1
2R+1 (5.6.43)

So if the quantized system enters into case 3, it will stay there forever.

Because γ[k] exponentially increases in case 2 and decreases in case 1, it must

eventually enter into case 3 after a finite number of (k0) steps. As noted above,

the system remains in case 3 once it enters it, thereby assuring that the bound in

equation 5.6.42 is eventually achieved. The proof is completed. ♦

5.6.2 Proofs of the lemmas and the theorems in section 5.3

Proof of Lemma 5.3.1:

We use P ∗ and P (k)∗ to denote the optimal performance of problem 5.3.16 and

the kth subproblem in equation 5.3.17 respectively.

209

It is straightforward to see that

min
{b1[k],b2[k]}N−1

k=0

N∑

k=1

(L2
1[k] + L2

2[k])

≥
N∑

k=1

min
{b1[j],b2[j]}N−1

j=0

(L2
1[k] + L2

2[k]) (5.6.44)

=
N∑

k=1

min
{b1[j],b2[j]}k−1

j=0

(L2
1[k] + L2

2[k]) (5.6.45)

The equality in eq. 5.6.45 comes from the fact that L1[k] and L2[k] are independent

of {b1[j], b2[j]}N−1
j=k due to the causal updating rule in eq. 5.2.9. Note that all

min operations in the above equations are performed under the constraint of

b1[j] + b2[j] = R (j = 0, · · · , N − 1). Considering the definitions of P ∗ and P (k)∗,

eq. 5.6.44 and 5.6.45 can be rewritten into

P ∗ ≥
N∑

k=1

P (k)∗ (5.6.46)

As stated in Lemma 5.3.1, b(k−1) ⊂ b(k) (k = 2, · · · , N). So the performance of

the kth problem in eq. 5.3.17 under b(N) is

L2
1[k] + L2

2[k] = P (k)∗ (5.6.47)

Summing eq. 5.6.47 for k = 1, · · · , N yields

N∑

k=1

L2
1[k] + L2

2[k] =
N∑

k=1

P (k)∗ (5.6.48)

Because b(N) satisfies the constraint of problem 5.3.16, i.e. b(N)
1 [k] + b(N)

2 [k] = R

(k = 0, · · · , N − 1), b(N) is a feasible solution to problem 5.3.16. By eq. 5.6.48,

210

the performance of problem 5.3.16 under b(N) is
∑N

k=1 P (k)∗. By the optimality

of P ∗, we obtain

P ∗ ≤
N∑

k=1

P (k)∗ (5.6.49)

Combining eq. 5.6.46 and 5.6.49 yields

P ∗ =
N∑

k=1

P (k)∗ (5.6.50)

By the feasibility of b(N) and eq. 5.6.48 and 5.6.50, we know b(N) solves the

original problem 5.3.16. ♦

Proof of Lemma 5.3.2:

The performance index in problem 5.3.18 is the summation of two terms,
(

λk
1

2s1[k] L1[0]
)2

(= L2
1[k]) and

(
λk
2

2s2[k] L2[0]
)2

(= L2
2[k]). We know the product of the

two terms is independent of s1[k], s2[k] due to the constraint s1[k] + s2[k] = kR.

L2
1[k]L2

2[k] =

(
λk

1λ
k
2

2kR
L1[0]L2[0]

)2

(5.6.51)

Apply lemma 5.6.1 to L2
1[k] + L2

2[k] with eq. 5.6.51 considered, we get

L2
1[k] + L2

2[k] = 2Cg(2| log2(L1[k]/L2[k])|) (5.6.52)

where C = λk
1λ

k
2

2kR L1[0]L2[0]. In order to minimize L2
1[k]+L2

2[k], we have to minimize

| log2(L1[k]/L2[k])|, i.e. keeping L1[k] and L2[k] as balanced as possible. By the

211

expression of Li[k] = λk
i

2si[k] Li[0] (i = 1, 2), we know

log2(L1[k]/L2[k])

= log2

(
λk

1L1[0]

λk
2L2[0]

)
− (s1[k] − s2[k])

= log2

(
λk

1L1[0]

λk
2L2[0]

)
− kR + 2s2[k]

The second equality shown above comes from the constraint s1[k] + s2[k] = kR.

s2[k] is an integer between 0 and Rk. The minimization of | log2(L1[k]/L2[k])|

may be formally expressed as

mins2[k]

∣∣∣log2

(
λk
1L1[0]

λk
2L2[0]

)
− kR + 2s2[k])

∣∣∣

s.t. s2[k] ∈ {0, 1, · · · , kR}
(5.6.53)

It is straightforward to show that the solution to optimization 5.6.53 is exactly

eq. 5.3.21. By the strictly increasing property of g(α) (α ≥ 0) and eq. 5.6.52, we

know s2[k] in eq. 5.3.21, together with s1[k] in eq. 5.3.20, solves problem 5.3.18.

♦

Proof of Lemma 5.3.3:

{b1[k], b2[k]}N−1
k=0 is generated by DBAP and si[k] is defined as

si[k] =
k−1∑

j=0

bi[j], i = 1, 2 (5.6.54)

We will prove Lemma 5.3.3 by showing that s2[k] defined in eq. 5.6.54 satisfies

eq. 5.3.21. This result will be established by using mathematial induction on k.

When k = 1, s2[k] = b2[k − 1] by the definition of s2[k]. Eq. 5.3.21 (for s2[k])

and 5.2.12 (for b2[k − 1]) are really the same. So Lemma 5.3.3 holds for k = 1.

212

Suppose s2[k − 1] satisfies eq. 5.3.21. We will prove s2[k] also satisfies eq.

5.3.21.

By eq. 5.3.21, the decision on s2[k] is categorized into three cases based on

γ[0] = L1[0]
L2[0] .

Case 1: γ[0] ≥ λk
2

λk
1
2kR+1

Under this situation, we get

λk−1
1

2(k−1)R+1
L1[0] ≥ λk−1

2 L2[0]
2Rλ2

λ1

> λk−1
2 L2[0]

where the last inequality comes from 2Rλ2
λ1

> 1. By assumption, s[k − 1] satisfies

eq. 5.3.21. So

s2[k − 1] = 0 (5.6.55)

Then we obtain

L1[k − 1] =
λk−1

1

2(k−1)R
L1[0] (5.6.56)

L2[k − 1] = λk−1
2 L2[0] (5.6.57)

We can verify that λ1
2R+1 L1[k−1] ≥ λ2L2[k−1]. Therefore DBAP yields b2[k−1] = 0

and

s2[k] = s2[k − 1] + b2[k − 1] = 0 (5.6.58)

The above result on s2[k] satisfies eq. 5.3.21.

Case 2: γ[0] ≤ λk
2

λk
1
2−kR−1

213

We can similarly prove s[k] satisfies eq. 5.3.21 as we did for the case γ[0] ≥
λk
2

λk
1
2kR+1.

Case 3:λ
k
2

λk
1
2−kR−1 < γ[0] < λk

2

λk
1
2kR+1

First we prove it is impossible that

λ1

2R+1
L1[k − 1] ≥ λ2L2[k − 1] (5.6.59)

Suppose eq. 5.6.59 holds. Substituting the expressions of L1[k − 1] (L1[k − 1] =

λk−1
1

2s1[k−1] L1[0]) and L2[k − 1] (L2[k − 1] = λk−1
2

2s2[k−1] L2[0]) into eq. 5.6.59 yields

γ[0] =
L1[0]

L2[0]
≥ λk

2

λk
1

2R+1+s1[k−1]−s2[k−1] (5.6.60)

Combining the requirement γ[0] < λk
2

λk
1
2kR+1 with the above bound produces

R + 1 + s1[k − 1] − s2[k − 1] < kR + 1 (5.6.61)

Considering s1[k − 1] + s2[k − 1] = (k − 1)R, we get

s2[k − 1] > 0 (5.6.62)

i.e. side L2 gets at least one bit among the total of (k − 1)R ones. Suppose side

L2 gets the first bit at k = k1 (k1 ≤ k − 1). By algorithm 5.2.1, the decision on

b1[j] and b2[j] aims to balance L1[j + 1] and L2[j + 1], which guarantees that

L1[j]

L2[j]
≤ 2, ∀j ≥ k1 (5.6.63)

214

The above equation certainly holds for j = k − 1, i.e.

L1[k − 1]

L2[k − 1]
≤ 2 (5.6.64)

Thus

λ1L1[k − 1]

λ2L2[k − 1]
≤ 2

λ1

λ2
(5.6.65)

< 2R+1 (5.6.66)

The above result contradicts eq. 5.6.59 ! So eq. 5.6.59 is impossible.

Second we can similarly prove it is also impossible that

λ1

2−R−1
L1[k − 1] ≤ λ2L2[k − 1] (5.6.67)

Based on the impossibility of eq. 5.6.59 and 5.6.67 and the decision rule in eq.

5.2.12, we get

b2[k − 1] =

[
1

2

(
R − log2

(
λ1L1[k − 1]

λ2L2[k − 1]

))]
(5.6.68)

Substituting the expressions of L1[k − 1] and L2[k − 1] into the above equation

yields

b2[k − 1] =

[
1
2

(
R − log2

(
λ1

λk−1
1

2s1[k−1] L1[0]

λ2
λk−1
2

2s2[k−1] L2[0]

))]

=
[

1
2

(
R + s1[k − 1] − s2[k − 1] − log2

(
λk
1L1[0]

λk
2L2[0]

))]

By the identity s1[k− 1] = (k− 1)R− s2[k− 1], the above result can be simplified

215

into

b2[k − 1]

=
[
0.5

(
kR − log2

(
λk
1L1[0]

λk
2L2[0]

))]
− s2[k − 1]

Considering the definition of s2[k] in eq. 5.6.54, we obtain

s2[k] = s2[k − 1] + b2[k − 1]

=

[
1

2

(
kR − log2

(
λk

1L1[0]

λk
2L2[0]

))]

Therefore s2[k] satisfies eq. 5.3.21.

In summary, s2[0] satisfies eq. 5.3.21. If s2[k − 1] satisfies eq. 5.3.21, then

s2[k] also satisfies equation 5.3.21. So by mathematical induction method, we can

guarantee that s2[k] satisfies eq. 5.3.21 for all k and the proof is complete. ♦

Proof of Theorem 5.3.1:

Denote the optimal performance of problems 5.3.16, 5.3.17 and 5.3.18 as P ∗,

P (k)∗ and P (k)∗
s respectively. By the relaxation relationship among them, P ∗, P (k)∗

and P (k)∗
s satisfy the following equations.

P ∗ ≥
N∑

k=1

P (k)∗ (5.6.69)

P (k)∗ ≥ P (k)∗
s (5.6.70)

We will prove the equalities in eq. 5.6.69 and 5.6.70 hold.

By Lemmas 5.3.2 and 5.3.3, we know the solution to problem 5.3.18, s(k),

216

satisfies

si[k] =
k−1∑

j=0

b(k)
i [j], i = 1, 2 (5.6.71)

where b(k) = {b(k)
1 [j], b(k)

2 [j]}k−1
j=0 is generated by DBAP. Of course b(k) satisfies the

constraint b(k)
1 [j] + b(k)

2 [j] = R (j = 0, · · · , k − 1). So b(k) is a feasible solution to

problem 5.3.17. The performance of problem 5.3.17 under b(k) is P (k)∗
s because

problems 5.3.17 and 5.3.18 have the same performance index and the optimal

performance of problem 5.3.18, P (k)∗
s , is achieved by si[k] given in eq. 5.6.71.

Therefore the equality in eq. 5.6.70 holds. The solution to problem 5.3.17 is b(k)

which is generated by DBAP.

By DBAP algorithm in 5.2.1, we know b(k)
i [j] (i = 1, 2) is totally determined

by the initial condition, L1[0] and L2[0], and the time j. b(k)
i [j] is independent of

k. So

b(k−1) ⊂ b(k), k = 2, · · · , N (5.6.72)

By Lemma 5.3.1, the equality in eq. 5.6.69 holds and the solution to problem

5.3.16 is b(N). Because b(N) is generated by DBAP, DBAP is the optimal policy.

♦

5.6.3 Proofs of the propositions in section 5.4

From the proof of Lemma 5.2.2 and especially in light of equation 5.6.41, we

can directly obtain the following balancing result. Its proof is omitted here.

217

Corollary 5.6.1 Under DBAP, there exists a finite k0 > 0 such that

0.5 ≤
λ1

2b1[k] L1[k]
λ2

2b2[k] L2[k]
< 2, ∀k ≥ k0 (5.6.73)

Preliminary lemmas: The following lemmas are used in proving the three main

propositions in this paper. These lemmas characterize some important properties

of p[k] = L1[k]L2[k] that are used in the following proofs.

Lemma 5.6.2 p[k] is governed by

p[k + 1] = ρp[k] + 2
√
ρM

√
p[k]g(α[k]) + M2 (5.6.74)

where

α[k] =

∣∣∣∣log2

(
λ1L1[k]

2b1[k]

2b2[k]

λ2L2[k]

)∣∣∣∣ (5.6.75)

Lemma 5.6.2 comes from the definition of p[k] in eq. 5.6.32 and the updating rule

of Li[k] in eq. 5.2.9. Its proof is omitted.

By eq. 5.6.74, {p[k]} is determined by the sequence {α[k]}. We now consider

a special sequence {α[k] = c}, where c is a positive constant. The corresponding

solution to eq. 5.6.74 is denoted as {pc[k]}. We have the following limit on pc[k].

Lemma 5.6.3

lim
k−→∞

pc[k] = pc (5.6.76)

where pc is the positive solution to the following equation with respect to z.

z = ρz + 2
√
ρMg(c)

√
z + M2 (5.6.77)

218

Proof: Because ρ < 1, eq. 5.6.77 has a unique positive solution, denoted as z0.

Define a function

f(z) = ρz + 2
√
ρMg(c)

√
z + M2 (5.6.78)

The updating rule of p[k] under the give constant α[k] can be rewritten into

pc[k + 1] = f(pc[k]) (5.6.79)

Because f(z)− z > 0 for z < z0, f(z0) = z0 and f(z)− z < 0 for z > z0, we know

limk−→∞ pc[k] exists and is equal to z0. ♦

For any finite c, the limit in eq. 5.6.76, pc is finite. Such finiteness can be used

to establish the following ordering relationship.

Lemma 5.6.4 If c > α1[k] ≥ α2[k] ≥ 0, ∀k, then

lim
N−→∞

sup{pα1 [k] − pα2 [k]}∞k=N ≥ 0 (5.6.80)

Proof: By the updating rule in eq. 5.6.74, we can easily establish the following

bounds.

M2 ≤ pα2 [k] ≤ pα1 [k] < pc[k], k ≥ 1 (5.6.81)

where pc[k] is similarly defined as in Lemma 5.6.3. By Lemma 5.6.3, we know

limk−→∞ pc[k] exists and is finite. By eq. 5.6.81, we know limN−→∞ sup{pα1 [k] −

pα2 [k]}∞k=N exists. Because pα1 [k] ≥ pα2 [k],

lim
N−→∞

sup{pα1[k] − pα2 [k]}∞k=N ≥ 0. ♦

219

We now use Lemma 5.6.4 to derive lower and upper bounds on p[k] for bounded

α[k].

Corollary 5.6.2 If 0 ≤ α[k] ≤ 1, then

lim
N−→∞

sup{p[k]}∞k=N ≥ pl (5.6.82)

lim
N−→∞

sup{p[k]}∞k=N ≤ pu (5.6.83)

where pl and pu are the positive solutions to the following equations.

pl = ρpl + 2
√
ρM

√
pl + M2 (5.6.84)

pu = ρpu + 2
√
ρMg(1)

√
pu + M2 (5.6.85)

Corollary 5.6.2 comes directly from Lemma 5.6.4 with Lemma 5.6.3 considered.

Its proof is omitted.

Proof of Proposition 5.4.1: Applying Lemma 5.6.1 to L2
1[k] + L2

2[k] yields

L2
1[k] + L2

2[k]

= 2p[k]g

(
2

∣∣∣∣log2

(
L1[k]

L2[k]

)∣∣∣∣

)

≥ 2p[k] (5.6.86)

The fact g
(
2
∣∣∣log2

(
L1[k]
L2[k]

)∣∣∣
)
≥ 1 is utilized to derive the above inequality. Com-

pute the ultimate bound on eq. 5.6.86, we get

J = lim
N−→∞

sup{L2
1[k] + L2

2[k]}∞k=N (5.6.87)

≥ 2 lim
N−→∞

sup{p[k]}∞k=N (5.6.88)

220

where J is the performance achieved by some bit assignment policy. Applying

Corollary 5.6.2, especially eq. 5.6.82, to eq. 5.6.88 yields

J ≥ 2pl (5.6.89)

where pl is defined in eq. 5.6.84. Note that eq. 5.6.84 and 5.4.27 are the same. So

pl = p0 (5.6.90)

Eq. 5.6.89 holds for J under any bit assignment policy. It certainly holds for the

optimal bit assignment policy which yields the performance of J ∗. So

J∗ ≥ 2pl

= 2p0

= J ♦

Proof of Proposition 5.4.2: Under the specified static policy, Li[k] (i = 1, 2)

is evolved as

Li[k + 1] =
λi

2bi[k]
Li[k] + M

=
λi

2bi
Li[k] + M (5.6.91)

From eq. 5.6.91, we know limk−→∞ Li[k] (i = 1, 2) exists and is equal to Li, which

is defined as

Li =
M

1 − λi

2bi

(5.6.92)

221

Due to the configuration of b1 and b2, we can verify that λ1

2b1
= λ2

2b2
. Denote c = λ1

2b1
.

Then ρ = λ1λ2/2R = c2. Because ρ < 1, c < 1. By eq. 5.6.92, we obtain that

L1 = L2 =
M

1 − c
(5.6.93)

By eq. 5.6.93 and ρ = c2, we can verify that L2
1 is a solution to eq. 5.4.27. Because

p0 is also the solution to eq. 5.4.27 and eq. 5.4.27 has a unique solution due to

ρ < 1, we get

L2
1 = p0 (5.6.94)

The performance under the specified static policy is

Jstatic = lim
N−→∞

sup{L2
1[k] + L2

2[k]}∞k=N

= L2
1 + L2

2

= 2L2
1 (5.6.95)

Substituting eq. 5.6.94 into eq. 5.6.95 yields

Jstatic = 2p0 = J (5.6.96)

So the lower bound J is achieved by the given static bit assignment policy. Clearly,

J = Jstatic ≥ J∗ (otherwise J∗ is not optimal). From proposition 5.4.1, we know

that J∗ ≥ J , so we can conlude that J∗ = J = Jstatic. ♦

222

Proof of Proposition 5.4.3: By the updating rule of Li[k] in eq. 5.2.9, we

obtain

L2
1[k + 1] + L2

2[k + 1]

=

(
λ1

2b1[k]
L1[k]

)2

+

(
λ2

2b2[k]
L2[k]

)2

+2M

(
λ1

2b1[k]
L1[k] +

λ2

2b2[k]
L2[k]

)
+ 2M2

= 2ρp[k]g (2α[k]) + 4M
√
ρp[k]g(α[k]) + 2M2 (5.6.97)

where α[k] =
∣∣∣log2

(
λ1L1[k]
2b1[k]

2b2[k]

λ2L2[k]

)∣∣∣. By Corollary 5.6.1, we know α[k] ≤ 1. By the

strictly increasing property of g(α) for α ≥ 0, we get






g(α[k]) ≤ g(1)

g(2α[k]) ≤ g(2)
(5.6.98)

Substituting eq. 5.6.98 into eq. 5.6.97 yields

L2
1[k + 1] + L2

2[k + 1]

≤ 2ρp[k]g(2) + 4M
√
ρ
√

p[k]g(1) + 2M2 (5.6.99)

Under DBAP, the performance achieved is JDBAP. Computing the ultimate bound

on both sides of eq. 5.6.99 yields

JDBAP = lim
N−→∞

sup{L2
1[k + 1] + L2

2[k + 1]}∞k=N

≤ 2ρg(2) lim
N−→∞

sup{p[k]}∞k=N

+4M
√
ρg(1)

√
lim

N−→∞
sup{p[k]}∞k=N + 2M2

223

Applying Corollary 5.6.2 to the above equality yields

JDBAP ≤ J = 2ρg(2)pu + 4M
√
ρg(1)

√
pu + 2M2

Clearly J∗ ≤ JDBAP , so we can conclude J∗ ≤ J . ♦

224

CHAPTER 6

CONCLUSIONS

This thesis studies control systems with limited feedback information. Two

types of feedback limitations, dropout and quantization, are studied. We analyze

the effect of dropout and quantization on stability and performance of control

systems and develop synthesis methods to improve system performance.

We consider two dropout models, independent and identically distributed

(i.i.d.) processes and Markov chains. For a control system with i.i.d. dropouts,

we

1. Obtained the closed-form expression of the output’s power spectral density

(PSD).

2. Proposed a linear time-invariant (LTI) system which is equivalent to the

original control system in the sense of the same stability condition and the

same output’s PSD. We show that we can do synthesis through the equiva-

lent LTI system.

3. Designed the optimal linear dropout compensator which takes a form of

optimization among a group of LQG controllers.

For a control system with dropouts governed by a Markov chain, we

225

1. Proved the necessity of the stability condition in theorem 3.2.1. That con-

dition is more convenient than the other testing conditions.

2. Computed the output power.

3. Formulated the optimal dropout policy problem. That problem is sovled

through a gradient method and a branch-and-bound method. The achieved

optimal dropout policy is implemented as a new QoS (quality of service)

constraint in real-time resource scheduling. Simulations show that the new

QoS constrant can yield good real-time control performance [49] [50]. We did

some hardware experiments to verify the achieved optimal dropout policy.

4. Extended the achieved performance computation and optimal dropout pol-

icy results to a distributed control system.

For a control system with quantization, we

1. Derived the minimum constant bit rate to guarantee stability (asymptotic

stability for noise-free quantized systems and BIBO stability for quantized

systems with bounded noise). We proposed a dynamic bit assignment policy

(DBAP), which can achieve the minimum constant bit rate for stability.

2. Formulated the optimal quantization policy problem. For a noise-free quan-

tized system, the optimal quantization policy is obtained, which is the pre-

viously proposed DBAP with slight modification. For a quantized system

with bounded noise, both a lower bound and an upper bound on the optimal

performance are proposed. The upper bound can always be achieved by the

proposed DBAP. So DBAP may be viewed as a sub-optimal quantization

policy with known performance gap.

226

APPENDIX A

MATHEMATICAL PRELIMINARIES

A.1 Convergence of stochastic processes

Let x be a random vector and let E[x] denote the expectation of x. A real-

valued discrete-time stochastic process x = {x[n]} is convergent in the mean

square sense if there exists a random vector x such that

lim
n→∞

E
[
(x[n] − x)T (x[n] − x)

]
= 0.

It can be shown [68] that a random process x = {x[n]} is convergent in the mean

square sense if and only if

lim
n→∞

sup
m≥n

E
[
(x[m] − x[n])T (x[m] − x[n])

]
= 0.

A.2 Wide sense stationary stochastic processes

A random process x = {x[n]} is said to be wide sense stationary (WSS) if its

mean is constant and its covariance is shift invariant. In other words, {x[n]} is

WSS if and only if E [x[n]] = constant = µx and E
[
(x[k] − µx)(x[l] − µx)T

]
=

E
[
(x[k + n] − µx)(x[l + n] − µx)T

]
for arbitrary n. Obviously if {x[n]} is WSS,

E
[
x[k]xT [l]

]
= E

[
x[k + n]xT [l + n]

]
for arbitrary n. The mean of the WSS pro-

cess x = {x[n]} is denoted as µx and the correlation matrix of this process is

227

denoted as Rxx(m) = E
[
x[n + m]x[n]T

]
, where n can be arbitrarily choosen be-

cause of the wide sense stationarity of x.

If x = {x[n]} is WSS, then the power spectral density (PSD) of x is the Fourier

transform of its covariance function 1,

Sxx(e
jω) =

∞∑

k=−∞

Rxx(m)e−jωk, (A.2.1)

Given two WSS processes x = {x[n]} and y = {y[n]}, the cross-correlation func-

tion Rxy(m) = E
[
x[n + m]y[n]T

]
is also shift invariant with respect to n. The

cross spectral density Sxy(ejω) is obtained by taking the Fourier transform of the

cross-correlation function. In this proposal, we often drop the explicit dependence

on ejω to improve the readability. In this case, Sxx(ejω) will be simply denoted as

Sxx. The complex conjugate transpose of Sxx is denoted as S∗
xx and satisfies the

equation S∗
xx(e

jω) = ST
xx(e

−jω).

Some of the technical proofs in this thesis use a single-sided Fourier transform.

Given a WSS process x, the positive and negative single-sided power spectral

densities are defined by the equations

S+
xx(e

jω) =
∞∑

m=1

Rxx[m]e−jmω,

S−
xx(e

jω) =
−1∑

m=−∞
Rxx[m]e−jmω.

Since Rxx(m) = RT
xx(−m), it is straightforward to see that

S+
xx =

[
S−

xx

]∗
. (A.2.2)

1Most of the WSS processes in this thesis are zero mean, so their covariances (cross-
covariances) and correlations (cross-correlations) are equal. Therefore we interchangeably use
these terms.

228

So the power spectral density can be expressed as

Sxx = S+
xx + S−

xx + Rxx[0]. (A.2.3)

The power of a WSS process x = {x[n]} is

E[xT x] = Trace(Rxx[0]). (A.2.4)

By equation A.2.1, we obtain

E[xT x] = Trace

(
1

2π

∫ π

−π

Sxx(e
jω)dω

)
.

Under the assumption that the input is white noise with unit variance, the power

of an LTI system’s output is the square of the H2 norm of the system [39]. So the

output’s power can be used to measure the noise attenuation property of a system

with noise input.

Ergodicity is an important property of a WSS process. The mean of x, E [x[n]],

is the ensemble average of x[n] (because x is WSS, E [x[n]] is constant for any n.).

The time average of x for n steps is defined as Ê [x[n]] = 1
n

∑n
i=1 x[i]. x is ergodic

if

lim
n−→∞

Ê [x[n]] = E [x[n]] in the mean square sense. (A.2.5)

It can be shown [60] that a WSS process x = {x[n]} is ergodic if

lim
m−→∞

E
[
(x[n + m] − µx) (x[n] − µx)

T
]

= 0,

229

where µx = E [x[n]]. When µx = 0, the above condition is equivalent to limm−→∞ Rxx[m] =

0.

A.3 Kronecker product

Some of the technical proofs in this thesis make use of the Kronecker product,

⊗ [8]. The Kronecker product of two matrices A = (aij)M×N , B = (bpq)P×Q is

defined as

A ⊗ B =





a11B a12B · · · a1NB

a21B a22B · · · a2NB

...
...

. . .
...

aM1B aM2B · · · aMNB





MP×NQ

.

For simplicity, A⊗A is denoted as A[2] and A⊗A[n] is denoted as A[n+1] (n ≥ 2).

For two vectors x and y, x ⊗ y simply rearranges the columns of xyT into a

vector. So for two WSS processes {x[n]} and {y[n]}, limn−→∞ E [x[n] ⊗ y[n]] = 0

if and only if limn−→∞ E
[
x[n]yT [n]

]
= 0. It then follows that a zero-mean WSS

process x = {x[n]} is ergodic if

lim
m−→∞

E [x[n + m] ⊗ x[n]] = 0.

The following property of Kronecker product will be frequently used in the

technical proofs,

(A1 A2 · · ·An) ⊗ (B1 B2 · · ·Bn) = (A1 ⊗ B1) (A2 ⊗ B2) · · · (An ⊗ Bn), (A.3.6)

where Ai, Bi(i = 1, 2, · · · , n) are all matrices with appropriate dimensions.

230

In computations using Kronecker product, two linear operators, vec and de-

vec, are used. The vec operator transforms a matrix A = (aij)M×N into the

vector

vec(A) = [a11 a21 · · ·aM1 a12 · · ·aM2 · · ·a1N · · ·aMN]T .

The devec operator inverts the vec operator for a square matrix, i.e.

devec (vec (A)) = A (A.3.7)

where A is a square matrix.

231

BIBLIOGRAPHY

1. Example: Modeling an inverted pendulum. http://www.engin.umich.edu
/group/ctm/examples/pend/invpen.html .

2. B. Anderson and J. Moore, Optimal control : linear quadratic methods. Pren-
tice Hall, Englewood Cliffs, NJ (1990).

3. K. Astrom, Computer-controlled systems : theory and design (third edition).
Upper Saddle River, N.J., Prentice Hall (1997).

4. K. Astrom and B. Bernhardsson, Comparison of riemann and lebesgue sam-
pling for first order stochastic systems. In the 41st IEEE Conference on De-
cision and Control , pages 2011–2016 (2002).

5. J. Baillieul, Feedback coding for information-based control - operating near
the data-rate limit. In IEEE Conference on Decision and Control , pages 3229–
3236 (2002).

6. P. Bauer, M. Sichitiu and K. Premaratne, Controlling an integrator through
data networks: stability in the presence of unknown time-variant delays.
In IEEE International Symposium on Circuits and Systems, pages 491–494
(1999).

7. O. Beldiman, G. Walsh and L. Bushnell, Predictors for networked control
systems. In American Control Conference, pages 2347–2351 (2000).

8. R. Bellman, Introduction to Matrix Analysis. McGraw-Hill (1960).

9. G. Bernat and A. Burns, Combining (n/m)-hard deadlines and dual priority
scheduling. In the 18th IEEE Real-Time Systems Symposium, pages 46–57,
San Francisco, CA, USA (1997).

10. G. Bernat and R. Cayssials, Guaranteed on-line weakly-hard real-time sys-
tems. In Real-Time Systems Symposium, pages 25–34 (2001).

11. B. Bhaurucha, On the stability of randomly varying systems. Ph.D. thesis,
Univ. of California, Berkeley (1961).

232

12. M. Branicky, S. Phillips and W. Zhang, Scheduling and feedback co-design
for networked control systems. In IEEE Conference on Decision and Control ,
Las Vegas, Nevada, USA (2002).

13. R. Brockett, Minimal attention control. In IEEE Conference on Decision and
Control (1997).

14. R. Brockett and D. Liberzon, Quantized feedback stabilization of linear sys-
tems. IEEE Transactions on Automatic Control , 45(7): 1279 –1289 (2000).

15. O. Costa, Necessity proof to the stability condition of jump linear systems. In
Personal email communication (Mar. 2004).

16. O. Costa and M. Fragoso, Stability results for discrete-time linear systems
with markovian jumping parameters. Journal of Mathematical Analysis and
Applications, 179: 154–178 (1993).

17. O. Costa and R. P. Marques, Comments on ”stochastic stability of jump
linear systems”. IEEE transactions on Automatic Control , 49(8): 1414 – 1416
(2004).

18. R. D’Andrea, Linear matrix inequalities, multidimensional system optimiza-
tion, and control of spatially distributed systems: An example. In American
Control Conference, pages 2713–2717 (1999).

19. D. Delchamps, Stabilizing a linear system with quantized state feedback. IEEE
Transactions on Automatic Control , 35(8): 916–924 (1990).

20. N. Elia and S. Mitter, Stabilization of linear systems with limited information.
IEEE Transactions on Automatic Control , 46(9): 1384 –1400 (2001).

21. F. Fagnani and S. Zampieri, Stability analysis and synthesis for scalar linear
systems with a quantized feedback. IEEE Transactions on Automatic Control ,
48(9): 1569–1584 (2003).

22. H. Fang and P. Antsaklis, Convergence rate of quantization error. In submitted
to IEEE Conference on Decision and Control , Seville, Spain (2005).

23. Y. Fang and K. Loparo, Stochastic stability of jump linear systems. IEEE
Transactions on Automatic Control , 47(7): 1204–1208 (2002).

24. X. Feng, K. Loparo, Y. Ji and H. Chizeck, Stochastic stability properties of
jump linear systems. IEEE Transactions on Automatic Control , 37(1): 38–53
(1992).

25. M. Fu, Robust stabilization of linear uncertain systems via quantized feedback.
In IEEE Control and Decision Conference 2003 (2003).

233

26. P. Gahinet, A. Nemirovski, A. Laub and M. Chilali, LMI control toolbox: for
use with MATLAB . The MATH works Inc. (1995).

27. R. Gray and D. Neuhoff, Quantization. IEEE Transactions on Information
Theory , 44(6): 2325–2383 (1998).

28. C. Hadjicostis and R. Touri, Feedback control utilizing packet dropping net-
work links. In IEEE Conference on Decision and Control , Las Vegas, Nevada,
USA (2002).

29. S. Haykin and M. Moher, Modern wireless communications. Pearson Prentice
Hall, Upper Saddle Reiver, NJ 07458 (2003).

30. J. Hespanha, A. Ortega and L. Vasudevan, Towards the control of linear sys-
tems with minimum bit-rate. In Proc. of the Int. Symp. on the Mathematical
Theory of Networks and Systems (2002).

31. R. Horn and C. Johnson, Matrix analysis. Cambridge University Press (1985).

32. D. Hristu-Varsakelis and P. Kumar, Interrupt-based feedback control over a
shared communication medium. In IEEE Conference on Decision and Control ,
Las Vegas, Nevada, USA (2002).

33. H. Ishii and B. Francis, Quadratic stabilization of sampled-data systems with
quantization. Automatica, 39(10): 1793–1800 (2003).

34. Y. Ji and H. Chizeck, controllability, stabilizability, and continuous-time
markovian jump linear quadratic control. IEEE Transactions on Automatic
Control , 35(7): 777–788 (1990).

35. Y. Ji and H. Chizeck, Jump linear quadratic gaussian control in continuous
time. IEEE Transactions on Automatic Control , 37(12): 1884–1892 (1992).

36. Y. Ji, H. Chizeck, X. Feng and K. Loparo, Stability and control of discrete-
time jump linear systems. Control Theory and Advanced Technology , 7(2):
247–270 (1991).

37. A. Kalavade and P. Mogh, A tool for performance estimation of networked
embedded end-systems. In Design Automation Conference, pages 257–262,
San Francisco, CA, USA (1998).

38. G. Koren and D. Shasha, Skip-over: algorithms and complexity for overloaded
systems that allow skips. In Real-Time Systems Symposium, pages 110–117
(1995).

39. M. Lemmon, Lecture Notes on Robust Optimal Control . http://www.nd.edu
/ ˜ lemmon/courses/ee555/robust-control.pdf (2004).

234

40. M. Lemmon and Q. Ling, Control system performance under dynamic quanti-
zation: the scalar case. In IEEE Conference on Decision and Control , Atlantis,
Paradise Island, Bahamas (2004).

41. D. Liberzon, On stabilization of linear systems with limited information. IEEE
Transactions on Automatic Control , 48(2): 304–307 (2003).

42. B. Lincoln and A. Cervin, Jitterbug: a tool for analysis of real-time control
performance. In IEEE Conference on Decision and Control (2002).

43. Q. Ling and M. Lemmon, Optimal dropout compensator in networked control
systems. In IEEE Conference on Decision and Control , Hyatt Regency Maui,
Hawaii, USA (2003).

44. Q. Ling and M. Lemmon, Soft real-time scheduling of networked control sys-
tems with dropouts governed by a markov chain. In American Control Con-
ference, Denver, Colorado (2003).

45. Q. Ling and M. Lemmon, Stability of quantized linear systems with bounded
noise under dynamic bit assignment. In IEEE Conference on Decision and
Control , Atlantis, Paradise Island, Bahamas (2004).

46. Q. Ling and M. Lemmon, Optimal dynamic bit assignment in noise-free quan-
tized linear control systems. In submitted to IEEE Conference on Decision and
Control , Seville, Spain (2005).

47. Q. Ling and M. Lemmon, Performance of quantized linear systems with
bounded noise under dynamic bit assignment. In submitted to IEEE Con-
ference on Decision and Control , Seville, Spain (2005).

48. Q. Ling and M. Lemmon, Stability of quantized control systems under dy-
namicc bit assignment. IEEE Trans. on Automatic Control, also appeared in
American Control Conference (2004), 50(5) (2005).

49. D. Liu, X. Hu, M. Lemmon and Q. Ling, Firm real-time system scheduling
based on a novel qos constraint. In Real Time Systems Symposium (2003).

50. D. Liu, X. Hu, M. Lemmon and Q. Ling, Scheduling tasks with markov-
chain based constraints. In 17th Euromicro Conference on Real-time Systems
(2005).

51. M. Mariton, Jump Linear Systems in Automatic Control . Marcel Dekker, Inc.
(1990).

52. L. Montestrue and P. Antsaklis, On the model-based control of networked
systems. Automatica, 39(10): 1837–1843 (2003).

235

53. G. Nair and R. Evans, Exponential stabilisability of finite-dimensional linear
systems with limited data rates. Automatica, 39: 585–593 (2003).

54. G. Nair and R. Evans, Stabilizability of stochastic linear systems with finite
feedback data rates. SIAM Journal of Control and Optimization, 43(2): 413–
436 (2004).

55. J. Nilsson, Real-time control systems with delays. Ph.D. thesis, Lund Institute
of Technology (1998).

56. G. Quan and X. Hu, Enhanced fixed-priority scheduling with (m,k)-firm guar-
antee. In IEEE Real-Time Systems Symposium, pages 79–88 (2000).

57. P. Ramanathan, Overload management in real-time control applications using
(m, k)-firm guarantee. IEEE Transactions on Parallel and Distributed Sys-
tems, 10: 549–559 (1999).

58. S. Sarma, M. Dahleh and S. Salapaka, On time-varying bit-allocation main-
taining input-output stability: a convex parameterization. In IEEE Confer-
ence on Decision and Control , pages 1430–1435 (2004).

59. P. Seiler and R. Sengupta, Analysis of communication losses in vehicle control
problems. In American Control Conference (2001).

60. H. Stark and J. Woods, Probability, Random Processes, and Estimation The-
ory for Engineers. Prentice Hall, Upper Saddle River, NJ, second edition
(1994).

61. S. Tatikonda, Control under communication constraints. Ph.D. thesis, M.I.T.
(2000).

62. S. Tatikonda and S. Mitter, Control under communication constraints. IEEE
Transactions on Automatic Control , 49(7): 1056–1068 (2004).

63. S. Tatikonda, A. Sahai and S. Mitter, Stochastic linear control over a commu-
nication channel. IEEE Transactions on Automatic Control , 49(9): 1549–1561
(2004).

64. H. Tuan, P. Apkarian and Y. Nakashima, A new lagrangian dual global opti-
mization algorithm for solving bilinear matrix inequalities. International Jour-
nal of Robust and Nonlinear Control , 10: 561–578 (2000).

65. G. Walsh, O. Beldiman and L. Bushnell, Asymptotic behavior of nonlinear
networked control systems. IEEE Transactions on Automatic Control , 46:
1093–1097 (2001).

236

66. G. Walsh, Y. Hong and L. Bushnell, Stability analysis of networked control
systems. In American Control Conference, pages 2876–2880 (1999).

67. L. Wolsey, Integer programming . John Wiley & Sons, Inc. (1998).

68. E. Wong and B. Hajek, Stochastic Processes in Engineering Systems. Springer-
Verlag (1984).

69. W. Wong and R. Brockett, Systems with finite communication bandwidth
constraints- part ii: stabilization with limited information feedback. IEEE
Transactions on Automatic Control , 44(5): 1049–1053 (1999).

70. W. Zhang, Stability analysis of networked control systems. Ph.D. thesis, Case
Western Reserve University (2001).

This document was prepared & typeset with LATEX2ε, and formatted with
nddiss2ε classfile (v1.0[2004/06/15]) provided by Sameer Vijay.

237

